Merge tag 'backlight-next-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[sfrench/cifs-2.6.git] / drivers / crypto / amcc / crypto4xx_core.c
1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aead.h>
39 #include <crypto/aes.h>
40 #include <crypto/ctr.h>
41 #include <crypto/gcm.h>
42 #include <crypto/sha.h>
43 #include <crypto/rng.h>
44 #include <crypto/scatterwalk.h>
45 #include <crypto/skcipher.h>
46 #include <crypto/internal/aead.h>
47 #include <crypto/internal/rng.h>
48 #include <crypto/internal/skcipher.h>
49 #include "crypto4xx_reg_def.h"
50 #include "crypto4xx_core.h"
51 #include "crypto4xx_sa.h"
52 #include "crypto4xx_trng.h"
53
54 #define PPC4XX_SEC_VERSION_STR                  "0.5"
55
56 /**
57  * PPC4xx Crypto Engine Initialization Routine
58  */
59 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
60 {
61         union ce_ring_size ring_size;
62         union ce_ring_control ring_ctrl;
63         union ce_part_ring_size part_ring_size;
64         union ce_io_threshold io_threshold;
65         u32 rand_num;
66         union ce_pe_dma_cfg pe_dma_cfg;
67         u32 device_ctrl;
68
69         writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
70         /* setup pe dma, include reset sg, pdr and pe, then release reset */
71         pe_dma_cfg.w = 0;
72         pe_dma_cfg.bf.bo_sgpd_en = 1;
73         pe_dma_cfg.bf.bo_data_en = 0;
74         pe_dma_cfg.bf.bo_sa_en = 1;
75         pe_dma_cfg.bf.bo_pd_en = 1;
76         pe_dma_cfg.bf.dynamic_sa_en = 1;
77         pe_dma_cfg.bf.reset_sg = 1;
78         pe_dma_cfg.bf.reset_pdr = 1;
79         pe_dma_cfg.bf.reset_pe = 1;
80         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
81         /* un reset pe,sg and pdr */
82         pe_dma_cfg.bf.pe_mode = 0;
83         pe_dma_cfg.bf.reset_sg = 0;
84         pe_dma_cfg.bf.reset_pdr = 0;
85         pe_dma_cfg.bf.reset_pe = 0;
86         pe_dma_cfg.bf.bo_td_en = 0;
87         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
88         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
89         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
90         writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
91         get_random_bytes(&rand_num, sizeof(rand_num));
92         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
93         get_random_bytes(&rand_num, sizeof(rand_num));
94         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
95         ring_size.w = 0;
96         ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
97         ring_size.bf.ring_size   = PPC4XX_NUM_PD;
98         writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
99         ring_ctrl.w = 0;
100         writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
101         device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
102         device_ctrl |= PPC4XX_DC_3DES_EN;
103         writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
104         writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
105         writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
106         part_ring_size.w = 0;
107         part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
108         part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
109         writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
110         writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
111         io_threshold.w = 0;
112         io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
113         io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
114         writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
115         writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
116         writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
117         writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
118         writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
119         writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
120         writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
121         writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
122         /* un reset pe,sg and pdr */
123         pe_dma_cfg.bf.pe_mode = 1;
124         pe_dma_cfg.bf.reset_sg = 0;
125         pe_dma_cfg.bf.reset_pdr = 0;
126         pe_dma_cfg.bf.reset_pe = 0;
127         pe_dma_cfg.bf.bo_td_en = 0;
128         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
129         /*clear all pending interrupt*/
130         writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
131         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
132         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
133         writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
134         if (dev->is_revb) {
135                 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
136                        dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
137                 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
138                        dev->ce_base + CRYPTO4XX_INT_EN);
139         } else {
140                 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
141         }
142 }
143
144 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
145 {
146         ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
147         if (ctx->sa_in == NULL)
148                 return -ENOMEM;
149
150         ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
151         if (ctx->sa_out == NULL) {
152                 kfree(ctx->sa_in);
153                 ctx->sa_in = NULL;
154                 return -ENOMEM;
155         }
156
157         ctx->sa_len = size;
158
159         return 0;
160 }
161
162 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
163 {
164         kfree(ctx->sa_in);
165         ctx->sa_in = NULL;
166         kfree(ctx->sa_out);
167         ctx->sa_out = NULL;
168         ctx->sa_len = 0;
169 }
170
171 /**
172  * alloc memory for the gather ring
173  * no need to alloc buf for the ring
174  * gdr_tail, gdr_head and gdr_count are initialized by this function
175  */
176 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
177 {
178         int i;
179         dev->pdr = dma_alloc_coherent(dev->core_dev->device,
180                                       sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181                                       &dev->pdr_pa, GFP_ATOMIC);
182         if (!dev->pdr)
183                 return -ENOMEM;
184
185         dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
186                                  GFP_KERNEL);
187         if (!dev->pdr_uinfo) {
188                 dma_free_coherent(dev->core_dev->device,
189                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
190                                   dev->pdr,
191                                   dev->pdr_pa);
192                 return -ENOMEM;
193         }
194         memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
195         dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
196                                    sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
197                                    &dev->shadow_sa_pool_pa,
198                                    GFP_ATOMIC);
199         if (!dev->shadow_sa_pool)
200                 return -ENOMEM;
201
202         dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
203                          sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
204                          &dev->shadow_sr_pool_pa, GFP_ATOMIC);
205         if (!dev->shadow_sr_pool)
206                 return -ENOMEM;
207         for (i = 0; i < PPC4XX_NUM_PD; i++) {
208                 struct ce_pd *pd = &dev->pdr[i];
209                 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
210
211                 pd->sa = dev->shadow_sa_pool_pa +
212                         sizeof(union shadow_sa_buf) * i;
213
214                 /* alloc 256 bytes which is enough for any kind of dynamic sa */
215                 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
216
217                 /* alloc state record */
218                 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
219                 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
220                     sizeof(struct sa_state_record) * i;
221         }
222
223         return 0;
224 }
225
226 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
227 {
228         if (dev->pdr)
229                 dma_free_coherent(dev->core_dev->device,
