Merge remote-tracking branches 'asoc/fix/dpcm', 'asoc/fix/imx', 'asoc/fix/msm8916...
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL      (50 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
45
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83         return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88         return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93         return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98         return div_ext_fp(percent, 100);
99 }
100
101 /**
102  * struct sample -      Store performance sample
103  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
104  *                      performance during last sample period
105  * @busy_scaled:        Scaled busy value which is used to calculate next
106  *                      P state. This can be different than core_avg_perf
107  *                      to account for cpu idle period
108  * @aperf:              Difference of actual performance frequency clock count
109  *                      read from APERF MSR between last and current sample
110  * @mperf:              Difference of maximum performance frequency clock count
111  *                      read from MPERF MSR between last and current sample
112  * @tsc:                Difference of time stamp counter between last and
113  *                      current sample
114  * @time:               Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120         int32_t core_avg_perf;
121         int32_t busy_scaled;
122         u64 aperf;
123         u64 mperf;
124         u64 tsc;
125         u64 time;
126 };
127
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:     Current requested P state
131  * @min_pstate:         Min P state possible for this platform
132  * @max_pstate:         Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *                      This can be higher than the max_pstate which can
135  *                      be limited by platform thermal design power limits
136  * @scaling:            Scaling factor to  convert frequency to cpufreq
137  *                      frequency units
138  * @turbo_pstate:       Max Turbo P state possible for this platform
139  * @max_freq:           @max_pstate frequency in cpufreq units
140  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145         int     current_pstate;
146         int     min_pstate;
147         int     max_pstate;
148         int     max_pstate_physical;
149         int     scaling;
150         int     turbo_pstate;
151         unsigned int max_freq;
152         unsigned int turbo_freq;
153 };
154
155 /**
156  * struct vid_data -    Stores voltage information data
157  * @min:                VID data for this platform corresponding to
158  *                      the lowest P state
159  * @max:                VID data corresponding to the highest P State.
160  * @turbo:              VID data for turbo P state
161  * @ratio:              Ratio of (vid max - vid min) /
162  *                      (max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169         int min;
170         int max;
171         int turbo;
172         int32_t ratio;
173 };
174
175 /**
176  * struct _pid -        Stores PID data
177  * @setpoint:           Target set point for busyness or performance
178  * @integral:           Storage for accumulated error values
179  * @p_gain:             PID proportional gain
180  * @i_gain:             PID integral gain
181  * @d_gain:             PID derivative gain
182  * @deadband:           PID deadband
183  * @last_err:           Last error storage for integral part of PID calculation
184  *
185  * Stores PID coefficients and last error for PID controller.
186  */
187 struct _pid {
188         int setpoint;
189         int32_t integral;
190         int32_t p_gain;
191         int32_t i_gain;
192         int32_t d_gain;
193         int deadband;
194         int32_t last_err;
195 };
196
197 /**
198  * struct global_params - Global parameters, mostly tunable via sysfs.
199  * @no_turbo:           Whether or not to use turbo P-states.
200  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
201  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
202  *                      not the maximum reported turbo P-state is different from
203  *                      the maximum reported non-turbo one.
204  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
205  *                      P-state capacity.
206  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
207  *                      P-state capacity.
208  */
209 struct global_params {
210         bool no_turbo;
211         bool turbo_disabled;
212         int max_perf_pct;
213         int min_perf_pct;
214 };
215
216 /**
217  * struct cpudata -     Per CPU instance data storage
218  * @cpu:                CPU number for this instance data
219  * @policy:             CPUFreq policy value
220  * @update_util:        CPUFreq utility callback information
221  * @update_util_set:    CPUFreq utility callback is set
222  * @iowait_boost:       iowait-related boost fraction
223  * @last_update:        Time of the last update.
224  * @pstate:             Stores P state limits for this CPU
225  * @vid:                Stores VID limits for this CPU
226  * @pid:                Stores PID parameters for this CPU
227  * @last_sample_time:   Last Sample time
228  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
229  *                      This shift is a multiplier to mperf delta to
230  *                      calculate CPU busy.
231  * @prev_aperf:         Last APERF value read from APERF MSR
232  * @prev_mperf:         Last MPERF value read from MPERF MSR
233  * @prev_tsc:           Last timestamp counter (TSC) value
234  * @prev_cummulative_iowait: IO Wait time difference from last and
235  *                      current sample
236  * @sample:             Storage for storing last Sample data
237  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
238  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
239  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
240  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
241  * @epp_powersave:      Last saved HWP energy performance preference
242  *                      (EPP) or energy performance bias (EPB),
243  *                      when policy switched to performance
244  * @epp_policy:         Last saved policy used to set EPP/EPB
245  * @epp_default:        Power on default HWP energy performance
246  *                      preference/bias
247  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
248  *                      operation
249  *
250  * This structure stores per CPU instance data for all CPUs.
251  */
252 struct cpudata {
253         int cpu;
254
255         unsigned int policy;
256         struct update_util_data update_util;
257         bool   update_util_set;
258
259         struct pstate_data pstate;
260         struct vid_data vid;
261         struct _pid pid;
262
263         u64     last_update;
264         u64     last_sample_time;
265         u64     aperf_mperf_shift;
266         u64     prev_aperf;
267         u64     prev_mperf;
268         u64     prev_tsc;
269         u64     prev_cummulative_iowait;
270         struct sample sample;
271         int32_t min_perf_ratio;
272         int32_t max_perf_ratio;
273 #ifdef CONFIG_ACPI
274         struct acpi_processor_performance acpi_perf_data;
275         bool valid_pss_table;
276 #endif
277         unsigned int iowait_boost;
278         s16 epp_powersave;
279         s16 epp_policy;
280         s16 epp_default;
281         s16 epp_saved;
282 };
283
284 static struct cpudata **all_cpu_data;
285
286 /**
287  * struct pstate_adjust_policy - Stores static PID configuration data
288  * @sample_rate_ms:     PID calculation sample rate in ms
289  * @sample_rate_ns:     Sample rate calculation in ns
290  * @deadband:           PID deadband
291  * @setpoint:           PID Setpoint
292  * @p_gain_pct:         PID proportional gain
293  * @i_gain_pct:         PID integral gain
294  * @d_gain_pct:         PID derivative gain
295  *
296  * Stores per CPU model static PID configuration data.
297  */
298 struct pstate_adjust_policy {
299         int sample_rate_ms;
300         s64 sample_rate_ns;
301         int deadband;
302         int setpoint;
303         int p_gain_pct;
304         int d_gain_pct;
305         int i_gain_pct;
306 };
307
308 /**
309  * struct pstate_funcs - Per CPU model specific callbacks
310  * @get_max:            Callback to get maximum non turbo effective P state
311  * @get_max_physical:   Callback to get maximum non turbo physical P state
312  * @get_min:            Callback to get minimum P state
313  * @get_turbo:          Callback to get turbo P state
314  * @get_scaling:        Callback to get frequency scaling factor
315  * @get_val:            Callback to convert P state to actual MSR write value
316  * @get_vid:            Callback to get VID data for Atom platforms
317  * @update_util:        Active mode utilization update callback.
318  *
319  * Core and Atom CPU models have different way to get P State limits. This
320  * structure is used to store those callbacks.
321  */
322 struct pstate_funcs {
323         int (*get_max)(void);
324         int (*get_max_physical)(void);
325         int (*get_min)(void);
326         int (*get_turbo)(void);
327         int (*get_scaling)(void);
328         int (*get_aperf_mperf_shift)(void);
329         u64 (*get_val)(struct cpudata*, int pstate);
330         void (*get_vid)(struct cpudata *);
331         void (*update_util)(struct update_util_data *data, u64 time,
332                             unsigned int flags);
333 };
334
335 static struct pstate_funcs pstate_funcs __read_mostly;
336 static struct pstate_adjust_policy pid_params __read_mostly = {
337         .sample_rate_ms = 10,
338         .sample_rate_ns = 10 * NSEC_PER_MSEC,
339         .deadband = 0,
340         .setpoint = 97,
341         .p_gain_pct = 20,
342         .d_gain_pct = 0,
343         .i_gain_pct = 0,
344 };
345
346 static int hwp_active __read_mostly;
347 static bool per_cpu_limits __read_mostly;
348
349 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
350
351 #ifdef CONFIG_ACPI
352 static bool acpi_ppc;
353 #endif
354
355 static struct global_params global;
356
357 static DEFINE_MUTEX(intel_pstate_driver_lock);
358 static DEFINE_MUTEX(intel_pstate_limits_lock);
359
360 #ifdef CONFIG_ACPI
361
362 static bool intel_pstate_get_ppc_enable_status(void)
363 {
364         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
365             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
366                 return true;
367
368         return acpi_ppc;
369 }
370
371 #ifdef CONFIG_ACPI_CPPC_LIB
372
373 /* The work item is needed to avoid CPU hotplug locking issues */
374 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
375 {
376         sched_set_itmt_support();
377 }
378
379 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
380
381 static void intel_pstate_set_itmt_prio(int cpu)
382 {
383         struct cppc_perf_caps cppc_perf;
384         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
385         int ret;
386
387         ret = cppc_get_perf_caps(cpu, &cppc_perf);
388         if (ret)
389                 return;
390
391         /*
392          * The priorities can be set regardless of whether or not
393          * sched_set_itmt_support(true) has been called and it is valid to
394          * update them at any time after it has been called.
