Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[sfrench/cifs-2.6.git] / drivers / crypto / ccp / ccp-dev-v5.c
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Gary R Hook <gary.hook@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/kthread.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/compiler.h>
20 #include <linux/ccp.h>
21
22 #include "ccp-dev.h"
23
24 /* Allocate the requested number of contiguous LSB slots
25  * from the LSB bitmap. Look in the private range for this
26  * queue first; failing that, check the public area.
27  * If no space is available, wait around.
28  * Return: first slot number
29  */
30 static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
31 {
32         struct ccp_device *ccp;
33         int start;
34
35         /* First look at the map for the queue */
36         if (cmd_q->lsb >= 0) {
37                 start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
38                                                         LSB_SIZE,
39                                                         0, count, 0);
40                 if (start < LSB_SIZE) {
41                         bitmap_set(cmd_q->lsbmap, start, count);
42                         return start + cmd_q->lsb * LSB_SIZE;
43                 }
44         }
45
46         /* No joy; try to get an entry from the shared blocks */
47         ccp = cmd_q->ccp;
48         for (;;) {
49                 mutex_lock(&ccp->sb_mutex);
50
51                 start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
52                                                         MAX_LSB_CNT * LSB_SIZE,
53                                                         0,
54                                                         count, 0);
55                 if (start <= MAX_LSB_CNT * LSB_SIZE) {
56                         bitmap_set(ccp->lsbmap, start, count);
57
58                         mutex_unlock(&ccp->sb_mutex);
59                         return start;
60                 }
61
62                 ccp->sb_avail = 0;
63
64                 mutex_unlock(&ccp->sb_mutex);
65
66                 /* Wait for KSB entries to become available */
67                 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
68                         return 0;
69         }
70 }
71
72 /* Free a number of LSB slots from the bitmap, starting at
73  * the indicated starting slot number.
74  */
75 static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
76                          unsigned int count)
77 {
78         if (!start)
79                 return;
80
81         if (cmd_q->lsb == start) {
82                 /* An entry from the private LSB */
83                 bitmap_clear(cmd_q->lsbmap, start, count);
84         } else {
85                 /* From the shared LSBs */
86                 struct ccp_device *ccp = cmd_q->ccp;
87
88                 mutex_lock(&ccp->sb_mutex);
89                 bitmap_clear(ccp->lsbmap, start, count);
90                 ccp->sb_avail = 1;
91                 mutex_unlock(&ccp->sb_mutex);
92                 wake_up_interruptible_all(&ccp->sb_queue);
93         }
94 }
95
96 /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
97 union ccp_function {
98         struct {
99                 u16 size:7;
100                 u16 encrypt:1;
101                 u16 mode:5;
102                 u16 type:2;
103         } aes;
104         struct {
105                 u16 size:7;
106                 u16 encrypt:1;
107                 u16 rsvd:5;
108                 u16 type:2;
109         } aes_xts;
110         struct {
111                 u16 rsvd1:10;
112                 u16 type:4;
113                 u16 rsvd2:1;
114         } sha;
115         struct {
116                 u16 mode:3;
117                 u16 size:12;
118         } rsa;
119         struct {
120                 u16 byteswap:2;
121                 u16 bitwise:3;
122                 u16 reflect:2;
123                 u16 rsvd:8;
124         } pt;
125         struct  {
126                 u16 rsvd:13;
127         } zlib;
128         struct {
129                 u16 size:10;
130                 u16 type:2;
131                 u16 mode:3;
132         } ecc;
133         u16 raw;
134 };
135
136 #define CCP_AES_SIZE(p)         ((p)->aes.size)
137 #define CCP_AES_ENCRYPT(p)      ((p)->aes.encrypt)
138 #define CCP_AES_MODE(p)         ((p)->aes.mode)
139 #define CCP_AES_TYPE(p)         ((p)->aes.type)
140 #define CCP_XTS_SIZE(p)         ((p)->aes_xts.size)
141 #define CCP_XTS_ENCRYPT(p)      ((p)->aes_xts.encrypt)
142 #define CCP_SHA_TYPE(p)         ((p)->sha.type)
143 #define CCP_RSA_SIZE(p)         ((p)->rsa.size)
144 #define CCP_PT_BYTESWAP(p)      ((p)->pt.byteswap)
145 #define CCP_PT_BITWISE(p)       ((p)->pt.bitwise)
146 #define CCP_ECC_MODE(p)         ((p)->ecc.mode)
147 #define CCP_ECC_AFFINE(p)       ((p)->ecc.one)
148
149 /* Word 0 */