230                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
231                                   dev->pdr, dev->pdr_pa);
232
233         if (dev->shadow_sa_pool)
234                 dma_free_coherent(dev->core_dev->device,
235                         sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
236                         dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
237
238         if (dev->shadow_sr_pool)
239                 dma_free_coherent(dev->core_dev->device,
240                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
241                         dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
242
243         kfree(dev->pdr_uinfo);
244 }
245
246 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
247 {
248         u32 retval;
249         u32 tmp;
250
251         retval = dev->pdr_head;
252         tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
253
254         if (tmp == dev->pdr_tail)
255                 return ERING_WAS_FULL;
256
257         dev->pdr_head = tmp;
258
259         return retval;
260 }
261
262 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
263 {
264         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
265         u32 tail;
266         unsigned long flags;
267
268         spin_lock_irqsave(&dev->core_dev->lock, flags);
269         pd_uinfo->state = PD_ENTRY_FREE;
270
271         if (dev->pdr_tail != PPC4XX_LAST_PD)
272                 dev->pdr_tail++;
273         else
274                 dev->pdr_tail = 0;
275         tail = dev->pdr_tail;
276         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
277
278         return tail;
279 }
280
281 /**
282  * alloc memory for the gather ring
283  * no need to alloc buf for the ring
284  * gdr_tail, gdr_head and gdr_count are initialized by this function
285  */
286 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
287 {
288         dev->gdr = dma_alloc_coherent(dev->core_dev->device,
289                                       sizeof(struct ce_gd) * PPC4XX_NUM_GD,
290                                       &dev->gdr_pa, GFP_ATOMIC);
291         if (!dev->gdr)
292                 return -ENOMEM;
293
294         return 0;
295 }
296
297 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
298 {
299         dma_free_coherent(dev->core_dev->device,
300                           sizeof(struct ce_gd) * PPC4XX_NUM_GD,
301                           dev->gdr, dev->gdr_pa);
302 }
303
304 /*
305  * when this function is called.
306  * preemption or interrupt must be disabled
307  */
308 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
309 {
310         u32 retval;
311         u32 tmp;
312
313         if (n >= PPC4XX_NUM_GD)
314                 return ERING_WAS_FULL;
315
316         retval = dev->gdr_head;
317         tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
318         if (dev->gdr_head > dev->gdr_tail) {
319                 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
320                         return ERING_WAS_FULL;
321         } else if (dev->gdr_head < dev->gdr_tail) {
322                 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
323                         return ERING_WAS_FULL;
324         }
325         dev->gdr_head = tmp;
326
327         return retval;
328 }
329
330 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
331 {
332         unsigned long flags;
333
334         spin_lock_irqsave(&dev->core_dev->lock, flags);
335         if (dev->gdr_tail == dev->gdr_head) {
336                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337                 return 0;
338         }
339
340         if (dev->gdr_tail != PPC4XX_LAST_GD)
341                 dev->gdr_tail++;
342         else
343                 dev->gdr_tail = 0;
344
345         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
346
347         return 0;
348 }
349
350 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
351                                               dma_addr_t *gd_dma, u32 idx)
352 {
353         *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
354
355         return &dev->gdr[idx];
356 }
357
358 /**
359  * alloc memory for the scatter ring
360  * need to alloc buf for the ring
361  * sdr_tail, sdr_head and sdr_count are initialized by this function
362  */
363 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
364 {
365         int i;
366
367         /* alloc memory for scatter descriptor ring */
368         dev->sdr = dma_alloc_coherent(dev->core_dev->device,
369                                       sizeof(struct ce_sd) * PPC4XX_NUM_SD,
370                                       &dev->sdr_pa, GFP_ATOMIC);
371         if (!dev->sdr)
372                 return -ENOMEM;
373
374         dev->scatter_buffer_va =
375                 dma_alloc_coherent(dev->core_dev->device,
376                         PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
377                         &dev->scatter_buffer_pa, GFP_ATOMIC);
378         if (!dev->scatter_buffer_va) {
379                 dma_free_coherent(dev->core_dev->device,
380                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
381                                   dev->sdr, dev->sdr_pa);
382                 return -ENOMEM;
383         }
384
385         for (i = 0; i < PPC4XX_NUM_SD; i++) {
386                 dev->sdr[i].ptr = dev->scatter_buffer_pa +
387                                   PPC4XX_SD_BUFFER_SIZE * i;
388         }
389
390         return 0;
391 }
392
393 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
394 {
395         if (dev->sdr)
396                 dma_free_coherent(dev->core_dev->device,
397                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
398                                   dev->sdr, dev->sdr_pa);
399
400         if (dev->scatter_buffer_va)
401                 dma_free_coherent(dev->core_dev->device,
402                                   PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
403                                   dev->scatter_buffer_va,
404                                   dev->scatter_buffer_pa);
405 }
406
407 /*
408  * when this function is called.
409  * preemption or interrupt must be disabled
410  */
411 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
412 {
413         u32 retval;
414         u32 tmp;
415
416         if (n >= PPC4XX_NUM_SD)
417                 return ERING_WAS_FULL;
418
419         retval = dev->sdr_head;
420         tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
421         if (dev->sdr_head > dev->gdr_tail) {
422                 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
423                         return ERING_WAS_FULL;
424         } else if (dev->sdr_head < dev->sdr_tail) {
425                 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
426                         return ERING_WAS_FULL;
427         } /* the head = tail, or empty case is already take cared */
428         dev->sdr_head = tmp;
429
430         return retval;
431 }
432
433 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
434 {
435         unsigned long flags;
436
437         spin_lock_irqsave(&dev->core_dev->lock, flags);
438         if (dev->sdr_tail == dev->sdr_head) {
439                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
440                 return 0;
441         }
442         if (dev->sdr_tail != PPC4XX_LAST_SD)
443                 dev->sdr_tail++;
444         else
445                 dev->sdr_tail = 0;
446         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
447
448         return 0;
449 }
450
451 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
452                                               dma_addr_t *sd_dma, u32 idx)
453 {
454         *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
455
456         return &dev->sdr[idx];
457 }
458
459 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
460                                       struct ce_pd *pd,
461                                       struct pd_uinfo *pd_uinfo,
462                                       u32 nbytes,
463                                       struct scatterlist *dst)
464 {
465         unsigned int first_sd = pd_uinfo->first_sd;
466         unsigned int last_sd;
467         unsigned int overflow = 0;
468         unsigned int to_copy;
469         unsigned int dst_start = 0;
470
471         /*
472          * Because the scatter buffers are all neatly organized in one
473          * big continuous ringbuffer; scatterwalk_map_and_copy() can
474          * be instructed to copy a range of buffers in one go.