395          */
396         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
397
398         if (max_highest_perf <= min_highest_perf) {
399                 if (cppc_perf.highest_perf > max_highest_perf)
400                         max_highest_perf = cppc_perf.highest_perf;
401
402                 if (cppc_perf.highest_perf < min_highest_perf)
403                         min_highest_perf = cppc_perf.highest_perf;
404
405                 if (max_highest_perf > min_highest_perf) {
406                         /*
407                          * This code can be run during CPU online under the
408                          * CPU hotplug locks, so sched_set_itmt_support()
409                          * cannot be called from here.  Queue up a work item
410                          * to invoke it.
411                          */
412                         schedule_work(&sched_itmt_work);
413                 }
414         }
415 }
416 #else
417 static void intel_pstate_set_itmt_prio(int cpu)
418 {
419 }
420 #endif
421
422 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
423 {
424         struct cpudata *cpu;
425         int ret;
426         int i;
427
428         if (hwp_active) {
429                 intel_pstate_set_itmt_prio(policy->cpu);
430                 return;
431         }
432
433         if (!intel_pstate_get_ppc_enable_status())
434                 return;
435
436         cpu = all_cpu_data[policy->cpu];
437
438         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
439                                                   policy->cpu);
440         if (ret)
441                 return;
442
443         /*
444          * Check if the control value in _PSS is for PERF_CTL MSR, which should
445          * guarantee that the states returned by it map to the states in our
446          * list directly.
447          */
448         if (cpu->acpi_perf_data.control_register.space_id !=
449                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
450                 goto err;
451
452         /*
453          * If there is only one entry _PSS, simply ignore _PSS and continue as
454          * usual without taking _PSS into account
455          */
456         if (cpu->acpi_perf_data.state_count < 2)
457                 goto err;
458
459         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
460         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
461                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
462                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
463                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
464                          (u32) cpu->acpi_perf_data.states[i].power,
465                          (u32) cpu->acpi_perf_data.states[i].control);
466         }
467
468         /*
469          * The _PSS table doesn't contain whole turbo frequency range.
470          * This just contains +1 MHZ above the max non turbo frequency,
471          * with control value corresponding to max turbo ratio. But
472          * when cpufreq set policy is called, it will call with this
473          * max frequency, which will cause a reduced performance as
474          * this driver uses real max turbo frequency as the max
475          * frequency. So correct this frequency in _PSS table to
476          * correct max turbo frequency based on the turbo state.
477          * Also need to convert to MHz as _PSS freq is in MHz.
478          */
479         if (!global.turbo_disabled)
480                 cpu->acpi_perf_data.states[0].core_frequency =
481                                         policy->cpuinfo.max_freq / 1000;
482         cpu->valid_pss_table = true;
483         pr_debug("_PPC limits will be enforced\n");
484
485         return;
486
487  err:
488         cpu->valid_pss_table = false;
489         acpi_processor_unregister_performance(policy->cpu);
490 }
491
492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494         struct cpudata *cpu;
495
496         cpu = all_cpu_data[policy->cpu];
497         if (!cpu->valid_pss_table)
498                 return;
499
500         acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else
503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506
507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510 #endif
511
512 static signed int pid_calc(struct _pid *pid, int32_t busy)
513 {
514         signed int result;
515         int32_t pterm, dterm, fp_error;
516         int32_t integral_limit;
517
518         fp_error = pid->setpoint - busy;
519
520         if (abs(fp_error) <= pid->deadband)
521                 return 0;
522
523         pterm = mul_fp(pid->p_gain, fp_error);
524
525         pid->integral += fp_error;
526
527         /*
528          * We limit the integral here so that it will never
529          * get higher than 30.  This prevents it from becoming
530          * too large an input over long periods of time and allows
531          * it to get factored out sooner.
532          *
533          * The value of 30 was chosen through experimentation.
534          */
535         integral_limit = int_tofp(30);
536         if (pid->integral > integral_limit)
537                 pid->integral = integral_limit;
538         if (pid->integral < -integral_limit)
539                 pid->integral = -integral_limit;
540
541         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
542         pid->last_err = fp_error;
543
544         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
545         result = result + (1 << (FRAC_BITS-1));
546         return (signed int)fp_toint(result);
547 }
548
549 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
550 {
551         struct _pid *pid = &cpu->pid;
552
553         pid->p_gain = percent_fp(pid_params.p_gain_pct);
554         pid->d_gain = percent_fp(pid_params.d_gain_pct);
555         pid->i_gain = percent_fp(pid_params.i_gain_pct);
556         pid->setpoint = int_tofp(pid_params.setpoint);
557         pid->last_err  = pid->setpoint - int_tofp(100);
558         pid->deadband  = int_tofp(pid_params.deadband);
559         pid->integral  = 0;
560 }
561
562 static inline void update_turbo_state(void)
563 {
564         u64 misc_en;
565         struct cpudata *cpu;
566
567         cpu = all_cpu_data[0];
568         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
569         global.turbo_disabled =
570                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
571                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
572 }
573
574 static int min_perf_pct_min(void)
575 {
576         struct cpudata *cpu = all_cpu_data[0];
577         int turbo_pstate = cpu->pstate.turbo_pstate;
578
579         return turbo_pstate ?
580                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
581 }
582
583 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
584 {
585         u64 epb;
586         int ret;
587
588         if (!static_cpu_has(X86_FEATURE_EPB))
589                 return -ENXIO;
590
591         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
592         if (ret)
593                 return (s16)ret;
594
595         return (s16)(epb & 0x0f);
596 }
597
598 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
599 {
600         s16 epp;
601
602         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
603                 /*
604                  * When hwp_req_data is 0, means that caller didn't read
605                  * MSR_HWP_REQUEST, so need to read and get EPP.
606                  */
607                 if (!hwp_req_data) {
608                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
609                                             &hwp_req_data);
610                         if (epp)
611                                 return epp;
612                 }
613                 epp = (hwp_req_data >> 24) & 0xff;
614         } else {
615                 /* When there is no EPP present, HWP uses EPB settings */
616                 epp = intel_pstate_get_epb(cpu_data);
617         }
618
619         return epp;
620 }
621
622 static int intel_pstate_set_epb(int cpu, s16 pref)
623 {
624         u64 epb;
625         int ret;
626
627         if (!static_cpu_has(X86_FEATURE_EPB))
628                 return -ENXIO;
629
630         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
631         if (ret)
632                 return ret;
633
634         epb = (epb & ~0x0f) | pref;
635         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
636
637         return 0;
638 }
639
640 /*
641  * EPP/EPB display strings corresponding to EPP index in the
642  * energy_perf_strings[]
643  *      index           String
644  *-------------------------------------
645  *      0               default
646  *      1               performance
647  *      2               balance_performance
648  *      3               balance_power
649  *      4               power
650  */
651 static const char * const energy_perf_strings[] = {
652         "default",
653         "performance",
654         "balance_performance",
655         "balance_power",
656         "power",
657         NULL
658 };
659 static const unsigned int epp_values[] = {
660         HWP_EPP_PERFORMANCE,
661         HWP_EPP_BALANCE_PERFORMANCE,
662         HWP_EPP_BALANCE_POWERSAVE,
663         HWP_EPP_POWERSAVE
664 };
665
666 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
667 {
668         s16 epp;
669         int index = -EINVAL;
670
671         epp = intel_pstate_get_epp(cpu_data, 0);
672         if (epp < 0)
673                 return epp;
674
675         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
676                 if (epp == HWP_EPP_PERFORMANCE)
677                         return 1;
678                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
679                         return 2;
680                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
681                         return 3;
682                 else
683                         return 4;
684         } else if (static_cpu_has(X86_FEATURE_EPB)) {
685                 /*
686                  * Range:
687                  *      0x00-0x03       :       Performance
688                  *      0x04-0x07       :       Balance performance
689                  *      0x08-0x0B       :       Balance power
690                  *      0x0C-0x0F       :       Power
691                  * The EPB is a 4 bit value, but our ranges restrict the
692                  * value which can be set. Here only using top two bits
693                  * effectively.