150 #define CCP5_CMD_DW0(p)         ((p)->dw0)
151 #define CCP5_CMD_SOC(p)         (CCP5_CMD_DW0(p).soc)
152 #define CCP5_CMD_IOC(p)         (CCP5_CMD_DW0(p).ioc)
153 #define CCP5_CMD_INIT(p)        (CCP5_CMD_DW0(p).init)
154 #define CCP5_CMD_EOM(p)         (CCP5_CMD_DW0(p).eom)
155 #define CCP5_CMD_FUNCTION(p)    (CCP5_CMD_DW0(p).function)
156 #define CCP5_CMD_ENGINE(p)      (CCP5_CMD_DW0(p).engine)
157 #define CCP5_CMD_PROT(p)        (CCP5_CMD_DW0(p).prot)
158
159 /* Word 1 */
160 #define CCP5_CMD_DW1(p)         ((p)->length)
161 #define CCP5_CMD_LEN(p)         (CCP5_CMD_DW1(p))
162
163 /* Word 2 */
164 #define CCP5_CMD_DW2(p)         ((p)->src_lo)
165 #define CCP5_CMD_SRC_LO(p)      (CCP5_CMD_DW2(p))
166
167 /* Word 3 */
168 #define CCP5_CMD_DW3(p)         ((p)->dw3)
169 #define CCP5_CMD_SRC_MEM(p)     ((p)->dw3.src_mem)
170 #define CCP5_CMD_SRC_HI(p)      ((p)->dw3.src_hi)
171 #define CCP5_CMD_LSB_ID(p)      ((p)->dw3.lsb_cxt_id)
172 #define CCP5_CMD_FIX_SRC(p)     ((p)->dw3.fixed)
173
174 /* Words 4/5 */
175 #define CCP5_CMD_DW4(p)         ((p)->dw4)
176 #define CCP5_CMD_DST_LO(p)      (CCP5_CMD_DW4(p).dst_lo)
177 #define CCP5_CMD_DW5(p)         ((p)->dw5.fields.dst_hi)
178 #define CCP5_CMD_DST_HI(p)      (CCP5_CMD_DW5(p))
179 #define CCP5_CMD_DST_MEM(p)     ((p)->dw5.fields.dst_mem)
180 #define CCP5_CMD_FIX_DST(p)     ((p)->dw5.fields.fixed)
181 #define CCP5_CMD_SHA_LO(p)      ((p)->dw4.sha_len_lo)
182 #define CCP5_CMD_SHA_HI(p)      ((p)->dw5.sha_len_hi)
183
184 /* Word 6/7 */
185 #define CCP5_CMD_DW6(p)         ((p)->key_lo)
186 #define CCP5_CMD_KEY_LO(p)      (CCP5_CMD_DW6(p))
187 #define CCP5_CMD_DW7(p)         ((p)->dw7)
188 #define CCP5_CMD_KEY_HI(p)      ((p)->dw7.key_hi)
189 #define CCP5_CMD_KEY_MEM(p)     ((p)->dw7.key_mem)
190
191 static inline u32 low_address(unsigned long addr)
192 {
193         return (u64)addr & 0x0ffffffff;
194 }
195
196 static inline u32 high_address(unsigned long addr)
197 {
198         return ((u64)addr >> 32) & 0x00000ffff;
199 }
200
201 static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
202 {
203         unsigned int head_idx, n;
204         u32 head_lo, queue_start;
205
206         queue_start = low_address(cmd_q->qdma_tail);
207         head_lo = ioread32(cmd_q->reg_head_lo);
208         head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
209
210         n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
211
212         return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
213 }
214
215 static int ccp5_do_cmd(struct ccp5_desc *desc,
216                        struct ccp_cmd_queue *cmd_q)
217 {
218         u32 *mP;
219         __le32 *dP;
220         u32 tail;
221         int     i;
222         int ret = 0;
223
224         if (CCP5_CMD_SOC(desc)) {
225                 CCP5_CMD_IOC(desc) = 1;
226                 CCP5_CMD_SOC(desc) = 0;
227         }
228         mutex_lock(&cmd_q->q_mutex);
229
230         mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
231         dP = (__le32 *) desc;
232         for (i = 0; i < 8; i++)
233                 mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
234
235         cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
236
237         /* The data used by this command must be flushed to memory */
238         wmb();
239
240         /* Write the new tail address back to the queue register */
241         tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
242         iowrite32(tail, cmd_q->reg_tail_lo);
243
244         /* Turn the queue back on using our cached control register */
245         iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
246         mutex_unlock(&cmd_q->q_mutex);
247
248         if (CCP5_CMD_IOC(desc)) {
249                 /* Wait for the job to complete */
250                 ret = wait_event_interruptible(cmd_q->int_queue,
251                                                cmd_q->int_rcvd);
252                 if (ret || cmd_q->cmd_error) {
253                         /* Log the error and flush the queue by
254                          * moving the head pointer
255                          */
256                         if (cmd_q->cmd_error)
257                                 ccp_log_error(cmd_q->ccp,
258                                               cmd_q->cmd_error);
259                         iowrite32(tail, cmd_q->reg_head_lo);
260                         if (!ret)
261                                 ret = -EIO;
262                 }
263                 cmd_q->int_rcvd = 0;
264         }
265
266         return ret;
267 }
268
269 static int ccp5_perform_aes(struct ccp_op *op)
270 {
271         struct ccp5_desc desc;
272         union ccp_function function;
273         u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
274
275         /* Zero out all the fields of the command desc */
276         memset(&desc, 0, Q_DESC_SIZE);
277
