Merge tag 'staging-4.11-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88  * struct sample -      Store performance sample
89  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
90  *                      performance during last sample period
91  * @busy_scaled:        Scaled busy value which is used to calculate next
92  *                      P state. This can be different than core_avg_perf
93  *                      to account for cpu idle period
94  * @aperf:              Difference of actual performance frequency clock count
95  *                      read from APERF MSR between last and current sample
96  * @mperf:              Difference of maximum performance frequency clock count
97  *                      read from MPERF MSR between last and current sample
98  * @tsc:                Difference of time stamp counter between last and
99  *                      current sample
100  * @time:               Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106         int32_t core_avg_perf;
107         int32_t busy_scaled;
108         u64 aperf;
109         u64 mperf;
110         u64 tsc;
111         u64 time;
112 };
113
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:     Current requested P state
117  * @min_pstate:         Min P state possible for this platform
118  * @max_pstate:         Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *                      This can be higher than the max_pstate which can
121  *                      be limited by platform thermal design power limits
122  * @scaling:            Scaling factor to  convert frequency to cpufreq
123  *                      frequency units
124  * @turbo_pstate:       Max Turbo P state possible for this platform
125  * @max_freq:           @max_pstate frequency in cpufreq units
126  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131         int     current_pstate;
132         int     min_pstate;
133         int     max_pstate;
134         int     max_pstate_physical;
135         int     scaling;
136         int     turbo_pstate;
137         unsigned int max_freq;
138         unsigned int turbo_freq;
139 };
140
141 /**
142  * struct vid_data -    Stores voltage information data
143  * @min:                VID data for this platform corresponding to
144  *                      the lowest P state
145  * @max:                VID data corresponding to the highest P State.
146  * @turbo:              VID data for turbo P state
147  * @ratio:              Ratio of (vid max - vid min) /
148  *                      (max P state - Min P State)
149  *
150  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
151  * This data is used in Atom platforms, where in addition to target P state,
152  * the voltage data needs to be specified to select next P State.
153  */
154 struct vid_data {
155         int min;
156         int max;
157         int turbo;
158         int32_t ratio;
159 };
160
161 /**
162  * struct _pid -        Stores PID data
163  * @setpoint:           Target set point for busyness or performance
164  * @integral:           Storage for accumulated error values
165  * @p_gain:             PID proportional gain
166  * @i_gain:             PID integral gain
167  * @d_gain:             PID derivative gain
168  * @deadband:           PID deadband
169  * @last_err:           Last error storage for integral part of PID calculation
170  *
171  * Stores PID coefficients and last error for PID controller.
172  */
173 struct _pid {
174         int setpoint;
175         int32_t integral;
176         int32_t p_gain;
177         int32_t i_gain;
178         int32_t d_gain;
179         int deadband;
180         int32_t last_err;
181 };
182
183 /**
184  * struct perf_limits - Store user and policy limits
185  * @no_turbo:           User requested turbo state from intel_pstate sysfs
186  * @turbo_disabled:     Platform turbo status either from msr
187  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
188  *                      matches the maximum turbo pstate
189  * @max_perf_pct:       Effective maximum performance limit in percentage, this
190  *                      is minimum of either limits enforced by cpufreq policy
191  *                      or limits from user set limits via intel_pstate sysfs
192  * @min_perf_pct:       Effective minimum performance limit in percentage, this
193  *                      is maximum of either limits enforced by cpufreq policy
194  *                      or limits from user set limits via intel_pstate sysfs
195  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
196  *                      This value is used to limit max pstate
197  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
198  *                      This value is used to limit min pstate
199  * @max_policy_pct:     The maximum performance in percentage enforced by
200  *                      cpufreq setpolicy interface
201  * @max_sysfs_pct:      The maximum performance in percentage enforced by
202  *                      intel pstate sysfs interface, unused when per cpu
203  *                      controls are enforced
204  * @min_policy_pct:     The minimum performance in percentage enforced by
205  *                      cpufreq setpolicy interface
206  * @min_sysfs_pct:      The minimum performance in percentage enforced by
207  *                      intel pstate sysfs interface, unused when per cpu
208  *                      controls are enforced
209  *
210  * Storage for user and policy defined limits.
211  */
212 struct perf_limits {
213         int no_turbo;
214         int turbo_disabled;
215         int max_perf_pct;
216         int min_perf_pct;
217         int32_t max_perf;
218         int32_t min_perf;
219         int max_policy_pct;
220         int max_sysfs_pct;
221         int min_policy_pct;
222         int min_sysfs_pct;
223 };
224
225 /**
226  * struct cpudata -     Per CPU instance data storage
227  * @cpu:                CPU number for this instance data
228  * @policy:             CPUFreq policy value
229  * @update_util:        CPUFreq utility callback information
230  * @update_util_set:    CPUFreq utility callback is set
231  * @iowait_boost:       iowait-related boost fraction
232  * @last_update:        Time of the last update.
233  * @pstate:             Stores P state limits for this CPU
234  * @vid:                Stores VID limits for this CPU
235  * @pid:                Stores PID parameters for this CPU
236  * @last_sample_time:   Last Sample time
237  * @prev_aperf:         Last APERF value read from APERF MSR
238  * @prev_mperf:         Last MPERF value read from MPERF MSR
239  * @prev_tsc:           Last timestamp counter (TSC) value
240  * @prev_cummulative_iowait: IO Wait time difference from last and
241  *                      current sample
242  * @sample:             Storage for storing last Sample data
243  * @perf_limits:        Pointer to perf_limit unique to this CPU
244  *                      Not all field in the structure are applicable
245  *                      when per cpu controls are enforced
246  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
247  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
248  * @epp_powersave:      Last saved HWP energy performance preference
249  *                      (EPP) or energy performance bias (EPB),
250  *                      when policy switched to performance
251  * @epp_policy:         Last saved policy used to set EPP/EPB
252  * @epp_default:        Power on default HWP energy performance
253  *                      preference/bias
254  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
255  *                      operation
256  *
257  * This structure stores per CPU instance data for all CPUs.
258  */
259 struct cpudata {
260         int cpu;
261
262         unsigned int policy;
263         struct update_util_data update_util;
264         bool   update_util_set;
265
266         struct pstate_data pstate;
267         struct vid_data vid;
268         struct _pid pid;
269
270         u64     last_update;
271         u64     last_sample_time;
272         u64     prev_aperf;
273         u64     prev_mperf;
274         u64     prev_tsc;
275         u64     prev_cummulative_iowait;
276         struct sample sample;
277         struct perf_limits *perf_limits;
278 #ifdef CONFIG_ACPI
279         struct acpi_processor_performance acpi_perf_data;
280         bool valid_pss_table;
281 #endif
282         unsigned int iowait_boost;
283         s16 epp_powersave;
284         s16 epp_policy;
285         s16 epp_default;
286         s16 epp_saved;
287 };
288
289 static struct cpudata **all_cpu_data;
290
291 /**
292  * struct pstate_adjust_policy - Stores static PID configuration data
293  * @sample_rate_ms:     PID calculation sample rate in ms
294  * @sample_rate_ns:     Sample rate calculation in ns
295  * @deadband:           PID deadband
296  * @setpoint:           PID Setpoint
297  * @p_gain_pct:         PID proportional gain
298  * @i_gain_pct:         PID integral gain
299  * @d_gain_pct:         PID derivative gain
300  *
301  * Stores per CPU model static PID configuration data.
302  */
303 struct pstate_adjust_policy {
304         int sample_rate_ms;
305         s64 sample_rate_ns;
306         int deadband;
307         int setpoint;
308         int p_gain_pct;
309         int d_gain_pct;
310         int i_gain_pct;
311 };
312
313 /**
314  * struct pstate_funcs - Per CPU model specific callbacks
315  * @get_max:            Callback to get maximum non turbo effective P state
316  * @get_max_physical:   Callback to get maximum non turbo physical P state
317  * @get_min:            Callback to get minimum P state
318  * @get_turbo:          Callback to get turbo P state
319  * @get_scaling:        Callback to get frequency scaling factor
320  * @get_val:            Callback to convert P state to actual MSR write value
321  * @get_vid:            Callback to get VID data for Atom platforms
322  * @get_target_pstate:  Callback to a function to calculate next P state to use
323  *
324  * Core and Atom CPU models have different way to get P State limits. This
325  * structure is used to store those callbacks.
326  */
327 struct pstate_funcs {
328         int (*get_max)(void);
329         int (*get_max_physical)(void);
330         int (*get_min)(void);
331         int (*get_turbo)(void);
332         int (*get_scaling)(void);
333         u64 (*get_val)(struct cpudata*, int pstate);
334         void (*get_vid)(struct cpudata *);
335         int32_t (*get_target_pstate)(struct cpudata *);
336 };
337
338 /**
339  * struct cpu_defaults- Per CPU model default config data
340  * @pid_policy: PID config data
341  * @funcs:              Callback function data
342  */
343 struct cpu_defaults {
344         struct pstate_adjust_policy pid_policy;
345         struct pstate_funcs funcs;
346 };
347
348 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
349 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
350
351 static struct pstate_adjust_policy pid_params __read_mostly;
352 static struct pstate_funcs pstate_funcs __read_mostly;
353 static int hwp_active __read_mostly;
354 static bool per_cpu_limits __read_mostly;
355
356 static bool driver_registered __read_mostly;
357
358 #ifdef CONFIG_ACPI
359 static bool acpi_ppc;
360 #endif
361
362 static struct perf_limits performance_limits;
363 static struct perf_limits powersave_limits;
364 static struct perf_limits *limits;
365
366 static void intel_pstate_init_limits(struct perf_limits *limits)
367 {
368         memset(limits, 0, sizeof(*limits));
369         limits->max_perf_pct = 100;
370         limits->max_perf = int_ext_tofp(1);
371         limits->max_policy_pct = 100;
372         limits->max_sysfs_pct = 100;
373 }
374
375 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
376 {
377         intel_pstate_init_limits(limits);
378         limits->min_perf_pct = 100;
379         limits->min_perf = int_ext_tofp(1);
380 }
381
382 static DEFINE_MUTEX(intel_pstate_driver_lock);
383 static DEFINE_MUTEX(intel_pstate_limits_lock);
384
385 #ifdef CONFIG_ACPI
386
387 static bool intel_pstate_get_ppc_enable_status(void)
388 {
389         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
390             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
391                 return true;
392
393         return acpi_ppc;
394 }
395
396 #ifdef CONFIG_ACPI_CPPC_LIB
397
398 /* The work item is needed to avoid CPU hotplug locking issues */
399 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
400 {
401         sched_set_itmt_support();
402 }
403
404 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
405
406 static void intel_pstate_set_itmt_prio(int cpu)
407 {
408         struct cppc_perf_caps cppc_perf;
409         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
410         int ret;
411
412         ret = cppc_get_perf_caps(cpu, &cppc_perf);
413         if (ret)
414                 return;
415
416         /*
417          * The priorities can be set regardless of whether or not
418          * sched_set_itmt_support(true) has been called and it is valid to
419          * update them at any time after it has been called.