694                  */
695                 index = (epp >> 2) + 1;
696         }
697
698         return index;
699 }
700
701 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
702                                               int pref_index)
703 {
704         int epp = -EINVAL;
705         int ret;
706
707         if (!pref_index)
708                 epp = cpu_data->epp_default;
709
710         mutex_lock(&intel_pstate_limits_lock);
711
712         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
713                 u64 value;
714
715                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
716                 if (ret)
717                         goto return_pref;
718
719                 value &= ~GENMASK_ULL(31, 24);
720
721                 if (epp == -EINVAL)
722                         epp = epp_values[pref_index - 1];
723
724                 value |= (u64)epp << 24;
725                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
726         } else {
727                 if (epp == -EINVAL)
728                         epp = (pref_index - 1) << 2;
729                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
730         }
731 return_pref:
732         mutex_unlock(&intel_pstate_limits_lock);
733
734         return ret;
735 }
736
737 static ssize_t show_energy_performance_available_preferences(
738                                 struct cpufreq_policy *policy, char *buf)
739 {
740         int i = 0;
741         int ret = 0;
742
743         while (energy_perf_strings[i] != NULL)
744                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
745
746         ret += sprintf(&buf[ret], "\n");
747
748         return ret;
749 }
750
751 cpufreq_freq_attr_ro(energy_performance_available_preferences);
752
753 static ssize_t store_energy_performance_preference(
754                 struct cpufreq_policy *policy, const char *buf, size_t count)
755 {
756         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
757         char str_preference[21];
758         int ret, i = 0;
759
760         ret = sscanf(buf, "%20s", str_preference);
761         if (ret != 1)
762                 return -EINVAL;
763
764         while (energy_perf_strings[i] != NULL) {
765                 if (!strcmp(str_preference, energy_perf_strings[i])) {
766                         intel_pstate_set_energy_pref_index(cpu_data, i);
767                         return count;
768                 }
769                 ++i;
770         }
771
772         return -EINVAL;
773 }
774
775 static ssize_t show_energy_performance_preference(
776                                 struct cpufreq_policy *policy, char *buf)
777 {
778         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
779         int preference;
780
781         preference = intel_pstate_get_energy_pref_index(cpu_data);
782         if (preference < 0)
783                 return preference;
784
785         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
786 }
787
788 cpufreq_freq_attr_rw(energy_performance_preference);
789
790 static struct freq_attr *hwp_cpufreq_attrs[] = {
791         &energy_performance_preference,
792         &energy_performance_available_preferences,
793         NULL,
794 };
795
796 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
797                                      int *current_max)
798 {
799         u64 cap;
800
801         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
802         if (global.no_turbo)
803                 *current_max = HWP_GUARANTEED_PERF(cap);
804         else
805                 *current_max = HWP_HIGHEST_PERF(cap);
806
807         *phy_max = HWP_HIGHEST_PERF(cap);
808 }
809
810 static void intel_pstate_hwp_set(unsigned int cpu)
811 {
812         struct cpudata *cpu_data = all_cpu_data[cpu];
813         int max, min;
814         u64 value;
815         s16 epp;
816
817         max = cpu_data->max_perf_ratio;
818         min = cpu_data->min_perf_ratio;
819
820         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
821                 min = max;
822
823         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
824
825         value &= ~HWP_MIN_PERF(~0L);
826         value |= HWP_MIN_PERF(min);
827
828         value &= ~HWP_MAX_PERF(~0L);
829         value |= HWP_MAX_PERF(max);
830
831         if (cpu_data->epp_policy == cpu_data->policy)
832                 goto skip_epp;
833
834         cpu_data->epp_policy = cpu_data->policy;
835
836         if (cpu_data->epp_saved >= 0) {
837                 epp = cpu_data->epp_saved;
838                 cpu_data->epp_saved = -EINVAL;
839                 goto update_epp;
840         }
841
842         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
843                 epp = intel_pstate_get_epp(cpu_data, value);
844                 cpu_data->epp_powersave = epp;
845                 /* If EPP read was failed, then don't try to write */
846                 if (epp < 0)
847                         goto skip_epp;
848
849                 epp = 0;
850         } else {
851                 /* skip setting EPP, when saved value is invalid */
852                 if (cpu_data->epp_powersave < 0)
853                         goto skip_epp;
854
855                 /*
856                  * No need to restore EPP when it is not zero. This
857                  * means:
858                  *  - Policy is not changed
859                  *  - user has manually changed
860                  *  - Error reading EPB
861                  */
862                 epp = intel_pstate_get_epp(cpu_data, value);
863                 if (epp)
864                         goto skip_epp;
865
866                 epp = cpu_data->epp_powersave;
867         }
868 update_epp:
869         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
870                 value &= ~GENMASK_ULL(31, 24);
871                 value |= (u64)epp << 24;
872         } else {
873                 intel_pstate_set_epb(cpu, epp);
874         }
875 skip_epp:
876         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
877 }
878
879 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
880 {
881         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
882
883         if (!hwp_active)
884                 return 0;
885
886         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
887
888         return 0;
889 }
890
891 static int intel_pstate_resume(struct cpufreq_policy *policy)
892 {
893         if (!hwp_active)
894                 return 0;
895
896         mutex_lock(&intel_pstate_limits_lock);
897
898         all_cpu_data[policy->cpu]->epp_policy = 0;
899         intel_pstate_hwp_set(policy->cpu);
900
901         mutex_unlock(&intel_pstate_limits_lock);
902
903         return 0;
904 }
905
906 static void intel_pstate_update_policies(void)
907 {
908         int cpu;
909
910         for_each_possible_cpu(cpu)
911                 cpufreq_update_policy(cpu);
912 }
913
914 /************************** debugfs begin ************************/
915 static int pid_param_set(void *data, u64 val)
916 {
917         unsigned int cpu;
918
919         *(u32 *)data = val;
920         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
921         for_each_possible_cpu(cpu)
922                 if (all_cpu_data[cpu])
923                         intel_pstate_pid_reset(all_cpu_data[cpu]);
924
925         return 0;
926 }
927
928 static int pid_param_get(void *data, u64 *val)
929 {
930         *val = *(u32 *)data;
931         return 0;
932 }
933 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
934
935 static struct dentry *debugfs_parent;
936
937 struct pid_param {
938         char *name;
939         void *value;
940         struct dentry *dentry;
941 };
942
943 static struct pid_param pid_files[] = {
944         {"sample_rate_ms", &pid_params.sample_rate_ms, },
945         {"d_gain_pct", &pid_params.d_gain_pct, },
946         {"i_gain_pct", &pid_params.i_gain_pct, },
947         {"deadband", &pid_params.deadband, },
948         {"setpoint", &pid_params.setpoint, },
949         {"p_gain_pct", &pid_params.p_gain_pct, },
950         {NULL, NULL, }
951 };
952
953 static void intel_pstate_debug_expose_params(void)
954 {
955         int i;
956
957         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
958         if (IS_ERR_OR_NULL(debugfs_parent))
959                 return;
960
961         for (i = 0; pid_files[i].name; i++) {
962                 struct dentry *dentry;
963
964                 dentry = debugfs_create_file(pid_files[i].name, 0660,
965                                              debugfs_parent, pid_files[i].value,
966                                              &fops_pid_param);
967                 if (!IS_ERR(dentry))
968                         pid_files[i].dentry = dentry;
969         }
970 }
971
972 static void intel_pstate_debug_hide_params(void)
973 {
974         int i;
975
976         if (IS_ERR_OR_NULL(debugfs_parent))
977                 return;
978
979         for (i = 0; pid_files[i].name; i++) {
980                 debugfs_remove(pid_files[i].dentry);
981                 pid_files[i].dentry = NULL;
982         }
983
984         debugfs_remove(debugfs_parent);
985         debugfs_parent = NULL;
986 }
987
988 /************************** debugfs end ************************/
989
990 /************************** sysfs begin ************************/
991 #define show_one(file_name, object)                                     \
992         static ssize_t show_##file_name                                 \
993         (struct kobject *kobj, struct attribute *attr, char *buf)       \
994         {                                                               \
995                 return sprintf(buf, "%u\n", global.object);             \
996         }
997
998 static ssize_t intel_pstate_show_status(char *buf);
999 static int intel_pstate_update_status(const char *buf, size_t size);
1000
1001 static ssize_t show_status(struct kobject *kobj,
1002                            struct attribute *attr, char *buf)
1003 {
1004         ssize_t ret;
1005
1006         mutex_lock(&intel_pstate_driver_lock);
1007         ret = intel_pstate_show_status(buf);
1008         mutex_unlock(&intel_pstate_driver_lock);
1009
1010         return ret;
1011 }
1012
1013 static ssize_t store_status(struct kobject *a, struct attribute *b,
1014                             const char *buf, size_t count)
1015 {
1016         char *p = memchr(buf, '\n', count);
1017         int ret;
1018
1019         mutex_lock(&intel_pstate_driver_lock);
1020         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1021         mutex_unlock(&intel_pstate_driver_lock);
1022
1023         return ret < 0 ? ret : count;
1024 }
1025
1026 static ssize_t show_turbo_pct(struct kobject *kobj,
1027                                 struct attribute *attr, char *buf)
1028 {
1029         struct cpudata *cpu;
