Merge branch 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / crypto / ccp / ccp-dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/spinlock_types.h>
17 #include <linux/types.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/hw_random.h>
21 #include <linux/cpu.h>
22 #ifdef CONFIG_X86
23 #include <asm/cpu_device_id.h>
24 #endif
25 #include <linux/ccp.h>
26
27 #include "ccp-dev.h"
28
29 struct ccp_tasklet_data {
30         struct completion completion;
31         struct ccp_cmd *cmd;
32 };
33
34 /* Human-readable error strings */
35 #define CCP_MAX_ERROR_CODE      64
36 static char *ccp_error_codes[] = {
37         "",
38         "ILLEGAL_ENGINE",
39         "ILLEGAL_KEY_ID",
40         "ILLEGAL_FUNCTION_TYPE",
41         "ILLEGAL_FUNCTION_MODE",
42         "ILLEGAL_FUNCTION_ENCRYPT",
43         "ILLEGAL_FUNCTION_SIZE",
44         "Zlib_MISSING_INIT_EOM",
45         "ILLEGAL_FUNCTION_RSVD",
46         "ILLEGAL_BUFFER_LENGTH",
47         "VLSB_FAULT",
48         "ILLEGAL_MEM_ADDR",
49         "ILLEGAL_MEM_SEL",
50         "ILLEGAL_CONTEXT_ID",
51         "ILLEGAL_KEY_ADDR",
52         "0xF Reserved",
53         "Zlib_ILLEGAL_MULTI_QUEUE",
54         "Zlib_ILLEGAL_JOBID_CHANGE",
55         "CMD_TIMEOUT",
56         "IDMA0_AXI_SLVERR",
57         "IDMA0_AXI_DECERR",
58         "0x15 Reserved",
59         "IDMA1_AXI_SLAVE_FAULT",
60         "IDMA1_AIXI_DECERR",
61         "0x18 Reserved",
62         "ZLIBVHB_AXI_SLVERR",
63         "ZLIBVHB_AXI_DECERR",
64         "0x1B Reserved",
65         "ZLIB_UNEXPECTED_EOM",
66         "ZLIB_EXTRA_DATA",
67         "ZLIB_BTYPE",
68         "ZLIB_UNDEFINED_SYMBOL",
69         "ZLIB_UNDEFINED_DISTANCE_S",
70         "ZLIB_CODE_LENGTH_SYMBOL",
71         "ZLIB _VHB_ILLEGAL_FETCH",
72         "ZLIB_UNCOMPRESSED_LEN",
73         "ZLIB_LIMIT_REACHED",
74         "ZLIB_CHECKSUM_MISMATCH0",
75         "ODMA0_AXI_SLVERR",
76         "ODMA0_AXI_DECERR",
77         "0x28 Reserved",
78         "ODMA1_AXI_SLVERR",
79         "ODMA1_AXI_DECERR",
80 };
81
82 void ccp_log_error(struct ccp_device *d, unsigned int e)
83 {
84         if (WARN_ON(e >= CCP_MAX_ERROR_CODE))
85                 return;
86
87         if (e < ARRAY_SIZE(ccp_error_codes))
88                 dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]);
89         else
90                 dev_err(d->dev, "CCP error %d: Unknown Error\n", e);
91 }
92
93 /* List of CCPs, CCP count, read-write access lock, and access functions
94  *
95  * Lock structure: get ccp_unit_lock for reading whenever we need to
96  * examine the CCP list. While holding it for reading we can acquire
97  * the RR lock to update the round-robin next-CCP pointer. The unit lock
98  * must be acquired before the RR lock.
99  *
100  * If the unit-lock is acquired for writing, we have total control over
101  * the list, so there's no value in getting the RR lock.