278         CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
279
280         CCP5_CMD_SOC(&desc) = op->soc;
281         CCP5_CMD_IOC(&desc) = 1;
282         CCP5_CMD_INIT(&desc) = op->init;
283         CCP5_CMD_EOM(&desc) = op->eom;
284         CCP5_CMD_PROT(&desc) = 0;
285
286         function.raw = 0;
287         CCP_AES_ENCRYPT(&function) = op->u.aes.action;
288         CCP_AES_MODE(&function) = op->u.aes.mode;
289         CCP_AES_TYPE(&function) = op->u.aes.type;
290         CCP_AES_SIZE(&function) = op->u.aes.size;
291
292         CCP5_CMD_FUNCTION(&desc) = function.raw;
293
294         CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
295
296         CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
297         CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
298         CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
299
300         CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
301         CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
302         CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
303
304         CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
305         CCP5_CMD_KEY_HI(&desc) = 0;
306         CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
307         CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
308
309         return ccp5_do_cmd(&desc, op->cmd_q);
310 }
311
312 static int ccp5_perform_xts_aes(struct ccp_op *op)
313 {
314         struct ccp5_desc desc;
315         union ccp_function function;
316         u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
317
318         /* Zero out all the fields of the command desc */
319         memset(&desc, 0, Q_DESC_SIZE);
320
321         CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
322
323         CCP5_CMD_SOC(&desc) = op->soc;
324         CCP5_CMD_IOC(&desc) = 1;
325         CCP5_CMD_INIT(&desc) = op->init;
326         CCP5_CMD_EOM(&desc) = op->eom;
327         CCP5_CMD_PROT(&desc) = 0;
328
329         function.raw = 0;
330         CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
331         CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
332         CCP5_CMD_FUNCTION(&desc) = function.raw;
333
334         CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
335
336         CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
337         CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
338         CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
339
340         CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
341         CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
342         CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
343
344         CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
345         CCP5_CMD_KEY_HI(&desc) =  0;
346         CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
347         CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
348
349         return ccp5_do_cmd(&desc, op->cmd_q);
350 }
351
352 static int ccp5_perform_sha(struct ccp_op *op)
353 {
354         struct ccp5_desc desc;
355         union ccp_function function;
356
357         /* Zero out all the fields of the command desc */
358         memset(&desc, 0, Q_DESC_SIZE);
359
360         CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
361
362         CCP5_CMD_SOC(&desc) = op->soc;
363         CCP5_CMD_IOC(&desc) = 1;
364         CCP5_CMD_INIT(&desc) = 1;
365         CCP5_CMD_EOM(&desc) = op->eom;
366         CCP5_CMD_PROT(&desc) = 0;
367
368         function.raw = 0;
369         CCP_SHA_TYPE(&function) = op->u.sha.type;
370         CCP5_CMD_FUNCTION(&desc) = function.raw;
371
372         CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
373
374         CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
375         CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
376         CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
377
378         CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
379
380         if (op->eom) {
381                 CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
382                 CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
383         } else {
384                 CCP5_CMD_SHA_LO(&desc) = 0;
385                 CCP5_CMD_SHA_HI(&desc) = 0;
386         }
387
388         return ccp5_do_cmd(&desc, op->cmd_q);
389 }
390
391 static int ccp5_perform_rsa(struct ccp_op *op)
392 {
393         struct ccp5_desc desc;
394         union ccp_function function;
395
396         /* Zero out all the fields of the command desc */
397         memset(&desc, 0, Q_DESC_SIZE);
398
399         CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
400
401         CCP5_CMD_SOC(&desc) = op->soc;
402         CCP5_CMD_IOC(&desc) = 1;
403         CCP5_CMD_INIT(&desc) = 0;
404         CCP5_CMD_EOM(&desc) = 1;
405         CCP5_CMD_PROT(&desc) = 0;
406
