Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
41
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66         return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71         int mask, ret;
72
73         ret = fp_toint(x);
74         mask = (1 << FRAC_BITS) - 1;
75         if (x & mask)
76                 ret += 1;
77         return ret;
78 }
79
80 static inline int32_t percent_fp(int percent)
81 {
82         return div_fp(percent, 100);
83 }
84
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87         return (x * y) >> EXT_FRAC_BITS;
88 }
89
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92         return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94
95 static inline int32_t percent_ext_fp(int percent)
96 {
97         return div_ext_fp(percent, 100);
98 }
99
100 /**
101  * struct sample -      Store performance sample
102  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
103  *                      performance during last sample period
104  * @busy_scaled:        Scaled busy value which is used to calculate next
105  *                      P state. This can be different than core_avg_perf
106  *                      to account for cpu idle period
107  * @aperf:              Difference of actual performance frequency clock count
108  *                      read from APERF MSR between last and current sample
109  * @mperf:              Difference of maximum performance frequency clock count
110  *                      read from MPERF MSR between last and current sample
111  * @tsc:                Difference of time stamp counter between last and
112  *                      current sample
113  * @time:               Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119         int32_t core_avg_perf;
120         int32_t busy_scaled;
121         u64 aperf;
122         u64 mperf;
123         u64 tsc;
124         u64 time;
125 };
126
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:     Current requested P state
130  * @min_pstate:         Min P state possible for this platform
131  * @max_pstate:         Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *                      This can be higher than the max_pstate which can
134  *                      be limited by platform thermal design power limits
135  * @scaling:            Scaling factor to  convert frequency to cpufreq
136  *                      frequency units
137  * @turbo_pstate:       Max Turbo P state possible for this platform
138  * @max_freq:           @max_pstate frequency in cpufreq units
139  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144         int     current_pstate;
145         int     min_pstate;
146         int     max_pstate;
147         int     max_pstate_physical;
148         int     scaling;
149         int     turbo_pstate;
150         unsigned int max_freq;
151         unsigned int turbo_freq;
152 };
153
154 /**
155  * struct vid_data -    Stores voltage information data
156  * @min:                VID data for this platform corresponding to
157  *                      the lowest P state
158  * @max:                VID data corresponding to the highest P State.
159  * @turbo:              VID data for turbo P state
160  * @ratio:              Ratio of (vid max - vid min) /
161  *                      (max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168         int min;
169         int max;
170         int turbo;
171         int32_t ratio;
172 };
173
174 /**
175  * struct global_params - Global parameters, mostly tunable via sysfs.
176  * @no_turbo:           Whether or not to use turbo P-states.
177  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
178  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
179  *                      not the maximum reported turbo P-state is different from
180  *                      the maximum reported non-turbo one.
181  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
184  *                      P-state capacity.
185  */
186 struct global_params {
187         bool no_turbo;
188         bool turbo_disabled;
189         int max_perf_pct;
190         int min_perf_pct;
191 };
192
193 /**
194  * struct cpudata -     Per CPU instance data storage
195  * @cpu:                CPU number for this instance data
196  * @policy:             CPUFreq policy value
197  * @update_util:        CPUFreq utility callback information
198  * @update_util_set:    CPUFreq utility callback is set
199  * @iowait_boost:       iowait-related boost fraction
200  * @last_update:        Time of the last update.
201  * @pstate:             Stores P state limits for this CPU
202  * @vid:                Stores VID limits for this CPU
203  * @last_sample_time:   Last Sample time
204  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
205  *                      This shift is a multiplier to mperf delta to
206  *                      calculate CPU busy.
207  * @prev_aperf:         Last APERF value read from APERF MSR
208  * @prev_mperf:         Last MPERF value read from MPERF MSR
209  * @prev_tsc:           Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *                      current sample
212  * @sample:             Storage for storing last Sample data
213  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
216  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:      Last saved HWP energy performance preference
218  *                      (EPP) or energy performance bias (EPB),
219  *                      when policy switched to performance
220  * @epp_policy:         Last saved policy used to set EPP/EPB
221  * @epp_default:        Power on default HWP energy performance
222  *                      preference/bias
223  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
224  *                      operation
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_saved;
257 };
258
259 static struct cpudata **all_cpu_data;
260
261 /**
262  * struct pstate_funcs - Per CPU model specific callbacks
263  * @get_max:            Callback to get maximum non turbo effective P state
264  * @get_max_physical:   Callback to get maximum non turbo physical P state
265  * @get_min:            Callback to get minimum P state
266  * @get_turbo:          Callback to get turbo P state
267  * @get_scaling:        Callback to get frequency scaling factor
268  * @get_val:            Callback to convert P state to actual MSR write value
269  * @get_vid:            Callback to get VID data for Atom platforms
270  *
271  * Core and Atom CPU models have different way to get P State limits. This
272  * structure is used to store those callbacks.
273  */
274 struct pstate_funcs {
275         int (*get_max)(void);
276         int (*get_max_physical)(void);
277         int (*get_min)(void);
278         int (*get_turbo)(void);
279         int (*get_scaling)(void);
280         int (*get_aperf_mperf_shift)(void);
281         u64 (*get_val)(struct cpudata*, int pstate);
282         void (*get_vid)(struct cpudata *);
283 };
284
285 static struct pstate_funcs pstate_funcs __read_mostly;
286
287 static int hwp_active __read_mostly;
288 static bool per_cpu_limits __read_mostly;
289
290 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
291
292 #ifdef CONFIG_ACPI
293 static bool acpi_ppc;
294 #endif
295
296 static struct global_params global;
297
298 static DEFINE_MUTEX(intel_pstate_driver_lock);
299 static DEFINE_MUTEX(intel_pstate_limits_lock);
300
301 #ifdef CONFIG_ACPI
302
303 static bool intel_pstate_get_ppc_enable_status(void)
304 {
305         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
306             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
307                 return true;
308
309         return acpi_ppc;
310 }
311
312 #ifdef CONFIG_ACPI_CPPC_LIB
313
314 /* The work item is needed to avoid CPU hotplug locking issues */
315 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
316 {
317         sched_set_itmt_support();
318 }
319
320 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
321
322 static void intel_pstate_set_itmt_prio(int cpu)
323 {
324         struct cppc_perf_caps cppc_perf;
325         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
326         int ret;
327
328         ret = cppc_get_perf_caps(cpu, &cppc_perf);
329         if (ret)
330                 return;
331
332         /*
333          * The priorities can be set regardless of whether or not
334          * sched_set_itmt_support(true) has been called and it is valid to
335          * update them at any time after it has been called.
336          */
337         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
338
339         if (max_highest_perf <= min_highest_perf) {
340                 if (cppc_perf.highest_perf > max_highest_perf)
341                         max_highest_perf = cppc_perf.highest_perf;
342
343                 if (cppc_perf.highest_perf < min_highest_perf)
344                         min_highest_perf = cppc_perf.highest_perf;
345
346                 if (max_highest_perf > min_highest_perf) {
347                         /*
348                          * This code can be run during CPU online under the
349                          * CPU hotplug locks, so sched_set_itmt_support()
350                          * cannot be called from here.  Queue up a work item
351                          * to invoke it.
352                          */
353                         schedule_work(&sched_itmt_work);
354                 }
355         }
356 }
357 #else
358 static void intel_pstate_set_itmt_prio(int cpu)
359 {
360 }
361 #endif
362
363 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
364 {
365         struct cpudata *cpu;
366         int ret;
367         int i;
368
369         if (hwp_active) {
370                 intel_pstate_set_itmt_prio(policy->cpu);
371                 return;
372         }
373
374         if (!intel_pstate_get_ppc_enable_status())
375                 return;
376
377         cpu = all_cpu_data[policy->cpu];
378
379         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
380                                                   policy->cpu);
381         if (ret)
382                 return;
383
384         /*
385          * Check if the control value in _PSS is for PERF_CTL MSR, which should
386          * guarantee that the states returned by it map to the states in our
387          * list directly.