102  */
103 static DEFINE_RWLOCK(ccp_unit_lock);
104 static LIST_HEAD(ccp_units);
105
106 /* Round-robin counter */
107 static DEFINE_SPINLOCK(ccp_rr_lock);
108 static struct ccp_device *ccp_rr;
109
110 /**
111  * ccp_add_device - add a CCP device to the list
112  *
113  * @ccp: ccp_device struct pointer
114  *
115  * Put this CCP on the unit list, which makes it available
116  * for use.
117  *
118  * Returns zero if a CCP device is present, -ENODEV otherwise.
119  */
120 void ccp_add_device(struct ccp_device *ccp)
121 {
122         unsigned long flags;
123
124         write_lock_irqsave(&ccp_unit_lock, flags);
125         list_add_tail(&ccp->entry, &ccp_units);
126         if (!ccp_rr)
127                 /* We already have the list lock (we're first) so this
128                  * pointer can't change on us. Set its initial value.
129                  */
130                 ccp_rr = ccp;
131         write_unlock_irqrestore(&ccp_unit_lock, flags);
132 }
133
134 /**
135  * ccp_del_device - remove a CCP device from the list
136  *
137  * @ccp: ccp_device struct pointer
138  *
139  * Remove this unit from the list of devices. If the next device
140  * up for use is this one, adjust the pointer. If this is the last
141  * device, NULL the pointer.
142  */
143 void ccp_del_device(struct ccp_device *ccp)
144 {
145         unsigned long flags;
146
147         write_lock_irqsave(&ccp_unit_lock, flags);
148         if (ccp_rr == ccp) {
149                 /* ccp_unit_lock is read/write; any read access
150                  * will be suspended while we make changes to the
151                  * list and RR pointer.
152                  */
153                 if (list_is_last(&ccp_rr->entry, &ccp_units))
154                         ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
155                                                   entry);
156                 else
157                         ccp_rr = list_next_entry(ccp_rr, entry);
158         }
159         list_del(&ccp->entry);
160         if (list_empty(&ccp_units))
161                 ccp_rr = NULL;
162         write_unlock_irqrestore(&ccp_unit_lock, flags);
163 }
164
165
166
167 int ccp_register_rng(struct ccp_device *ccp)
168 {
169         int ret = 0;
170
171         dev_dbg(ccp->dev, "Registering RNG...\n");
172         /* Register an RNG */
173         ccp->hwrng.name = ccp->rngname;
174         ccp->hwrng.read = ccp_trng_read;
175         ret = hwrng_register(&ccp->hwrng);
176         if (ret)
177                 dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
178
179         return ret;
180 }
181
182 void ccp_unregister_rng(struct ccp_device *ccp)
183 {
184         if (ccp->hwrng.name)
185                 hwrng_unregister(&ccp->hwrng);
186 }
187
188 static struct ccp_device *ccp_get_device(void)
189 {
190         unsigned long flags;
191         struct ccp_device *dp = NULL;
192
193         /* We round-robin through the unit list.
194          * The (ccp_rr) pointer refers to the next unit to use.
195          */
196         read_lock_irqsave(&ccp_unit_lock, flags);
197         if (!list_empty(&ccp_units)) {
198                 spin_lock(&ccp_rr_lock);
199                 dp = ccp_rr;
200                 if (list_is_last(&ccp_rr->entry, &ccp_units))
201                         ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
202                                                   entry);
203                 else
204                         ccp_rr = list_next_entry(ccp_rr, entry);
205                 spin_unlock(&ccp_rr_lock);
206         }
207         read_unlock_irqrestore(&ccp_unit_lock, flags);
208
209         return dp;
210 }
211
212 /**
213  * ccp_present - check if a CCP device is present
214  *
215  * Returns zero if a CCP device is present, -ENODEV otherwise.