475          */
476
477         last_sd = (first_sd + pd_uinfo->num_sd);
478         if (last_sd > PPC4XX_LAST_SD) {
479                 last_sd = PPC4XX_LAST_SD;
480                 overflow = last_sd % PPC4XX_NUM_SD;
481         }
482
483         while (nbytes) {
484                 void *buf = dev->scatter_buffer_va +
485                         first_sd * PPC4XX_SD_BUFFER_SIZE;
486
487                 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
488                                       (1 + last_sd - first_sd));
489                 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
490                 nbytes -= to_copy;
491
492                 if (overflow) {
493                         first_sd = 0;
494                         last_sd = overflow;
495                         dst_start += to_copy;
496                         overflow = 0;
497                 }
498         }
499 }
500
501 static void crypto4xx_copy_digest_to_dst(void *dst,
502                                         struct pd_uinfo *pd_uinfo,
503                                         struct crypto4xx_ctx *ctx)
504 {
505         struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
506
507         if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
508                 memcpy(dst, pd_uinfo->sr_va->save_digest,
509                        SA_HASH_ALG_SHA1_DIGEST_SIZE);
510         }
511 }
512
513 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
514                                   struct pd_uinfo *pd_uinfo)
515 {
516         int i;
517         if (pd_uinfo->num_gd) {
518                 for (i = 0; i < pd_uinfo->num_gd; i++)
519                         crypto4xx_put_gd_to_gdr(dev);
520                 pd_uinfo->first_gd = 0xffffffff;
521                 pd_uinfo->num_gd = 0;
522         }
523         if (pd_uinfo->num_sd) {
524                 for (i = 0; i < pd_uinfo->num_sd; i++)
525                         crypto4xx_put_sd_to_sdr(dev);
526
527                 pd_uinfo->first_sd = 0xffffffff;
528                 pd_uinfo->num_sd = 0;
529         }
530 }
531
532 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
533                                      struct pd_uinfo *pd_uinfo,
534                                      struct ce_pd *pd)
535 {
536         struct skcipher_request *req;
537         struct scatterlist *dst;
538         dma_addr_t addr;
539
540         req = skcipher_request_cast(pd_uinfo->async_req);
541
542         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
543                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
544                                           req->cryptlen, req->dst);
545         } else {
546                 dst = pd_uinfo->dest_va;
547                 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
548                                     dst->offset, dst->length, DMA_FROM_DEVICE);
549         }
550
551         if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
552                 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
553
554                 crypto4xx_memcpy_from_le32((u32 *)req->iv,
555                         pd_uinfo->sr_va->save_iv,
556                         crypto_skcipher_ivsize(skcipher));
557         }
558
559         crypto4xx_ret_sg_desc(dev, pd_uinfo);
560
561         if (pd_uinfo->state & PD_ENTRY_BUSY)
562                 skcipher_request_complete(req, -EINPROGRESS);
563         skcipher_request_complete(req, 0);
564 }
565
566 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
567                                 struct pd_uinfo *pd_uinfo)
568 {
569         struct crypto4xx_ctx *ctx;
570         struct ahash_request *ahash_req;
571
572         ahash_req = ahash_request_cast(pd_uinfo->async_req);
573         ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
574
575         crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
576                                      crypto_tfm_ctx(ahash_req->base.tfm));
577         crypto4xx_ret_sg_desc(dev, pd_uinfo);
578
579         if (pd_uinfo->state & PD_ENTRY_BUSY)
580                 ahash_request_complete(ahash_req, -EINPROGRESS);
581         ahash_request_complete(ahash_req, 0);
582 }
583
584 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
585                                 struct pd_uinfo *pd_uinfo,
586                                 struct ce_pd *pd)
587 {
588         struct aead_request *aead_req = container_of(pd_uinfo->async_req,
589                 struct aead_request, base);
590         struct scatterlist *dst = pd_uinfo->dest_va;
591         size_t cp_len = crypto_aead_authsize(
592                 crypto_aead_reqtfm(aead_req));
593         u32 icv[AES_BLOCK_SIZE];
594         int err = 0;
595
596         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
597                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
598                                           pd->pd_ctl_len.bf.pkt_len,
599                                           dst);
600         } else {
601                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
602                                 DMA_FROM_DEVICE);
603         }
604
605         if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
606                 /* append icv at the end */
607                 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
608                                            sizeof(icv));
609
610                 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
611                                          cp_len, 1);
612         } else {
613                 /* check icv at the end */
614                 scatterwalk_map_and_copy(icv, aead_req->src,
615                         aead_req->assoclen + aead_req->cryptlen -
616                         cp_len, cp_len, 0);
617
618                 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
619
620                 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
621                         err = -EBADMSG;
622         }
623
624         crypto4xx_ret_sg_desc(dev, pd_uinfo);
625
626         if (pd->pd_ctl.bf.status & 0xff) {
627                 if (!__ratelimit(&dev->aead_ratelimit)) {
628                         if (pd->pd_ctl.bf.status & 2)