388          */
389         if (cpu->acpi_perf_data.control_register.space_id !=
390                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
391                 goto err;
392
393         /*
394          * If there is only one entry _PSS, simply ignore _PSS and continue as
395          * usual without taking _PSS into account
396          */
397         if (cpu->acpi_perf_data.state_count < 2)
398                 goto err;
399
400         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
401         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
402                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
403                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
404                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
405                          (u32) cpu->acpi_perf_data.states[i].power,
406                          (u32) cpu->acpi_perf_data.states[i].control);
407         }
408
409         /*
410          * The _PSS table doesn't contain whole turbo frequency range.
411          * This just contains +1 MHZ above the max non turbo frequency,
412          * with control value corresponding to max turbo ratio. But
413          * when cpufreq set policy is called, it will call with this
414          * max frequency, which will cause a reduced performance as
415          * this driver uses real max turbo frequency as the max
416          * frequency. So correct this frequency in _PSS table to
417          * correct max turbo frequency based on the turbo state.
418          * Also need to convert to MHz as _PSS freq is in MHz.
419          */
420         if (!global.turbo_disabled)
421                 cpu->acpi_perf_data.states[0].core_frequency =
422                                         policy->cpuinfo.max_freq / 1000;
423         cpu->valid_pss_table = true;
424         pr_debug("_PPC limits will be enforced\n");
425
426         return;
427
428  err:
429         cpu->valid_pss_table = false;
430         acpi_processor_unregister_performance(policy->cpu);
431 }
432
433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
434 {
435         struct cpudata *cpu;
436
437         cpu = all_cpu_data[policy->cpu];
438         if (!cpu->valid_pss_table)
439                 return;
440
441         acpi_processor_unregister_performance(policy->cpu);
442 }
443 #else
444 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
445 {
446 }
447
448 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 {
450 }
451 #endif
452
453 static inline void update_turbo_state(void)
454 {
455         u64 misc_en;
456         struct cpudata *cpu;
457
458         cpu = all_cpu_data[0];
459         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
460         global.turbo_disabled =
461                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
462                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
463 }
464
465 static int min_perf_pct_min(void)
466 {
467         struct cpudata *cpu = all_cpu_data[0];
468         int turbo_pstate = cpu->pstate.turbo_pstate;
469
470         return turbo_pstate ?
471                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
472 }
473
474 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
475 {
476         u64 epb;
477         int ret;
478
479         if (!static_cpu_has(X86_FEATURE_EPB))
480                 return -ENXIO;
481
482         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
483         if (ret)
484                 return (s16)ret;
485
486         return (s16)(epb & 0x0f);
487 }
488
489 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
490 {
491         s16 epp;
492
493         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
494                 /*
495                  * When hwp_req_data is 0, means that caller didn't read
496                  * MSR_HWP_REQUEST, so need to read and get EPP.
497                  */
498                 if (!hwp_req_data) {
499                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
500                                             &hwp_req_data);
501                         if (epp)
502                                 return epp;
503                 }
504                 epp = (hwp_req_data >> 24) & 0xff;
505         } else {
506                 /* When there is no EPP present, HWP uses EPB settings */
507                 epp = intel_pstate_get_epb(cpu_data);
508         }
509
510         return epp;
511 }
512
513 static int intel_pstate_set_epb(int cpu, s16 pref)
514 {
515         u64 epb;
516         int ret;
517
518         if (!static_cpu_has(X86_FEATURE_EPB))
519                 return -ENXIO;
520
521         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
522         if (ret)
523                 return ret;
524
525         epb = (epb & ~0x0f) | pref;
526         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
527
528         return 0;
529 }
530
531 /*
532  * EPP/EPB display strings corresponding to EPP index in the
533  * energy_perf_strings[]
534  *      index           String
535  *-------------------------------------
536  *      0               default
537  *      1               performance
538  *      2               balance_performance
539  *      3               balance_power
540  *      4               power
541  */
542 static const char * const energy_perf_strings[] = {
543         "default",
544         "performance",
545         "balance_performance",
546         "balance_power",
547         "power",
548         NULL
549 };
550 static const unsigned int epp_values[] = {
551         HWP_EPP_PERFORMANCE,
552         HWP_EPP_BALANCE_PERFORMANCE,
553         HWP_EPP_BALANCE_POWERSAVE,
554         HWP_EPP_POWERSAVE
555 };
556
557 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
558 {
559         s16 epp;
560         int index = -EINVAL;
561
562         epp = intel_pstate_get_epp(cpu_data, 0);
563         if (epp < 0)
564                 return epp;
565
566         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
567                 if (epp == HWP_EPP_PERFORMANCE)
568                         return 1;
569                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
570                         return 2;
571                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
572                         return 3;
573                 else
574                         return 4;
575         } else if (static_cpu_has(X86_FEATURE_EPB)) {
576                 /*
577                  * Range:
578                  *      0x00-0x03       :       Performance
579                  *      0x04-0x07       :       Balance performance
580                  *      0x08-0x0B       :       Balance power
581                  *      0x0C-0x0F       :       Power
582                  * The EPB is a 4 bit value, but our ranges restrict the
583                  * value which can be set. Here only using top two bits
584                  * effectively.
585                  */
586                 index = (epp >> 2) + 1;
587         }
588
589         return index;
590 }
591
592 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
593                                               int pref_index)
594 {
595         int epp = -EINVAL;
596         int ret;
597
598         if (!pref_index)
599                 epp = cpu_data->epp_default;
600
601         mutex_lock(&intel_pstate_limits_lock);
602
603         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
604                 u64 value;
605
606                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
607                 if (ret)
608                         goto return_pref;
609
610                 value &= ~GENMASK_ULL(31, 24);
611
612                 if (epp == -EINVAL)
613                         epp = epp_values[pref_index - 1];
614
615                 value |= (u64)epp << 24;
616                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
617         } else {
618                 if (epp == -EINVAL)
619                         epp = (pref_index - 1) << 2;
620                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
621         }
622 return_pref:
623         mutex_unlock(&intel_pstate_limits_lock);
624
625         return ret;
626 }
627
628 static ssize_t show_energy_performance_available_preferences(
629                                 struct cpufreq_policy *policy, char *buf)
630 {
631         int i = 0;
632         int ret = 0;
633
634         while (energy_perf_strings[i] != NULL)
635                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
636
637         ret += sprintf(&buf[ret], "\n");
638
639         return ret;
640 }
641
642 cpufreq_freq_attr_ro(energy_performance_available_preferences);
643
644 static ssize_t store_energy_performance_preference(
645                 struct cpufreq_policy *policy, const char *buf, size_t count)
646 {
647         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
648         char str_preference[21];
649         int ret, i = 0;
650
651         ret = sscanf(buf, "%20s", str_preference);
652         if (ret != 1)
653                 return -EINVAL;
654
655         while (energy_perf_strings[i] != NULL) {
656                 if (!strcmp(str_preference, energy_perf_strings[i])) {
657                         intel_pstate_set_energy_pref_index(cpu_data, i);
658                         return count;
659                 }
660                 ++i;
661         }
662
663         return -EINVAL;
664 }
665
666 static ssize_t show_energy_performance_preference(
667                                 struct cpufreq_policy *policy, char *buf)
668 {
669         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
670         int preference;
671
672         preference = intel_pstate_get_energy_pref_index(cpu_data);
673         if (preference < 0)
674                 return preference;
675
676         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
677 }
678
679 cpufreq_freq_attr_rw(energy_performance_preference);
680
681 static struct freq_attr *hwp_cpufreq_attrs[] = {
682         &energy_performance_preference,
683         &energy_performance_available_preferences,
684         NULL,
685 };
686