407         function.raw = 0;
408         CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
409         CCP5_CMD_FUNCTION(&desc) = function.raw;
410
411         CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
412
413         /* Source is from external memory */
414         CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
415         CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
416         CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
417
418         /* Destination is in external memory */
419         CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
420         CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
421         CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
422
423         /* Exponent is in LSB memory */
424         CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
425         CCP5_CMD_KEY_HI(&desc) = 0;
426         CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
427
428         return ccp5_do_cmd(&desc, op->cmd_q);
429 }
430
431 static int ccp5_perform_passthru(struct ccp_op *op)
432 {
433         struct ccp5_desc desc;
434         union ccp_function function;
435         struct ccp_dma_info *saddr = &op->src.u.dma;
436         struct ccp_dma_info *daddr = &op->dst.u.dma;
437
438         memset(&desc, 0, Q_DESC_SIZE);
439
440         CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
441
442         CCP5_CMD_SOC(&desc) = 0;
443         CCP5_CMD_IOC(&desc) = 1;
444         CCP5_CMD_INIT(&desc) = 0;
445         CCP5_CMD_EOM(&desc) = op->eom;
446         CCP5_CMD_PROT(&desc) = 0;
447
448         function.raw = 0;
449         CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
450         CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
451         CCP5_CMD_FUNCTION(&desc) = function.raw;
452
453         /* Length of source data is always 256 bytes */
454         if (op->src.type == CCP_MEMTYPE_SYSTEM)
455                 CCP5_CMD_LEN(&desc) = saddr->length;
456         else
457                 CCP5_CMD_LEN(&desc) = daddr->length;
458
459         if (op->src.type == CCP_MEMTYPE_SYSTEM) {
460                 CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
461                 CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
462                 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
463
464                 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
465                         CCP5_CMD_LSB_ID(&desc) = op->sb_key;
466         } else {
467                 u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
468
469                 CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
470                 CCP5_CMD_SRC_HI(&desc) = 0;
471                 CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
472         }
473
474         if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
475                 CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
476                 CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
477                 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
478         } else {
479                 u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
480
481                 CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
482                 CCP5_CMD_DST_HI(&desc) = 0;
483                 CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
484         }
485
486         return ccp5_do_cmd(&desc, op->cmd_q);
487 }
488
489 static int ccp5_perform_ecc(struct ccp_op *op)
490 {
491         struct ccp5_desc desc;
492         union ccp_function function;
493
494         /* Zero out all the fields of the command desc */
495         memset(&desc, 0, Q_DESC_SIZE);
496
497         CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
498
499         CCP5_CMD_SOC(&desc) = 0;
500         CCP5_CMD_IOC(&desc) = 1;
501         CCP5_CMD_INIT(&desc) = 0;
502         CCP5_CMD_EOM(&desc) = 1;
503         CCP5_CMD_PROT(&desc) = 0;
504
505         function.raw = 0;
506         function.ecc.mode = op->u.ecc.function;
507         CCP5_CMD_FUNCTION(&desc) = function.raw;
508
509         CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
510
511         CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
512         CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
513         CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
514
515         CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
516         CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
517         CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
518
519         return ccp5_do_cmd(&desc, op->cmd_q);
520 }
521
522 static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
523 {
524         int q_mask = 1 << cmd_q->id;
525         int queues = 0;
526         int j;
527
528         /* Build a bit mask to know which LSBs this queue has access to.