216  */
217 int ccp_present(void)
218 {
219         unsigned long flags;
220         int ret;
221
222         read_lock_irqsave(&ccp_unit_lock, flags);
223         ret = list_empty(&ccp_units);
224         read_unlock_irqrestore(&ccp_unit_lock, flags);
225
226         return ret ? -ENODEV : 0;
227 }
228 EXPORT_SYMBOL_GPL(ccp_present);
229
230 /**
231  * ccp_version - get the version of the CCP device
232  *
233  * Returns the version from the first unit on the list;
234  * otherwise a zero if no CCP device is present
235  */
236 unsigned int ccp_version(void)
237 {
238         struct ccp_device *dp;
239         unsigned long flags;
240         int ret = 0;
241
242         read_lock_irqsave(&ccp_unit_lock, flags);
243         if (!list_empty(&ccp_units)) {
244                 dp = list_first_entry(&ccp_units, struct ccp_device, entry);
245                 ret = dp->vdata->version;
246         }
247         read_unlock_irqrestore(&ccp_unit_lock, flags);
248
249         return ret;
250 }
251 EXPORT_SYMBOL_GPL(ccp_version);
252
253 /**
254  * ccp_enqueue_cmd - queue an operation for processing by the CCP
255  *
256  * @cmd: ccp_cmd struct to be processed
257  *
258  * Queue a cmd to be processed by the CCP. If queueing the cmd
259  * would exceed the defined length of the cmd queue the cmd will
260  * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
261  * result in a return code of -EBUSY.
262  *
263  * The callback routine specified in the ccp_cmd struct will be
264  * called to notify the caller of completion (if the cmd was not
265  * backlogged) or advancement out of the backlog. If the cmd has
266  * advanced out of the backlog the "err" value of the callback
267  * will be -EINPROGRESS. Any other "err" value during callback is
268  * the result of the operation.
269  *
270  * The cmd has been successfully queued if:
271  *   the return code is -EINPROGRESS or
272  *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
273  */
274 int ccp_enqueue_cmd(struct ccp_cmd *cmd)
275 {
276         struct ccp_device *ccp;
277         unsigned long flags;
278         unsigned int i;
279         int ret;
280
281         /* Some commands might need to be sent to a specific device */
282         ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
283
284         if (!ccp)
285                 return -ENODEV;
286
287         /* Caller must supply a callback routine */
288         if (!cmd->callback)
289                 return -EINVAL;
290
291         cmd->ccp = ccp;
292
293         spin_lock_irqsave(&ccp->cmd_lock, flags);
294
295         i = ccp->cmd_q_count;
296
297         if (ccp->cmd_count >= MAX_CMD_QLEN) {
298                 if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
299                         ret = -EBUSY;
300                         list_add_tail(&cmd->entry, &ccp->backlog);
301                 } else {
302                         ret = -ENOSPC;
303                 }
304         } else {
305                 ret = -EINPROGRESS;
306                 ccp->cmd_count++;
307                 list_add_tail(&cmd->entry, &ccp->cmd);
308
309                 /* Find an idle queue */
310                 if (!ccp->suspending) {
311                         for (i = 0; i < ccp->cmd_q_count; i++) {
312                                 if (ccp->cmd_q[i].active)
313                                         continue;
314
315                                 break;
316                         }
317                 }
318         }
319
320         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
321
322         /* If we found an idle queue, wake it up */
323         if (i < ccp->cmd_q_count)
324                 wake_up_process(ccp->cmd_q[i].kthread);
325
326         return ret;
327 }
328 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
329
330 static void ccp_do_cmd_backlog(struct work_struct *work)
331 {
332         struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
333         struct ccp_device *ccp = cmd->ccp;
334         unsigned long flags;
335         unsigned int i;
336
337         cmd->callback(cmd->data, -EINPROGRESS);
338
339         spin_lock_irqsave(&ccp->cmd_lock, flags);
340
341         ccp->cmd_count++;
342         list_add_tail(&cmd->entry, &ccp->cmd);
343
344         /* Find an idle queue */
345         for (i = 0; i < ccp->cmd_q_count; i++) {
346                 if (ccp->cmd_q[i].active)
347                         continue;
348
349                 break;
350         }
351
352         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
353
354         /* If we found an idle queue, wake it up */
355         if (i < ccp->cmd_q_count)
356                 wake_up_process(ccp->cmd_q[i].kthread);
357 }
358
