Merge branches 'clk-renesas', 'clk-qcom', 'clk-mtk', 'clk-milbeaut' and 'clk-imx...
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline int32_t percent_fp(int percent)
82 {
83         return div_fp(percent, 100);
84 }
85
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88         return (x * y) >> EXT_FRAC_BITS;
89 }
90
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93         return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95
96 static inline int32_t percent_ext_fp(int percent)
97 {
98         return div_ext_fp(percent, 100);
99 }
100
101 /**
102  * struct sample -      Store performance sample
103  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
104  *                      performance during last sample period
105  * @busy_scaled:        Scaled busy value which is used to calculate next
106  *                      P state. This can be different than core_avg_perf
107  *                      to account for cpu idle period
108  * @aperf:              Difference of actual performance frequency clock count
109  *                      read from APERF MSR between last and current sample
110  * @mperf:              Difference of maximum performance frequency clock count
111  *                      read from MPERF MSR between last and current sample
112  * @tsc:                Difference of time stamp counter between last and
113  *                      current sample
114  * @time:               Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120         int32_t core_avg_perf;
121         int32_t busy_scaled;
122         u64 aperf;
123         u64 mperf;
124         u64 tsc;
125         u64 time;
126 };
127
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:     Current requested P state
131  * @min_pstate:         Min P state possible for this platform
132  * @max_pstate:         Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *                      This can be higher than the max_pstate which can
135  *                      be limited by platform thermal design power limits
136  * @scaling:            Scaling factor to  convert frequency to cpufreq
137  *                      frequency units
138  * @turbo_pstate:       Max Turbo P state possible for this platform
139  * @max_freq:           @max_pstate frequency in cpufreq units
140  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145         int     current_pstate;
146         int     min_pstate;
147         int     max_pstate;
148         int     max_pstate_physical;
149         int     scaling;
150         int     turbo_pstate;
151         unsigned int max_freq;
152         unsigned int turbo_freq;
153 };
154
155 /**
156  * struct vid_data -    Stores voltage information data
157  * @min:                VID data for this platform corresponding to
158  *                      the lowest P state
159  * @max:                VID data corresponding to the highest P State.
160  * @turbo:              VID data for turbo P state
161  * @ratio:              Ratio of (vid max - vid min) /
162  *                      (max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169         int min;
170         int max;
171         int turbo;
172         int32_t ratio;
173 };
174
175 /**
176  * struct global_params - Global parameters, mostly tunable via sysfs.
177  * @no_turbo:           Whether or not to use turbo P-states.
178  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
179  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
180  *                      not the maximum reported turbo P-state is different from
181  *                      the maximum reported non-turbo one.
182  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
185  *                      P-state capacity.
186  */
187 struct global_params {
188         bool no_turbo;
189         bool turbo_disabled;
190         int max_perf_pct;
191         int min_perf_pct;
192 };
193
194 /**
195  * struct cpudata -     Per CPU instance data storage
196  * @cpu:                CPU number for this instance data
197  * @policy:             CPUFreq policy value
198  * @update_util:        CPUFreq utility callback information
199  * @update_util_set:    CPUFreq utility callback is set
200  * @iowait_boost:       iowait-related boost fraction
201  * @last_update:        Time of the last update.
202  * @pstate:             Stores P state limits for this CPU
203  * @vid:                Stores VID limits for this CPU
204  * @last_sample_time:   Last Sample time
205  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
206  *                      This shift is a multiplier to mperf delta to
207  *                      calculate CPU busy.
208  * @prev_aperf:         Last APERF value read from APERF MSR
209  * @prev_mperf:         Last MPERF value read from MPERF MSR
210  * @prev_tsc:           Last timestamp counter (TSC) value
211  * @prev_cummulative_iowait: IO Wait time difference from last and
212  *                      current sample
213  * @sample:             Storage for storing last Sample data
214  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
215  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
216  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
217  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
218  * @epp_powersave:      Last saved HWP energy performance preference
219  *                      (EPP) or energy performance bias (EPB),
220  *                      when policy switched to performance
221  * @epp_policy:         Last saved policy used to set EPP/EPB
222  * @epp_default:        Power on default HWP energy performance
223  *                      preference/bias
224  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
225  *                      operation
226  * @hwp_req_cached:     Cached value of the last HWP Request MSR
227  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
228  * @last_io_update:     Last time when IO wake flag was set
229  * @sched_flags:        Store scheduler flags for possible cross CPU update
230  * @hwp_boost_min:      Last HWP boosted min performance
231  *
232  * This structure stores per CPU instance data for all CPUs.