687 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
688                                      int *current_max)
689 {
690         u64 cap;
691
692         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
693         if (global.no_turbo)
694                 *current_max = HWP_GUARANTEED_PERF(cap);
695         else
696                 *current_max = HWP_HIGHEST_PERF(cap);
697
698         *phy_max = HWP_HIGHEST_PERF(cap);
699 }
700
701 static void intel_pstate_hwp_set(unsigned int cpu)
702 {
703         struct cpudata *cpu_data = all_cpu_data[cpu];
704         int max, min;
705         u64 value;
706         s16 epp;
707
708         max = cpu_data->max_perf_ratio;
709         min = cpu_data->min_perf_ratio;
710
711         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
712                 min = max;
713
714         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
715
716         value &= ~HWP_MIN_PERF(~0L);
717         value |= HWP_MIN_PERF(min);
718
719         value &= ~HWP_MAX_PERF(~0L);
720         value |= HWP_MAX_PERF(max);
721
722         if (cpu_data->epp_policy == cpu_data->policy)
723                 goto skip_epp;
724
725         cpu_data->epp_policy = cpu_data->policy;
726
727         if (cpu_data->epp_saved >= 0) {
728                 epp = cpu_data->epp_saved;
729                 cpu_data->epp_saved = -EINVAL;
730                 goto update_epp;
731         }
732
733         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
734                 epp = intel_pstate_get_epp(cpu_data, value);
735                 cpu_data->epp_powersave = epp;
736                 /* If EPP read was failed, then don't try to write */
737                 if (epp < 0)
738                         goto skip_epp;
739
740                 epp = 0;
741         } else {
742                 /* skip setting EPP, when saved value is invalid */
743                 if (cpu_data->epp_powersave < 0)
744                         goto skip_epp;
745
746                 /*
747                  * No need to restore EPP when it is not zero. This
748                  * means:
749                  *  - Policy is not changed
750                  *  - user has manually changed
751                  *  - Error reading EPB
752                  */
753                 epp = intel_pstate_get_epp(cpu_data, value);
754                 if (epp)
755                         goto skip_epp;
756
757                 epp = cpu_data->epp_powersave;
758         }
759 update_epp:
760         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
761                 value &= ~GENMASK_ULL(31, 24);
762                 value |= (u64)epp << 24;
763         } else {
764                 intel_pstate_set_epb(cpu, epp);
765         }
766 skip_epp:
767         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
768 }
769
770 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
771 {
772         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
773
774         if (!hwp_active)
775                 return 0;
776
777         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
778
779         return 0;
780 }
781
782 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
783
784 static int intel_pstate_resume(struct cpufreq_policy *policy)
785 {
786         if (!hwp_active)
787                 return 0;
788
789         mutex_lock(&intel_pstate_limits_lock);
790
791         if (policy->cpu == 0)
792                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
793
794         all_cpu_data[policy->cpu]->epp_policy = 0;
795         intel_pstate_hwp_set(policy->cpu);
796
797         mutex_unlock(&intel_pstate_limits_lock);
798
799         return 0;
800 }
801
802 static void intel_pstate_update_policies(void)
803 {
804         int cpu;
805
806         for_each_possible_cpu(cpu)
807                 cpufreq_update_policy(cpu);
808 }
809
810 /************************** sysfs begin ************************/
811 #define show_one(file_name, object)                                     \
812         static ssize_t show_##file_name                                 \
813         (struct kobject *kobj, struct attribute *attr, char *buf)       \
814         {                                                               \
815                 return sprintf(buf, "%u\n", global.object);             \
816         }
817
818 static ssize_t intel_pstate_show_status(char *buf);
819 static int intel_pstate_update_status(const char *buf, size_t size);
820
821 static ssize_t show_status(struct kobject *kobj,
822                            struct attribute *attr, char *buf)
823 {
824         ssize_t ret;
825
826         mutex_lock(&intel_pstate_driver_lock);
827         ret = intel_pstate_show_status(buf);
828         mutex_unlock(&intel_pstate_driver_lock);
829
830         return ret;
831 }
832
833 static ssize_t store_status(struct kobject *a, struct attribute *b,
834                             const char *buf, size_t count)
835 {
836         char *p = memchr(buf, '\n', count);
837         int ret;
838
839         mutex_lock(&intel_pstate_driver_lock);
840         ret = intel_pstate_update_status(buf, p ? p - buf : count);
841         mutex_unlock(&intel_pstate_driver_lock);
842
843         return ret < 0 ? ret : count;
844 }
845
846 static ssize_t show_turbo_pct(struct kobject *kobj,
847                                 struct attribute *attr, char *buf)
848 {
849         struct cpudata *cpu;
850         int total, no_turbo, turbo_pct;
851         uint32_t turbo_fp;
852
853         mutex_lock(&intel_pstate_driver_lock);
854
855         if (!intel_pstate_driver) {
856                 mutex_unlock(&intel_pstate_driver_lock);
857                 return -EAGAIN;
858         }
859
860         cpu = all_cpu_data[0];
861
862         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
863         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
864         turbo_fp = div_fp(no_turbo, total);
865         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
866
867         mutex_unlock(&intel_pstate_driver_lock);
868
869         return sprintf(buf, "%u\n", turbo_pct);
870 }
871
872 static ssize_t show_num_pstates(struct kobject *kobj,
873                                 struct attribute *attr, char *buf)
874 {
875         struct cpudata *cpu;
876         int total;
877
878         mutex_lock(&intel_pstate_driver_lock);
879
880         if (!intel_pstate_driver) {
881                 mutex_unlock(&intel_pstate_driver_lock);
882                 return -EAGAIN;
883         }
884
885         cpu = all_cpu_data[0];
886         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
887
888         mutex_unlock(&intel_pstate_driver_lock);
889
890         return sprintf(buf, "%u\n", total);
891 }
892
893 static ssize_t show_no_turbo(struct kobject *kobj,
894                              struct attribute *attr, char *buf)
895 {
896         ssize_t ret;
897
898         mutex_lock(&intel_pstate_driver_lock);
899
900         if (!intel_pstate_driver) {
901                 mutex_unlock(&intel_pstate_driver_lock);
902                 return -EAGAIN;
903         }
904
905         update_turbo_state();
906         if (global.turbo_disabled)
907                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
908         else
909                 ret = sprintf(buf, "%u\n", global.no_turbo);
910
911         mutex_unlock(&intel_pstate_driver_lock);
912
913         return ret;
914 }
915
916 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
917                               const char *buf, size_t count)
918 {
919         unsigned int input;
920         int ret;
921
922         ret = sscanf(buf, "%u", &input);
923         if (ret != 1)
924                 return -EINVAL;
925
926         mutex_lock(&intel_pstate_driver_lock);
927
928         if (!intel_pstate_driver) {
929                 mutex_unlock(&intel_pstate_driver_lock);
930                 return -EAGAIN;
931         }
932
933         mutex_lock(&intel_pstate_limits_lock);
934
935         update_turbo_state();
936         if (global.turbo_disabled) {
937                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
938                 mutex_unlock(&intel_pstate_limits_lock);
939                 mutex_unlock(&intel_pstate_driver_lock);
940                 return -EPERM;
941         }
942
943         global.no_turbo = clamp_t(int, input, 0, 1);
944
945         if (global.no_turbo) {
946                 struct cpudata *cpu = all_cpu_data[0];
947                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
948
949                 /* Squash the global minimum into the permitted range. */
950                 if (global.min_perf_pct > pct)
951                         global.min_perf_pct = pct;
952         }
953
954         mutex_unlock(&intel_pstate_limits_lock);
955
956         intel_pstate_update_policies();
957
958         mutex_unlock(&intel_pstate_driver_lock);
959
960         return count;
961 }
962
963 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
964                                   const char *buf, size_t count)
965 {
966         unsigned int input;
967         int ret;
968
969         ret = sscanf(buf, "%u", &input);
970         if (ret != 1)
971                 return -EINVAL;
972
973         mutex_lock(&intel_pstate_driver_lock);
974
975         if (!intel_pstate_driver) {
976                 mutex_unlock(&intel_pstate_driver_lock);
977                 return -EAGAIN;
978         }
979
980         mutex_lock(&intel_pstate_limits_lock);
981
982         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
983
984         mutex_unlock(&intel_pstate_limits_lock);
985
986         intel_pstate_update_policies();
987
988         mutex_unlock(&intel_pstate_driver_lock);
989
990         return count;
991 }
992
993 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
994                                   const char *buf, size_t count)
995 {
996         unsigned int input;
997         int ret;
998
999         ret = sscanf(buf, "%u", &input);
1000         if (ret != 1)
1001                 return -EINVAL;
1002
1003         mutex_lock(&intel_pstate_driver_lock);
1004
1005         if (!intel_pstate_driver) {
1006                 mutex_unlock(&intel_pstate_driver_lock);