420          */
421         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
422
423         if (max_highest_perf <= min_highest_perf) {
424                 if (cppc_perf.highest_perf > max_highest_perf)
425                         max_highest_perf = cppc_perf.highest_perf;
426
427                 if (cppc_perf.highest_perf < min_highest_perf)
428                         min_highest_perf = cppc_perf.highest_perf;
429
430                 if (max_highest_perf > min_highest_perf) {
431                         /*
432                          * This code can be run during CPU online under the
433                          * CPU hotplug locks, so sched_set_itmt_support()
434                          * cannot be called from here.  Queue up a work item
435                          * to invoke it.
436                          */
437                         schedule_work(&sched_itmt_work);
438                 }
439         }
440 }
441 #else
442 static void intel_pstate_set_itmt_prio(int cpu)
443 {
444 }
445 #endif
446
447 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
448 {
449         struct cpudata *cpu;
450         int ret;
451         int i;
452
453         if (hwp_active) {
454                 intel_pstate_set_itmt_prio(policy->cpu);
455                 return;
456         }
457
458         if (!intel_pstate_get_ppc_enable_status())
459                 return;
460
461         cpu = all_cpu_data[policy->cpu];
462
463         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
464                                                   policy->cpu);
465         if (ret)
466                 return;
467
468         /*
469          * Check if the control value in _PSS is for PERF_CTL MSR, which should
470          * guarantee that the states returned by it map to the states in our
471          * list directly.
472          */
473         if (cpu->acpi_perf_data.control_register.space_id !=
474                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
475                 goto err;
476
477         /*
478          * If there is only one entry _PSS, simply ignore _PSS and continue as
479          * usual without taking _PSS into account
480          */
481         if (cpu->acpi_perf_data.state_count < 2)
482                 goto err;
483
484         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
485         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
486                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
487                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
488                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
489                          (u32) cpu->acpi_perf_data.states[i].power,
490                          (u32) cpu->acpi_perf_data.states[i].control);
491         }
492
493         /*
494          * The _PSS table doesn't contain whole turbo frequency range.
495          * This just contains +1 MHZ above the max non turbo frequency,
496          * with control value corresponding to max turbo ratio. But
497          * when cpufreq set policy is called, it will call with this
498          * max frequency, which will cause a reduced performance as
499          * this driver uses real max turbo frequency as the max
500          * frequency. So correct this frequency in _PSS table to
501          * correct max turbo frequency based on the turbo state.
502          * Also need to convert to MHz as _PSS freq is in MHz.
503          */
504         if (!limits->turbo_disabled)
505                 cpu->acpi_perf_data.states[0].core_frequency =
506                                         policy->cpuinfo.max_freq / 1000;
507         cpu->valid_pss_table = true;
508         pr_debug("_PPC limits will be enforced\n");
509
510         return;
511
512  err:
513         cpu->valid_pss_table = false;
514         acpi_processor_unregister_performance(policy->cpu);
515 }
516
517 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
518 {
519         struct cpudata *cpu;
520
521         cpu = all_cpu_data[policy->cpu];
522         if (!cpu->valid_pss_table)
523                 return;
524
525         acpi_processor_unregister_performance(policy->cpu);
526 }
527 #else
528 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
529 {
530 }
531
532 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
533 {
534 }
535 #endif
536
537 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
538                              int deadband, int integral) {
539         pid->setpoint = int_tofp(setpoint);
540         pid->deadband  = int_tofp(deadband);
541         pid->integral  = int_tofp(integral);
542         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
543 }
544
545 static inline void pid_p_gain_set(struct _pid *pid, int percent)
546 {
547         pid->p_gain = div_fp(percent, 100);
548 }
549
550 static inline void pid_i_gain_set(struct _pid *pid, int percent)
551 {
552         pid->i_gain = div_fp(percent, 100);
553 }
554
555 static inline void pid_d_gain_set(struct _pid *pid, int percent)
556 {
557         pid->d_gain = div_fp(percent, 100);
558 }
559
560 static signed int pid_calc(struct _pid *pid, int32_t busy)
561 {
562         signed int result;
563         int32_t pterm, dterm, fp_error;
564         int32_t integral_limit;
565
566         fp_error = pid->setpoint - busy;
567
568         if (abs(fp_error) <= pid->deadband)
569                 return 0;
570
571         pterm = mul_fp(pid->p_gain, fp_error);
572
573         pid->integral += fp_error;
574
575         /*
576          * We limit the integral here so that it will never
577          * get higher than 30.  This prevents it from becoming
578          * too large an input over long periods of time and allows
579          * it to get factored out sooner.
580          *
581          * The value of 30 was chosen through experimentation.
582          */
583         integral_limit = int_tofp(30);
584         if (pid->integral > integral_limit)
585                 pid->integral = integral_limit;
586         if (pid->integral < -integral_limit)
587                 pid->integral = -integral_limit;
588
589         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
590         pid->last_err = fp_error;
591
592         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
593         result = result + (1 << (FRAC_BITS-1));
594         return (signed int)fp_toint(result);
595 }
596
597 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
598 {
599         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
600         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
601         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
602
603         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
604 }
605
606 static inline void intel_pstate_reset_all_pid(void)
607 {
608         unsigned int cpu;
609
610         for_each_online_cpu(cpu) {
611                 if (all_cpu_data[cpu])
612                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
613         }
614 }
615
616 static inline void update_turbo_state(void)
617 {
618         u64 misc_en;
619         struct cpudata *cpu;
620
621         cpu = all_cpu_data[0];
622         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
623         limits->turbo_disabled =
624                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
625                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
626 }
627
628 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
629 {
630         u64 epb;
631         int ret;
632
633         if (!static_cpu_has(X86_FEATURE_EPB))
634                 return -ENXIO;
635
636         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
637         if (ret)
638                 return (s16)ret;
639
640         return (s16)(epb & 0x0f);
641 }
642
643 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
644 {
645         s16 epp;
646
647         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
648                 /*
649                  * When hwp_req_data is 0, means that caller didn't read
650                  * MSR_HWP_REQUEST, so need to read and get EPP.
651                  */
652                 if (!hwp_req_data) {
653                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
654                                             &hwp_req_data);
655                         if (epp)
656                                 return epp;
657                 }
658                 epp = (hwp_req_data >> 24) & 0xff;
659         } else {
660                 /* When there is no EPP present, HWP uses EPB settings */
661                 epp = intel_pstate_get_epb(cpu_data);
662         }
663
664         return epp;
665 }
666
667 static int intel_pstate_set_epb(int cpu, s16 pref)
668 {
669         u64 epb;
670         int ret;
671
672         if (!static_cpu_has(X86_FEATURE_EPB))
673                 return -ENXIO;
674
675         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
676         if (ret)
677                 return ret;
678
679         epb = (epb & ~0x0f) | pref;
680         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
681
682         return 0;
683 }
684
685 /*
686  * EPP/EPB display strings corresponding to EPP index in the
687  * energy_perf_strings[]
688  *      index           String
689  *-------------------------------------
690  *      0               default
691  *      1               performance
692  *      2               balance_performance
693  *      3               balance_power
694  *      4               power
695  */
696 static const char * const energy_perf_strings[] = {
697         "default",
698         "performance",
699         "balance_performance",
700         "balance_power",
701         "power",
702         NULL
703 };
704
705 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
706 {
707         s16 epp;
708         int index = -EINVAL;
709
710         epp = intel_pstate_get_epp(cpu_data, 0);
711         if (epp < 0)
712                 return epp;
713
714         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
715                 /*
716                  * Range:
717                  *      0x00-0x3F       :       Performance
718                  *      0x40-0x7F       :       Balance performance
719                  *      0x80-0xBF       :       Balance power
720                  *      0xC0-0xFF       :       Power
721                  * The EPP is a 8 bit value, but our ranges restrict the
722                  * value which can be set. Here only using top two bits
723                  * effectively.
724                  */
725                 index = (epp >> 6) + 1;
726         } else if (static_cpu_has(X86_FEATURE_EPB)) {
727                 /*
728                  * Range:
729                  *      0x00-0x03       :       Performance
730                  *      0x04-0x07       :       Balance performance
731                  *      0x08-0x0B       :       Balance power
732                  *      0x0C-0x0F       :       Power
733                  * The EPB is a 4 bit value, but our ranges restrict the
734                  * value which can be set. Here only using top two bits
735                  * effectively.
736                  */
737                 index = (epp >> 2) + 1;
738         }
739
740         return index;
741 }
742
743 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
744                                               int pref_index)
745 {
746         int epp = -EINVAL;
747         int ret;
748
749         if (!pref_index)
750                 epp = cpu_data->epp_default;
751
752         mutex_lock(&intel_pstate_limits_lock);
753
754         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
755                 u64 value;
756
757                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
758                 if (ret)
759                         goto return_pref;
760
761                 value &= ~GENMASK_ULL(31, 24);
762
763                 /*
764                  * If epp is not default, convert from index into
765                  * energy_perf_strings to epp value, by shifting 6
766                  * bits left to use only top two bits in epp.