233  */
234 struct cpudata {
235         int cpu;
236
237         unsigned int policy;
238         struct update_util_data update_util;
239         bool   update_util_set;
240
241         struct pstate_data pstate;
242         struct vid_data vid;
243
244         u64     last_update;
245         u64     last_sample_time;
246         u64     aperf_mperf_shift;
247         u64     prev_aperf;
248         u64     prev_mperf;
249         u64     prev_tsc;
250         u64     prev_cummulative_iowait;
251         struct sample sample;
252         int32_t min_perf_ratio;
253         int32_t max_perf_ratio;
254 #ifdef CONFIG_ACPI
255         struct acpi_processor_performance acpi_perf_data;
256         bool valid_pss_table;
257 #endif
258         unsigned int iowait_boost;
259         s16 epp_powersave;
260         s16 epp_policy;
261         s16 epp_default;
262         s16 epp_saved;
263         u64 hwp_req_cached;
264         u64 hwp_cap_cached;
265         u64 last_io_update;
266         unsigned int sched_flags;
267         u32 hwp_boost_min;
268 };
269
270 static struct cpudata **all_cpu_data;
271
272 /**
273  * struct pstate_funcs - Per CPU model specific callbacks
274  * @get_max:            Callback to get maximum non turbo effective P state
275  * @get_max_physical:   Callback to get maximum non turbo physical P state
276  * @get_min:            Callback to get minimum P state
277  * @get_turbo:          Callback to get turbo P state
278  * @get_scaling:        Callback to get frequency scaling factor
279  * @get_val:            Callback to convert P state to actual MSR write value
280  * @get_vid:            Callback to get VID data for Atom platforms
281  *
282  * Core and Atom CPU models have different way to get P State limits. This
283  * structure is used to store those callbacks.
284  */
285 struct pstate_funcs {
286         int (*get_max)(void);
287         int (*get_max_physical)(void);
288         int (*get_min)(void);
289         int (*get_turbo)(void);
290         int (*get_scaling)(void);
291         int (*get_aperf_mperf_shift)(void);
292         u64 (*get_val)(struct cpudata*, int pstate);
293         void (*get_vid)(struct cpudata *);
294 };
295
296 static struct pstate_funcs pstate_funcs __read_mostly;
297
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320                 return true;
321
322         return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327         if (intel_pstate_acpi_pm_profile_server())
328                 return true;
329
330         return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338         sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345         struct cppc_perf_caps cppc_perf;
346         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347         int ret;
348
349         ret = cppc_get_perf_caps(cpu, &cppc_perf);
350         if (ret)
351                 return;
352
353         /*
354          * The priorities can be set regardless of whether or not
355          * sched_set_itmt_support(true) has been called and it is valid to
356          * update them at any time after it has been called.
357          */
358         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359
360         if (max_highest_perf <= min_highest_perf) {
361                 if (cppc_perf.highest_perf > max_highest_perf)
362                         max_highest_perf = cppc_perf.highest_perf;
363
364                 if (cppc_perf.highest_perf < min_highest_perf)
365                         min_highest_perf = cppc_perf.highest_perf;
366
367                 if (max_highest_perf > min_highest_perf) {
368                         /*
369                          * This code can be run during CPU online under the
370                          * CPU hotplug locks, so sched_set_itmt_support()
371                          * cannot be called from here.  Queue up a work item
372                          * to invoke it.
373                          */
374                         schedule_work(&sched_itmt_work);
375                 }
376         }
377 }
378
379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381         struct cppc_perf_caps cppc_perf;
382         int ret;
383
384         ret = cppc_get_perf_caps(cpu, &cppc_perf);
385         if (ret)
386                 return ret;
387
388         if (cppc_perf.guaranteed_perf)
389                 return cppc_perf.guaranteed_perf;
390
391         return cppc_perf.nominal_perf;
392 }
393
394 #else /* CONFIG_ACPI_CPPC_LIB */
395 static void intel_pstate_set_itmt_prio(int cpu)
396 {
397 }
398 #endif /* CONFIG_ACPI_CPPC_LIB */
399
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402         struct cpudata *cpu;
403         int ret;
404         int i;
405
406         if (hwp_active) {
407                 intel_pstate_set_itmt_prio(policy->cpu);
408                 return;
409         }
410
411         if (!intel_pstate_get_ppc_enable_status())
412                 return;
413
414         cpu = all_cpu_data[policy->cpu];
415
416         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417                                                   policy->cpu);
418         if (ret)
419                 return;
420
421         /*
422          * Check if the control value in _PSS is for PERF_CTL MSR, which should
423          * guarantee that the states returned by it map to the states in our
424          * list directly.