1007                 return -EAGAIN;
1008         }
1009
1010         mutex_lock(&intel_pstate_limits_lock);
1011
1012         global.min_perf_pct = clamp_t(int, input,
1013                                       min_perf_pct_min(), global.max_perf_pct);
1014
1015         mutex_unlock(&intel_pstate_limits_lock);
1016
1017         intel_pstate_update_policies();
1018
1019         mutex_unlock(&intel_pstate_driver_lock);
1020
1021         return count;
1022 }
1023
1024 show_one(max_perf_pct, max_perf_pct);
1025 show_one(min_perf_pct, min_perf_pct);
1026
1027 define_one_global_rw(status);
1028 define_one_global_rw(no_turbo);
1029 define_one_global_rw(max_perf_pct);
1030 define_one_global_rw(min_perf_pct);
1031 define_one_global_ro(turbo_pct);
1032 define_one_global_ro(num_pstates);
1033
1034 static struct attribute *intel_pstate_attributes[] = {
1035         &status.attr,
1036         &no_turbo.attr,
1037         &turbo_pct.attr,
1038         &num_pstates.attr,
1039         NULL
1040 };
1041
1042 static const struct attribute_group intel_pstate_attr_group = {
1043         .attrs = intel_pstate_attributes,
1044 };
1045
1046 static void __init intel_pstate_sysfs_expose_params(void)
1047 {
1048         struct kobject *intel_pstate_kobject;
1049         int rc;
1050
1051         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1052                                                 &cpu_subsys.dev_root->kobj);
1053         if (WARN_ON(!intel_pstate_kobject))
1054                 return;
1055
1056         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1057         if (WARN_ON(rc))
1058                 return;
1059
1060         /*
1061          * If per cpu limits are enforced there are no global limits, so
1062          * return without creating max/min_perf_pct attributes
1063          */
1064         if (per_cpu_limits)
1065                 return;
1066
1067         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1068         WARN_ON(rc);
1069
1070         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1071         WARN_ON(rc);
1072
1073 }
1074 /************************** sysfs end ************************/
1075
1076 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1077 {
1078         /* First disable HWP notification interrupt as we don't process them */
1079         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1080                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1081
1082         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1083         cpudata->epp_policy = 0;
1084         if (cpudata->epp_default == -EINVAL)
1085                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1086 }
1087
1088 #define MSR_IA32_POWER_CTL_BIT_EE       19
1089
1090 /* Disable energy efficiency optimization */
1091 static void intel_pstate_disable_ee(int cpu)
1092 {
1093         u64 power_ctl;
1094         int ret;
1095
1096         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1097         if (ret)
1098                 return;
1099
1100         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1101                 pr_info("Disabling energy efficiency optimization\n");
1102                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1103                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1104         }
1105 }
1106
1107 static int atom_get_min_pstate(void)
1108 {
1109         u64 value;
1110
1111         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1112         return (value >> 8) & 0x7F;
1113 }
1114
1115 static int atom_get_max_pstate(void)
1116 {
1117         u64 value;
1118
1119         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1120         return (value >> 16) & 0x7F;
1121 }
1122
1123 static int atom_get_turbo_pstate(void)
1124 {
1125         u64 value;
1126
1127         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1128         return value & 0x7F;
1129 }
1130
1131 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1132 {
1133         u64 val;
1134         int32_t vid_fp;
1135         u32 vid;
1136
1137         val = (u64)pstate << 8;
1138         if (global.no_turbo && !global.turbo_disabled)
1139                 val |= (u64)1 << 32;
1140
1141         vid_fp = cpudata->vid.min + mul_fp(
1142                 int_tofp(pstate - cpudata->pstate.min_pstate),
1143                 cpudata->vid.ratio);
1144
1145         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1146         vid = ceiling_fp(vid_fp);
1147
1148         if (pstate > cpudata->pstate.max_pstate)
1149                 vid = cpudata->vid.turbo;
1150
1151         return val | vid;
1152 }
1153
1154 static int silvermont_get_scaling(void)
1155 {
1156         u64 value;
1157         int i;
1158         /* Defined in Table 35-6 from SDM (Sept 2015) */
1159         static int silvermont_freq_table[] = {
1160                 83300, 100000, 133300, 116700, 80000};
1161
1162         rdmsrl(MSR_FSB_FREQ, value);
1163         i = value & 0x7;
1164         WARN_ON(i > 4);
1165
1166         return silvermont_freq_table[i];
1167 }
1168
1169 static int airmont_get_scaling(void)
1170 {
1171         u64 value;
1172         int i;
1173         /* Defined in Table 35-10 from SDM (Sept 2015) */
1174         static int airmont_freq_table[] = {
1175                 83300, 100000, 133300, 116700, 80000,
1176                 93300, 90000, 88900, 87500};
1177
1178         rdmsrl(MSR_FSB_FREQ, value);
1179         i = value & 0xF;
1180         WARN_ON(i > 8);
1181
1182         return airmont_freq_table[i];
1183 }
1184
1185 static void atom_get_vid(struct cpudata *cpudata)
1186 {
1187         u64 value;
1188
1189         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1190         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1191         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1192         cpudata->vid.ratio = div_fp(
1193                 cpudata->vid.max - cpudata->vid.min,
1194                 int_tofp(cpudata->pstate.max_pstate -
1195                         cpudata->pstate.min_pstate));
1196
1197         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1198         cpudata->vid.turbo = value & 0x7f;
1199 }
1200
1201 static int core_get_min_pstate(void)
1202 {
1203         u64 value;
1204
1205         rdmsrl(MSR_PLATFORM_INFO, value);
1206         return (value >> 40) & 0xFF;
1207 }
1208
1209 static int core_get_max_pstate_physical(void)
1210 {
1211         u64 value;
1212
1213         rdmsrl(MSR_PLATFORM_INFO, value);
1214         return (value >> 8) & 0xFF;
1215 }
1216
1217 static int core_get_tdp_ratio(u64 plat_info)
1218 {
1219         /* Check how many TDP levels present */
1220         if (plat_info & 0x600000000) {
1221                 u64 tdp_ctrl;
1222                 u64 tdp_ratio;
1223                 int tdp_msr;
1224                 int err;
1225
1226                 /* Get the TDP level (0, 1, 2) to get ratios */
1227                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1228                 if (err)
1229                         return err;
1230
1231                 /* TDP MSR are continuous starting at 0x648 */
1232                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1233                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1234                 if (err)
1235                         return err;
1236
1237                 /* For level 1 and 2, bits[23:16] contain the ratio */
1238                 if (tdp_ctrl & 0x03)
1239                         tdp_ratio >>= 16;
1240
1241                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1242                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1243
1244                 return (int)tdp_ratio;
1245         }
1246
1247         return -ENXIO;
1248 }
1249
1250 static int core_get_max_pstate(void)
1251 {
1252         u64 tar;
1253         u64 plat_info;
1254         int max_pstate;
1255         int tdp_ratio;
1256         int err;
1257
1258         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1259         max_pstate = (plat_info >> 8) & 0xFF;
1260
1261         tdp_ratio = core_get_tdp_ratio(plat_info);
1262         if (tdp_ratio <= 0)
1263                 return max_pstate;
1264
1265         if (hwp_active) {
1266                 /* Turbo activation ratio is not used on HWP platforms */
1267                 return tdp_ratio;
1268         }
1269
1270         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1271         if (!err) {
1272                 int tar_levels;
1273
1274                 /* Do some sanity checking for safety */
1275                 tar_levels = tar & 0xff;
1276                 if (tdp_ratio - 1 == tar_levels) {
1277                         max_pstate = tar_levels;
1278                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1279                 }
1280         }
1281
1282         return max_pstate;
1283 }
1284
1285 static int core_get_turbo_pstate(void)
1286 {
1287         u64 value;
1288         int nont, ret;
1289
1290         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1291         nont = core_get_max_pstate();
1292         ret = (value) & 255;
1293         if (ret <= nont)
1294                 ret = nont;
1295         return ret;
1296 }
1297
1298 static inline int core_get_scaling(void)
1299 {
1300         return 100000;
1301 }
1302
1303 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1304 {
1305         u64 val;
1306
1307         val = (u64)pstate << 8;
1308         if (global.no_turbo && !global.turbo_disabled)
1309                 val |= (u64)1 << 32;
1310
1311         return val;
1312 }
1313
1314 static int knl_get_aperf_mperf_shift(void)
1315 {
1316         return 10;
1317 }
1318
1319 static int knl_get_turbo_pstate(void)
1320 {
1321         u64 value;
1322         int nont, ret;
1323
1324         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1325         nont = core_get_max_pstate();
1326         ret = (((value) >> 8) & 0xFF);
1327         if (ret <= nont)
1328                 ret = nont;
1329         return ret;
1330 }
1331
1332 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1333 {
1334         return global.no_turbo || global.turbo_disabled ?