1030         int total, no_turbo, turbo_pct;
1031         uint32_t turbo_fp;
1032
1033         mutex_lock(&intel_pstate_driver_lock);
1034
1035         if (!intel_pstate_driver) {
1036                 mutex_unlock(&intel_pstate_driver_lock);
1037                 return -EAGAIN;
1038         }
1039
1040         cpu = all_cpu_data[0];
1041
1042         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1043         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1044         turbo_fp = div_fp(no_turbo, total);
1045         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1046
1047         mutex_unlock(&intel_pstate_driver_lock);
1048
1049         return sprintf(buf, "%u\n", turbo_pct);
1050 }
1051
1052 static ssize_t show_num_pstates(struct kobject *kobj,
1053                                 struct attribute *attr, char *buf)
1054 {
1055         struct cpudata *cpu;
1056         int total;
1057
1058         mutex_lock(&intel_pstate_driver_lock);
1059
1060         if (!intel_pstate_driver) {
1061                 mutex_unlock(&intel_pstate_driver_lock);
1062                 return -EAGAIN;
1063         }
1064
1065         cpu = all_cpu_data[0];
1066         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1067
1068         mutex_unlock(&intel_pstate_driver_lock);
1069
1070         return sprintf(buf, "%u\n", total);
1071 }
1072
1073 static ssize_t show_no_turbo(struct kobject *kobj,
1074                              struct attribute *attr, char *buf)
1075 {
1076         ssize_t ret;
1077
1078         mutex_lock(&intel_pstate_driver_lock);
1079
1080         if (!intel_pstate_driver) {
1081                 mutex_unlock(&intel_pstate_driver_lock);
1082                 return -EAGAIN;
1083         }
1084
1085         update_turbo_state();
1086         if (global.turbo_disabled)
1087                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1088         else
1089                 ret = sprintf(buf, "%u\n", global.no_turbo);
1090
1091         mutex_unlock(&intel_pstate_driver_lock);
1092
1093         return ret;
1094 }
1095
1096 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1097                               const char *buf, size_t count)
1098 {
1099         unsigned int input;
1100         int ret;
1101
1102         ret = sscanf(buf, "%u", &input);
1103         if (ret != 1)
1104                 return -EINVAL;
1105
1106         mutex_lock(&intel_pstate_driver_lock);
1107
1108         if (!intel_pstate_driver) {
1109                 mutex_unlock(&intel_pstate_driver_lock);
1110                 return -EAGAIN;
1111         }
1112
1113         mutex_lock(&intel_pstate_limits_lock);
1114
1115         update_turbo_state();
1116         if (global.turbo_disabled) {
1117                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1118                 mutex_unlock(&intel_pstate_limits_lock);
1119                 mutex_unlock(&intel_pstate_driver_lock);
1120                 return -EPERM;
1121         }
1122
1123         global.no_turbo = clamp_t(int, input, 0, 1);
1124
1125         if (global.no_turbo) {
1126                 struct cpudata *cpu = all_cpu_data[0];
1127                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1128
1129                 /* Squash the global minimum into the permitted range. */
1130                 if (global.min_perf_pct > pct)
1131                         global.min_perf_pct = pct;
1132         }
1133
1134         mutex_unlock(&intel_pstate_limits_lock);
1135
1136         intel_pstate_update_policies();
1137
1138         mutex_unlock(&intel_pstate_driver_lock);
1139
1140         return count;
1141 }
1142
1143 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1144                                   const char *buf, size_t count)
1145 {
1146         unsigned int input;
1147         int ret;
1148
1149         ret = sscanf(buf, "%u", &input);
1150         if (ret != 1)
1151                 return -EINVAL;
1152
1153         mutex_lock(&intel_pstate_driver_lock);
1154
1155         if (!intel_pstate_driver) {
1156                 mutex_unlock(&intel_pstate_driver_lock);
1157                 return -EAGAIN;
1158         }
1159
1160         mutex_lock(&intel_pstate_limits_lock);
1161
1162         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1163
1164         mutex_unlock(&intel_pstate_limits_lock);
1165
1166         intel_pstate_update_policies();
1167
1168         mutex_unlock(&intel_pstate_driver_lock);
1169
1170         return count;
1171 }
1172
1173 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1174                                   const char *buf, size_t count)
1175 {
1176         unsigned int input;
1177         int ret;
1178
1179         ret = sscanf(buf, "%u", &input);
1180         if (ret != 1)
1181                 return -EINVAL;
1182
1183         mutex_lock(&intel_pstate_driver_lock);
1184
1185         if (!intel_pstate_driver) {
1186                 mutex_unlock(&intel_pstate_driver_lock);
1187                 return -EAGAIN;
1188         }
1189
1190         mutex_lock(&intel_pstate_limits_lock);
1191
1192         global.min_perf_pct = clamp_t(int, input,
1193                                       min_perf_pct_min(), global.max_perf_pct);
1194
1195         mutex_unlock(&intel_pstate_limits_lock);
1196
1197         intel_pstate_update_policies();
1198
1199         mutex_unlock(&intel_pstate_driver_lock);
1200
1201         return count;
1202 }
1203
1204 show_one(max_perf_pct, max_perf_pct);
1205 show_one(min_perf_pct, min_perf_pct);
1206
1207 define_one_global_rw(status);
1208 define_one_global_rw(no_turbo);
1209 define_one_global_rw(max_perf_pct);
1210 define_one_global_rw(min_perf_pct);
1211 define_one_global_ro(turbo_pct);
1212 define_one_global_ro(num_pstates);
1213
1214 static struct attribute *intel_pstate_attributes[] = {
1215         &status.attr,
1216         &no_turbo.attr,
1217         &turbo_pct.attr,
1218         &num_pstates.attr,
1219         NULL
1220 };
1221
1222 static const struct attribute_group intel_pstate_attr_group = {
1223         .attrs = intel_pstate_attributes,
1224 };
1225
1226 static void __init intel_pstate_sysfs_expose_params(void)
1227 {
1228         struct kobject *intel_pstate_kobject;
1229         int rc;
1230
1231         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1232                                                 &cpu_subsys.dev_root->kobj);
1233         if (WARN_ON(!intel_pstate_kobject))
1234                 return;
1235
1236         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1237         if (WARN_ON(rc))
1238                 return;
1239
1240         /*
1241          * If per cpu limits are enforced there are no global limits, so
1242          * return without creating max/min_perf_pct attributes
1243          */
1244         if (per_cpu_limits)
1245                 return;
1246
1247         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1248         WARN_ON(rc);
1249
1250         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1251         WARN_ON(rc);
1252
1253 }
1254 /************************** sysfs end ************************/
1255
1256 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1257 {
1258         /* First disable HWP notification interrupt as we don't process them */
1259         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1260                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1261
1262         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1263         cpudata->epp_policy = 0;
1264         if (cpudata->epp_default == -EINVAL)
1265                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1266 }
1267
1268 #define MSR_IA32_POWER_CTL_BIT_EE       19
1269
1270 /* Disable energy efficiency optimization */
1271 static void intel_pstate_disable_ee(int cpu)
1272 {
1273         u64 power_ctl;
1274         int ret;
1275
1276         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1277         if (ret)
1278                 return;
1279
1280         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1281                 pr_info("Disabling energy efficiency optimization\n");
1282                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1283                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1284         }
1285 }
1286
1287 static int atom_get_min_pstate(void)
1288 {
1289         u64 value;
1290
1291         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1292         return (value >> 8) & 0x7F;
1293 }
1294
1295 static int atom_get_max_pstate(void)
1296 {
1297         u64 value;
1298
1299         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1300         return (value >> 16) & 0x7F;
1301 }
1302
1303 static int atom_get_turbo_pstate(void)
1304 {
1305         u64 value;
1306
1307         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1308         return value & 0x7F;
1309 }
1310
1311 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1312 {
1313         u64 val;
1314         int32_t vid_fp;
1315         u32 vid;
1316
1317         val = (u64)pstate << 8;
1318         if (global.no_turbo && !global.turbo_disabled)
1319                 val |= (u64)1 << 32;
1320
1321         vid_fp = cpudata->vid.min + mul_fp(
1322                 int_tofp(pstate - cpudata->pstate.min_pstate),
1323                 cpudata->vid.ratio);
1324
1325         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1326         vid = ceiling_fp(vid_fp);
1327
1328         if (pstate > cpudata->pstate.max_pstate)
1329                 vid = cpudata->vid.turbo;
1330
1331         return val | vid;
1332 }
1333
1334 static int silvermont_get_scaling(void)
1335 {
1336         u64 value;
1337         int i;
1338         /* Defined in Table 35-6 from SDM (Sept 2015) */
1339         static int silvermont_freq_table[] = {
1340                 83300, 100000, 133300, 116700, 80000};
1341
1342         rdmsrl(MSR_FSB_FREQ, value);
1343         i = value & 0x7;
1344         WARN_ON(i > 4);
1345
1346         return silvermont_freq_table[i];
1347 }
1348
1349 static int airmont_get_scaling(void)
1350 {
1351         u64 value;
1352         int i;
1353         /* Defined in Table 35-10 from SDM (Sept 2015) */
1354         static int airmont_freq_table[] = {
1355                 83300, 100000, 133300, 116700, 80000,
1356                 93300, 90000, 88900, 87500};
1357
1358         rdmsrl(MSR_FSB_FREQ, value);
1359         i = value & 0xF;
1360         WARN_ON(i > 8);
1361
1362         return airmont_freq_table[i];
1363 }
1364
1365 static void atom_get_vid(struct cpudata *cpudata)
1366 {
1367         u64 value;
1368
1369         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1370         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1371         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1372         cpudata->vid.ratio = div_fp(
1373                 cpudata->vid.max - cpudata->vid.min,