425          */
426         if (cpu->acpi_perf_data.control_register.space_id !=
427                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
428                 goto err;
429
430         /*
431          * If there is only one entry _PSS, simply ignore _PSS and continue as
432          * usual without taking _PSS into account
433          */
434         if (cpu->acpi_perf_data.state_count < 2)
435                 goto err;
436
437         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
440                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
442                          (u32) cpu->acpi_perf_data.states[i].power,
443                          (u32) cpu->acpi_perf_data.states[i].control);
444         }
445
446         /*
447          * The _PSS table doesn't contain whole turbo frequency range.
448          * This just contains +1 MHZ above the max non turbo frequency,
449          * with control value corresponding to max turbo ratio. But
450          * when cpufreq set policy is called, it will call with this
451          * max frequency, which will cause a reduced performance as
452          * this driver uses real max turbo frequency as the max
453          * frequency. So correct this frequency in _PSS table to
454          * correct max turbo frequency based on the turbo state.
455          * Also need to convert to MHz as _PSS freq is in MHz.
456          */
457         if (!global.turbo_disabled)
458                 cpu->acpi_perf_data.states[0].core_frequency =
459                                         policy->cpuinfo.max_freq / 1000;
460         cpu->valid_pss_table = true;
461         pr_debug("_PPC limits will be enforced\n");
462
463         return;
464
465  err:
466         cpu->valid_pss_table = false;
467         acpi_processor_unregister_performance(policy->cpu);
468 }
469
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471 {
472         struct cpudata *cpu;
473
474         cpu = all_cpu_data[policy->cpu];
475         if (!cpu->valid_pss_table)
476                 return;
477
478         acpi_processor_unregister_performance(policy->cpu);
479 }
480 #else /* CONFIG_ACPI */
481 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 {
483 }
484
485 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488
489 static inline bool intel_pstate_acpi_pm_profile_server(void)
490 {
491         return false;
492 }
493 #endif /* CONFIG_ACPI */
494
495 #ifndef CONFIG_ACPI_CPPC_LIB
496 static int intel_pstate_get_cppc_guranteed(int cpu)
497 {
498         return -ENOTSUPP;
499 }
500 #endif /* CONFIG_ACPI_CPPC_LIB */
501
502 static inline void update_turbo_state(void)
503 {
504         u64 misc_en;
505         struct cpudata *cpu;
506
507         cpu = all_cpu_data[0];
508         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509         global.turbo_disabled =
510                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
511                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
512 }
513
514 static int min_perf_pct_min(void)
515 {
516         struct cpudata *cpu = all_cpu_data[0];
517         int turbo_pstate = cpu->pstate.turbo_pstate;
518
519         return turbo_pstate ?
520                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 }
522
523 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
524 {
525         u64 epb;
526         int ret;
527
528         if (!static_cpu_has(X86_FEATURE_EPB))
529                 return -ENXIO;
530
531         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
532         if (ret)
533                 return (s16)ret;
534
535         return (s16)(epb & 0x0f);
536 }
537
538 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
539 {
540         s16 epp;
541
542         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
543                 /*
544                  * When hwp_req_data is 0, means that caller didn't read
545                  * MSR_HWP_REQUEST, so need to read and get EPP.