1335                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1336 }
1337
1338 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1339 {
1340         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1341         cpu->pstate.current_pstate = pstate;
1342         /*
1343          * Generally, there is no guarantee that this code will always run on
1344          * the CPU being updated, so force the register update to run on the
1345          * right CPU.
1346          */
1347         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1348                       pstate_funcs.get_val(cpu, pstate));
1349 }
1350
1351 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1352 {
1353         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1354 }
1355
1356 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1357 {
1358         int pstate;
1359
1360         update_turbo_state();
1361         pstate = intel_pstate_get_base_pstate(cpu);
1362         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1363         intel_pstate_set_pstate(cpu, pstate);
1364 }
1365
1366 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1367 {
1368         cpu->pstate.min_pstate = pstate_funcs.get_min();
1369         cpu->pstate.max_pstate = pstate_funcs.get_max();
1370         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1371         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1372         cpu->pstate.scaling = pstate_funcs.get_scaling();
1373         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1374         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1375
1376         if (pstate_funcs.get_aperf_mperf_shift)
1377                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1378
1379         if (pstate_funcs.get_vid)
1380                 pstate_funcs.get_vid(cpu);
1381
1382         intel_pstate_set_min_pstate(cpu);
1383 }
1384
1385 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1386 {
1387         struct sample *sample = &cpu->sample;
1388
1389         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1390 }
1391
1392 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1393 {
1394         u64 aperf, mperf;
1395         unsigned long flags;
1396         u64 tsc;
1397
1398         local_irq_save(flags);
1399         rdmsrl(MSR_IA32_APERF, aperf);
1400         rdmsrl(MSR_IA32_MPERF, mperf);
1401         tsc = rdtsc();
1402         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1403                 local_irq_restore(flags);
1404                 return false;
1405         }
1406         local_irq_restore(flags);
1407
1408         cpu->last_sample_time = cpu->sample.time;
1409         cpu->sample.time = time;
1410         cpu->sample.aperf = aperf;
1411         cpu->sample.mperf = mperf;
1412         cpu->sample.tsc =  tsc;
1413         cpu->sample.aperf -= cpu->prev_aperf;
1414         cpu->sample.mperf -= cpu->prev_mperf;
1415         cpu->sample.tsc -= cpu->prev_tsc;
1416
1417         cpu->prev_aperf = aperf;
1418         cpu->prev_mperf = mperf;
1419         cpu->prev_tsc = tsc;
1420         /*
1421          * First time this function is invoked in a given cycle, all of the
1422          * previous sample data fields are equal to zero or stale and they must
1423          * be populated with meaningful numbers for things to work, so assume
1424          * that sample.time will always be reset before setting the utilization
1425          * update hook and make the caller skip the sample then.
1426          */
1427         if (cpu->last_sample_time) {
1428                 intel_pstate_calc_avg_perf(cpu);
1429                 return true;
1430         }
1431         return false;
1432 }
1433
1434 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1435 {
1436         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1437 }
1438
1439 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1440 {
1441         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1442                           cpu->sample.core_avg_perf);
1443 }
1444
1445 static inline int32_t get_target_pstate(struct cpudata *cpu)
1446 {
1447         struct sample *sample = &cpu->sample;
1448         int32_t busy_frac, boost;
1449         int target, avg_pstate;
1450
1451         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1452                            sample->tsc);
1453
1454         boost = cpu->iowait_boost;
1455         cpu->iowait_boost >>= 1;
1456
1457         if (busy_frac < boost)
1458                 busy_frac = boost;
1459
1460         sample->busy_scaled = busy_frac * 100;
1461
1462         target = global.no_turbo || global.turbo_disabled ?
1463                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1464         target += target >> 2;
1465         target = mul_fp(target, busy_frac);
1466         if (target < cpu->pstate.min_pstate)
1467                 target = cpu->pstate.min_pstate;
1468
1469         /*
1470          * If the average P-state during the previous cycle was higher than the
1471          * current target, add 50% of the difference to the target to reduce
1472          * possible performance oscillations and offset possible performance
1473          * loss related to moving the workload from one CPU to another within
1474          * a package/module.
1475          */
1476         avg_pstate = get_avg_pstate(cpu);
1477         if (avg_pstate > target)
1478                 target += (avg_pstate - target) >> 1;
1479
1480         return target;
1481 }
1482
1483 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1484 {
1485         int max_pstate = intel_pstate_get_base_pstate(cpu);
1486         int min_pstate;
1487
1488         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1489         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1490         return clamp_t(int, pstate, min_pstate, max_pstate);
1491 }
1492
1493 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1494 {
1495         if (pstate == cpu->pstate.current_pstate)
1496                 return;
1497
1498         cpu->pstate.current_pstate = pstate;
1499         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1500 }
1501
1502 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1503 {
1504         int from = cpu->pstate.current_pstate;
1505         struct sample *sample;
1506         int target_pstate;
1507
1508         update_turbo_state();
1509
1510         target_pstate = get_target_pstate(cpu);
1511         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1512         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1513         intel_pstate_update_pstate(cpu, target_pstate);
1514
1515         sample = &cpu->sample;
1516         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1517                 fp_toint(sample->busy_scaled),
1518                 from,
1519                 cpu->pstate.current_pstate,
1520                 sample->mperf,
1521                 sample->aperf,
1522                 sample->tsc,
1523                 get_avg_frequency(cpu),
1524                 fp_toint(cpu->iowait_boost * 100));
1525 }
1526
1527 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1528                                      unsigned int flags)
1529 {
1530         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1531         u64 delta_ns;
1532
1533         /* Don't allow remote callbacks */
1534         if (smp_processor_id() != cpu->cpu)
1535                 return;
1536
1537         if (flags & SCHED_CPUFREQ_IOWAIT) {
1538                 cpu->iowait_boost = int_tofp(1);
1539                 cpu->last_update = time;
1540                 /*
1541                  * The last time the busy was 100% so P-state was max anyway
1542                  * so avoid overhead of computation.