629                                 pr_err("pad fail error\n");
630                         if (pd->pd_ctl.bf.status & 4)
631                                 pr_err("seqnum fail\n");
632                         if (pd->pd_ctl.bf.status & 8)
633                                 pr_err("error _notify\n");
634                         pr_err("aead return err status = 0x%02x\n",
635                                 pd->pd_ctl.bf.status & 0xff);
636                         pr_err("pd pad_ctl = 0x%08x\n",
637                                 pd->pd_ctl.bf.pd_pad_ctl);
638                 }
639                 err = -EINVAL;
640         }
641
642         if (pd_uinfo->state & PD_ENTRY_BUSY)
643                 aead_request_complete(aead_req, -EINPROGRESS);
644
645         aead_request_complete(aead_req, err);
646 }
647
648 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
649 {
650         struct ce_pd *pd = &dev->pdr[idx];
651         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
652
653         switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
654         case CRYPTO_ALG_TYPE_SKCIPHER:
655                 crypto4xx_cipher_done(dev, pd_uinfo, pd);
656                 break;
657         case CRYPTO_ALG_TYPE_AEAD:
658                 crypto4xx_aead_done(dev, pd_uinfo, pd);
659                 break;
660         case CRYPTO_ALG_TYPE_AHASH:
661                 crypto4xx_ahash_done(dev, pd_uinfo);
662                 break;
663         }
664 }
665
666 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
667 {
668         crypto4xx_destroy_pdr(core_dev->dev);
669         crypto4xx_destroy_gdr(core_dev->dev);
670         crypto4xx_destroy_sdr(core_dev->dev);
671         iounmap(core_dev->dev->ce_base);
672         kfree(core_dev->dev);
673         kfree(core_dev);
674 }
675
676 static u32 get_next_gd(u32 current)
677 {
678         if (current != PPC4XX_LAST_GD)
679                 return current + 1;
680         else
681                 return 0;
682 }
683
684 static u32 get_next_sd(u32 current)
685 {
686         if (current != PPC4XX_LAST_SD)
687                 return current + 1;
688         else
689                 return 0;
690 }
691
692 int crypto4xx_build_pd(struct crypto_async_request *req,
693                        struct crypto4xx_ctx *ctx,
694                        struct scatterlist *src,
695                        struct scatterlist *dst,
696                        const unsigned int datalen,
697                        const __le32 *iv, const u32 iv_len,
698                        const struct dynamic_sa_ctl *req_sa,
699                        const unsigned int sa_len,
700                        const unsigned int assoclen,
701                        struct scatterlist *_dst)
702 {
703         struct crypto4xx_device *dev = ctx->dev;
704         struct dynamic_sa_ctl *sa;
705         struct ce_gd *gd;
706         struct ce_pd *pd;
707         u32 num_gd, num_sd;
708         u32 fst_gd = 0xffffffff;
709         u32 fst_sd = 0xffffffff;
710         u32 pd_entry;
711         unsigned long flags;
712         struct pd_uinfo *pd_uinfo;
713         unsigned int nbytes = datalen;
714         size_t offset_to_sr_ptr;
715         u32 gd_idx = 0;
716         int tmp;
717         bool is_busy, force_sd;
718
719         /*
720          * There's a very subtile/disguised "bug" in the hardware that
721          * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
722          * of the hardware spec:
723          * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
724          * operation modes for >>> "Block ciphers" <<<.
725          *
726          * To workaround this issue and stop the hardware from causing
727          * "overran dst buffer" on crypttexts that are not a multiple
728          * of 16 (AES_BLOCK_SIZE), we force the driver to use the
729          * scatter buffers.
730          */
731         force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
732                 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
733                 && (datalen % AES_BLOCK_SIZE);
734
735         /* figure how many gd are needed */
736         tmp = sg_nents_for_len(src, assoclen + datalen);
737         if (tmp < 0) {
738                 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
739                 return tmp;
740         }
741         if (tmp == 1)
742                 tmp = 0;
743         num_gd = tmp;
744
745         if (assoclen) {
746                 nbytes += assoclen;
747                 dst = scatterwalk_ffwd(_dst, dst, assoclen);
748         }
749
750         /* figure how many sd are needed */
751         if (sg_is_last(dst) && force_sd == false) {
752                 num_sd = 0;
753         } else {
754                 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
755                         num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
756                         if (datalen % PPC4XX_SD_BUFFER_SIZE)
757                                 num_sd++;
758                 } else {
759                         num_sd = 1;
760                 }
761         }
762
763         /*
764          * The follow section of code needs to be protected
765          * The gather ring and scatter ring needs to be consecutive
766          * In case of run out of any kind of descriptor, the descriptor
767          * already got must be return the original place.
768          */
769         spin_lock_irqsave(&dev->core_dev->lock, flags);
770         /*
771          * Let the caller know to slow down, once more than 13/16ths = 81%
772          * of the available data contexts are being used simultaneously.
773          *
774          * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
775          * 31 more contexts. Before new requests have to be rejected.
776          */
777         if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
778                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
779                         ((PPC4XX_NUM_PD * 13) / 16);
780         } else {
781                 /*
782                  * To fix contention issues between ipsec (no blacklog) and
783                  * dm-crypto (backlog) reserve 32 entries for "no backlog"
784                  * data contexts.