1374                 int_tofp(cpudata->pstate.max_pstate -
1375                         cpudata->pstate.min_pstate));
1376
1377         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1378         cpudata->vid.turbo = value & 0x7f;
1379 }
1380
1381 static int core_get_min_pstate(void)
1382 {
1383         u64 value;
1384
1385         rdmsrl(MSR_PLATFORM_INFO, value);
1386         return (value >> 40) & 0xFF;
1387 }
1388
1389 static int core_get_max_pstate_physical(void)
1390 {
1391         u64 value;
1392
1393         rdmsrl(MSR_PLATFORM_INFO, value);
1394         return (value >> 8) & 0xFF;
1395 }
1396
1397 static int core_get_tdp_ratio(u64 plat_info)
1398 {
1399         /* Check how many TDP levels present */
1400         if (plat_info & 0x600000000) {
1401                 u64 tdp_ctrl;
1402                 u64 tdp_ratio;
1403                 int tdp_msr;
1404                 int err;
1405
1406                 /* Get the TDP level (0, 1, 2) to get ratios */
1407                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1408                 if (err)
1409                         return err;
1410
1411                 /* TDP MSR are continuous starting at 0x648 */
1412                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1413                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1414                 if (err)
1415                         return err;
1416
1417                 /* For level 1 and 2, bits[23:16] contain the ratio */
1418                 if (tdp_ctrl & 0x03)
1419                         tdp_ratio >>= 16;
1420
1421                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1422                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1423
1424                 return (int)tdp_ratio;
1425         }
1426
1427         return -ENXIO;
1428 }
1429
1430 static int core_get_max_pstate(void)
1431 {
1432         u64 tar;
1433         u64 plat_info;
1434         int max_pstate;
1435         int tdp_ratio;
1436         int err;
1437
1438         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1439         max_pstate = (plat_info >> 8) & 0xFF;
1440
1441         tdp_ratio = core_get_tdp_ratio(plat_info);
1442         if (tdp_ratio <= 0)
1443                 return max_pstate;
1444
1445         if (hwp_active) {
1446                 /* Turbo activation ratio is not used on HWP platforms */
1447                 return tdp_ratio;
1448         }
1449
1450         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1451         if (!err) {
1452                 int tar_levels;
1453
1454                 /* Do some sanity checking for safety */
1455                 tar_levels = tar & 0xff;
1456                 if (tdp_ratio - 1 == tar_levels) {
1457                         max_pstate = tar_levels;
1458                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1459                 }
1460         }
1461
1462         return max_pstate;
1463 }
1464
1465 static int core_get_turbo_pstate(void)
1466 {
1467         u64 value;
1468         int nont, ret;
1469
1470         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1471         nont = core_get_max_pstate();
1472         ret = (value) & 255;
1473         if (ret <= nont)
1474                 ret = nont;
1475         return ret;
1476 }
1477
1478 static inline int core_get_scaling(void)
1479 {
1480         return 100000;
1481 }
1482
1483 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1484 {
1485         u64 val;
1486
1487         val = (u64)pstate << 8;
1488         if (global.no_turbo && !global.turbo_disabled)
1489                 val |= (u64)1 << 32;
1490
1491         return val;
1492 }
1493
1494 static int knl_get_aperf_mperf_shift(void)
1495 {
1496         return 10;
1497 }
1498
1499 static int knl_get_turbo_pstate(void)
1500 {
1501         u64 value;
1502         int nont, ret;
1503
1504         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1505         nont = core_get_max_pstate();
1506         ret = (((value) >> 8) & 0xFF);
1507         if (ret <= nont)
1508                 ret = nont;
1509         return ret;
1510 }
1511
1512 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1513 {
1514         return global.no_turbo || global.turbo_disabled ?
1515                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1516 }
1517
1518 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1519 {
1520         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1521         cpu->pstate.current_pstate = pstate;
1522         /*
1523          * Generally, there is no guarantee that this code will always run on
1524          * the CPU being updated, so force the register update to run on the
1525          * right CPU.
1526          */
1527         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1528                       pstate_funcs.get_val(cpu, pstate));
1529 }
1530
1531 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1532 {
1533         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1534 }
1535
1536 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1537 {
1538         int pstate;
1539
1540         update_turbo_state();
1541         pstate = intel_pstate_get_base_pstate(cpu);
1542         pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1543         intel_pstate_set_pstate(cpu, pstate);
1544 }
1545
1546 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1547 {
1548         cpu->pstate.min_pstate = pstate_funcs.get_min();
1549         cpu->pstate.max_pstate = pstate_funcs.get_max();
1550         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1551         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1552         cpu->pstate.scaling = pstate_funcs.get_scaling();
1553         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1554         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1555
1556         if (pstate_funcs.get_aperf_mperf_shift)
1557                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1558
1559         if (pstate_funcs.get_vid)
1560                 pstate_funcs.get_vid(cpu);
1561
1562         intel_pstate_set_min_pstate(cpu);
1563 }
1564
1565 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1566 {
1567         struct sample *sample = &cpu->sample;
1568
1569         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1570 }
1571
1572 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1573 {
1574         u64 aperf, mperf;
1575         unsigned long flags;
1576         u64 tsc;
1577
1578         local_irq_save(flags);
1579         rdmsrl(MSR_IA32_APERF, aperf);
1580         rdmsrl(MSR_IA32_MPERF, mperf);
1581         tsc = rdtsc();
1582         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1583                 local_irq_restore(flags);
1584                 return false;
1585         }
1586         local_irq_restore(flags);
1587
1588         cpu->last_sample_time = cpu->sample.time;
1589         cpu->sample.time = time;
1590         cpu->sample.aperf = aperf;
1591         cpu->sample.mperf = mperf;
1592         cpu->sample.tsc =  tsc;
1593         cpu->sample.aperf -= cpu->prev_aperf;
1594         cpu->sample.mperf -= cpu->prev_mperf;
1595         cpu->sample.tsc -= cpu->prev_tsc;
1596
1597         cpu->prev_aperf = aperf;
1598         cpu->prev_mperf = mperf;
1599         cpu->prev_tsc = tsc;
1600         /*
1601          * First time this function is invoked in a given cycle, all of the
1602          * previous sample data fields are equal to zero or stale and they must
1603          * be populated with meaningful numbers for things to work, so assume
1604          * that sample.time will always be reset before setting the utilization
1605          * update hook and make the caller skip the sample then.
1606          */
1607         if (cpu->last_sample_time) {
1608                 intel_pstate_calc_avg_perf(cpu);
1609                 return true;
1610         }
1611         return false;
1612 }
1613
1614 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1615 {
1616         return mul_ext_fp(cpu->sample.core_avg_perf,
1617                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1618 }
1619
1620 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1621 {
1622         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1623                           cpu->sample.core_avg_perf);
1624 }
1625
1626 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1627 {
1628         struct sample *sample = &cpu->sample;
1629         int32_t busy_frac, boost;
1630         int target, avg_pstate;
1631
1632         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1633                            sample->tsc);
1634
1635         boost = cpu->iowait_boost;
1636         cpu->iowait_boost >>= 1;
1637
1638         if (busy_frac < boost)
1639                 busy_frac = boost;
1640
1641         sample->busy_scaled = busy_frac * 100;
1642
1643         target = global.no_turbo || global.turbo_disabled ?
1644                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1645         target += target >> 2;
1646         target = mul_fp(target, busy_frac);
1647         if (target < cpu->pstate.min_pstate)
1648                 target = cpu->pstate.min_pstate;
1649
1650         /*
1651          * If the average P-state during the previous cycle was higher than the
1652          * current target, add 50% of the difference to the target to reduce
1653          * possible performance oscillations and offset possible performance
1654          * loss related to moving the workload from one CPU to another within
1655          * a package/module.
1656          */
1657         avg_pstate = get_avg_pstate(cpu);
1658         if (avg_pstate > target)
1659                 target += (avg_pstate - target) >> 1;
1660
1661         return target;
1662 }
1663
1664 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1665 {
1666         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1667         u64 duration_ns;
1668
1669         /*
1670          * perf_scaled is the ratio of the average P-state during the last
1671          * sampling period to the P-state requested last time (in percent).
1672          *
1673          * That measures the system's response to the previous P-state
1674          * selection.
1675          */
1676         max_pstate = cpu->pstate.max_pstate_physical;
1677         current_pstate = cpu->pstate.current_pstate;
1678         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1679                                div_fp(100 * max_pstate, current_pstate));
1680
1681         /*
1682          * Since our utilization update callback will not run unless we are
1683          * in C0, check if the actual elapsed time is significantly greater (3x)
1684          * than our sample interval.  If it is, then we were idle for a long
1685          * enough period of time to adjust our performance metric.