1543                  */
1544                 if (fp_toint(cpu->sample.busy_scaled) == 100)
1545                         return;
1546
1547                 goto set_pstate;
1548         } else if (cpu->iowait_boost) {
1549                 /* Clear iowait_boost if the CPU may have been idle. */
1550                 delta_ns = time - cpu->last_update;
1551                 if (delta_ns > TICK_NSEC)
1552                         cpu->iowait_boost = 0;
1553         }
1554         cpu->last_update = time;
1555         delta_ns = time - cpu->sample.time;
1556         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1557                 return;
1558
1559 set_pstate:
1560         if (intel_pstate_sample(cpu, time))
1561                 intel_pstate_adjust_pstate(cpu);
1562 }
1563
1564 static struct pstate_funcs core_funcs = {
1565         .get_max = core_get_max_pstate,
1566         .get_max_physical = core_get_max_pstate_physical,
1567         .get_min = core_get_min_pstate,
1568         .get_turbo = core_get_turbo_pstate,
1569         .get_scaling = core_get_scaling,
1570         .get_val = core_get_val,
1571 };
1572
1573 static const struct pstate_funcs silvermont_funcs = {
1574         .get_max = atom_get_max_pstate,
1575         .get_max_physical = atom_get_max_pstate,
1576         .get_min = atom_get_min_pstate,
1577         .get_turbo = atom_get_turbo_pstate,
1578         .get_val = atom_get_val,
1579         .get_scaling = silvermont_get_scaling,
1580         .get_vid = atom_get_vid,
1581 };
1582
1583 static const struct pstate_funcs airmont_funcs = {
1584         .get_max = atom_get_max_pstate,
1585         .get_max_physical = atom_get_max_pstate,
1586         .get_min = atom_get_min_pstate,
1587         .get_turbo = atom_get_turbo_pstate,
1588         .get_val = atom_get_val,
1589         .get_scaling = airmont_get_scaling,
1590         .get_vid = atom_get_vid,
1591 };
1592
1593 static const struct pstate_funcs knl_funcs = {
1594         .get_max = core_get_max_pstate,
1595         .get_max_physical = core_get_max_pstate_physical,
1596         .get_min = core_get_min_pstate,
1597         .get_turbo = knl_get_turbo_pstate,
1598         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1599         .get_scaling = core_get_scaling,
1600         .get_val = core_get_val,
1601 };
1602
1603 #define ICPU(model, policy) \
1604         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1605                         (unsigned long)&policy }
1606
1607 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1608         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1609         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1610         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1611         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1612         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1613         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1614         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1615         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1616         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1617         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1618         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1619         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1620         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1621         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1622         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1623         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1624         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1625         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1626         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1627         ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1628         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1629         {}
1630 };
1631 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1632
1633 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1634         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1635         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1636         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1637         {}
1638 };
1639
1640 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1641         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1642         {}
1643 };
1644
1645 static int intel_pstate_init_cpu(unsigned int cpunum)
1646 {
1647         struct cpudata *cpu;
1648
1649         cpu = all_cpu_data[cpunum];
1650
1651         if (!cpu) {
1652                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1653                 if (!cpu)
1654                         return -ENOMEM;
1655
1656                 all_cpu_data[cpunum] = cpu;
1657
1658                 cpu->epp_default = -EINVAL;
1659                 cpu->epp_powersave = -EINVAL;
1660                 cpu->epp_saved = -EINVAL;
1661         }
1662
1663         cpu = all_cpu_data[cpunum];
1664
1665         cpu->cpu = cpunum;
1666
1667         if (hwp_active) {
1668                 const struct x86_cpu_id *id;
1669
1670                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1671                 if (id)
1672                         intel_pstate_disable_ee(cpunum);
1673
1674                 intel_pstate_hwp_enable(cpu);
1675         }
1676
1677         intel_pstate_get_cpu_pstates(cpu);
1678
1679         pr_debug("controlling: cpu %d\n", cpunum);
1680
1681         return 0;
1682 }
1683
1684 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1685 {
1686         struct cpudata *cpu = all_cpu_data[cpu_num];
1687
1688         if (hwp_active)
1689                 return;
1690
1691         if (cpu->update_util_set)
1692                 return;
1693
1694         /* Prevent intel_pstate_update_util() from using stale data. */
1695         cpu->sample.time = 0;
1696         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1697                                      intel_pstate_update_util);
1698         cpu->update_util_set = true;
1699 }
1700
1701 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1702 {
1703         struct cpudata *cpu_data = all_cpu_data[cpu];
1704
1705         if (!cpu_data->update_util_set)
1706                 return;
1707
1708         cpufreq_remove_update_util_hook(cpu);
1709         cpu_data->update_util_set = false;
1710         synchronize_sched();
1711 }
1712
1713 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1714 {
1715         return global.turbo_disabled || global.no_turbo ?
1716                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1717 }
1718
1719 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1720                                             struct cpudata *cpu)
1721 {
1722         int max_freq = intel_pstate_get_max_freq(cpu);
1723         int32_t max_policy_perf, min_policy_perf;
1724         int max_state, turbo_max;
1725
1726         /*
1727          * HWP needs some special consideration, because on BDX the
1728          * HWP_REQUEST uses abstract value to represent performance
1729          * rather than pure ratios.
1730          */
1731         if (hwp_active) {
1732                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1733         } else {
1734                 max_state = intel_pstate_get_base_pstate(cpu);
1735                 turbo_max = cpu->pstate.turbo_pstate;
1736         }
1737
1738         max_policy_perf = max_state * policy->max / max_freq;
1739         if (policy->max == policy->min) {
1740                 min_policy_perf = max_policy_perf;
1741         } else {
1742                 min_policy_perf = max_state * policy->min / max_freq;
1743                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1744                                           0, max_policy_perf);
1745         }
1746
1747         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1748                  policy->cpu, max_state,
1749                  min_policy_perf, max_policy_perf);
1750
1751         /* Normalize user input to [min_perf, max_perf] */
1752         if (per_cpu_limits) {
1753                 cpu->min_perf_ratio = min_policy_perf;
1754                 cpu->max_perf_ratio = max_policy_perf;
1755         } else {
1756                 int32_t global_min, global_max;
1757
1758                 /* Global limits are in percent of the maximum turbo P-state. */
1759                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1760                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1761                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1762
1763                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1764                          global_min, global_max);
1765
1766                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
1767                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1768                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
1769                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1770
1771                 /* Make sure min_perf <= max_perf */
1772                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1773                                           cpu->max_perf_ratio);
1774
1775         }
1776         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1777                  cpu->max_perf_ratio,
1778                  cpu->min_perf_ratio);
1779 }
1780
1781 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1782 {
1783         struct cpudata *cpu;
1784
1785         if (!policy->cpuinfo.max_freq)
1786                 return -ENODEV;
1787
1788         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1789                  policy->cpuinfo.max_freq, policy->max);
1790
1791         cpu = all_cpu_data[policy->cpu];
1792         cpu->policy = policy->policy;
1793
1794         mutex_lock(&intel_pstate_limits_lock);
1795
1796         intel_pstate_update_perf_limits(policy, cpu);
1797
1798         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1799                 /*
1800                  * NOHZ_FULL CPUs need this as the governor callback may not
1801                  * be invoked on them.