529          * Don't bother with segment 0 as it has special privileges.
530          */
531         for (j = 1; j < MAX_LSB_CNT; j++) {
532                 if (status & q_mask)
533                         bitmap_set(cmd_q->lsbmask, j, 1);
534                 status >>= LSB_REGION_WIDTH;
535         }
536         queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
537         dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
538                  cmd_q->id, queues);
539
540         return queues ? 0 : -EINVAL;
541 }
542
543
544 static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
545                                         int lsb_cnt, int n_lsbs,
546                                         unsigned long *lsb_pub)
547 {
548         DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
549         int bitno;
550         int qlsb_wgt;
551         int i;
552
553         /* For each queue:
554          * If the count of potential LSBs available to a queue matches the
555          * ordinal given to us in lsb_cnt:
556          * Copy the mask of possible LSBs for this queue into "qlsb";
557          * For each bit in qlsb, see if the corresponding bit in the
558          * aggregation mask is set; if so, we have a match.
559          *     If we have a match, clear the bit in the aggregation to
560          *     mark it as no longer available.
561          *     If there is no match, clear the bit in qlsb and keep looking.
562          */
563         for (i = 0; i < ccp->cmd_q_count; i++) {
564                 struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
565
566                 qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
567
568                 if (qlsb_wgt == lsb_cnt) {
569                         bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
570
571                         bitno = find_first_bit(qlsb, MAX_LSB_CNT);
572                         while (bitno < MAX_LSB_CNT) {
573                                 if (test_bit(bitno, lsb_pub)) {
574                                         /* We found an available LSB
575                                          * that this queue can access
576                                          */
577                                         cmd_q->lsb = bitno;
578                                         bitmap_clear(lsb_pub, bitno, 1);
579                                         dev_dbg(ccp->dev,
580                                                  "Queue %d gets LSB %d\n",
581                                                  i, bitno);
582                                         break;
583                                 }
584                                 bitmap_clear(qlsb, bitno, 1);
585                                 bitno = find_first_bit(qlsb, MAX_LSB_CNT);
586                         }
587                         if (bitno >= MAX_LSB_CNT)
588                                 return -EINVAL;
589                         n_lsbs--;
590                 }
591         }
592         return n_lsbs;
593 }
594
595 /* For each queue, from the most- to least-constrained:
596  * find an LSB that can be assigned to the queue. If there are N queues that
597  * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
598  * dedicated LSB. Remaining LSB regions become a shared resource.
599  * If we have fewer LSBs than queues, all LSB regions become shared resources.
600  */
601 static int ccp_assign_lsbs(struct ccp_device *ccp)
602 {
603         DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
604         DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
605         int n_lsbs = 0;
606         int bitno;
607         int i, lsb_cnt;
608         int rc = 0;
609
610         bitmap_zero(lsb_pub, MAX_LSB_CNT);
611
612         /* Create an aggregate bitmap to get a total count of available LSBs */
613         for (i = 0; i < ccp->cmd_q_count; i++)
614                 bitmap_or(lsb_pub,
615                           lsb_pub, ccp->cmd_q[i].lsbmask,
616                           MAX_LSB_CNT);
617
618         n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
619
620         if (n_lsbs >= ccp->cmd_q_count) {
621                 /* We have enough LSBS to give every queue a private LSB.
622                  * Brute force search to start with the queues that are more
623                  * constrained in LSB choice. When an LSB is privately
624                  * assigned, it is removed from the public mask.
625                  * This is an ugly N squared algorithm with some optimization.
626                  */
627                 for (lsb_cnt = 1;
628                      n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
629                      lsb_cnt++) {
630                         rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
631                                                           lsb_pub);
632                         if (rc < 0)
633                                 return -EINVAL;
634                         n_lsbs = rc;
635                 }
636         }
637
638         rc = 0;
639         /* What's left of the LSBs, according to the public mask, now become
640          * shared. Any zero bits in the lsb_pub mask represent an LSB region
641          * that can't be used as a shared resource, so mark the LSB slots for
642          * them as "in use".