546                  */
547                 if (!hwp_req_data) {
548                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
549                                             &hwp_req_data);
550                         if (epp)
551                                 return epp;
552                 }
553                 epp = (hwp_req_data >> 24) & 0xff;
554         } else {
555                 /* When there is no EPP present, HWP uses EPB settings */
556                 epp = intel_pstate_get_epb(cpu_data);
557         }
558
559         return epp;
560 }
561
562 static int intel_pstate_set_epb(int cpu, s16 pref)
563 {
564         u64 epb;
565         int ret;
566
567         if (!static_cpu_has(X86_FEATURE_EPB))
568                 return -ENXIO;
569
570         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
571         if (ret)
572                 return ret;
573
574         epb = (epb & ~0x0f) | pref;
575         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576
577         return 0;
578 }
579
580 /*
581  * EPP/EPB display strings corresponding to EPP index in the
582  * energy_perf_strings[]
583  *      index           String
584  *-------------------------------------
585  *      0               default
586  *      1               performance
587  *      2               balance_performance
588  *      3               balance_power
589  *      4               power
590  */
591 static const char * const energy_perf_strings[] = {
592         "default",
593         "performance",
594         "balance_performance",
595         "balance_power",
596         "power",
597         NULL
598 };
599 static const unsigned int epp_values[] = {
600         HWP_EPP_PERFORMANCE,
601         HWP_EPP_BALANCE_PERFORMANCE,
602         HWP_EPP_BALANCE_POWERSAVE,
603         HWP_EPP_POWERSAVE
604 };
605
606 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
607 {
608         s16 epp;
609         int index = -EINVAL;
610
611         epp = intel_pstate_get_epp(cpu_data, 0);
612         if (epp < 0)
613                 return epp;
614
615         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
616                 if (epp == HWP_EPP_PERFORMANCE)
617                         return 1;
618                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
619                         return 2;
620                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
621                         return 3;
622                 else
623                         return 4;
624         } else if (static_cpu_has(X86_FEATURE_EPB)) {
625                 /*
626                  * Range:
627                  *      0x00-0x03       :       Performance
628                  *      0x04-0x07       :       Balance performance
629                  *      0x08-0x0B       :       Balance power
630                  *      0x0C-0x0F       :       Power
631                  * The EPB is a 4 bit value, but our ranges restrict the
632                  * value which can be set. Here only using top two bits
633                  * effectively.
634                  */
635                 index = (epp >> 2) + 1;
636         }
637
638         return index;
639 }
640
641 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
642                                               int pref_index)
643 {
644         int epp = -EINVAL;
645         int ret;
646
647         if (!pref_index)
648                 epp = cpu_data->epp_default;
649
650         mutex_lock(&intel_pstate_limits_lock);
651
652         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
653                 u64 value;
654
655                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
656                 if (ret)
657                         goto return_pref;
658
659                 value &= ~GENMASK_ULL(31, 24);
660
661                 if (epp == -EINVAL)
662                         epp = epp_values[pref_index - 1];
663
664                 value |= (u64)epp << 24;
665                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
666         } else {
667                 if (epp == -EINVAL)
668                         epp = (pref_index - 1) << 2;
669                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
670         }
671 return_pref:
672         mutex_unlock(&intel_pstate_limits_lock);
673
674         return ret;
675 }
676
677 static ssize_t show_energy_performance_available_preferences(
678                                 struct cpufreq_policy *policy, char *buf)
679 {
680         int i = 0;
681         int ret = 0;
682
683         while (energy_perf_strings[i] != NULL)
684                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
685
686         ret += sprintf(&buf[ret], "\n");
687
688         return ret;
689 }
690
691 cpufreq_freq_attr_ro(energy_performance_available_preferences);
692
693 static ssize_t store_energy_performance_preference(
694                 struct cpufreq_policy *policy, const char *buf, size_t count)
695 {
696         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
697         char str_preference[21];
698         int ret;
699
700         ret = sscanf(buf, "%20s", str_preference);
701         if (ret != 1)
702                 return -EINVAL;
703
704         ret = match_string(energy_perf_strings, -1, str_preference);
705         if (ret < 0)
706                 return ret;
707
708         intel_pstate_set_energy_pref_index(cpu_data, ret);
709         return count;
710 }
711