1802                  */
1803                 intel_pstate_clear_update_util_hook(policy->cpu);
1804                 intel_pstate_max_within_limits(cpu);
1805         } else {
1806                 intel_pstate_set_update_util_hook(policy->cpu);
1807         }
1808
1809         if (hwp_active)
1810                 intel_pstate_hwp_set(policy->cpu);
1811
1812         mutex_unlock(&intel_pstate_limits_lock);
1813
1814         return 0;
1815 }
1816
1817 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1818                                          struct cpudata *cpu)
1819 {
1820         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1821             policy->max < policy->cpuinfo.max_freq &&
1822             policy->max > cpu->pstate.max_freq) {
1823                 pr_debug("policy->max > max non turbo frequency\n");
1824                 policy->max = policy->cpuinfo.max_freq;
1825         }
1826 }
1827
1828 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1829 {
1830         struct cpudata *cpu = all_cpu_data[policy->cpu];
1831
1832         update_turbo_state();
1833         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1834                                      intel_pstate_get_max_freq(cpu));
1835
1836         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1837             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1838                 return -EINVAL;
1839
1840         intel_pstate_adjust_policy_max(policy, cpu);
1841
1842         return 0;
1843 }
1844
1845 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1846 {
1847         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1848 }
1849
1850 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1851 {
1852         pr_debug("CPU %d exiting\n", policy->cpu);
1853
1854         intel_pstate_clear_update_util_hook(policy->cpu);
1855         if (hwp_active)
1856                 intel_pstate_hwp_save_state(policy);
1857         else
1858                 intel_cpufreq_stop_cpu(policy);
1859 }
1860
1861 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1862 {
1863         intel_pstate_exit_perf_limits(policy);
1864
1865         policy->fast_switch_possible = false;
1866
1867         return 0;
1868 }
1869
1870 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1871 {
1872         struct cpudata *cpu;
1873         int rc;
1874
1875         rc = intel_pstate_init_cpu(policy->cpu);
1876         if (rc)
1877                 return rc;
1878
1879         cpu = all_cpu_data[policy->cpu];
1880
1881         cpu->max_perf_ratio = 0xFF;
1882         cpu->min_perf_ratio = 0;
1883
1884         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1885         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1886
1887         /* cpuinfo and default policy values */
1888         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1889         update_turbo_state();
1890         policy->cpuinfo.max_freq = global.turbo_disabled ?
1891                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1892         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1893
1894         intel_pstate_init_acpi_perf_limits(policy);
1895
1896         policy->fast_switch_possible = true;
1897
1898         return 0;
1899 }
1900
1901 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1902 {
1903         int ret = __intel_pstate_cpu_init(policy);
1904
1905         if (ret)
1906                 return ret;
1907
1908         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1909                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1910         else
1911                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1912
1913         return 0;
1914 }
1915
1916 static struct cpufreq_driver intel_pstate = {
1917         .flags          = CPUFREQ_CONST_LOOPS,
1918         .verify         = intel_pstate_verify_policy,
1919         .setpolicy      = intel_pstate_set_policy,
1920         .suspend        = intel_pstate_hwp_save_state,
1921         .resume         = intel_pstate_resume,
1922         .init           = intel_pstate_cpu_init,
1923         .exit           = intel_pstate_cpu_exit,
1924         .stop_cpu       = intel_pstate_stop_cpu,
1925         .name           = "intel_pstate",
1926 };
1927
1928 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1929 {
1930         struct cpudata *cpu = all_cpu_data[policy->cpu];
1931
1932         update_turbo_state();
1933         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1934                                      intel_pstate_get_max_freq(cpu));
1935
1936         intel_pstate_adjust_policy_max(policy, cpu);
1937
1938         intel_pstate_update_perf_limits(policy, cpu);
1939
1940         return 0;
1941 }
1942
1943 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1944                                 unsigned int target_freq,
1945                                 unsigned int relation)
1946 {
1947         struct cpudata *cpu = all_cpu_data[policy->cpu];
1948         struct cpufreq_freqs freqs;
1949         int target_pstate;
1950
1951         update_turbo_state();
1952
1953         freqs.old = policy->cur;
1954         freqs.new = target_freq;
1955
1956         cpufreq_freq_transition_begin(policy, &freqs);
1957         switch (relation) {
1958         case CPUFREQ_RELATION_L:
1959                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1960                 break;
1961         case CPUFREQ_RELATION_H:
1962                 target_pstate = freqs.new / cpu->pstate.scaling;
1963                 break;
1964         default:
1965                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1966                 break;
1967         }
1968         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1969         if (target_pstate != cpu->pstate.current_pstate) {
1970                 cpu->pstate.current_pstate = target_pstate;
1971                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1972                               pstate_funcs.get_val(cpu, target_pstate));
1973         }
1974         freqs.new = target_pstate * cpu->pstate.scaling;
1975         cpufreq_freq_transition_end(policy, &freqs, false);
1976
1977         return 0;
1978 }
1979
1980 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1981                                               unsigned int target_freq)
1982 {
1983         struct cpudata *cpu = all_cpu_data[policy->cpu];
1984         int target_pstate;
1985
1986         update_turbo_state();
1987
1988         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1989         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1990         intel_pstate_update_pstate(cpu, target_pstate);
1991         return target_pstate * cpu->pstate.scaling;
1992 }
1993
1994 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1995 {
1996         int ret = __intel_pstate_cpu_init(policy);
1997
1998         if (ret)
1999                 return ret;
2000
2001         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2002         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2003         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2004         policy->cur = policy->cpuinfo.min_freq;
2005
2006         return 0;
2007 }
2008
2009 static struct cpufreq_driver intel_cpufreq = {
2010         .flags          = CPUFREQ_CONST_LOOPS,
2011         .verify         = intel_cpufreq_verify_policy,
2012         .target         = intel_cpufreq_target,
2013         .fast_switch    = intel_cpufreq_fast_switch,
2014         .init           = intel_cpufreq_cpu_init,
2015         .exit           = intel_pstate_cpu_exit,
2016         .stop_cpu       = intel_cpufreq_stop_cpu,
2017         .name           = "intel_cpufreq",
2018 };
2019
2020 static struct cpufreq_driver *default_driver = &intel_pstate;
2021
2022 static void intel_pstate_driver_cleanup(void)
2023 {
2024         unsigned int cpu;
2025
2026         get_online_cpus();
2027         for_each_online_cpu(cpu) {
2028                 if (all_cpu_data[cpu]) {
2029                         if (intel_pstate_driver == &intel_pstate)
2030                                 intel_pstate_clear_update_util_hook(cpu);
2031
2032                         kfree(all_cpu_data[cpu]);
2033                         all_cpu_data[cpu] = NULL;
2034                 }
2035         }
2036         put_online_cpus();
2037         intel_pstate_driver = NULL;
2038 }
2039
2040 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2041 {
2042         int ret;
2043
2044         memset(&global, 0, sizeof(global));
2045         global.max_perf_pct = 100;
2046
2047         intel_pstate_driver = driver;
2048         ret = cpufreq_register_driver(intel_pstate_driver);
2049         if (ret) {
2050                 intel_pstate_driver_cleanup();
2051                 return ret;
2052         }
2053
2054         global.min_perf_pct = min_perf_pct_min();
2055
2056         return 0;
2057 }
2058
2059 static int intel_pstate_unregister_driver(void)
2060 {
2061         if (hwp_active)
2062                 return -EBUSY;
2063
2064         cpufreq_unregister_driver(intel_pstate_driver);
2065         intel_pstate_driver_cleanup();
2066
2067         return 0;
2068 }
2069
2070 static ssize_t intel_pstate_show_status(char *buf)
2071 {
2072         if (!intel_pstate_driver)
2073                 return sprintf(buf, "off\n");
2074
2075         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2076                                         "active" : "passive");
2077 }
2078
2079 static int intel_pstate_update_status(const char *buf, size_t size)
2080 {
2081         int ret;
2082
2083         if (size == 3 && !strncmp(buf, "off", size))
2084                 return intel_pstate_driver ?