767                  * The resultant epp need to shifted by 24 bits to
768                  * epp position in MSR_HWP_REQUEST.
769                  */
770                 if (epp == -EINVAL)
771                         epp = (pref_index - 1) << 6;
772
773                 value |= (u64)epp << 24;
774                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
775         } else {
776                 if (epp == -EINVAL)
777                         epp = (pref_index - 1) << 2;
778                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
779         }
780 return_pref:
781         mutex_unlock(&intel_pstate_limits_lock);
782
783         return ret;
784 }
785
786 static ssize_t show_energy_performance_available_preferences(
787                                 struct cpufreq_policy *policy, char *buf)
788 {
789         int i = 0;
790         int ret = 0;
791
792         while (energy_perf_strings[i] != NULL)
793                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
794
795         ret += sprintf(&buf[ret], "\n");
796
797         return ret;
798 }
799
800 cpufreq_freq_attr_ro(energy_performance_available_preferences);
801
802 static ssize_t store_energy_performance_preference(
803                 struct cpufreq_policy *policy, const char *buf, size_t count)
804 {
805         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
806         char str_preference[21];
807         int ret, i = 0;
808
809         ret = sscanf(buf, "%20s", str_preference);
810         if (ret != 1)
811                 return -EINVAL;
812
813         while (energy_perf_strings[i] != NULL) {
814                 if (!strcmp(str_preference, energy_perf_strings[i])) {
815                         intel_pstate_set_energy_pref_index(cpu_data, i);
816                         return count;
817                 }
818                 ++i;
819         }
820
821         return -EINVAL;
822 }
823
824 static ssize_t show_energy_performance_preference(
825                                 struct cpufreq_policy *policy, char *buf)
826 {
827         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
828         int preference;
829
830         preference = intel_pstate_get_energy_pref_index(cpu_data);
831         if (preference < 0)
832                 return preference;
833
834         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
835 }
836
837 cpufreq_freq_attr_rw(energy_performance_preference);
838
839 static struct freq_attr *hwp_cpufreq_attrs[] = {
840         &energy_performance_preference,
841         &energy_performance_available_preferences,
842         NULL,
843 };
844
845 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
846 {
847         int min, hw_min, max, hw_max, cpu, range, adj_range;
848         struct perf_limits *perf_limits = limits;
849         u64 value, cap;
850
851         for_each_cpu(cpu, policy->cpus) {
852                 int max_perf_pct, min_perf_pct;
853                 struct cpudata *cpu_data = all_cpu_data[cpu];
854                 s16 epp;
855
856                 if (per_cpu_limits)
857                         perf_limits = all_cpu_data[cpu]->perf_limits;
858
859                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
860                 hw_min = HWP_LOWEST_PERF(cap);
861                 if (limits->no_turbo)
862                         hw_max = HWP_GUARANTEED_PERF(cap);
863                 else
864                         hw_max = HWP_HIGHEST_PERF(cap);
865                 range = hw_max - hw_min;
866
867                 max_perf_pct = perf_limits->max_perf_pct;
868                 min_perf_pct = perf_limits->min_perf_pct;
869
870                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
871                 adj_range = min_perf_pct * range / 100;
872                 min = hw_min + adj_range;
873                 value &= ~HWP_MIN_PERF(~0L);
874                 value |= HWP_MIN_PERF(min);
875
876                 adj_range = max_perf_pct * range / 100;
877                 max = hw_min + adj_range;
878
879                 value &= ~HWP_MAX_PERF(~0L);
880                 value |= HWP_MAX_PERF(max);
881
882                 if (cpu_data->epp_policy == cpu_data->policy)
883                         goto skip_epp;
884
885                 cpu_data->epp_policy = cpu_data->policy;
886
887                 if (cpu_data->epp_saved >= 0) {
888                         epp = cpu_data->epp_saved;
889                         cpu_data->epp_saved = -EINVAL;
890                         goto update_epp;
891                 }
892
893                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
894                         epp = intel_pstate_get_epp(cpu_data, value);
895                         cpu_data->epp_powersave = epp;
896                         /* If EPP read was failed, then don't try to write */
897                         if (epp < 0)
898                                 goto skip_epp;
899
900
901                         epp = 0;
902                 } else {
903                         /* skip setting EPP, when saved value is invalid */
904                         if (cpu_data->epp_powersave < 0)
905                                 goto skip_epp;
906
907                         /*
908                          * No need to restore EPP when it is not zero. This
909                          * means:
910                          *  - Policy is not changed
911                          *  - user has manually changed
912                          *  - Error reading EPB
913                          */
914                         epp = intel_pstate_get_epp(cpu_data, value);
915                         if (epp)
916                                 goto skip_epp;
917
918                         epp = cpu_data->epp_powersave;
919                 }
920 update_epp:
921                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
922                         value &= ~GENMASK_ULL(31, 24);
923                         value |= (u64)epp << 24;
924                 } else {
925                         intel_pstate_set_epb(cpu, epp);
926                 }
927 skip_epp:
928                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
929         }
930 }
931
932 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
933 {
934         if (hwp_active)
935                 intel_pstate_hwp_set(policy);
936
937         return 0;
938 }
939
940 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
941 {
942         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
943
944         if (!hwp_active)
945                 return 0;
946
947         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
948
949         return 0;
950 }
951
952 static int intel_pstate_resume(struct cpufreq_policy *policy)
953 {
954         int ret;
955
956         if (!hwp_active)
957                 return 0;
958
959         mutex_lock(&intel_pstate_limits_lock);
960
961         all_cpu_data[policy->cpu]->epp_policy = 0;
962
963         ret = intel_pstate_hwp_set_policy(policy);
964
965         mutex_unlock(&intel_pstate_limits_lock);
966
967         return ret;
968 }
969
970 static void intel_pstate_update_policies(void)
971 {
972         int cpu;
973
974         for_each_possible_cpu(cpu)
975                 cpufreq_update_policy(cpu);
976 }
977
978 /************************** debugfs begin ************************/
979 static int pid_param_set(void *data, u64 val)
980 {
981         *(u32 *)data = val;
982         intel_pstate_reset_all_pid();
983         return 0;
984 }
985
986 static int pid_param_get(void *data, u64 *val)
987 {
988         *val = *(u32 *)data;
989         return 0;
990 }
991 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
992
993 static struct dentry *debugfs_parent;
994
995 struct pid_param {
996         char *name;
997         void *value;
998         struct dentry *dentry;
999 };
1000
1001 static struct pid_param pid_files[] = {
1002         {"sample_rate_ms", &pid_params.sample_rate_ms, },
1003         {"d_gain_pct", &pid_params.d_gain_pct, },
1004         {"i_gain_pct", &pid_params.i_gain_pct, },
1005         {"deadband", &pid_params.deadband, },
1006         {"setpoint", &pid_params.setpoint, },
1007         {"p_gain_pct", &pid_params.p_gain_pct, },
1008         {NULL, NULL, }
1009 };
1010
1011 static void intel_pstate_debug_expose_params(void)
1012 {
1013         int i;
1014
1015         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1016         if (IS_ERR_OR_NULL(debugfs_parent))
1017                 return;
1018
1019         for (i = 0; pid_files[i].name; i++) {
1020                 struct dentry *dentry;
1021
1022                 dentry = debugfs_create_file(pid_files[i].name, 0660,
1023                                              debugfs_parent, pid_files[i].value,
1024                                              &fops_pid_param);
1025                 if (!IS_ERR(dentry))
1026                         pid_files[i].dentry = dentry;
1027         }
1028 }
1029
1030 static void intel_pstate_debug_hide_params(void)
1031 {
1032         int i;
1033
1034         if (IS_ERR_OR_NULL(debugfs_parent))
1035                 return;
1036
1037         for (i = 0; pid_files[i].name; i++) {
1038                 debugfs_remove(pid_files[i].dentry);
1039                 pid_files[i].dentry = NULL;
1040         }
1041
1042         debugfs_remove(debugfs_parent);
1043         debugfs_parent = NULL;
1044 }
1045
1046 /************************** debugfs end ************************/
1047
1048 /************************** sysfs begin ************************/
1049 #define show_one(file_name, object)                                     \
1050         static ssize_t show_##file_name                                 \
1051         (struct kobject *kobj, struct attribute *attr, char *buf)       \
1052         {                                                               \
1053                 return sprintf(buf, "%u\n", limits->object);            \
1054         }
1055
1056 static ssize_t intel_pstate_show_status(char *buf);
1057 static int intel_pstate_update_status(const char *buf, size_t size);
1058
1059 static ssize_t show_status(struct kobject *kobj,
1060                            struct attribute *attr, char *buf)
1061 {
1062         ssize_t ret;
1063
1064         mutex_lock(&intel_pstate_driver_lock);
1065         ret = intel_pstate_show_status(buf);
1066         mutex_unlock(&intel_pstate_driver_lock);
1067
1068         return ret;
1069 }
1070
1071 static ssize_t store_status(struct kobject *a, struct attribute *b,
1072                             const char *buf, size_t count)
1073 {
1074         char *p = memchr(buf, '\n', count);
1075         int ret;
1076
1077         mutex_lock(&intel_pstate_driver_lock);
1078         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1079         mutex_unlock(&intel_pstate_driver_lock);
1080
1081         return ret < 0 ? ret : count;
1082 }
1083
1084 static ssize_t show_turbo_pct(struct kobject *kobj,
1085                                 struct attribute *attr, char *buf)
1086 {
1087         struct cpudata *cpu;
1088         int total, no_turbo, turbo_pct;
1089         uint32_t turbo_fp;
1090
1091         mutex_lock(&intel_pstate_driver_lock);
1092
1093         if (!driver_registered) {
1094                 mutex_unlock(&intel_pstate_driver_lock);
1095                 return -EAGAIN;
1096         }
1097
1098         cpu = all_cpu_data[0];
1099
1100         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1101         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1102         turbo_fp = div_fp(no_turbo, total);