712 static ssize_t show_energy_performance_preference(
713                                 struct cpufreq_policy *policy, char *buf)
714 {
715         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
716         int preference;
717
718         preference = intel_pstate_get_energy_pref_index(cpu_data);
719         if (preference < 0)
720                 return preference;
721
722         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
723 }
724
725 cpufreq_freq_attr_rw(energy_performance_preference);
726
727 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
728 {
729         struct cpudata *cpu;
730         u64 cap;
731         int ratio;
732
733         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
734         if (ratio <= 0) {
735                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
736                 ratio = HWP_GUARANTEED_PERF(cap);
737         }
738
739         cpu = all_cpu_data[policy->cpu];
740
741         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
742 }
743
744 cpufreq_freq_attr_ro(base_frequency);
745
746 static struct freq_attr *hwp_cpufreq_attrs[] = {
747         &energy_performance_preference,
748         &energy_performance_available_preferences,
749         &base_frequency,
750         NULL,
751 };
752
753 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
754                                      int *current_max)
755 {
756         u64 cap;
757
758         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
759         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
760         if (global.no_turbo)
761                 *current_max = HWP_GUARANTEED_PERF(cap);
762         else
763                 *current_max = HWP_HIGHEST_PERF(cap);
764
765         *phy_max = HWP_HIGHEST_PERF(cap);
766 }
767
768 static void intel_pstate_hwp_set(unsigned int cpu)
769 {
770         struct cpudata *cpu_data = all_cpu_data[cpu];
771         int max, min;
772         u64 value;
773         s16 epp;
774
775         max = cpu_data->max_perf_ratio;
776         min = cpu_data->min_perf_ratio;
777
778         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
779                 min = max;
780
781         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
782
783         value &= ~HWP_MIN_PERF(~0L);
784         value |= HWP_MIN_PERF(min);
785
786         value &= ~HWP_MAX_PERF(~0L);
787         value |= HWP_MAX_PERF(max);
788
789         if (cpu_data->epp_policy == cpu_data->policy)
790                 goto skip_epp;
791
792         cpu_data->epp_policy = cpu_data->policy;
793
794         if (cpu_data->epp_saved >= 0) {
795                 epp = cpu_data->epp_saved;
796                 cpu_data->epp_saved = -EINVAL;
797                 goto update_epp;
798         }
799
800         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
801                 epp = intel_pstate_get_epp(cpu_data, value);
802                 cpu_data->epp_powersave = epp;
803                 /* If EPP read was failed, then don't try to write */
804                 if (epp < 0)
805                         goto skip_epp;
806
807                 epp = 0;
808         } else {
809                 /* skip setting EPP, when saved value is invalid */
810                 if (cpu_data->epp_powersave < 0)
811                         goto skip_epp;
812
813                 /*
814                  * No need to restore EPP when it is not zero. This
815                  * means:
816                  *  - Policy is not changed
817                  *  - user has manually changed
818                  *  - Error reading EPB
819                  */
820                 epp = intel_pstate_get_epp(cpu_data, value);
821                 if (epp)
822                         goto skip_epp;
823
824                 epp = cpu_data->epp_powersave;
825         }
826 update_epp:
827         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
828                 value &= ~GENMASK_ULL(31, 24);
829                 value |= (u64)epp << 24;
830         } else {
831                 intel_pstate_set_epb(cpu, epp);
832         }
833 skip_epp:
834         WRITE_ONCE(cpu_data->hwp_req_cached, value);
835         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
836 }
837
838 static void intel_pstate_hwp_force_min_perf(int cpu)
839 {
840         u64 value;
841         int min_perf;
842
843         value = all_cpu_data[cpu]->hwp_req_cached;
844         value &= ~GENMASK_ULL(31, 0);
845         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
846
847         /* Set hwp_max = hwp_min */
848         value |= HWP_MAX_PERF(min_perf);
849         value |= HWP_MIN_PERF(min_perf);
850
851         /* Set EPP/EPB to min */
852         if (static_cpu_has(X86_FEATURE_HWP_EPP))
853                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
854         else
855                 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
856
857         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
858 }
859
860 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
861 {
862         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
863
864         if (!hwp_active)
865                 return 0;
866
867         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
868
869         return 0;
870 }
871
872 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
873
874 static int intel_pstate_resume(struct cpufreq_policy *policy)
875 {
876         if (!hwp_active)
877                 return 0;
878
879         mutex_lock(&intel_pstate_limits_lock);