359 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
360 {
361         struct ccp_device *ccp = cmd_q->ccp;
362         struct ccp_cmd *cmd = NULL;
363         struct ccp_cmd *backlog = NULL;
364         unsigned long flags;
365
366         spin_lock_irqsave(&ccp->cmd_lock, flags);
367
368         cmd_q->active = 0;
369
370         if (ccp->suspending) {
371                 cmd_q->suspended = 1;
372
373                 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
374                 wake_up_interruptible(&ccp->suspend_queue);
375
376                 return NULL;
377         }
378
379         if (ccp->cmd_count) {
380                 cmd_q->active = 1;
381
382                 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
383                 list_del(&cmd->entry);
384
385                 ccp->cmd_count--;
386         }
387
388         if (!list_empty(&ccp->backlog)) {
389                 backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
390                                            entry);
391                 list_del(&backlog->entry);
392         }
393
394         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
395
396         if (backlog) {
397                 INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
398                 schedule_work(&backlog->work);
399         }
400
401         return cmd;
402 }
403
404 static void ccp_do_cmd_complete(unsigned long data)
405 {
406         struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
407         struct ccp_cmd *cmd = tdata->cmd;
408
409         cmd->callback(cmd->data, cmd->ret);
410
411         complete(&tdata->completion);
412 }
413
414 /**
415  * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
416  *
417  * @data: thread-specific data
418  */
419 int ccp_cmd_queue_thread(void *data)
420 {
421         struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
422         struct ccp_cmd *cmd;
423         struct ccp_tasklet_data tdata;
424         struct tasklet_struct tasklet;
425
426         tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
427
428         set_current_state(TASK_INTERRUPTIBLE);
429         while (!kthread_should_stop()) {
430                 schedule();
431
432                 set_current_state(TASK_INTERRUPTIBLE);
433
434                 cmd = ccp_dequeue_cmd(cmd_q);
435                 if (!cmd)
436                         continue;
437
438                 __set_current_state(TASK_RUNNING);
439
440                 /* Execute the command */
441                 cmd->ret = ccp_run_cmd(cmd_q, cmd);
442
443                 /* Schedule the completion callback */
444                 tdata.cmd = cmd;
445                 init_completion(&tdata.completion);
446                 tasklet_schedule(&tasklet);
447                 wait_for_completion(&tdata.completion);
448         }
449
450         __set_current_state(TASK_RUNNING);
451
452         return 0;
453 }
454
455 /**
456  * ccp_alloc_struct - allocate and initialize the ccp_device struct
457  *
458  * @dev: device struct of the CCP
459  */
460 struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
461 {
462         struct device *dev = sp->dev;
463         struct ccp_device *ccp;
464
465         ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
466         if (!ccp)
467                 return NULL;
468         ccp->dev = dev;
469         ccp->sp = sp;
470         ccp->axcache = sp->axcache;
471
472         INIT_LIST_HEAD(&ccp->cmd);
473         INIT_LIST_HEAD(&ccp->backlog);
474
475         spin_lock_init(&ccp->cmd_lock);
476         mutex_init(&ccp->req_mutex);
477         mutex_init(&ccp->sb_mutex);
478         ccp->sb_count = KSB_COUNT;
479         ccp->sb_start = 0;
480
481         /* Initialize the wait queues */
482         init_waitqueue_head(&ccp->sb_queue);
483         init_waitqueue_head(&ccp->suspend_queue);
484
485         snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
486         snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
487
488         return ccp;
489 }
490
491 int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
492 {
493         struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
494         u32 trng_value;
495         int len = min_t(int, sizeof(trng_value), max);
496
497         /* Locking is provided by the caller so we can update device
498          * hwrng-related fields safely
499          */
500         trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
501         if (!trng_value) {
502                 /* Zero is returned if not data is available or if a
503                  * bad-entropy error is present. Assume an error if
504                  * we exceed TRNG_RETRIES reads of zero.