1686          */
1687         duration_ns = cpu->sample.time - cpu->last_sample_time;
1688         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1689                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1690                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1691         } else {
1692                 sample_ratio = div_fp(100 * (cpu->sample.mperf << cpu->aperf_mperf_shift),
1693                                       cpu->sample.tsc);
1694                 if (sample_ratio < int_tofp(1))
1695                         perf_scaled = 0;
1696         }
1697
1698         cpu->sample.busy_scaled = perf_scaled;
1699         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1700 }
1701
1702 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1703 {
1704         int max_pstate = intel_pstate_get_base_pstate(cpu);
1705         int min_pstate;
1706
1707         min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1708         max_pstate = max(min_pstate, cpu->max_perf_ratio);
1709         return clamp_t(int, pstate, min_pstate, max_pstate);
1710 }
1711
1712 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1713 {
1714         if (pstate == cpu->pstate.current_pstate)
1715                 return;
1716
1717         cpu->pstate.current_pstate = pstate;
1718         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1719 }
1720
1721 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1722 {
1723         int from = cpu->pstate.current_pstate;
1724         struct sample *sample;
1725
1726         update_turbo_state();
1727
1728         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1729         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1730         intel_pstate_update_pstate(cpu, target_pstate);
1731
1732         sample = &cpu->sample;
1733         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1734                 fp_toint(sample->busy_scaled),
1735                 from,
1736                 cpu->pstate.current_pstate,
1737                 sample->mperf,
1738                 sample->aperf,
1739                 sample->tsc,
1740                 get_avg_frequency(cpu),
1741                 fp_toint(cpu->iowait_boost * 100));
1742 }
1743
1744 static void intel_pstate_update_util_pid(struct update_util_data *data,
1745                                          u64 time, unsigned int flags)
1746 {
1747         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1748         u64 delta_ns = time - cpu->sample.time;
1749
1750         if ((s64)delta_ns < pid_params.sample_rate_ns)
1751                 return;
1752
1753         if (intel_pstate_sample(cpu, time)) {
1754                 int target_pstate;
1755
1756                 target_pstate = get_target_pstate_use_performance(cpu);
1757                 intel_pstate_adjust_pstate(cpu, target_pstate);
1758         }
1759 }
1760
1761 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1762                                      unsigned int flags)
1763 {
1764         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765         u64 delta_ns;
1766
1767         if (flags & SCHED_CPUFREQ_IOWAIT) {
1768                 cpu->iowait_boost = int_tofp(1);
1769         } else if (cpu->iowait_boost) {
1770                 /* Clear iowait_boost if the CPU may have been idle. */
1771                 delta_ns = time - cpu->last_update;
1772                 if (delta_ns > TICK_NSEC)
1773                         cpu->iowait_boost = 0;
1774         }
1775         cpu->last_update = time;
1776         delta_ns = time - cpu->sample.time;
1777         if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1778                 return;
1779
1780         if (intel_pstate_sample(cpu, time)) {
1781                 int target_pstate;
1782
1783                 target_pstate = get_target_pstate_use_cpu_load(cpu);
1784                 intel_pstate_adjust_pstate(cpu, target_pstate);
1785         }
1786 }
1787
1788 static struct pstate_funcs core_funcs = {
1789         .get_max = core_get_max_pstate,
1790         .get_max_physical = core_get_max_pstate_physical,
1791         .get_min = core_get_min_pstate,
1792         .get_turbo = core_get_turbo_pstate,
1793         .get_scaling = core_get_scaling,
1794         .get_val = core_get_val,
1795         .update_util = intel_pstate_update_util_pid,
1796 };
1797
1798 static const struct pstate_funcs silvermont_funcs = {
1799         .get_max = atom_get_max_pstate,
1800         .get_max_physical = atom_get_max_pstate,
1801         .get_min = atom_get_min_pstate,
1802         .get_turbo = atom_get_turbo_pstate,
1803         .get_val = atom_get_val,
1804         .get_scaling = silvermont_get_scaling,
1805         .get_vid = atom_get_vid,
1806         .update_util = intel_pstate_update_util,
1807 };
1808
1809 static const struct pstate_funcs airmont_funcs = {
1810         .get_max = atom_get_max_pstate,
1811         .get_max_physical = atom_get_max_pstate,
1812         .get_min = atom_get_min_pstate,
1813         .get_turbo = atom_get_turbo_pstate,
1814         .get_val = atom_get_val,
1815         .get_scaling = airmont_get_scaling,
1816         .get_vid = atom_get_vid,
1817         .update_util = intel_pstate_update_util,
1818 };
1819
1820 static const struct pstate_funcs knl_funcs = {
1821         .get_max = core_get_max_pstate,
1822         .get_max_physical = core_get_max_pstate_physical,
1823         .get_min = core_get_min_pstate,
1824         .get_turbo = knl_get_turbo_pstate,
1825         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1826         .get_scaling = core_get_scaling,
1827         .get_val = core_get_val,
1828         .update_util = intel_pstate_update_util_pid,
1829 };
1830
1831 static const struct pstate_funcs bxt_funcs = {
1832         .get_max = core_get_max_pstate,
1833         .get_max_physical = core_get_max_pstate_physical,
1834         .get_min = core_get_min_pstate,
1835         .get_turbo = core_get_turbo_pstate,
1836         .get_scaling = core_get_scaling,
1837         .get_val = core_get_val,
1838         .update_util = intel_pstate_update_util,
1839 };
1840
1841 #define ICPU(model, policy) \
1842         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1843                         (unsigned long)&policy }
1844
1845 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1846         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1847         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1848         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1849         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1850         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1851         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1852         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1853         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1854         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1855         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1856         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1857         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1858         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1859         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1860         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1861         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1862         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1863         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1864         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_funcs),
1865         ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1866         {}
1867 };
1868 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1869
1870 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1871         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1872         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1873         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1874         {}
1875 };
1876
1877 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1878         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1879         {}
1880 };
1881
1882 static bool pid_in_use(void);
1883
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886         struct cpudata *cpu;
1887
1888         cpu = all_cpu_data[cpunum];
1889
1890         if (!cpu) {
1891                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892                 if (!cpu)
1893                         return -ENOMEM;
1894
1895                 all_cpu_data[cpunum] = cpu;
1896
1897                 cpu->epp_default = -EINVAL;
1898                 cpu->epp_powersave = -EINVAL;
1899                 cpu->epp_saved = -EINVAL;
1900         }
1901
1902         cpu = all_cpu_data[cpunum];
1903
1904         cpu->cpu = cpunum;
1905
1906         if (hwp_active) {
1907                 const struct x86_cpu_id *id;
1908
1909                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910                 if (id)
1911                         intel_pstate_disable_ee(cpunum);
1912
1913                 intel_pstate_hwp_enable(cpu);
1914         } else if (pid_in_use()) {
1915                 intel_pstate_pid_reset(cpu);
1916         }
1917
1918         intel_pstate_get_cpu_pstates(cpu);
1919
1920         pr_debug("controlling: cpu %d\n", cpunum);
1921
1922         return 0;
1923 }
1924
1925 static unsigned int intel_pstate_get(unsigned int cpu_num)
1926 {
1927         struct cpudata *cpu = all_cpu_data[cpu_num];
1928
1929         return cpu ? get_avg_frequency(cpu) : 0;
1930 }
1931
1932 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933 {
1934         struct cpudata *cpu = all_cpu_data[cpu_num];
1935
1936         if (hwp_active)
1937                 return;
1938
1939         if (cpu->update_util_set)
1940                 return;
1941
1942         /* Prevent intel_pstate_update_util() from using stale data. */
1943         cpu->sample.time = 0;
1944         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1945                                      pstate_funcs.update_util);
1946         cpu->update_util_set = true;
1947 }
1948
1949 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1950 {
1951         struct cpudata *cpu_data = all_cpu_data[cpu];
1952
1953         if (!cpu_data->update_util_set)
1954                 return;
1955
1956         cpufreq_remove_update_util_hook(cpu);
1957         cpu_data->update_util_set = false;
1958         synchronize_sched();
1959 }
1960
1961 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1962 {
1963         return global.turbo_disabled || global.no_turbo ?
1964                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1965 }
1966
1967 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1968                                             struct cpudata *cpu)
1969 {
1970         int max_freq = intel_pstate_get_max_freq(cpu);
1971         int32_t max_policy_perf, min_policy_perf;
1972         int max_state, turbo_max;
1973
1974         /*
1975          * HWP needs some special consideration, because on BDX the
1976          * HWP_REQUEST uses abstract value to represent performance
1977          * rather than pure ratios.
1978          */
1979         if (hwp_active) {
1980                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1981         } else {
1982                 max_state = intel_pstate_get_base_pstate(cpu);
1983                 turbo_max = cpu->pstate.turbo_pstate;
1984         }
1985
1986         max_policy_perf = max_state * policy->max / max_freq;
1987         if (policy->max == policy->min) {
1988                 min_policy_perf = max_policy_perf;
1989         } else {
1990                 min_policy_perf = max_state * policy->min / max_freq;
1991                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1992                                           0, max_policy_perf);
1993         }
1994
1995         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1996                  policy->cpu, max_state,
1997                  min_policy_perf, max_policy_perf);
1998
1999         /* Normalize user input to [min_perf, max_perf] */
2000         if (per_cpu_limits) {
2001                 cpu->min_perf_ratio = min_policy_perf;
2002                 cpu->max_perf_ratio = max_policy_perf;
2003         } else {
2004                 int32_t global_min, global_max;
2005
2006                 /* Global limits are in percent of the maximum turbo P-state. */
2007                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2008                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2009                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2010
2011                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2012                          global_min, global_max);
2013
2014                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2015                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2016                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2017                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2018
2019                 /* Make sure min_perf <= max_perf */
2020                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2021                                           cpu->max_perf_ratio);
2022
2023         }
2024         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2025                  cpu->max_perf_ratio,
2026                  cpu->min_perf_ratio);
2027 }
2028
2029 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2030 {
2031         struct cpudata *cpu;
2032
2033         if (!policy->cpuinfo.max_freq)
2034                 return -ENODEV;
2035
2036         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2037                  policy->cpuinfo.max_freq, policy->max);
2038
2039         cpu = all_cpu_data[policy->cpu];
2040         cpu->policy = policy->policy;
2041
2042         mutex_lock(&intel_pstate_limits_lock);
2043
2044         intel_pstate_update_perf_limits(policy, cpu);
2045
2046         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2047                 /*
2048                  * NOHZ_FULL CPUs need this as the governor callback may not
2049                  * be invoked on them.