643          */
644         bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
645
646         bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
647         while (bitno < MAX_LSB_CNT) {
648                 bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
649                 bitmap_set(qlsb, bitno, 1);
650                 bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
651         }
652
653         return rc;
654 }
655
656 static int ccp5_init(struct ccp_device *ccp)
657 {
658         struct device *dev = ccp->dev;
659         struct ccp_cmd_queue *cmd_q;
660         struct dma_pool *dma_pool;
661         char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
662         unsigned int qmr, qim, i;
663         u64 status;
664         u32 status_lo, status_hi;
665         int ret;
666
667         /* Find available queues */
668         qim = 0;
669         qmr = ioread32(ccp->io_regs + Q_MASK_REG);
670         for (i = 0; i < MAX_HW_QUEUES; i++) {
671
672                 if (!(qmr & (1 << i)))
673                         continue;
674
675                 /* Allocate a dma pool for this queue */
676                 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
677                          ccp->name, i);
678                 dma_pool = dma_pool_create(dma_pool_name, dev,
679                                            CCP_DMAPOOL_MAX_SIZE,
680                                            CCP_DMAPOOL_ALIGN, 0);
681                 if (!dma_pool) {
682                         dev_err(dev, "unable to allocate dma pool\n");
683                         ret = -ENOMEM;
684                 }
685
686                 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
687                 ccp->cmd_q_count++;
688
689                 cmd_q->ccp = ccp;
690                 cmd_q->id = i;
691                 cmd_q->dma_pool = dma_pool;
692                 mutex_init(&cmd_q->q_mutex);
693
694                 /* Page alignment satisfies our needs for N <= 128 */
695                 BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
696                 cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
697                 cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
698                                                    &cmd_q->qbase_dma,
699                                                    GFP_KERNEL);
700                 if (!cmd_q->qbase) {
701                         dev_err(dev, "unable to allocate command queue\n");
702                         ret = -ENOMEM;
703                         goto e_pool;
704                 }
705
706                 cmd_q->qidx = 0;
707                 /* Preset some register values and masks that are queue
708                  * number dependent
709                  */
710                 cmd_q->reg_control = ccp->io_regs +
711                                      CMD5_Q_STATUS_INCR * (i + 1);
712                 cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
713                 cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
714                 cmd_q->reg_int_enable = cmd_q->reg_control +
715                                         CMD5_Q_INT_ENABLE_BASE;
716                 cmd_q->reg_interrupt_status = cmd_q->reg_control +
717                                               CMD5_Q_INTERRUPT_STATUS_BASE;
718                 cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
719                 cmd_q->reg_int_status = cmd_q->reg_control +
720                                         CMD5_Q_INT_STATUS_BASE;
721                 cmd_q->reg_dma_status = cmd_q->reg_control +
722                                         CMD5_Q_DMA_STATUS_BASE;
723                 cmd_q->reg_dma_read_status = cmd_q->reg_control +
724                                              CMD5_Q_DMA_READ_STATUS_BASE;
725                 cmd_q->reg_dma_write_status = cmd_q->reg_control +
726                                               CMD5_Q_DMA_WRITE_STATUS_BASE;
727
728                 init_waitqueue_head(&cmd_q->int_queue);
729
730                 dev_dbg(dev, "queue #%u available\n", i);
731         }
732         if (ccp->cmd_q_count == 0) {
733                 dev_notice(dev, "no command queues available\n");
734                 ret = -EIO;
735                 goto e_pool;
736         }
737
738         /* Turn off the queues and disable interrupts until ready */
739         for (i = 0; i < ccp->cmd_q_count; i++) {
740                 cmd_q = &ccp->cmd_q[i];
741
742                 cmd_q->qcontrol = 0; /* Start with nothing */
743                 iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
744
745                 /* Disable the interrupts */
746                 iowrite32(0x00, cmd_q->reg_int_enable);
747                 ioread32(cmd_q->reg_int_status);
748                 ioread32(cmd_q->reg_status);
749
750                 /* Clear the interrupts */
751                 iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
752         }
753
754         dev_dbg(dev, "Requesting an IRQ...\n");
755         /* Request an irq */