785                  */
786                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
787                         ((PPC4XX_NUM_PD * 15) / 16);
788
789                 if (is_busy) {
790                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
791                         return -EBUSY;
792                 }
793         }
794
795         if (num_gd) {
796                 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
797                 if (fst_gd == ERING_WAS_FULL) {
798                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
799                         return -EAGAIN;
800                 }
801         }
802         if (num_sd) {
803                 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
804                 if (fst_sd == ERING_WAS_FULL) {
805                         if (num_gd)
806                                 dev->gdr_head = fst_gd;
807                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808                         return -EAGAIN;
809                 }
810         }
811         pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
812         if (pd_entry == ERING_WAS_FULL) {
813                 if (num_gd)
814                         dev->gdr_head = fst_gd;
815                 if (num_sd)
816                         dev->sdr_head = fst_sd;
817                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
818                 return -EAGAIN;
819         }
820         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
821
822         pd = &dev->pdr[pd_entry];
823         pd->sa_len = sa_len;
824
825         pd_uinfo = &dev->pdr_uinfo[pd_entry];
826         pd_uinfo->num_gd = num_gd;
827         pd_uinfo->num_sd = num_sd;
828         pd_uinfo->dest_va = dst;
829         pd_uinfo->async_req = req;
830
831         if (iv_len)
832                 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
833
834         sa = pd_uinfo->sa_va;
835         memcpy(sa, req_sa, sa_len * 4);
836
837         sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
838         offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
839         *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
840
841         if (num_gd) {
842                 dma_addr_t gd_dma;
843                 struct scatterlist *sg;
844
845                 /* get first gd we are going to use */
846                 gd_idx = fst_gd;
847                 pd_uinfo->first_gd = fst_gd;
848                 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
849                 pd->src = gd_dma;
850                 /* enable gather */
851                 sa->sa_command_0.bf.gather = 1;
852                 /* walk the sg, and setup gather array */
853
854                 sg = src;
855                 while (nbytes) {
856                         size_t len;
857
858                         len = min(sg->length, nbytes);
859                         gd->ptr = dma_map_page(dev->core_dev->device,
860                                 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
861                         gd->ctl_len.len = len;
862                         gd->ctl_len.done = 0;
863                         gd->ctl_len.ready = 1;
864                         if (len >= nbytes)
865                                 break;
866
867                         nbytes -= sg->length;
868                         gd_idx = get_next_gd(gd_idx);
869                         gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
870                         sg = sg_next(sg);
871                 }
872         } else {
873                 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
874                                 src->offset, min(nbytes, src->length),
875                                 DMA_TO_DEVICE);
876                 /*
877                  * Disable gather in sa command
878                  */
879                 sa->sa_command_0.bf.gather = 0;
880                 /*
881                  * Indicate gather array is not used
882                  */
883                 pd_uinfo->first_gd = 0xffffffff;
884         }
885         if (!num_sd) {
886                 /*
887                  * we know application give us dst a whole piece of memory
888                  * no need to use scatter ring.
889                  */
890                 pd_uinfo->first_sd = 0xffffffff;
891                 sa->sa_command_0.bf.scatter = 0;
892                 pd->dest = (u32)dma_map_page(dev->core_dev->device,
893                                              sg_page(dst), dst->offset,
894                                              min(datalen, dst->length),
895                                              DMA_TO_DEVICE);
896         } else {
897                 dma_addr_t sd_dma;
898                 struct ce_sd *sd = NULL;
899
900                 u32 sd_idx = fst_sd;
901                 nbytes = datalen;
902                 sa->sa_command_0.bf.scatter = 1;
903                 pd_uinfo->first_sd = fst_sd;
904                 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
905                 pd->dest = sd_dma;
906                 /* setup scatter descriptor */
907                 sd->ctl.done = 0;
908                 sd->ctl.rdy = 1;
909                 /* sd->ptr should be setup by sd_init routine*/
910                 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
911                         nbytes -= PPC4XX_SD_BUFFER_SIZE;
912                 else
913                         nbytes = 0;
914                 while (nbytes) {
915                         sd_idx = get_next_sd(sd_idx);
916                         sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
917                         /* setup scatter descriptor */
918                         sd->ctl.done = 0;
919                         sd->ctl.rdy = 1;
920                         if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
921                                 nbytes -= PPC4XX_SD_BUFFER_SIZE;
922                         } else {
923                                 /*
924                                  * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
925                                  * which is more than nbytes, so done.
926                                  */
927                                 nbytes = 0;
928                         }
929                 }
930         }
931
932         pd->pd_ctl.w = PD_CTL_HOST_READY |
933                 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
934                  (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
935                         PD_CTL_HASH_FINAL : 0);
936         pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
937         pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
938
939         wmb();
940         /* write any value to push engine to read a pd */
941         writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
942         writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
943         return is_busy ? -EBUSY : -EINPROGRESS;
944 }
945
946 /**
947  * Algorithm Registration Functions
948  */
949 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
950                                struct crypto4xx_ctx *ctx)
951 {
952         ctx->dev = amcc_alg->dev;
953         ctx->sa_in = NULL;
954         ctx->sa_out = NULL;
955         ctx->sa_len = 0;
956 }
957
958 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
959 {
960         struct skcipher_alg *alg = crypto_skcipher_alg(sk);
961         struct crypto4xx_alg *amcc_alg;
962         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
963
964         if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
965                 ctx->sw_cipher.cipher =
966                         crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
967                                               CRYPTO_ALG_NEED_FALLBACK);
968                 if (IS_ERR(ctx->sw_cipher.cipher))
969                         return PTR_ERR(ctx->sw_cipher.cipher);
970         }
971
972         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
973         crypto4xx_ctx_init(amcc_alg, ctx);
974         return 0;
975 }
976
977 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
978 {
979         crypto4xx_free_sa(ctx);
980 }
981
982 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
983 {
984         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
985
986         crypto4xx_common_exit(ctx);
987         if (ctx->sw_cipher.cipher)
988                 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
989 }
990
991 static int crypto4xx_aead_init(struct crypto_aead *tfm)
992 {
993         struct aead_alg *alg = crypto_aead_alg(tfm);
994         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
995         struct crypto4xx_alg *amcc_alg;
996
997         ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
998                                                 CRYPTO_ALG_NEED_FALLBACK |
999                                                 CRYPTO_ALG_ASYNC);
1000         if (IS_ERR(ctx->sw_cipher.aead))
1001                 return PTR_ERR(ctx->sw_cipher.aead);
1002
1003         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
1004         crypto4xx_ctx_init(amcc_alg, ctx);
1005         crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
1006                                 crypto_aead_reqsize(ctx->sw_cipher.aead),
1007                                 sizeof(struct crypto4xx_aead_reqctx)));
1008         return 0;
1009 }
1010
1011 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1012 {