505                  */
506                 if (ccp->hwrng_retries++ > TRNG_RETRIES)
507                         return -EIO;
508
509                 return 0;
510         }
511
512         /* Reset the counter and save the rng value */
513         ccp->hwrng_retries = 0;
514         memcpy(data, &trng_value, len);
515
516         return len;
517 }
518
519 #ifdef CONFIG_PM
520 bool ccp_queues_suspended(struct ccp_device *ccp)
521 {
522         unsigned int suspended = 0;
523         unsigned long flags;
524         unsigned int i;
525
526         spin_lock_irqsave(&ccp->cmd_lock, flags);
527
528         for (i = 0; i < ccp->cmd_q_count; i++)
529                 if (ccp->cmd_q[i].suspended)
530                         suspended++;
531
532         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
533
534         return ccp->cmd_q_count == suspended;
535 }
536
537 int ccp_dev_suspend(struct sp_device *sp, pm_message_t state)
538 {
539         struct ccp_device *ccp = sp->ccp_data;
540         unsigned long flags;
541         unsigned int i;
542
543         /* If there's no device there's nothing to do */
544         if (!ccp)
545                 return 0;
546
547         spin_lock_irqsave(&ccp->cmd_lock, flags);
548
549         ccp->suspending = 1;
550
551         /* Wake all the queue kthreads to prepare for suspend */
552         for (i = 0; i < ccp->cmd_q_count; i++)
553                 wake_up_process(ccp->cmd_q[i].kthread);
554
555         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
556
557         /* Wait for all queue kthreads to say they're done */
558         while (!ccp_queues_suspended(ccp))
559                 wait_event_interruptible(ccp->suspend_queue,
560                                          ccp_queues_suspended(ccp));
561
562         return 0;
563 }
564
565 int ccp_dev_resume(struct sp_device *sp)
566 {
567         struct ccp_device *ccp = sp->ccp_data;
568         unsigned long flags;
569         unsigned int i;
570
571         /* If there's no device there's nothing to do */
572         if (!ccp)
573                 return 0;
574
575         spin_lock_irqsave(&ccp->cmd_lock, flags);
576
577         ccp->suspending = 0;
578
579         /* Wake up all the kthreads */
580         for (i = 0; i < ccp->cmd_q_count; i++) {
581                 ccp->cmd_q[i].suspended = 0;
582                 wake_up_process(ccp->cmd_q[i].kthread);
583         }
584
585         spin_unlock_irqrestore(&ccp->cmd_lock, flags);
586
587         return 0;
588 }
589 #endif
590
591 int ccp_dev_init(struct sp_device *sp)
592 {
593         struct device *dev = sp->dev;
594         struct ccp_device *ccp;
595         int ret;
596
597         ret = -ENOMEM;
598         ccp = ccp_alloc_struct(sp);
599         if (!ccp)
600                 goto e_err;
601         sp->ccp_data = ccp;
602
603         ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
604         if (!ccp->vdata || !ccp->vdata->version) {
605                 ret = -ENODEV;
606                 dev_err(dev, "missing driver data\n");
607                 goto e_err;
608         }
609
610         ccp->use_tasklet = sp->use_tasklet;
611
612         ccp->io_regs = sp->io_map + ccp->vdata->offset;
613         if (ccp->vdata->setup)
614                 ccp->vdata->setup(ccp);
615
616         ret = ccp->vdata->perform->init(ccp);
617         if (ret)
618                 goto e_err;
619
620         dev_notice(dev, "ccp enabled\n");
621
622         return 0;
623
624 e_err:
625         sp->ccp_data = NULL;
626
627         dev_notice(dev, "ccp initialization failed\n");
628
629         return ret;
630 }
631
632 void ccp_dev_destroy(struct sp_device *sp)
633 {
634         struct ccp_device *ccp = sp->ccp_data;
635
636         if (!ccp)
637                 return;
638
639         ccp->vdata->perform->destroy(ccp);
640 }