1103         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1104
1105         mutex_unlock(&intel_pstate_driver_lock);
1106
1107         return sprintf(buf, "%u\n", turbo_pct);
1108 }
1109
1110 static ssize_t show_num_pstates(struct kobject *kobj,
1111                                 struct attribute *attr, char *buf)
1112 {
1113         struct cpudata *cpu;
1114         int total;
1115
1116         mutex_lock(&intel_pstate_driver_lock);
1117
1118         if (!driver_registered) {
1119                 mutex_unlock(&intel_pstate_driver_lock);
1120                 return -EAGAIN;
1121         }
1122
1123         cpu = all_cpu_data[0];
1124         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1125
1126         mutex_unlock(&intel_pstate_driver_lock);
1127
1128         return sprintf(buf, "%u\n", total);
1129 }
1130
1131 static ssize_t show_no_turbo(struct kobject *kobj,
1132                              struct attribute *attr, char *buf)
1133 {
1134         ssize_t ret;
1135
1136         mutex_lock(&intel_pstate_driver_lock);
1137
1138         if (!driver_registered) {
1139                 mutex_unlock(&intel_pstate_driver_lock);
1140                 return -EAGAIN;
1141         }
1142
1143         update_turbo_state();
1144         if (limits->turbo_disabled)
1145                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1146         else
1147                 ret = sprintf(buf, "%u\n", limits->no_turbo);
1148
1149         mutex_unlock(&intel_pstate_driver_lock);
1150
1151         return ret;
1152 }
1153
1154 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1155                               const char *buf, size_t count)
1156 {
1157         unsigned int input;
1158         int ret;
1159
1160         ret = sscanf(buf, "%u", &input);
1161         if (ret != 1)
1162                 return -EINVAL;
1163
1164         mutex_lock(&intel_pstate_driver_lock);
1165
1166         if (!driver_registered) {
1167                 mutex_unlock(&intel_pstate_driver_lock);
1168                 return -EAGAIN;
1169         }
1170
1171         mutex_lock(&intel_pstate_limits_lock);
1172
1173         update_turbo_state();
1174         if (limits->turbo_disabled) {
1175                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1176                 mutex_unlock(&intel_pstate_limits_lock);
1177                 mutex_unlock(&intel_pstate_driver_lock);
1178                 return -EPERM;
1179         }
1180
1181         limits->no_turbo = clamp_t(int, input, 0, 1);
1182
1183         mutex_unlock(&intel_pstate_limits_lock);
1184
1185         intel_pstate_update_policies();
1186
1187         mutex_unlock(&intel_pstate_driver_lock);
1188
1189         return count;
1190 }
1191
1192 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1193                                   const char *buf, size_t count)
1194 {
1195         unsigned int input;
1196         int ret;
1197
1198         ret = sscanf(buf, "%u", &input);
1199         if (ret != 1)
1200                 return -EINVAL;
1201
1202         mutex_lock(&intel_pstate_driver_lock);
1203
1204         if (!driver_registered) {
1205                 mutex_unlock(&intel_pstate_driver_lock);
1206                 return -EAGAIN;
1207         }
1208
1209         mutex_lock(&intel_pstate_limits_lock);
1210
1211         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1212         limits->max_perf_pct = min(limits->max_policy_pct,
1213                                    limits->max_sysfs_pct);
1214         limits->max_perf_pct = max(limits->min_policy_pct,
1215                                    limits->max_perf_pct);
1216         limits->max_perf_pct = max(limits->min_perf_pct,
1217                                    limits->max_perf_pct);
1218         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1219
1220         mutex_unlock(&intel_pstate_limits_lock);
1221
1222         intel_pstate_update_policies();
1223
1224         mutex_unlock(&intel_pstate_driver_lock);
1225
1226         return count;
1227 }
1228
1229 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1230                                   const char *buf, size_t count)
1231 {
1232         unsigned int input;
1233         int ret;
1234
1235         ret = sscanf(buf, "%u", &input);
1236         if (ret != 1)
1237                 return -EINVAL;
1238
1239         mutex_lock(&intel_pstate_driver_lock);
1240
1241         if (!driver_registered) {
1242                 mutex_unlock(&intel_pstate_driver_lock);
1243                 return -EAGAIN;
1244         }
1245
1246         mutex_lock(&intel_pstate_limits_lock);
1247
1248         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1249         limits->min_perf_pct = max(limits->min_policy_pct,
1250                                    limits->min_sysfs_pct);
1251         limits->min_perf_pct = min(limits->max_policy_pct,
1252                                    limits->min_perf_pct);
1253         limits->min_perf_pct = min(limits->max_perf_pct,
1254                                    limits->min_perf_pct);
1255         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1256
1257         mutex_unlock(&intel_pstate_limits_lock);
1258
1259         intel_pstate_update_policies();
1260
1261         mutex_unlock(&intel_pstate_driver_lock);
1262
1263         return count;
1264 }
1265
1266 show_one(max_perf_pct, max_perf_pct);
1267 show_one(min_perf_pct, min_perf_pct);
1268
1269 define_one_global_rw(status);
1270 define_one_global_rw(no_turbo);
1271 define_one_global_rw(max_perf_pct);
1272 define_one_global_rw(min_perf_pct);
1273 define_one_global_ro(turbo_pct);
1274 define_one_global_ro(num_pstates);
1275
1276 static struct attribute *intel_pstate_attributes[] = {
1277         &status.attr,
1278         &no_turbo.attr,
1279         &turbo_pct.attr,
1280         &num_pstates.attr,
1281         NULL
1282 };
1283
1284 static struct attribute_group intel_pstate_attr_group = {
1285         .attrs = intel_pstate_attributes,
1286 };
1287
1288 static void __init intel_pstate_sysfs_expose_params(void)
1289 {
1290         struct kobject *intel_pstate_kobject;
1291         int rc;
1292
1293         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1294                                                 &cpu_subsys.dev_root->kobj);
1295         if (WARN_ON(!intel_pstate_kobject))
1296                 return;
1297
1298         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1299         if (WARN_ON(rc))
1300                 return;
1301
1302         /*
1303          * If per cpu limits are enforced there are no global limits, so
1304          * return without creating max/min_perf_pct attributes
1305          */
1306         if (per_cpu_limits)
1307                 return;
1308
1309         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1310         WARN_ON(rc);
1311
1312         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1313         WARN_ON(rc);
1314
1315 }
1316 /************************** sysfs end ************************/
1317
1318 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1319 {
1320         /* First disable HWP notification interrupt as we don't process them */
1321         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1322                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1323
1324         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1325         cpudata->epp_policy = 0;
1326         if (cpudata->epp_default == -EINVAL)
1327                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1328 }
1329
1330 #define MSR_IA32_POWER_CTL_BIT_EE       19
1331
1332 /* Disable energy efficiency optimization */
1333 static void intel_pstate_disable_ee(int cpu)
1334 {
1335         u64 power_ctl;
1336         int ret;
1337
1338         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1339         if (ret)
1340                 return;
1341
1342         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1343                 pr_info("Disabling energy efficiency optimization\n");
1344                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1345                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1346         }
1347 }
1348
1349 static int atom_get_min_pstate(void)
1350 {
1351         u64 value;
1352
1353         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1354         return (value >> 8) & 0x7F;
1355 }
1356
1357 static int atom_get_max_pstate(void)
1358 {
1359         u64 value;
1360
1361         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1362         return (value >> 16) & 0x7F;
1363 }
1364
1365 static int atom_get_turbo_pstate(void)
1366 {
1367         u64 value;
1368
1369         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1370         return value & 0x7F;
1371 }
1372
1373 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1374 {
1375         u64 val;
1376         int32_t vid_fp;
1377         u32 vid;
1378
1379         val = (u64)pstate << 8;
1380         if (limits->no_turbo && !limits->turbo_disabled)
1381                 val |= (u64)1 << 32;
1382
1383         vid_fp = cpudata->vid.min + mul_fp(
1384                 int_tofp(pstate - cpudata->pstate.min_pstate),
1385                 cpudata->vid.ratio);
1386
1387         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1388         vid = ceiling_fp(vid_fp);
1389
1390         if (pstate > cpudata->pstate.max_pstate)
1391                 vid = cpudata->vid.turbo;
1392
1393         return val | vid;
1394 }
1395
1396 static int silvermont_get_scaling(void)
1397 {
1398         u64 value;
1399         int i;
1400         /* Defined in Table 35-6 from SDM (Sept 2015) */
1401         static int silvermont_freq_table[] = {
1402                 83300, 100000, 133300, 116700, 80000};
1403
1404         rdmsrl(MSR_FSB_FREQ, value);
1405         i = value & 0x7;
1406         WARN_ON(i > 4);
1407
1408         return silvermont_freq_table[i];
1409 }
1410
1411 static int airmont_get_scaling(void)
1412 {
1413         u64 value;
1414         int i;
1415         /* Defined in Table 35-10 from SDM (Sept 2015) */
1416         static int airmont_freq_table[] = {
1417                 83300, 100000, 133300, 116700, 80000,
1418                 93300, 90000, 88900, 87500};
1419
1420         rdmsrl(MSR_FSB_FREQ, value);
1421         i = value & 0xF;
1422         WARN_ON(i > 8);
1423
1424         return airmont_freq_table[i];
1425 }
1426
1427 static void atom_get_vid(struct cpudata *cpudata)
1428 {
1429         u64 value;
1430
1431         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1432         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1433         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1434         cpudata->vid.ratio = div_fp(
1435                 cpudata->vid.max - cpudata->vid.min,
1436                 int_tofp(cpudata->pstate.max_pstate -
1437                         cpudata->pstate.min_pstate));
1438
1439         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1440         cpudata->vid.turbo = value & 0x7f;
1441 }
1442
1443 static int core_get_min_pstate(void)
1444 {
1445         u64 value;
1446
1447         rdmsrl(MSR_PLATFORM_INFO, value);
1448         return (value >> 40) & 0xFF;
1449 }
1450
1451 static int core_get_max_pstate_physical(void)
1452 {
1453         u64 value;
1454
1455         rdmsrl(MSR_PLATFORM_INFO, value);
1456         return (value >> 8) & 0xFF;
1457 }
1458
1459 static int core_get_tdp_ratio(u64 plat_info)
1460 {
1461         /* Check how many TDP levels present */
1462         if (plat_info & 0x600000000) {