2050                  */
2051                 intel_pstate_clear_update_util_hook(policy->cpu);
2052                 intel_pstate_max_within_limits(cpu);
2053         } else {
2054                 intel_pstate_set_update_util_hook(policy->cpu);
2055         }
2056
2057         if (hwp_active)
2058                 intel_pstate_hwp_set(policy->cpu);
2059
2060         mutex_unlock(&intel_pstate_limits_lock);
2061
2062         return 0;
2063 }
2064
2065 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2066                                          struct cpudata *cpu)
2067 {
2068         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2069             policy->max < policy->cpuinfo.max_freq &&
2070             policy->max > cpu->pstate.max_freq) {
2071                 pr_debug("policy->max > max non turbo frequency\n");
2072                 policy->max = policy->cpuinfo.max_freq;
2073         }
2074 }
2075
2076 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2077 {
2078         struct cpudata *cpu = all_cpu_data[policy->cpu];
2079
2080         update_turbo_state();
2081         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2082                                      intel_pstate_get_max_freq(cpu));
2083
2084         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2085             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2086                 return -EINVAL;
2087
2088         intel_pstate_adjust_policy_max(policy, cpu);
2089
2090         return 0;
2091 }
2092
2093 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2094 {
2095         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2096 }
2097
2098 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2099 {
2100         pr_debug("CPU %d exiting\n", policy->cpu);
2101
2102         intel_pstate_clear_update_util_hook(policy->cpu);
2103         if (hwp_active)
2104                 intel_pstate_hwp_save_state(policy);
2105         else
2106                 intel_cpufreq_stop_cpu(policy);
2107 }
2108
2109 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2110 {
2111         intel_pstate_exit_perf_limits(policy);
2112
2113         policy->fast_switch_possible = false;
2114
2115         return 0;
2116 }
2117
2118 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2119 {
2120         struct cpudata *cpu;
2121         int rc;
2122
2123         rc = intel_pstate_init_cpu(policy->cpu);
2124         if (rc)
2125                 return rc;
2126
2127         cpu = all_cpu_data[policy->cpu];
2128
2129         cpu->max_perf_ratio = 0xFF;
2130         cpu->min_perf_ratio = 0;
2131
2132         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2133         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2134
2135         /* cpuinfo and default policy values */
2136         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137         update_turbo_state();
2138         policy->cpuinfo.max_freq = global.turbo_disabled ?
2139                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2140         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2141
2142         intel_pstate_init_acpi_perf_limits(policy);
2143         cpumask_set_cpu(policy->cpu, policy->cpus);
2144
2145         policy->fast_switch_possible = true;
2146
2147         return 0;
2148 }
2149
2150 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2151 {
2152         int ret = __intel_pstate_cpu_init(policy);
2153
2154         if (ret)
2155                 return ret;
2156
2157         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2158         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2159                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2160         else
2161                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2162
2163         return 0;
2164 }
2165
2166 static struct cpufreq_driver intel_pstate = {
2167         .flags          = CPUFREQ_CONST_LOOPS,
2168         .verify         = intel_pstate_verify_policy,
2169         .setpolicy      = intel_pstate_set_policy,
2170         .suspend        = intel_pstate_hwp_save_state,
2171         .resume         = intel_pstate_resume,
2172         .get            = intel_pstate_get,
2173         .init           = intel_pstate_cpu_init,
2174         .exit           = intel_pstate_cpu_exit,
2175         .stop_cpu       = intel_pstate_stop_cpu,
2176         .name           = "intel_pstate",
2177 };
2178
2179 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2180 {
2181         struct cpudata *cpu = all_cpu_data[policy->cpu];
2182
2183         update_turbo_state();
2184         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2185                                      intel_pstate_get_max_freq(cpu));
2186
2187         intel_pstate_adjust_policy_max(policy, cpu);
2188
2189         intel_pstate_update_perf_limits(policy, cpu);
2190
2191         return 0;
2192 }
2193
2194 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2195                                 unsigned int target_freq,
2196                                 unsigned int relation)
2197 {
2198         struct cpudata *cpu = all_cpu_data[policy->cpu];
2199         struct cpufreq_freqs freqs;
2200         int target_pstate;
2201
2202         update_turbo_state();
2203
2204         freqs.old = policy->cur;
2205         freqs.new = target_freq;
2206
2207         cpufreq_freq_transition_begin(policy, &freqs);
2208         switch (relation) {
2209         case CPUFREQ_RELATION_L:
2210                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2211                 break;
2212         case CPUFREQ_RELATION_H:
2213                 target_pstate = freqs.new / cpu->pstate.scaling;
2214                 break;
2215         default:
2216                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2217                 break;
2218         }
2219         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2220         if (target_pstate != cpu->pstate.current_pstate) {
2221                 cpu->pstate.current_pstate = target_pstate;
2222                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2223                               pstate_funcs.get_val(cpu, target_pstate));
2224         }
2225         freqs.new = target_pstate * cpu->pstate.scaling;
2226         cpufreq_freq_transition_end(policy, &freqs, false);
2227
2228         return 0;
2229 }
2230
2231 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2232                                               unsigned int target_freq)
2233 {
2234         struct cpudata *cpu = all_cpu_data[policy->cpu];
2235         int target_pstate;
2236
2237         update_turbo_state();
2238
2239         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2240         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2241         intel_pstate_update_pstate(cpu, target_pstate);
2242         return target_pstate * cpu->pstate.scaling;
2243 }
2244
2245 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2246 {
2247         int ret = __intel_pstate_cpu_init(policy);
2248
2249         if (ret)
2250                 return ret;
2251
2252         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2253         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2254         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2255         policy->cur = policy->cpuinfo.min_freq;
2256
2257         return 0;
2258 }
2259
2260 static struct cpufreq_driver intel_cpufreq = {
2261         .flags          = CPUFREQ_CONST_LOOPS,
2262         .verify         = intel_cpufreq_verify_policy,
2263         .target         = intel_cpufreq_target,
2264         .fast_switch    = intel_cpufreq_fast_switch,
2265         .init           = intel_cpufreq_cpu_init,
2266         .exit           = intel_pstate_cpu_exit,
2267         .stop_cpu       = intel_cpufreq_stop_cpu,
2268         .name           = "intel_cpufreq",
2269 };
2270
2271 static struct cpufreq_driver *default_driver = &intel_pstate;
2272
2273 static bool pid_in_use(void)
2274 {
2275         return intel_pstate_driver == &intel_pstate &&
2276                 pstate_funcs.update_util == intel_pstate_update_util_pid;
2277 }
2278
2279 static void intel_pstate_driver_cleanup(void)
2280 {
2281         unsigned int cpu;
2282
2283         get_online_cpus();
2284         for_each_online_cpu(cpu) {
2285                 if (all_cpu_data[cpu]) {
2286                         if (intel_pstate_driver == &intel_pstate)
2287                                 intel_pstate_clear_update_util_hook(cpu);
2288
2289                         kfree(all_cpu_data[cpu]);
2290                         all_cpu_data[cpu] = NULL;
2291                 }
2292         }
2293         put_online_cpus();
2294         intel_pstate_driver = NULL;
2295 }
2296
2297 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2298 {
2299         int ret;
2300
2301         memset(&global, 0, sizeof(global));
2302         global.max_perf_pct = 100;
2303
2304         intel_pstate_driver = driver;
2305         ret = cpufreq_register_driver(intel_pstate_driver);
2306         if (ret) {
2307                 intel_pstate_driver_cleanup();
2308                 return ret;
2309         }
2310
2311         global.min_perf_pct = min_perf_pct_min();
2312
2313         if (pid_in_use())
2314                 intel_pstate_debug_expose_params();
2315
2316         return 0;
2317 }
2318
2319 static int intel_pstate_unregister_driver(void)
2320 {
2321         if (hwp_active)
2322                 return -EBUSY;
2323
2324         if (pid_in_use())
2325                 intel_pstate_debug_hide_params();
2326
2327         cpufreq_unregister_driver(intel_pstate_driver);
2328         intel_pstate_driver_cleanup();
2329
2330         return 0;
2331 }
2332
2333 static ssize_t intel_pstate_show_status(char *buf)
2334 {
2335         if (!intel_pstate_driver)
2336                 return sprintf(buf, "off\n");
2337
2338         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2339                                         "active" : "passive");
2340 }
2341
2342 static int intel_pstate_update_status(const char *buf, size_t size)
2343 {
2344         int ret;
2345
2346         if (size == 3 && !strncmp(buf, "off", size))
2347                 return intel_pstate_driver ?