756         ret = ccp->get_irq(ccp);
757         if (ret) {
758                 dev_err(dev, "unable to allocate an IRQ\n");
759                 goto e_pool;
760         }
761
762         dev_dbg(dev, "Loading LSB map...\n");
763         /* Copy the private LSB mask to the public registers */
764         status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
765         status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
766         iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
767         iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
768         status = ((u64)status_hi<<30) | (u64)status_lo;
769
770         dev_dbg(dev, "Configuring virtual queues...\n");
771         /* Configure size of each virtual queue accessible to host */
772         for (i = 0; i < ccp->cmd_q_count; i++) {
773                 u32 dma_addr_lo;
774                 u32 dma_addr_hi;
775
776                 cmd_q = &ccp->cmd_q[i];
777
778                 cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
779                 cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
780
781                 cmd_q->qdma_tail = cmd_q->qbase_dma;
782                 dma_addr_lo = low_address(cmd_q->qdma_tail);
783                 iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
784                 iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
785
786                 dma_addr_hi = high_address(cmd_q->qdma_tail);
787                 cmd_q->qcontrol |= (dma_addr_hi << 16);
788                 iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
789
790                 /* Find the LSB regions accessible to the queue */
791                 ccp_find_lsb_regions(cmd_q, status);
792                 cmd_q->lsb = -1; /* Unassigned value */
793         }
794
795         dev_dbg(dev, "Assigning LSBs...\n");
796         ret = ccp_assign_lsbs(ccp);
797         if (ret) {
798                 dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
799                 goto e_irq;
800         }
801
802         /* Optimization: pre-allocate LSB slots for each queue */
803         for (i = 0; i < ccp->cmd_q_count; i++) {
804                 ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
805                 ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
806         }
807
808         dev_dbg(dev, "Starting threads...\n");
809         /* Create a kthread for each queue */
810         for (i = 0; i < ccp->cmd_q_count; i++) {
811                 struct task_struct *kthread;
812
813                 cmd_q = &ccp->cmd_q[i];
814
815                 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
816                                          "%s-q%u", ccp->name, cmd_q->id);
817                 if (IS_ERR(kthread)) {
818                         dev_err(dev, "error creating queue thread (%ld)\n",
819                                 PTR_ERR(kthread));
820                         ret = PTR_ERR(kthread);
821                         goto e_kthread;
822                 }
823
824                 cmd_q->kthread = kthread;
825                 wake_up_process(kthread);
826         }
827
828         dev_dbg(dev, "Enabling interrupts...\n");
829         /* Enable interrupts */
830         for (i = 0; i < ccp->cmd_q_count; i++) {
831                 cmd_q = &ccp->cmd_q[i];
832                 iowrite32(ALL_INTERRUPTS, cmd_q->reg_int_enable);
833         }
834
835         dev_dbg(dev, "Registering device...\n");
836         /* Put this on the unit list to make it available */
837         ccp_add_device(ccp);
838
839         ret = ccp_register_rng(ccp);
840         if (ret)
841                 goto e_kthread;
842
843         /* Register the DMA engine support */
844         ret = ccp_dmaengine_register(ccp);
845         if (ret)
846                 goto e_hwrng;
847
848         return 0;
849
850 e_hwrng:
851         ccp_unregister_rng(ccp);
852
853 e_kthread:
854         for (i = 0; i < ccp->cmd_q_count; i++)
855                 if (ccp->cmd_q[i].kthread)
856                         kthread_stop(ccp->cmd_q[i].kthread);
857
858 e_irq:
859         ccp->free_irq(ccp);
860
861 e_pool:
862         for (i = 0; i < ccp->cmd_q_count; i++)
863                 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
864
865         return ret;
866 }
867
868 static void ccp5_destroy(struct ccp_device *ccp)
869 {
870         struct device *dev = ccp->dev;
871         struct ccp_cmd_queue *cmd_q;
872         struct ccp_cmd *cmd;
873         unsigned int i;
874
875         /* Unregister the DMA engine */
876         ccp_dmaengine_unregister(ccp);
877
878         /* Unregister the RNG */
879         ccp_unregister_rng(ccp);
880
881         /* Remove this device from the list of available units first */
882         ccp_del_device(ccp);
883
884         /* Disable and clear interrupts */
885         for (i = 0; i < ccp->cmd_q_count; i++) {
886                 cmd_q = &ccp->cmd_q[i];
887
888                 /* Turn off the run bit */
889                 iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