1013         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1014
1015         crypto4xx_common_exit(ctx);
1016         crypto_free_aead(ctx->sw_cipher.aead);
1017 }
1018
1019 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1020                                   struct crypto4xx_alg_common *crypto_alg,
1021                                   int array_size)
1022 {
1023         struct crypto4xx_alg *alg;
1024         int i;
1025         int rc = 0;
1026
1027         for (i = 0; i < array_size; i++) {
1028                 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1029                 if (!alg)
1030                         return -ENOMEM;
1031
1032                 alg->alg = crypto_alg[i];
1033                 alg->dev = sec_dev;
1034
1035                 switch (alg->alg.type) {
1036                 case CRYPTO_ALG_TYPE_AEAD:
1037                         rc = crypto_register_aead(&alg->alg.u.aead);
1038                         break;
1039
1040                 case CRYPTO_ALG_TYPE_AHASH:
1041                         rc = crypto_register_ahash(&alg->alg.u.hash);
1042                         break;
1043
1044                 case CRYPTO_ALG_TYPE_RNG:
1045                         rc = crypto_register_rng(&alg->alg.u.rng);
1046                         break;
1047
1048                 default:
1049                         rc = crypto_register_skcipher(&alg->alg.u.cipher);
1050                         break;
1051                 }
1052
1053                 if (rc)
1054                         kfree(alg);
1055                 else
1056                         list_add_tail(&alg->entry, &sec_dev->alg_list);
1057         }
1058
1059         return 0;
1060 }
1061
1062 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1063 {
1064         struct crypto4xx_alg *alg, *tmp;
1065
1066         list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1067                 list_del(&alg->entry);
1068                 switch (alg->alg.type) {
1069                 case CRYPTO_ALG_TYPE_AHASH:
1070                         crypto_unregister_ahash(&alg->alg.u.hash);
1071                         break;
1072
1073                 case CRYPTO_ALG_TYPE_AEAD:
1074                         crypto_unregister_aead(&alg->alg.u.aead);
1075                         break;
1076
1077                 case CRYPTO_ALG_TYPE_RNG:
1078                         crypto_unregister_rng(&alg->alg.u.rng);
1079                         break;
1080
1081                 default:
1082                         crypto_unregister_skcipher(&alg->alg.u.cipher);
1083                 }
1084                 kfree(alg);
1085         }
1086 }
1087
1088 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1089 {
1090         struct device *dev = (struct device *)data;
1091         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1092         struct pd_uinfo *pd_uinfo;
1093         struct ce_pd *pd;
1094         u32 tail = core_dev->dev->pdr_tail;
1095         u32 head = core_dev->dev->pdr_head;
1096
1097         do {
1098                 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1099                 pd = &core_dev->dev->pdr[tail];
1100                 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1101                      ((READ_ONCE(pd->pd_ctl.w) &
1102                        (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1103                        PD_CTL_PE_DONE)) {
1104                         crypto4xx_pd_done(core_dev->dev, tail);
1105                         tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1106                 } else {
1107                         /* if tail not done, break */
1108                         break;
1109                 }
1110         } while (head != tail);
1111 }
1112
1113 /**
1114  * Top Half of isr.
1115  */
1116 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1117                                                       u32 clr_val)
1118 {
1119         struct device *dev = (struct device *)data;
1120         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1121
1122         writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1123         tasklet_schedule(&core_dev->tasklet);
1124
1125         return IRQ_HANDLED;
1126 }
1127
1128 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1129 {
1130         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1131 }
1132
1133 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1134 {
1135         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1136                 PPC4XX_TMO_ERR_INT);
1137 }
1138
1139 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1140                                  u8 *data, unsigned int max)
1141 {
1142         unsigned int i, curr = 0;
1143         u32 val[2];
1144
1145         do {
1146                 /* trigger PRN generation */
1147                 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1148                        dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1149
1150                 for (i = 0; i < 1024; i++) {
1151                         /* usually 19 iterations are enough */
1152                         if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1153                              CRYPTO4XX_PRNG_STAT_BUSY))
1154                                 continue;
1155
1156                         val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1157                         val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1158                         break;
1159                 }
1160                 if (i == 1024)
1161                         return -ETIMEDOUT;
1162
1163                 if ((max - curr) >= 8) {
1164                         memcpy(data, &val, 8);
1165                         data += 8;
1166                         curr += 8;
1167                 } else {
1168                         /* copy only remaining bytes */
1169                         memcpy(data, &val, max - curr);
1170                         break;
1171                 }
1172         } while (curr < max);
1173
1174         return curr;
1175 }
1176
1177 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1178                                    const u8 *src, unsigned int slen,
1179                                    u8 *dstn, unsigned int dlen)
1180 {
1181         struct rng_alg *alg = crypto_rng_alg(tfm);
1182         struct crypto4xx_alg *amcc_alg;
1183         struct crypto4xx_device *dev;
1184         int ret;
1185
1186         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1187         dev = amcc_alg->dev;
1188
1189         mutex_lock(&dev->core_dev->rng_lock);
1190         ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1191         mutex_unlock(&dev->core_dev->rng_lock);
1192         return ret;
1193 }
1194
1195
1196 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1197                         unsigned int slen)
1198 {
1199         return 0;
1200 }
1201
1202 /**
1203  * Supported Crypto Algorithms
1204  */
1205 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1206         /* Crypto AES modes */
1207         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1208                 .base = {
1209                         .cra_name = "cbc(aes)",
1210                         .cra_driver_name = "cbc-aes-ppc4xx",
1211                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1212                         .cra_flags = CRYPTO_ALG_ASYNC |
1213                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1214                         .cra_blocksize = AES_BLOCK_SIZE,
1215                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1216                         .cra_module = THIS_MODULE,
1217                 },
1218                 .min_keysize = AES_MIN_KEY_SIZE,
1219                 .max_keysize = AES_MAX_KEY_SIZE,
1220                 .ivsize = AES_IV_SIZE,
1221                 .setkey = crypto4xx_setkey_aes_cbc,
1222                 .encrypt = crypto4xx_encrypt_iv,
1223                 .decrypt = crypto4xx_decrypt_iv,
1224                 .init = crypto4xx_sk_init,
1225                 .exit = crypto4xx_sk_exit,
1226         } },
1227         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1228                 .base = {
1229                         .cra_name = "cfb(aes)",
1230                         .cra_driver_name = "cfb-aes-ppc4xx",
1231                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1232                         .cra_flags = CRYPTO_ALG_ASYNC |
1233                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1234                         .cra_blocksize = AES_BLOCK_SIZE,
1235                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1236                         .cra_module = THIS_MODULE,
1237                 },
1238                 .min_keysize = AES_MIN_KEY_SIZE,
1239                 .max_keysize = AES_MAX_KEY_SIZE,
1240                 .ivsize = AES_IV_SIZE,
1241                 .setkey = crypto4xx_setkey_aes_cfb,
1242                 .encrypt = crypto4xx_encrypt_iv,
1243                 .decrypt = crypto4xx_decrypt_iv,
1244                 .init = crypto4xx_sk_init,
1245                 .exit = crypto4xx_sk_exit,
1246         } },
1247         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1248                 .base = {
1249                         .cra_name = "ctr(aes)",
1250                         .cra_driver_name = "ctr-aes-ppc4xx",
1251                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1252                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1253                                 CRYPTO_ALG_ASYNC |