1463                 u64 tdp_ctrl;
1464                 u64 tdp_ratio;
1465                 int tdp_msr;
1466                 int err;
1467
1468                 /* Get the TDP level (0, 1, 2) to get ratios */
1469                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1470                 if (err)
1471                         return err;
1472
1473                 /* TDP MSR are continuous starting at 0x648 */
1474                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1475                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1476                 if (err)
1477                         return err;
1478
1479                 /* For level 1 and 2, bits[23:16] contain the ratio */
1480                 if (tdp_ctrl & 0x03)
1481                         tdp_ratio >>= 16;
1482
1483                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1484                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1485
1486                 return (int)tdp_ratio;
1487         }
1488
1489         return -ENXIO;
1490 }
1491
1492 static int core_get_max_pstate(void)
1493 {
1494         u64 tar;
1495         u64 plat_info;
1496         int max_pstate;
1497         int tdp_ratio;
1498         int err;
1499
1500         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1501         max_pstate = (plat_info >> 8) & 0xFF;
1502
1503         tdp_ratio = core_get_tdp_ratio(plat_info);
1504         if (tdp_ratio <= 0)
1505                 return max_pstate;
1506
1507         if (hwp_active) {
1508                 /* Turbo activation ratio is not used on HWP platforms */
1509                 return tdp_ratio;
1510         }
1511
1512         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1513         if (!err) {
1514                 int tar_levels;
1515
1516                 /* Do some sanity checking for safety */
1517                 tar_levels = tar & 0xff;
1518                 if (tdp_ratio - 1 == tar_levels) {
1519                         max_pstate = tar_levels;
1520                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1521                 }
1522         }
1523
1524         return max_pstate;
1525 }
1526
1527 static int core_get_turbo_pstate(void)
1528 {
1529         u64 value;
1530         int nont, ret;
1531
1532         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1533         nont = core_get_max_pstate();
1534         ret = (value) & 255;
1535         if (ret <= nont)
1536                 ret = nont;
1537         return ret;
1538 }
1539
1540 static inline int core_get_scaling(void)
1541 {
1542         return 100000;
1543 }
1544
1545 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1546 {
1547         u64 val;
1548
1549         val = (u64)pstate << 8;
1550         if (limits->no_turbo && !limits->turbo_disabled)
1551                 val |= (u64)1 << 32;
1552
1553         return val;
1554 }
1555
1556 static int knl_get_turbo_pstate(void)
1557 {
1558         u64 value;
1559         int nont, ret;
1560
1561         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1562         nont = core_get_max_pstate();
1563         ret = (((value) >> 8) & 0xFF);
1564         if (ret <= nont)
1565                 ret = nont;
1566         return ret;
1567 }
1568
1569 static struct cpu_defaults core_params = {
1570         .pid_policy = {
1571                 .sample_rate_ms = 10,
1572                 .deadband = 0,
1573                 .setpoint = 97,
1574                 .p_gain_pct = 20,
1575                 .d_gain_pct = 0,
1576                 .i_gain_pct = 0,
1577         },
1578         .funcs = {
1579                 .get_max = core_get_max_pstate,
1580                 .get_max_physical = core_get_max_pstate_physical,
1581                 .get_min = core_get_min_pstate,
1582                 .get_turbo = core_get_turbo_pstate,
1583                 .get_scaling = core_get_scaling,
1584                 .get_val = core_get_val,
1585                 .get_target_pstate = get_target_pstate_use_performance,
1586         },
1587 };
1588
1589 static const struct cpu_defaults silvermont_params = {
1590         .pid_policy = {
1591                 .sample_rate_ms = 10,
1592                 .deadband = 0,
1593                 .setpoint = 60,
1594                 .p_gain_pct = 14,
1595                 .d_gain_pct = 0,
1596                 .i_gain_pct = 4,
1597         },
1598         .funcs = {
1599                 .get_max = atom_get_max_pstate,
1600                 .get_max_physical = atom_get_max_pstate,
1601                 .get_min = atom_get_min_pstate,
1602                 .get_turbo = atom_get_turbo_pstate,
1603                 .get_val = atom_get_val,
1604                 .get_scaling = silvermont_get_scaling,
1605                 .get_vid = atom_get_vid,
1606                 .get_target_pstate = get_target_pstate_use_cpu_load,
1607         },
1608 };
1609
1610 static const struct cpu_defaults airmont_params = {
1611         .pid_policy = {
1612                 .sample_rate_ms = 10,
1613                 .deadband = 0,
1614                 .setpoint = 60,
1615                 .p_gain_pct = 14,
1616                 .d_gain_pct = 0,
1617                 .i_gain_pct = 4,
1618         },
1619         .funcs = {
1620                 .get_max = atom_get_max_pstate,
1621                 .get_max_physical = atom_get_max_pstate,
1622                 .get_min = atom_get_min_pstate,
1623                 .get_turbo = atom_get_turbo_pstate,
1624                 .get_val = atom_get_val,
1625                 .get_scaling = airmont_get_scaling,
1626                 .get_vid = atom_get_vid,
1627                 .get_target_pstate = get_target_pstate_use_cpu_load,
1628         },
1629 };
1630
1631 static const struct cpu_defaults knl_params = {
1632         .pid_policy = {
1633                 .sample_rate_ms = 10,
1634                 .deadband = 0,
1635                 .setpoint = 97,
1636                 .p_gain_pct = 20,
1637                 .d_gain_pct = 0,
1638                 .i_gain_pct = 0,
1639         },
1640         .funcs = {
1641                 .get_max = core_get_max_pstate,
1642                 .get_max_physical = core_get_max_pstate_physical,
1643                 .get_min = core_get_min_pstate,
1644                 .get_turbo = knl_get_turbo_pstate,
1645                 .get_scaling = core_get_scaling,
1646                 .get_val = core_get_val,
1647                 .get_target_pstate = get_target_pstate_use_performance,
1648         },
1649 };
1650
1651 static const struct cpu_defaults bxt_params = {
1652         .pid_policy = {
1653                 .sample_rate_ms = 10,
1654                 .deadband = 0,
1655                 .setpoint = 60,
1656                 .p_gain_pct = 14,
1657                 .d_gain_pct = 0,
1658                 .i_gain_pct = 4,
1659         },
1660         .funcs = {
1661                 .get_max = core_get_max_pstate,
1662                 .get_max_physical = core_get_max_pstate_physical,
1663                 .get_min = core_get_min_pstate,
1664                 .get_turbo = core_get_turbo_pstate,
1665                 .get_scaling = core_get_scaling,
1666                 .get_val = core_get_val,
1667                 .get_target_pstate = get_target_pstate_use_cpu_load,
1668         },
1669 };
1670
1671 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1672 {
1673         int max_perf = cpu->pstate.turbo_pstate;
1674         int max_perf_adj;
1675         int min_perf;
1676         struct perf_limits *perf_limits = limits;
1677
1678         if (limits->no_turbo || limits->turbo_disabled)
1679                 max_perf = cpu->pstate.max_pstate;
1680
1681         if (per_cpu_limits)
1682                 perf_limits = cpu->perf_limits;
1683
1684         /*
1685          * performance can be limited by user through sysfs, by cpufreq
1686          * policy, or by cpu specific default values determined through
1687          * experimentation.
1688          */
1689         max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1690         *max = clamp_t(int, max_perf_adj,
1691                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1692
1693         min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1694         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1695 }
1696
1697 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1698 {
1699         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1700         cpu->pstate.current_pstate = pstate;
1701         /*
1702          * Generally, there is no guarantee that this code will always run on
1703          * the CPU being updated, so force the register update to run on the
1704          * right CPU.
1705          */
1706         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1707                       pstate_funcs.get_val(cpu, pstate));
1708 }
1709
1710 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1711 {
1712         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1713 }
1714
1715 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1716 {
1717         int min_pstate, max_pstate;
1718
1719         update_turbo_state();
1720         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1721         intel_pstate_set_pstate(cpu, max_pstate);
1722 }
1723
1724 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1725 {
1726         cpu->pstate.min_pstate = pstate_funcs.get_min();
1727         cpu->pstate.max_pstate = pstate_funcs.get_max();
1728         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1729         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1730         cpu->pstate.scaling = pstate_funcs.get_scaling();
1731         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1732         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1733
1734         if (pstate_funcs.get_vid)
1735                 pstate_funcs.get_vid(cpu);
1736
1737         intel_pstate_set_min_pstate(cpu);
1738 }
1739
1740 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1741 {
1742         struct sample *sample = &cpu->sample;
1743
1744         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1745 }
1746
1747 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1748 {
1749         u64 aperf, mperf;
1750         unsigned long flags;
1751         u64 tsc;
1752
1753         local_irq_save(flags);
1754         rdmsrl(MSR_IA32_APERF, aperf);
1755         rdmsrl(MSR_IA32_MPERF, mperf);
1756         tsc = rdtsc();
1757         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1758                 local_irq_restore(flags);
1759                 return false;
1760         }
1761         local_irq_restore(flags);
1762
1763         cpu->last_sample_time = cpu->sample.time;
1764         cpu->sample.time = time;
1765         cpu->sample.aperf = aperf;
1766         cpu->sample.mperf = mperf;
1767         cpu->sample.tsc =  tsc;
1768         cpu->sample.aperf -= cpu->prev_aperf;
1769         cpu->sample.mperf -= cpu->prev_mperf;
1770         cpu->sample.tsc -= cpu->prev_tsc;
1771
1772         cpu->prev_aperf = aperf;
1773         cpu->prev_mperf = mperf;
1774         cpu->prev_tsc = tsc;
1775         /*
1776          * First time this function is invoked in a given cycle, all of the
1777          * previous sample data fields are equal to zero or stale and they must
1778          * be populated with meaningful numbers for things to work, so assume
1779          * that sample.time will always be reset before setting the utilization
1780          * update hook and make the caller skip the sample then.