890
891                 /* Disable the interrupts */
892                 iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
893
894                 /* Clear the interrupt status */
895                 iowrite32(0x00, cmd_q->reg_int_enable);
896                 ioread32(cmd_q->reg_int_status);
897                 ioread32(cmd_q->reg_status);
898         }
899
900         /* Stop the queue kthreads */
901         for (i = 0; i < ccp->cmd_q_count; i++)
902                 if (ccp->cmd_q[i].kthread)
903                         kthread_stop(ccp->cmd_q[i].kthread);
904
905         ccp->free_irq(ccp);
906
907         for (i = 0; i < ccp->cmd_q_count; i++) {
908                 cmd_q = &ccp->cmd_q[i];
909                 dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
910                                   cmd_q->qbase_dma);
911         }
912
913         /* Flush the cmd and backlog queue */
914         while (!list_empty(&ccp->cmd)) {
915                 /* Invoke the callback directly with an error code */
916                 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
917                 list_del(&cmd->entry);
918                 cmd->callback(cmd->data, -ENODEV);
919         }
920         while (!list_empty(&ccp->backlog)) {
921                 /* Invoke the callback directly with an error code */
922                 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
923                 list_del(&cmd->entry);
924                 cmd->callback(cmd->data, -ENODEV);
925         }
926 }
927
928 static irqreturn_t ccp5_irq_handler(int irq, void *data)
929 {
930         struct device *dev = data;
931         struct ccp_device *ccp = dev_get_drvdata(dev);
932         u32 status;
933         unsigned int i;
934
935         for (i = 0; i < ccp->cmd_q_count; i++) {
936                 struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
937
938                 status = ioread32(cmd_q->reg_interrupt_status);
939
940                 if (status) {
941                         cmd_q->int_status = status;
942                         cmd_q->q_status = ioread32(cmd_q->reg_status);
943                         cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
944
945                         /* On error, only save the first error value */
946                         if ((status & INT_ERROR) && !cmd_q->cmd_error)
947                                 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
948
949                         cmd_q->int_rcvd = 1;
950
951                         /* Acknowledge the interrupt and wake the kthread */
952                         iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
953                         wake_up_interruptible(&cmd_q->int_queue);
954                 }
955         }
956
957         return IRQ_HANDLED;
958 }
959
960 static void ccp5_config(struct ccp_device *ccp)
961 {
962         /* Public side */
963         iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
964 }
965
966 static void ccp5other_config(struct ccp_device *ccp)
967 {
968         int i;
969         u32 rnd;
970
971         /* We own all of the queues on the NTB CCP */
972
973         iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
974         iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
975         for (i = 0; i < 12; i++) {
976                 rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
977                 iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
978         }
979
980         iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
981         iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
982         iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
983
984         iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
985         iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
986
987         iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
988
989         ccp5_config(ccp);
990 }
991
992 /* Version 5 adds some function, but is essentially the same as v5 */
993 static const struct ccp_actions ccp5_actions = {
994         .aes = ccp5_perform_aes,
995         .xts_aes = ccp5_perform_xts_aes,
996         .sha = ccp5_perform_sha,
997         .rsa = ccp5_perform_rsa,
998         .passthru = ccp5_perform_passthru,
999         .ecc = ccp5_perform_ecc,
1000         .sballoc = ccp_lsb_alloc,
1001         .sbfree = ccp_lsb_free,
1002         .init = ccp5_init,
1003         .destroy = ccp5_destroy,
1004         .get_free_slots = ccp5_get_free_slots,
1005         .irqhandler = ccp5_irq_handler,
1006 };
1007
1008 const struct ccp_vdata ccpv5a = {
1009         .version = CCP_VERSION(5, 0),
1010         .setup = ccp5_config,
1011         .perform = &ccp5_actions,
1012         .bar = 2,
1013         .offset = 0x0,
1014 };
1015
1016 const struct ccp_vdata ccpv5b = {
1017         .version = CCP_VERSION(5, 0),
1018         .dma_chan_attr = DMA_PRIVATE,
1019         .setup = ccp5other_config,
1020         .perform = &ccp5_actions,
1021         .bar = 2,
1022         .offset = 0x0,
1023 };