2348                         intel_pstate_unregister_driver() : -EINVAL;
2349
2350         if (size == 6 && !strncmp(buf, "active", size)) {
2351                 if (intel_pstate_driver) {
2352                         if (intel_pstate_driver == &intel_pstate)
2353                                 return 0;
2354
2355                         ret = intel_pstate_unregister_driver();
2356                         if (ret)
2357                                 return ret;
2358                 }
2359
2360                 return intel_pstate_register_driver(&intel_pstate);
2361         }
2362
2363         if (size == 7 && !strncmp(buf, "passive", size)) {
2364                 if (intel_pstate_driver) {
2365                         if (intel_pstate_driver == &intel_cpufreq)
2366                                 return 0;
2367
2368                         ret = intel_pstate_unregister_driver();
2369                         if (ret)
2370                                 return ret;
2371                 }
2372
2373                 return intel_pstate_register_driver(&intel_cpufreq);
2374         }
2375
2376         return -EINVAL;
2377 }
2378
2379 static int no_load __initdata;
2380 static int no_hwp __initdata;
2381 static int hwp_only __initdata;
2382 static unsigned int force_load __initdata;
2383
2384 static int __init intel_pstate_msrs_not_valid(void)
2385 {
2386         if (!pstate_funcs.get_max() ||
2387             !pstate_funcs.get_min() ||
2388             !pstate_funcs.get_turbo())
2389                 return -ENODEV;
2390
2391         return 0;
2392 }
2393
2394 #ifdef CONFIG_ACPI
2395 static void intel_pstate_use_acpi_profile(void)
2396 {
2397         switch (acpi_gbl_FADT.preferred_profile) {
2398         case PM_MOBILE:
2399         case PM_TABLET:
2400         case PM_APPLIANCE_PC:
2401         case PM_DESKTOP:
2402         case PM_WORKSTATION:
2403                 pstate_funcs.update_util = intel_pstate_update_util;
2404         }
2405 }
2406 #else
2407 static void intel_pstate_use_acpi_profile(void)
2408 {
2409 }
2410 #endif
2411
2412 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2413 {
2414         pstate_funcs.get_max   = funcs->get_max;
2415         pstate_funcs.get_max_physical = funcs->get_max_physical;
2416         pstate_funcs.get_min   = funcs->get_min;
2417         pstate_funcs.get_turbo = funcs->get_turbo;
2418         pstate_funcs.get_scaling = funcs->get_scaling;
2419         pstate_funcs.get_val   = funcs->get_val;
2420         pstate_funcs.get_vid   = funcs->get_vid;
2421         pstate_funcs.update_util = funcs->update_util;
2422         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2423
2424         intel_pstate_use_acpi_profile();
2425 }
2426
2427 #ifdef CONFIG_ACPI
2428
2429 static bool __init intel_pstate_no_acpi_pss(void)
2430 {
2431         int i;
2432
2433         for_each_possible_cpu(i) {
2434                 acpi_status status;
2435                 union acpi_object *pss;
2436                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2437                 struct acpi_processor *pr = per_cpu(processors, i);
2438
2439                 if (!pr)
2440                         continue;
2441
2442                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2443                 if (ACPI_FAILURE(status))
2444                         continue;
2445
2446                 pss = buffer.pointer;
2447                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2448                         kfree(pss);
2449                         return false;
2450                 }
2451
2452                 kfree(pss);
2453         }
2454
2455         return true;
2456 }
2457
2458 static bool __init intel_pstate_has_acpi_ppc(void)
2459 {
2460         int i;
2461
2462         for_each_possible_cpu(i) {
2463                 struct acpi_processor *pr = per_cpu(processors, i);
2464
2465                 if (!pr)
2466                         continue;
2467                 if (acpi_has_method(pr->handle, "_PPC"))
2468                         return true;
2469         }
2470         return false;
2471 }
2472
2473 enum {
2474         PSS,
2475         PPC,
2476 };
2477
2478 struct hw_vendor_info {
2479         u16  valid;
2480         char oem_id[ACPI_OEM_ID_SIZE];
2481         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2482         int  oem_pwr_table;
2483 };
2484
2485 /* Hardware vendor-specific info that has its own power management modes */
2486 static struct hw_vendor_info vendor_info[] __initdata = {
2487         {1, "HP    ", "ProLiant", PSS},
2488         {1, "ORACLE", "X4-2    ", PPC},
2489         {1, "ORACLE", "X4-2L   ", PPC},
2490         {1, "ORACLE", "X4-2B   ", PPC},
2491         {1, "ORACLE", "X3-2    ", PPC},
2492         {1, "ORACLE", "X3-2L   ", PPC},
2493         {1, "ORACLE", "X3-2B   ", PPC},
2494         {1, "ORACLE", "X4470M2 ", PPC},
2495         {1, "ORACLE", "X4270M3 ", PPC},
2496         {1, "ORACLE", "X4270M2 ", PPC},
2497         {1, "ORACLE", "X4170M2 ", PPC},
2498         {1, "ORACLE", "X4170 M3", PPC},
2499         {1, "ORACLE", "X4275 M3", PPC},
2500         {1, "ORACLE", "X6-2    ", PPC},
2501         {1, "ORACLE", "Sudbury ", PPC},
2502         {0, "", ""},
2503 };
2504
2505 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2506 {
2507         struct acpi_table_header hdr;
2508         struct hw_vendor_info *v_info;
2509         const struct x86_cpu_id *id;
2510         u64 misc_pwr;
2511
2512         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2513         if (id) {
2514                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2515                 if ( misc_pwr & (1 << 8))
2516                         return true;
2517         }
2518
2519         if (acpi_disabled ||
2520             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2521                 return false;
2522
2523         for (v_info = vendor_info; v_info->valid; v_info++) {
2524                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2525                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2526                                                 ACPI_OEM_TABLE_ID_SIZE))
2527                         switch (v_info->oem_pwr_table) {
2528                         case PSS:
2529                                 return intel_pstate_no_acpi_pss();
2530                         case PPC:
2531                                 return intel_pstate_has_acpi_ppc() &&
2532                                         (!force_load);
2533                         }
2534         }
2535
2536         return false;
2537 }
2538
2539 static void intel_pstate_request_control_from_smm(void)
2540 {
2541         /*
2542          * It may be unsafe to request P-states control from SMM if _PPC support
2543          * has not been enabled.
2544          */
2545         if (acpi_ppc)
2546                 acpi_processor_pstate_control();
2547 }
2548 #else /* CONFIG_ACPI not enabled */
2549 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2550 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2551 static inline void intel_pstate_request_control_from_smm(void) {}
2552 #endif /* CONFIG_ACPI */
2553
2554 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2555         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2556         {}
2557 };
2558
2559 static int __init intel_pstate_init(void)
2560 {
2561         int rc;
2562
2563         if (no_load)
2564                 return -ENODEV;
2565
2566         if (x86_match_cpu(hwp_support_ids)) {
2567                 copy_cpu_funcs(&core_funcs);
2568                 if (no_hwp) {
2569                         pstate_funcs.update_util = intel_pstate_update_util;
2570                 } else {
2571                         hwp_active++;
2572                         intel_pstate.attr = hwp_cpufreq_attrs;
2573                         goto hwp_cpu_matched;
2574                 }
2575         } else {
2576                 const struct x86_cpu_id *id;
2577
2578                 id = x86_match_cpu(intel_pstate_cpu_ids);
2579                 if (!id)
2580                         return -ENODEV;
2581
2582                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2583         }
2584
2585         if (intel_pstate_msrs_not_valid())
2586                 return -ENODEV;
2587
2588 hwp_cpu_matched:
2589         /*
2590          * The Intel pstate driver will be ignored if the platform
2591          * firmware has its own power management modes.
2592          */
2593         if (intel_pstate_platform_pwr_mgmt_exists())
2594                 return -ENODEV;
2595
2596         if (!hwp_active && hwp_only)
2597                 return -ENOTSUPP;
2598
2599         pr_info("Intel P-state driver initializing\n");
2600
2601         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2602         if (!all_cpu_data)
2603                 return -ENOMEM;
2604
2605         intel_pstate_request_control_from_smm();
2606
2607         intel_pstate_sysfs_expose_params();
2608
2609         mutex_lock(&intel_pstate_driver_lock);
2610         rc = intel_pstate_register_driver(default_driver);
2611         mutex_unlock(&intel_pstate_driver_lock);
2612         if (rc)
2613                 return rc;
2614
2615         if (hwp_active)
2616                 pr_info("HWP enabled\n");
2617
2618         return 0;
2619 }
2620 device_initcall(intel_pstate_init);
2621
2622 static int __init intel_pstate_setup(char *str)
2623 {
2624         if (!str)
2625                 return -EINVAL;
2626
2627         if (!strcmp(str, "disable")) {
2628                 no_load = 1;
2629         } else if (!strcmp(str, "passive")) {
2630                 pr_info("Passive mode enabled\n");
2631                 default_driver = &intel_cpufreq;
2632                 no_hwp = 1;
2633         }
2634         if (!strcmp(str, "no_hwp")) {
2635                 pr_info("HWP disabled\n");
2636                 no_hwp = 1;
2637         }
2638         if (!strcmp(str, "force"))
2639                 force_load = 1;
2640         if (!strcmp(str, "hwp_only"))
2641                 hwp_only = 1;
2642         if (!strcmp(str, "per_cpu_perf_limits"))
2643                 per_cpu_limits = true;
2644
2645 #ifdef CONFIG_ACPI
2646         if (!strcmp(str, "support_acpi_ppc"))
2647                 acpi_ppc = true;
2648 #endif
2649
2650         return 0;
2651 }
2652 early_param("intel_pstate", intel_pstate_setup);
2653
2654 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2655 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2656 MODULE_LICENSE("GPL");