1781          */
1782         return !!cpu->last_sample_time;
1783 }
1784
1785 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1786 {
1787         return mul_ext_fp(cpu->sample.core_avg_perf,
1788                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1789 }
1790
1791 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1792 {
1793         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1794                           cpu->sample.core_avg_perf);
1795 }
1796
1797 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1798 {
1799         struct sample *sample = &cpu->sample;
1800         int32_t busy_frac, boost;
1801         int target, avg_pstate;
1802
1803         busy_frac = div_fp(sample->mperf, sample->tsc);
1804
1805         boost = cpu->iowait_boost;
1806         cpu->iowait_boost >>= 1;
1807
1808         if (busy_frac < boost)
1809                 busy_frac = boost;
1810
1811         sample->busy_scaled = busy_frac * 100;
1812
1813         target = limits->no_turbo || limits->turbo_disabled ?
1814                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1815         target += target >> 2;
1816         target = mul_fp(target, busy_frac);
1817         if (target < cpu->pstate.min_pstate)
1818                 target = cpu->pstate.min_pstate;
1819
1820         /*
1821          * If the average P-state during the previous cycle was higher than the
1822          * current target, add 50% of the difference to the target to reduce
1823          * possible performance oscillations and offset possible performance
1824          * loss related to moving the workload from one CPU to another within
1825          * a package/module.
1826          */
1827         avg_pstate = get_avg_pstate(cpu);
1828         if (avg_pstate > target)
1829                 target += (avg_pstate - target) >> 1;
1830
1831         return target;
1832 }
1833
1834 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1835 {
1836         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1837         u64 duration_ns;
1838
1839         /*
1840          * perf_scaled is the ratio of the average P-state during the last
1841          * sampling period to the P-state requested last time (in percent).
1842          *
1843          * That measures the system's response to the previous P-state
1844          * selection.
1845          */
1846         max_pstate = cpu->pstate.max_pstate_physical;
1847         current_pstate = cpu->pstate.current_pstate;
1848         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1849                                div_fp(100 * max_pstate, current_pstate));
1850
1851         /*
1852          * Since our utilization update callback will not run unless we are
1853          * in C0, check if the actual elapsed time is significantly greater (3x)
1854          * than our sample interval.  If it is, then we were idle for a long
1855          * enough period of time to adjust our performance metric.
1856          */
1857         duration_ns = cpu->sample.time - cpu->last_sample_time;
1858         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1859                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1860                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1861         } else {
1862                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1863                 if (sample_ratio < int_tofp(1))
1864                         perf_scaled = 0;
1865         }
1866
1867         cpu->sample.busy_scaled = perf_scaled;
1868         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1869 }
1870
1871 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1872 {
1873         int max_perf, min_perf;
1874
1875         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1876         pstate = clamp_t(int, pstate, min_perf, max_perf);
1877         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1878         return pstate;
1879 }
1880
1881 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1882 {
1883         pstate = intel_pstate_prepare_request(cpu, pstate);
1884         if (pstate == cpu->pstate.current_pstate)
1885                 return;
1886
1887         cpu->pstate.current_pstate = pstate;
1888         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1889 }
1890
1891 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1892 {
1893         int from, target_pstate;
1894         struct sample *sample;
1895
1896         from = cpu->pstate.current_pstate;
1897
1898         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1899                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1900
1901         update_turbo_state();
1902
1903         intel_pstate_update_pstate(cpu, target_pstate);
1904
1905         sample = &cpu->sample;
1906         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1907                 fp_toint(sample->busy_scaled),
1908                 from,
1909                 cpu->pstate.current_pstate,
1910                 sample->mperf,
1911                 sample->aperf,
1912                 sample->tsc,
1913                 get_avg_frequency(cpu),
1914                 fp_toint(cpu->iowait_boost * 100));
1915 }
1916
1917 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1918                                      unsigned int flags)
1919 {
1920         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1921         u64 delta_ns;
1922
1923         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1924                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1925                         cpu->iowait_boost = int_tofp(1);
1926                 } else if (cpu->iowait_boost) {
1927                         /* Clear iowait_boost if the CPU may have been idle. */
1928                         delta_ns = time - cpu->last_update;
1929                         if (delta_ns > TICK_NSEC)
1930                                 cpu->iowait_boost = 0;
1931                 }
1932                 cpu->last_update = time;
1933         }
1934
1935         delta_ns = time - cpu->sample.time;
1936         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1937                 bool sample_taken = intel_pstate_sample(cpu, time);
1938
1939                 if (sample_taken) {
1940                         intel_pstate_calc_avg_perf(cpu);
1941                         if (!hwp_active)
1942                                 intel_pstate_adjust_busy_pstate(cpu);
1943                 }
1944         }
1945 }
1946
1947 #define ICPU(model, policy) \
1948         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1949                         (unsigned long)&policy }
1950
1951 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1952         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1953         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1954         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1955         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1956         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1957         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1958         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1959         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1960         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1961         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1962         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1963         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1964         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1965         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1966         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1967         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1968         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1969         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1970         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1971         {}
1972 };
1973 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1974
1975 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1976         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1977         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1978         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1979         {}
1980 };
1981
1982 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1983         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1984         {}
1985 };
1986
1987 static int intel_pstate_init_cpu(unsigned int cpunum)
1988 {
1989         struct cpudata *cpu;
1990
1991         cpu = all_cpu_data[cpunum];
1992
1993         if (!cpu) {
1994                 unsigned int size = sizeof(struct cpudata);
1995
1996                 if (per_cpu_limits)
1997                         size += sizeof(struct perf_limits);
1998
1999                 cpu = kzalloc(size, GFP_KERNEL);
2000                 if (!cpu)
2001                         return -ENOMEM;
2002
2003                 all_cpu_data[cpunum] = cpu;
2004                 if (per_cpu_limits)
2005                         cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2006
2007                 cpu->epp_default = -EINVAL;
2008                 cpu->epp_powersave = -EINVAL;
2009                 cpu->epp_saved = -EINVAL;
2010         }
2011
2012         cpu = all_cpu_data[cpunum];
2013
2014         cpu->cpu = cpunum;
2015
2016         if (hwp_active) {
2017                 const struct x86_cpu_id *id;
2018
2019                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2020                 if (id)
2021                         intel_pstate_disable_ee(cpunum);
2022
2023                 intel_pstate_hwp_enable(cpu);
2024                 pid_params.sample_rate_ms = 50;
2025                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2026         }
2027
2028         intel_pstate_get_cpu_pstates(cpu);
2029
2030         intel_pstate_busy_pid_reset(cpu);
2031
2032         pr_debug("controlling: cpu %d\n", cpunum);
2033
2034         return 0;
2035 }
2036
2037 static unsigned int intel_pstate_get(unsigned int cpu_num)
2038 {
2039         struct cpudata *cpu = all_cpu_data[cpu_num];
2040
2041         return cpu ? get_avg_frequency(cpu) : 0;
2042 }
2043
2044 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2045 {
2046         struct cpudata *cpu = all_cpu_data[cpu_num];
2047
2048         if (cpu->update_util_set)
2049                 return;
2050
2051         /* Prevent intel_pstate_update_util() from using stale data. */
2052         cpu->sample.time = 0;
2053         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2054                                      intel_pstate_update_util);
2055         cpu->update_util_set = true;
2056 }
2057
2058 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2059 {
2060         struct cpudata *cpu_data = all_cpu_data[cpu];
2061
2062         if (!cpu_data->update_util_set)
2063                 return;
2064
2065         cpufreq_remove_update_util_hook(cpu);
2066         cpu_data->update_util_set = false;
2067         synchronize_sched();
2068 }
2069
2070 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2071                                             struct perf_limits *limits)
2072 {
2073
2074         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2075                                               policy->cpuinfo.max_freq);
2076         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2077         if (policy->max == policy->min) {
2078                 limits->min_policy_pct = limits->max_policy_pct;
2079         } else {
2080                 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2081                                                       policy->cpuinfo.max_freq);
2082                 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2083                                                  0, 100);
2084         }
2085
2086         /* Normalize user input to [min_policy_pct, max_policy_pct] */
2087         limits->min_perf_pct = max(limits->min_policy_pct,
2088                                    limits->min_sysfs_pct);
2089         limits->min_perf_pct = min(limits->max_policy_pct,
2090                                    limits->min_perf_pct);
2091         limits->max_perf_pct = min(limits->max_policy_pct,
2092                                    limits->max_sysfs_pct);
2093         limits->max_perf_pct = max(limits->min_policy_pct,
2094                                    limits->max_perf_pct);
2095
2096         /* Make sure min_perf_pct <= max_perf_pct */
2097         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2098
2099         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2100         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2101         limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2102         limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2103
2104         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2105                  limits->max_perf_pct, limits->min_perf_pct);
2106 }
2107
2108 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2109 {
2110         struct cpudata *cpu;
2111         struct perf_limits *perf_limits = NULL;
2112
2113         if (!policy->cpuinfo.max_freq)
2114                 return -ENODEV;
2115
2116         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2117                  policy->cpuinfo.max_freq, policy->max);
2118
2119         cpu = all_cpu_data[policy->cpu];
2120         cpu->policy = policy->policy;
2121
2122         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2123             policy->max < policy->cpuinfo.max_freq &&
2124             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2125                 pr_debug("policy->max > max non turbo frequency\n");
2126                 policy->max = policy->cpuinfo.max_freq;
2127         }
2128
2129         if (per_cpu_limits)
2130                 perf_limits = cpu->perf_limits;
2131
2132         mutex_lock(&intel_pstate_limits_lock);
2133
2134         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2135                 if (!perf_limits) {
2136                         limits = &performance_limits;
2137                         perf_limits = limits;
2138                 }
2139                 if (policy->max >= policy->cpuinfo.max_freq &&
2140                     !limits->no_turbo) {
2141                         pr_debug("set performance\n");
2142                         intel_pstate_set_performance_limits(perf_limits);
2143                         goto out;
2144                 }
2145         } else {
2146                 pr_debug("set powersave\n");
2147                 if (!perf_limits) {
2148                         limits = &powersave_limits;
2149                         perf_limits = limits;
2150                 }
2151
2152         }
2153
2154         intel_pstate_update_perf_limits(policy, perf_limits);
2155  out:
2156         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2157                 /*
2158                  * NOHZ_FULL CPUs need this as the governor callback may not
2159                  * be invoked on them.