2085                         intel_pstate_unregister_driver() : -EINVAL;
2086
2087         if (size == 6 && !strncmp(buf, "active", size)) {
2088                 if (intel_pstate_driver) {
2089                         if (intel_pstate_driver == &intel_pstate)
2090                                 return 0;
2091
2092                         ret = intel_pstate_unregister_driver();
2093                         if (ret)
2094                                 return ret;
2095                 }
2096
2097                 return intel_pstate_register_driver(&intel_pstate);
2098         }
2099
2100         if (size == 7 && !strncmp(buf, "passive", size)) {
2101                 if (intel_pstate_driver) {
2102                         if (intel_pstate_driver == &intel_cpufreq)
2103                                 return 0;
2104
2105                         ret = intel_pstate_unregister_driver();
2106                         if (ret)
2107                                 return ret;
2108                 }
2109
2110                 return intel_pstate_register_driver(&intel_cpufreq);
2111         }
2112
2113         return -EINVAL;
2114 }
2115
2116 static int no_load __initdata;
2117 static int no_hwp __initdata;
2118 static int hwp_only __initdata;
2119 static unsigned int force_load __initdata;
2120
2121 static int __init intel_pstate_msrs_not_valid(void)
2122 {
2123         if (!pstate_funcs.get_max() ||
2124             !pstate_funcs.get_min() ||
2125             !pstate_funcs.get_turbo())
2126                 return -ENODEV;
2127
2128         return 0;
2129 }
2130
2131 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2132 {
2133         pstate_funcs.get_max   = funcs->get_max;
2134         pstate_funcs.get_max_physical = funcs->get_max_physical;
2135         pstate_funcs.get_min   = funcs->get_min;
2136         pstate_funcs.get_turbo = funcs->get_turbo;
2137         pstate_funcs.get_scaling = funcs->get_scaling;
2138         pstate_funcs.get_val   = funcs->get_val;
2139         pstate_funcs.get_vid   = funcs->get_vid;
2140         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2141 }
2142
2143 #ifdef CONFIG_ACPI
2144
2145 static bool __init intel_pstate_no_acpi_pss(void)
2146 {
2147         int i;
2148
2149         for_each_possible_cpu(i) {
2150                 acpi_status status;
2151                 union acpi_object *pss;
2152                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2153                 struct acpi_processor *pr = per_cpu(processors, i);
2154
2155                 if (!pr)
2156                         continue;
2157
2158                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2159                 if (ACPI_FAILURE(status))
2160                         continue;
2161
2162                 pss = buffer.pointer;
2163                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2164                         kfree(pss);
2165                         return false;
2166                 }
2167
2168                 kfree(pss);
2169         }
2170
2171         return true;
2172 }
2173
2174 static bool __init intel_pstate_has_acpi_ppc(void)
2175 {
2176         int i;
2177
2178         for_each_possible_cpu(i) {
2179                 struct acpi_processor *pr = per_cpu(processors, i);
2180
2181                 if (!pr)
2182                         continue;
2183                 if (acpi_has_method(pr->handle, "_PPC"))
2184                         return true;
2185         }
2186         return false;
2187 }
2188
2189 enum {
2190         PSS,
2191         PPC,
2192 };
2193
2194 /* Hardware vendor-specific info that has its own power management modes */
2195 static struct acpi_platform_list plat_info[] __initdata = {
2196         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2197         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2198         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2199         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2200         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2211         { } /* End */
2212 };
2213
2214 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2215 {
2216         const struct x86_cpu_id *id;
2217         u64 misc_pwr;
2218         int idx;
2219
2220         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2221         if (id) {
2222                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2223                 if ( misc_pwr & (1 << 8))
2224                         return true;
2225         }
2226
2227         idx = acpi_match_platform_list(plat_info);
2228         if (idx < 0)
2229                 return false;
2230
2231         switch (plat_info[idx].data) {
2232         case PSS:
2233                 return intel_pstate_no_acpi_pss();
2234         case PPC:
2235                 return intel_pstate_has_acpi_ppc() && !force_load;
2236         }
2237
2238         return false;
2239 }
2240
2241 static void intel_pstate_request_control_from_smm(void)
2242 {
2243         /*
2244          * It may be unsafe to request P-states control from SMM if _PPC support
2245          * has not been enabled.
2246          */
2247         if (acpi_ppc)
2248                 acpi_processor_pstate_control();
2249 }
2250 #else /* CONFIG_ACPI not enabled */
2251 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2252 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2253 static inline void intel_pstate_request_control_from_smm(void) {}
2254 #endif /* CONFIG_ACPI */
2255
2256 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2257         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2258         {}
2259 };
2260
2261 static int __init intel_pstate_init(void)
2262 {
2263         int rc;
2264
2265         if (no_load)
2266                 return -ENODEV;
2267
2268         if (x86_match_cpu(hwp_support_ids)) {
2269                 copy_cpu_funcs(&core_funcs);
2270                 if (!no_hwp) {
2271                         hwp_active++;
2272                         intel_pstate.attr = hwp_cpufreq_attrs;
2273                         goto hwp_cpu_matched;
2274                 }
2275         } else {
2276                 const struct x86_cpu_id *id;
2277
2278                 id = x86_match_cpu(intel_pstate_cpu_ids);
2279                 if (!id)
2280                         return -ENODEV;
2281
2282                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2283         }
2284
2285         if (intel_pstate_msrs_not_valid())
2286                 return -ENODEV;
2287
2288 hwp_cpu_matched:
2289         /*
2290          * The Intel pstate driver will be ignored if the platform
2291          * firmware has its own power management modes.
2292          */
2293         if (intel_pstate_platform_pwr_mgmt_exists())
2294                 return -ENODEV;
2295
2296         if (!hwp_active && hwp_only)
2297                 return -ENOTSUPP;
2298
2299         pr_info("Intel P-state driver initializing\n");
2300
2301         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2302         if (!all_cpu_data)
2303                 return -ENOMEM;
2304
2305         intel_pstate_request_control_from_smm();
2306
2307         intel_pstate_sysfs_expose_params();
2308
2309         mutex_lock(&intel_pstate_driver_lock);
2310         rc = intel_pstate_register_driver(default_driver);
2311         mutex_unlock(&intel_pstate_driver_lock);
2312         if (rc)
2313                 return rc;
2314
2315         if (hwp_active)
2316                 pr_info("HWP enabled\n");
2317
2318         return 0;
2319 }
2320 device_initcall(intel_pstate_init);
2321
2322 static int __init intel_pstate_setup(char *str)
2323 {
2324         if (!str)
2325                 return -EINVAL;
2326
2327         if (!strcmp(str, "disable")) {
2328                 no_load = 1;
2329         } else if (!strcmp(str, "passive")) {
2330                 pr_info("Passive mode enabled\n");
2331                 default_driver = &intel_cpufreq;
2332                 no_hwp = 1;
2333         }
2334         if (!strcmp(str, "no_hwp")) {
2335                 pr_info("HWP disabled\n");
2336                 no_hwp = 1;
2337         }
2338         if (!strcmp(str, "force"))
2339                 force_load = 1;
2340         if (!strcmp(str, "hwp_only"))
2341                 hwp_only = 1;
2342         if (!strcmp(str, "per_cpu_perf_limits"))
2343                 per_cpu_limits = true;
2344
2345 #ifdef CONFIG_ACPI
2346         if (!strcmp(str, "support_acpi_ppc"))
2347                 acpi_ppc = true;
2348 #endif
2349
2350         return 0;
2351 }
2352 early_param("intel_pstate", intel_pstate_setup);
2353
2354 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2355 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2356 MODULE_LICENSE("GPL");