1254                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1255                         .cra_blocksize = AES_BLOCK_SIZE,
1256                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1257                         .cra_module = THIS_MODULE,
1258                 },
1259                 .min_keysize = AES_MIN_KEY_SIZE,
1260                 .max_keysize = AES_MAX_KEY_SIZE,
1261                 .ivsize = AES_IV_SIZE,
1262                 .setkey = crypto4xx_setkey_aes_ctr,
1263                 .encrypt = crypto4xx_encrypt_ctr,
1264                 .decrypt = crypto4xx_decrypt_ctr,
1265                 .init = crypto4xx_sk_init,
1266                 .exit = crypto4xx_sk_exit,
1267         } },
1268         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1269                 .base = {
1270                         .cra_name = "rfc3686(ctr(aes))",
1271                         .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1272                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1273                         .cra_flags = CRYPTO_ALG_ASYNC |
1274                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1275                         .cra_blocksize = AES_BLOCK_SIZE,
1276                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1277                         .cra_module = THIS_MODULE,
1278                 },
1279                 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1280                 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1281                 .ivsize = CTR_RFC3686_IV_SIZE,
1282                 .setkey = crypto4xx_setkey_rfc3686,
1283                 .encrypt = crypto4xx_rfc3686_encrypt,
1284                 .decrypt = crypto4xx_rfc3686_decrypt,
1285                 .init = crypto4xx_sk_init,
1286                 .exit = crypto4xx_sk_exit,
1287         } },
1288         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1289                 .base = {
1290                         .cra_name = "ecb(aes)",
1291                         .cra_driver_name = "ecb-aes-ppc4xx",
1292                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1293                         .cra_flags = CRYPTO_ALG_ASYNC |
1294                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1295                         .cra_blocksize = AES_BLOCK_SIZE,
1296                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1297                         .cra_module = THIS_MODULE,
1298                 },
1299                 .min_keysize = AES_MIN_KEY_SIZE,
1300                 .max_keysize = AES_MAX_KEY_SIZE,
1301                 .setkey = crypto4xx_setkey_aes_ecb,
1302                 .encrypt = crypto4xx_encrypt_noiv,
1303                 .decrypt = crypto4xx_decrypt_noiv,
1304                 .init = crypto4xx_sk_init,
1305                 .exit = crypto4xx_sk_exit,
1306         } },
1307         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1308                 .base = {
1309                         .cra_name = "ofb(aes)",
1310                         .cra_driver_name = "ofb-aes-ppc4xx",
1311                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1312                         .cra_flags = CRYPTO_ALG_ASYNC |
1313                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1314                         .cra_blocksize = AES_BLOCK_SIZE,
1315                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1316                         .cra_module = THIS_MODULE,
1317                 },
1318                 .min_keysize = AES_MIN_KEY_SIZE,
1319                 .max_keysize = AES_MAX_KEY_SIZE,
1320                 .ivsize = AES_IV_SIZE,
1321                 .setkey = crypto4xx_setkey_aes_ofb,
1322                 .encrypt = crypto4xx_encrypt_iv,
1323                 .decrypt = crypto4xx_decrypt_iv,
1324                 .init = crypto4xx_sk_init,
1325                 .exit = crypto4xx_sk_exit,
1326         } },
1327
1328         /* AEAD */
1329         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1330                 .setkey         = crypto4xx_setkey_aes_ccm,
1331                 .setauthsize    = crypto4xx_setauthsize_aead,
1332                 .encrypt        = crypto4xx_encrypt_aes_ccm,
1333                 .decrypt        = crypto4xx_decrypt_aes_ccm,
1334                 .init           = crypto4xx_aead_init,
1335                 .exit           = crypto4xx_aead_exit,
1336                 .ivsize         = AES_BLOCK_SIZE,
1337                 .maxauthsize    = 16,
1338                 .base = {
1339                         .cra_name       = "ccm(aes)",
1340                         .cra_driver_name = "ccm-aes-ppc4xx",
1341                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1342                         .cra_flags      = CRYPTO_ALG_ASYNC |
1343                                           CRYPTO_ALG_NEED_FALLBACK |
1344                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1345                         .cra_blocksize  = 1,
1346                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1347                         .cra_module     = THIS_MODULE,
1348                 },
1349         } },
1350         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1351                 .setkey         = crypto4xx_setkey_aes_gcm,
1352                 .setauthsize    = crypto4xx_setauthsize_aead,
1353                 .encrypt        = crypto4xx_encrypt_aes_gcm,
1354                 .decrypt        = crypto4xx_decrypt_aes_gcm,
1355                 .init           = crypto4xx_aead_init,
1356                 .exit           = crypto4xx_aead_exit,
1357                 .ivsize         = GCM_AES_IV_SIZE,
1358                 .maxauthsize    = 16,
1359                 .base = {
1360                         .cra_name       = "gcm(aes)",
1361                         .cra_driver_name = "gcm-aes-ppc4xx",
1362                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1363                         .cra_flags      = CRYPTO_ALG_ASYNC |
1364                                           CRYPTO_ALG_NEED_FALLBACK |
1365                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1366                         .cra_blocksize  = 1,
1367                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1368                         .cra_module     = THIS_MODULE,
1369                 },
1370         } },
1371         { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1372                 .base = {
1373                         .cra_name               = "stdrng",
1374                         .cra_driver_name        = "crypto4xx_rng",
1375                         .cra_priority           = 300,
1376                         .cra_ctxsize            = 0,
1377                         .cra_module             = THIS_MODULE,
1378                 },
1379                 .generate               = crypto4xx_prng_generate,
1380                 .seed                   = crypto4xx_prng_seed,
1381                 .seedsize               = 0,
1382         } },
1383 };
1384
1385 /**
1386  * Module Initialization Routine
1387  */
1388 static int crypto4xx_probe(struct platform_device *ofdev)
1389 {
1390         int rc;
1391         struct resource res;
1392         struct device *dev = &ofdev->dev;
1393         struct crypto4xx_core_device *core_dev;
1394         u32 pvr;
1395         bool is_revb = true;
1396
1397         rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1398         if (rc)
1399                 return -ENODEV;
1400
1401         if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1402                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1403                        mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1404                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1405                        mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1406         } else if (of_find_compatible_node(NULL, NULL,
1407                         "amcc,ppc405ex-crypto")) {
1408                 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1409                        mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1410                 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1411                        mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1412                 is_revb = false;
1413         } else if (of_find_compatible_node(NULL, NULL,
1414                         "amcc,ppc460sx-crypto")) {
1415                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1416                        mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1417                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1418                        mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1419         } else {
1420                 printk(KERN_ERR "Crypto Function Not supported!\n");
1421                 return -EINVAL;
1422         }
1423
1424         core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1425         if (!core_dev)
1426                 return -ENOMEM;
1427
1428         dev_set_drvdata(dev, core_dev);
1429         core_dev->ofdev = ofdev;
1430         core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1431         rc = -ENOMEM;
1432         if (!core_dev->dev)
1433                 goto err_alloc_dev;
1434
1435         /*
1436          * Older version of 460EX/GT have a hardware bug.