2160                  */
2161                 intel_pstate_clear_update_util_hook(policy->cpu);
2162                 intel_pstate_max_within_limits(cpu);
2163         }
2164
2165         intel_pstate_set_update_util_hook(policy->cpu);
2166
2167         intel_pstate_hwp_set_policy(policy);
2168
2169         mutex_unlock(&intel_pstate_limits_lock);
2170
2171         return 0;
2172 }
2173
2174 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2175 {
2176         struct cpudata *cpu = all_cpu_data[policy->cpu];
2177         struct perf_limits *perf_limits;
2178
2179         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2180                 perf_limits = &performance_limits;
2181         else
2182                 perf_limits = &powersave_limits;
2183
2184         update_turbo_state();
2185         policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2186                                         perf_limits->no_turbo ?
2187                                         cpu->pstate.max_freq :
2188                                         cpu->pstate.turbo_freq;
2189
2190         cpufreq_verify_within_cpu_limits(policy);
2191
2192         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2193             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2194                 return -EINVAL;
2195
2196         /* When per-CPU limits are used, sysfs limits are not used */
2197         if (!per_cpu_limits) {
2198                 unsigned int max_freq, min_freq;
2199
2200                 max_freq = policy->cpuinfo.max_freq *
2201                                                 limits->max_sysfs_pct / 100;
2202                 min_freq = policy->cpuinfo.max_freq *
2203                                                 limits->min_sysfs_pct / 100;
2204                 cpufreq_verify_within_limits(policy, min_freq, max_freq);
2205         }
2206
2207         return 0;
2208 }
2209
2210 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2211 {
2212         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2213 }
2214
2215 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2216 {
2217         pr_debug("CPU %d exiting\n", policy->cpu);
2218
2219         intel_pstate_clear_update_util_hook(policy->cpu);
2220         if (hwp_active)
2221                 intel_pstate_hwp_save_state(policy);
2222         else
2223                 intel_cpufreq_stop_cpu(policy);
2224 }
2225
2226 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2227 {
2228         intel_pstate_exit_perf_limits(policy);
2229
2230         policy->fast_switch_possible = false;
2231
2232         return 0;
2233 }
2234
2235 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2236 {
2237         struct cpudata *cpu;
2238         int rc;
2239
2240         rc = intel_pstate_init_cpu(policy->cpu);
2241         if (rc)
2242                 return rc;
2243
2244         cpu = all_cpu_data[policy->cpu];
2245
2246         /*
2247          * We need sane value in the cpu->perf_limits, so inherit from global
2248          * perf_limits limits, which are seeded with values based on the
2249          * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2250          */
2251         if (per_cpu_limits)
2252                 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2253
2254         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2255         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2256
2257         /* cpuinfo and default policy values */
2258         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2259         update_turbo_state();
2260         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2261                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2262         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2263
2264         intel_pstate_init_acpi_perf_limits(policy);
2265         cpumask_set_cpu(policy->cpu, policy->cpus);
2266
2267         policy->fast_switch_possible = true;
2268
2269         return 0;
2270 }
2271
2272 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2273 {
2274         int ret = __intel_pstate_cpu_init(policy);
2275
2276         if (ret)
2277                 return ret;
2278
2279         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2280         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2281                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2282         else
2283                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2284
2285         return 0;
2286 }
2287
2288 static struct cpufreq_driver intel_pstate = {
2289         .flags          = CPUFREQ_CONST_LOOPS,
2290         .verify         = intel_pstate_verify_policy,
2291         .setpolicy      = intel_pstate_set_policy,
2292         .suspend        = intel_pstate_hwp_save_state,
2293         .resume         = intel_pstate_resume,
2294         .get            = intel_pstate_get,
2295         .init           = intel_pstate_cpu_init,
2296         .exit           = intel_pstate_cpu_exit,
2297         .stop_cpu       = intel_pstate_stop_cpu,
2298         .name           = "intel_pstate",
2299 };
2300
2301 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2302 {
2303         struct cpudata *cpu = all_cpu_data[policy->cpu];
2304         struct perf_limits *perf_limits = limits;
2305
2306         update_turbo_state();
2307         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2308                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2309
2310         cpufreq_verify_within_cpu_limits(policy);
2311
2312         if (per_cpu_limits)
2313                 perf_limits = cpu->perf_limits;
2314
2315         mutex_lock(&intel_pstate_limits_lock);
2316
2317         intel_pstate_update_perf_limits(policy, perf_limits);
2318
2319         mutex_unlock(&intel_pstate_limits_lock);
2320
2321         return 0;
2322 }
2323
2324 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2325                                                struct cpufreq_policy *policy,
2326                                                unsigned int target_freq)
2327 {
2328         unsigned int max_freq;
2329
2330         update_turbo_state();
2331
2332         max_freq = limits->no_turbo || limits->turbo_disabled ?
2333                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2334         policy->cpuinfo.max_freq = max_freq;
2335         if (policy->max > max_freq)
2336                 policy->max = max_freq;
2337
2338         if (target_freq > max_freq)
2339                 target_freq = max_freq;
2340
2341         return target_freq;
2342 }
2343
2344 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2345                                 unsigned int target_freq,
2346                                 unsigned int relation)
2347 {
2348         struct cpudata *cpu = all_cpu_data[policy->cpu];
2349         struct cpufreq_freqs freqs;
2350         int target_pstate;
2351
2352         freqs.old = policy->cur;
2353         freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2354
2355         cpufreq_freq_transition_begin(policy, &freqs);
2356         switch (relation) {
2357         case CPUFREQ_RELATION_L:
2358                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2359                 break;
2360         case CPUFREQ_RELATION_H:
2361                 target_pstate = freqs.new / cpu->pstate.scaling;
2362                 break;
2363         default:
2364                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2365                 break;
2366         }
2367         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2368         if (target_pstate != cpu->pstate.current_pstate) {
2369                 cpu->pstate.current_pstate = target_pstate;
2370                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2371                               pstate_funcs.get_val(cpu, target_pstate));
2372         }
2373         cpufreq_freq_transition_end(policy, &freqs, false);
2374
2375         return 0;
2376 }
2377
2378 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2379                                               unsigned int target_freq)
2380 {
2381         struct cpudata *cpu = all_cpu_data[policy->cpu];
2382         int target_pstate;
2383
2384         target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2385         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2386         intel_pstate_update_pstate(cpu, target_pstate);
2387         return target_freq;
2388 }
2389
2390 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2391 {
2392         int ret = __intel_pstate_cpu_init(policy);
2393
2394         if (ret)
2395                 return ret;
2396
2397         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2398         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2399         policy->cur = policy->cpuinfo.min_freq;
2400
2401         return 0;
2402 }
2403
2404 static struct cpufreq_driver intel_cpufreq = {
2405         .flags          = CPUFREQ_CONST_LOOPS,
2406         .verify         = intel_cpufreq_verify_policy,
2407         .target         = intel_cpufreq_target,
2408         .fast_switch    = intel_cpufreq_fast_switch,
2409         .init           = intel_cpufreq_cpu_init,
2410         .exit           = intel_pstate_cpu_exit,
2411         .stop_cpu       = intel_cpufreq_stop_cpu,
2412         .name           = "intel_cpufreq",
2413 };
2414
2415 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2416
2417 static void intel_pstate_driver_cleanup(void)
2418 {
2419         unsigned int cpu;
2420
2421         get_online_cpus();
2422         for_each_online_cpu(cpu) {
2423                 if (all_cpu_data[cpu]) {
2424                         if (intel_pstate_driver == &intel_pstate)
2425                                 intel_pstate_clear_update_util_hook(cpu);
2426
2427                         kfree(all_cpu_data[cpu]);
2428                         all_cpu_data[cpu] = NULL;
2429                 }
2430         }
2431         put_online_cpus();
2432 }
2433
2434 static int intel_pstate_register_driver(void)
2435 {
2436         int ret;
2437
2438         intel_pstate_init_limits(&powersave_limits);
2439         intel_pstate_set_performance_limits(&performance_limits);
2440         limits = IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) ?
2441                         &performance_limits : &powersave_limits;
2442
2443         ret = cpufreq_register_driver(intel_pstate_driver);
2444         if (ret) {
2445                 intel_pstate_driver_cleanup();
2446                 return ret;
2447         }
2448
2449         mutex_lock(&intel_pstate_limits_lock);
2450         driver_registered = true;
2451         mutex_unlock(&intel_pstate_limits_lock);
2452
2453         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2454             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2455                 intel_pstate_debug_expose_params();
2456
2457         return 0;
2458 }
2459
2460 static int intel_pstate_unregister_driver(void)
2461 {
2462         if (hwp_active)
2463                 return -EBUSY;
2464
2465         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2466             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2467                 intel_pstate_debug_hide_params();
2468
2469         mutex_lock(&intel_pstate_limits_lock);
2470         driver_registered = false;
2471         mutex_unlock(&intel_pstate_limits_lock);
2472
2473         cpufreq_unregister_driver(intel_pstate_driver);
2474         intel_pstate_driver_cleanup();
2475
2476         return 0;
2477 }
2478
2479 static ssize_t intel_pstate_show_status(char *buf)
2480 {
2481         if (!driver_registered)
2482                 return sprintf(buf, "off\n");
2483
2484         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2485                                         "active" : "passive");
2486 }
2487
2488 static int intel_pstate_update_status(const char *buf, size_t size)
2489 {
2490         int ret;
2491
2492         if (size == 3 && !strncmp(buf, "off", size))
2493                 return driver_registered ?
2494                         intel_pstate_unregister_driver() : -EINVAL;
2495
2496         if (size == 6 && !strncmp(buf, "active", size)) {
2497                 if (driver_registered) {
2498                         if (intel_pstate_driver == &intel_pstate)
2499                                 return 0;
2500
2501                         ret = intel_pstate_unregister_driver();
2502                         if (ret)
2503                                 return ret;
2504                 }
2505
2506                 intel_pstate_driver = &intel_pstate;
2507                 return intel_pstate_register_driver();
2508         }
2509
2510         if (size == 7 && !strncmp(buf, "passive", size)) {
2511                 if (driver_registered) {
2512                         if (intel_pstate_driver != &intel_pstate)
2513                                 return 0;
2514
2515                         ret = intel_pstate_unregister_driver();
2516                         if (ret)
2517                                 return ret;
2518                 }
2519
2520                 intel_pstate_driver = &intel_cpufreq;
2521                 return intel_pstate_register_driver();
2522         }
2523
2524         return -EINVAL;
2525 }
2526
2527 static int no_load __initdata;
2528 static int no_hwp __initdata;
2529 static int hwp_only __initdata;
2530 static unsigned int force_load __initdata;
2531
2532 static int __init intel_pstate_msrs_not_valid(void)
2533 {
2534         if (!pstate_funcs.get_max() ||
2535             !pstate_funcs.get_min() ||
2536             !pstate_funcs.get_turbo())
2537                 return -ENODEV;
2538
2539         return 0;
2540 }
2541
2542 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2543 {
2544         pid_params.sample_rate_ms = policy->sample_rate_ms;
2545         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2546         pid_params.p_gain_pct = policy->p_gain_pct;
2547         pid_params.i_gain_pct = policy->i_gain_pct;
2548         pid_params.d_gain_pct = policy->d_gain_pct;
2549         pid_params.deadband = policy->deadband;
2550         pid_params.setpoint = policy->setpoint;
2551 }
2552
2553 #ifdef CONFIG_ACPI
2554 static void intel_pstate_use_acpi_profile(void)
2555 {
2556         if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2557                 pstate_funcs.get_target_pstate =
2558                                 get_target_pstate_use_cpu_load;
2559 }
2560 #else
2561 static void intel_pstate_use_acpi_profile(void)
2562 {
2563 }
2564 #endif
2565
2566 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2567 {
2568         pstate_funcs.get_max   = funcs->get_max;
2569         pstate_funcs.get_max_physical = funcs->get_max_physical;
2570         pstate_funcs.get_min   = funcs->get_min;
2571         pstate_funcs.get_turbo = funcs->get_turbo;
2572         pstate_funcs.get_scaling = funcs->get_scaling;
2573         pstate_funcs.get_val   = funcs->get_val;
2574         pstate_funcs.get_vid   = funcs->get_vid;
2575         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2576
2577         intel_pstate_use_acpi_profile();
2578 }
2579
2580 #ifdef CONFIG_ACPI
2581
2582 static bool __init intel_pstate_no_acpi_pss(void)
2583 {
2584         int i;
2585
2586         for_each_possible_cpu(i) {
2587                 acpi_status status;
2588                 union acpi_object *pss;
2589                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2590                 struct acpi_processor *pr = per_cpu(processors, i);
2591
2592                 if (!pr)
2593                         continue;
2594
2595                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2596                 if (ACPI_FAILURE(status))
2597                         continue;
2598
2599                 pss = buffer.pointer;
2600                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2601                         kfree(pss);
2602                         return false;
2603                 }
2604
2605                 kfree(pss);
2606         }
2607
2608         return true;
2609 }
2610
2611 static bool __init intel_pstate_has_acpi_ppc(void)
2612 {
2613         int i;
2614
2615         for_each_possible_cpu(i) {
2616                 struct acpi_processor *pr = per_cpu(processors, i);
2617
2618                 if (!pr)
2619                         continue;
2620                 if (acpi_has_method(pr->handle, "_PPC"))
2621                         return true;
2622         }
2623         return false;
2624 }
2625
2626 enum {
2627         PSS,
2628         PPC,
2629 };
2630
2631 struct hw_vendor_info {
2632         u16  valid;
2633         char oem_id[ACPI_OEM_ID_SIZE];
2634         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2635         int  oem_pwr_table;
2636 };
2637
2638 /* Hardware vendor-specific info that has its own power management modes */
2639 static struct hw_vendor_info vendor_info[] __initdata = {
2640         {1, "HP    ", "ProLiant", PSS},
2641         {1, "ORACLE", "X4-2    ", PPC},
2642         {1, "ORACLE", "X4-2L   ", PPC},
2643         {1, "ORACLE", "X4-2B   ", PPC},
2644         {1, "ORACLE", "X3-2    ", PPC},
2645         {1, "ORACLE", "X3-2L   ", PPC},
2646         {1, "ORACLE", "X3-2B   ", PPC},
2647         {1, "ORACLE", "X4470M2 ", PPC},
2648         {1, "ORACLE", "X4270M3 ", PPC},
2649         {1, "ORACLE", "X4270M2 ", PPC},
2650         {1, "ORACLE", "X4170M2 ", PPC},
2651         {1, "ORACLE", "X4170 M3", PPC},
2652         {1, "ORACLE", "X4275 M3", PPC},
2653         {1, "ORACLE", "X6-2    ", PPC},
2654         {1, "ORACLE", "Sudbury ", PPC},
2655         {0, "", ""},
2656 };
2657
2658 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2659 {
2660         struct acpi_table_header hdr;
2661         struct hw_vendor_info *v_info;
2662         const struct x86_cpu_id *id;
2663         u64 misc_pwr;
2664
2665         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2666         if (id) {
2667                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2668                 if ( misc_pwr & (1 << 8))
2669                         return true;
2670         }
2671
2672         if (acpi_disabled ||
2673             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2674                 return false;
2675
2676         for (v_info = vendor_info; v_info->valid; v_info++) {
2677                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2678                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2679                                                 ACPI_OEM_TABLE_ID_SIZE))
2680                         switch (v_info->oem_pwr_table) {
2681                         case PSS:
2682                                 return intel_pstate_no_acpi_pss();
2683                         case PPC:
2684                                 return intel_pstate_has_acpi_ppc() &&
2685                                         (!force_load);
2686                         }
2687         }
2688
2689         return false;
2690 }
2691
2692 static void intel_pstate_request_control_from_smm(void)
2693 {
2694         /*
2695          * It may be unsafe to request P-states control from SMM if _PPC support
2696          * has not been enabled.
2697          */
2698         if (acpi_ppc)
2699                 acpi_processor_pstate_control();
2700 }
2701 #else /* CONFIG_ACPI not enabled */
2702 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2703 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2704 static inline void intel_pstate_request_control_from_smm(void) {}
2705 #endif /* CONFIG_ACPI */
2706
2707 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2708         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2709         {}
2710 };
2711
2712 static int __init intel_pstate_init(void)
2713 {
2714         const struct x86_cpu_id *id;
2715         struct cpu_defaults *cpu_def;
2716         int rc = 0;
2717
2718         if (no_load)
2719                 return -ENODEV;
2720
2721         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2722                 copy_cpu_funcs(&core_params.funcs);
2723                 hwp_active++;
2724                 intel_pstate.attr = hwp_cpufreq_attrs;
2725                 goto hwp_cpu_matched;
2726         }
2727
2728         id = x86_match_cpu(intel_pstate_cpu_ids);
2729         if (!id)
2730                 return -ENODEV;
2731
2732         cpu_def = (struct cpu_defaults *)id->driver_data;
2733
2734         copy_pid_params(&cpu_def->pid_policy);
2735         copy_cpu_funcs(&cpu_def->funcs);
2736
2737         if (intel_pstate_msrs_not_valid())
2738                 return -ENODEV;
2739
2740 hwp_cpu_matched:
2741         /*
2742          * The Intel pstate driver will be ignored if the platform
2743          * firmware has its own power management modes.
2744          */
2745         if (intel_pstate_platform_pwr_mgmt_exists())
2746                 return -ENODEV;
2747
2748         if (!hwp_active && hwp_only)
2749                 return -ENOTSUPP;
2750
2751         pr_info("Intel P-state driver initializing\n");
2752
2753         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2754         if (!all_cpu_data)
2755                 return -ENOMEM;
2756
2757         intel_pstate_request_control_from_smm();
2758
2759         intel_pstate_sysfs_expose_params();
2760
2761         mutex_lock(&intel_pstate_driver_lock);
2762         rc = intel_pstate_register_driver();
2763         mutex_unlock(&intel_pstate_driver_lock);
2764         if (rc)
2765                 return rc;
2766
2767         if (hwp_active)
2768                 pr_info("HWP enabled\n");
2769
2770         return 0;
2771 }
2772 device_initcall(intel_pstate_init);
2773
2774 static int __init intel_pstate_setup(char *str)
2775 {
2776         if (!str)
2777                 return -EINVAL;
2778
2779         if (!strcmp(str, "disable")) {
2780                 no_load = 1;
2781         } else if (!strcmp(str, "passive")) {
2782                 pr_info("Passive mode enabled\n");
2783                 intel_pstate_driver = &intel_cpufreq;
2784                 no_hwp = 1;
2785         }
2786         if (!strcmp(str, "no_hwp")) {
2787                 pr_info("HWP disabled\n");
2788                 no_hwp = 1;
2789         }
2790         if (!strcmp(str, "force"))
2791                 force_load = 1;
2792         if (!strcmp(str, "hwp_only"))
2793                 hwp_only = 1;
2794         if (!strcmp(str, "per_cpu_perf_limits"))
2795                 per_cpu_limits = true;
2796
2797 #ifdef CONFIG_ACPI
2798         if (!strcmp(str, "support_acpi_ppc"))
2799                 acpi_ppc = true;
2800 #endif
2801
2802         return 0;
2803 }
2804 early_param("intel_pstate", intel_pstate_setup);
2805
2806 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2807 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2808 MODULE_LICENSE("GPL");