1437          * Hence they do not support H/W based security intr coalescing
1438          */
1439         pvr = mfspr(SPRN_PVR);
1440         if (is_revb && ((pvr >> 4) == 0x130218A)) {
1441                 u32 min = PVR_MIN(pvr);
1442
1443                 if (min < 4) {
1444                         dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1445                         is_revb = false;
1446                 }
1447         }
1448
1449         core_dev->dev->core_dev = core_dev;
1450         core_dev->dev->is_revb = is_revb;
1451         core_dev->device = dev;
1452         mutex_init(&core_dev->rng_lock);
1453         spin_lock_init(&core_dev->lock);
1454         INIT_LIST_HEAD(&core_dev->dev->alg_list);
1455         ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1456         rc = crypto4xx_build_pdr(core_dev->dev);
1457         if (rc)
1458                 goto err_build_pdr;
1459
1460         rc = crypto4xx_build_gdr(core_dev->dev);
1461         if (rc)
1462                 goto err_build_pdr;
1463
1464         rc = crypto4xx_build_sdr(core_dev->dev);
1465         if (rc)
1466                 goto err_build_sdr;
1467
1468         /* Init tasklet for bottom half processing */
1469         tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1470                      (unsigned long) dev);
1471
1472         core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1473         if (!core_dev->dev->ce_base) {
1474                 dev_err(dev, "failed to of_iomap\n");
1475                 rc = -ENOMEM;
1476                 goto err_iomap;
1477         }
1478
1479         /* Register for Crypto isr, Crypto Engine IRQ */
1480         core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1481         rc = request_irq(core_dev->irq, is_revb ?
1482                          crypto4xx_ce_interrupt_handler_revb :
1483                          crypto4xx_ce_interrupt_handler, 0,
1484                          KBUILD_MODNAME, dev);
1485         if (rc)
1486                 goto err_request_irq;
1487
1488         /* need to setup pdr, rdr, gdr and sdr before this */
1489         crypto4xx_hw_init(core_dev->dev);
1490
1491         /* Register security algorithms with Linux CryptoAPI */
1492         rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1493                                ARRAY_SIZE(crypto4xx_alg));
1494         if (rc)
1495                 goto err_start_dev;
1496
1497         ppc4xx_trng_probe(core_dev);
1498         return 0;
1499
1500 err_start_dev:
1501         free_irq(core_dev->irq, dev);
1502 err_request_irq:
1503         irq_dispose_mapping(core_dev->irq);
1504         iounmap(core_dev->dev->ce_base);
1505 err_iomap:
1506         tasklet_kill(&core_dev->tasklet);
1507 err_build_sdr:
1508         crypto4xx_destroy_sdr(core_dev->dev);
1509         crypto4xx_destroy_gdr(core_dev->dev);
1510 err_build_pdr:
1511         crypto4xx_destroy_pdr(core_dev->dev);
1512         kfree(core_dev->dev);
1513 err_alloc_dev:
1514         kfree(core_dev);
1515
1516         return rc;
1517 }
1518
1519 static int crypto4xx_remove(struct platform_device *ofdev)
1520 {
1521         struct device *dev = &ofdev->dev;
1522         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1523
1524         ppc4xx_trng_remove(core_dev);
1525
1526         free_irq(core_dev->irq, dev);
1527         irq_dispose_mapping(core_dev->irq);
1528
1529         tasklet_kill(&core_dev->tasklet);
1530         /* Un-register with Linux CryptoAPI */
1531         crypto4xx_unregister_alg(core_dev->dev);
1532         mutex_destroy(&core_dev->rng_lock);
1533         /* Free all allocated memory */
1534         crypto4xx_stop_all(core_dev);
1535
1536         return 0;
1537 }
1538
1539 static const struct of_device_id crypto4xx_match[] = {
1540         { .compatible      = "amcc,ppc4xx-crypto",},
1541         { },
1542 };
1543 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1544
1545 static struct platform_driver crypto4xx_driver = {
1546         .driver = {
1547                 .name = KBUILD_MODNAME,
1548                 .of_match_table = crypto4xx_match,
1549         },
1550         .probe          = crypto4xx_probe,
1551         .remove         = crypto4xx_remove,
1552 };
1553
1554 module_platform_driver(crypto4xx_driver);
1555
1556 MODULE_LICENSE("GPL");
1557 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1558 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");