880
881         if (policy->cpu == 0)
882                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
883
884         all_cpu_data[policy->cpu]->epp_policy = 0;
885         intel_pstate_hwp_set(policy->cpu);
886
887         mutex_unlock(&intel_pstate_limits_lock);
888
889         return 0;
890 }
891
892 static void intel_pstate_update_policies(void)
893 {
894         int cpu;
895
896         for_each_possible_cpu(cpu)
897                 cpufreq_update_policy(cpu);
898 }
899
900 /************************** sysfs begin ************************/
901 #define show_one(file_name, object)                                     \
902         static ssize_t show_##file_name                                 \
903         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
904         {                                                               \
905                 return sprintf(buf, "%u\n", global.object);             \
906         }
907
908 static ssize_t intel_pstate_show_status(char *buf);
909 static int intel_pstate_update_status(const char *buf, size_t size);
910
911 static ssize_t show_status(struct kobject *kobj,
912                            struct kobj_attribute *attr, char *buf)
913 {
914         ssize_t ret;
915
916         mutex_lock(&intel_pstate_driver_lock);
917         ret = intel_pstate_show_status(buf);
918         mutex_unlock(&intel_pstate_driver_lock);
919
920         return ret;
921 }
922
923 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
924                             const char *buf, size_t count)
925 {
926         char *p = memchr(buf, '\n', count);
927         int ret;
928
929         mutex_lock(&intel_pstate_driver_lock);
930         ret = intel_pstate_update_status(buf, p ? p - buf : count);
931         mutex_unlock(&intel_pstate_driver_lock);
932
933         return ret < 0 ? ret : count;
934 }
935
936 static ssize_t show_turbo_pct(struct kobject *kobj,
937                                 struct kobj_attribute *attr, char *buf)
938 {
939         struct cpudata *cpu;
940         int total, no_turbo, turbo_pct;
941         uint32_t turbo_fp;
942
943         mutex_lock(&intel_pstate_driver_lock);
944
945         if (!intel_pstate_driver) {
946                 mutex_unlock(&intel_pstate_driver_lock);
947                 return -EAGAIN;
948         }
949
950         cpu = all_cpu_data[0];
951
952         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
953         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
954         turbo_fp = div_fp(no_turbo, total);
955         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
956
957         mutex_unlock(&intel_pstate_driver_lock);
958
959         return sprintf(buf, "%u\n", turbo_pct);
960 }
961
962 static ssize_t show_num_pstates(struct kobject *kobj,
963                                 struct kobj_attribute *attr, char *buf)
964 {
965         struct cpudata *cpu;
966         int total;
967
968         mutex_lock(&intel_pstate_driver_lock);
969
970         if (!intel_pstate_driver) {
971                 mutex_unlock(&intel_pstate_driver_lock);
972                 return -EAGAIN;
973         }
974
975         cpu = all_cpu_data[0];
976         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
977
978         mutex_unlock(&intel_pstate_driver_lock);
979
980         return sprintf(buf, "%u\n", total);
981 }
982
983 static ssize_t show_no_turbo(struct kobject *kobj,
984                              struct kobj_attribute *attr, char *buf)
985 {
986         ssize_t ret;
987
988         mutex_lock(&intel_pstate_driver_lock);
989
990         if (!intel_pstate_driver) {
991                 mutex_unlock(&intel_pstate_driver_lock);
992                 return -EAGAIN;
993         }
994
995         update_turbo_state();
996         if (global.turbo_disabled)
997                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
998         else
999                 ret = sprintf(buf, "%u\n", global.no_turbo);
1000
1001         mutex_unlock(&intel_pstate_driver_lock);
1002
1003         return ret;
1004 }
1005
1006 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1007                               const char *buf, size_t count)
1008 {
1009         unsigned int input;
1010         int ret;
1011
1012         ret = sscanf(buf, "%u", &input);
1013         if (ret != 1)
1014                 return -EINVAL;
1015
1016         mutex_lock(&intel_pstate_driver_lock);
1017
1018         if (!intel_pstate_driver) {
1019                 mutex_unlock(&intel_pstate_driver_lock);
1020                 return -EAGAIN;
1021         }
1022
1023         mutex_lock(&intel_pstate_limits_lock);
1024
1025         update_turbo_state();
1026         if (global.turbo_disabled) {
1027                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1028                 mutex_unlock(&intel_pstate_limits_lock);
1029                 mutex_unlock(&intel_pstate_driver_lock);
1030                 return -EPERM;
1031         }
1032
1033         global.no_turbo = clamp_t(int, input, 0, 1);
1034
1035         if (global.no_turbo) {
1036                 struct cpudata *cpu = all_cpu_data[0];
1037                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1038
1039                 /* Squash the global minimum into the permitted range. */
1040                 if (global.min_perf_pct > pct)
1041                         global.min_perf_pct = pct;
1042         }
1043
1044         mutex_unlock(&intel_pstate_limits_lock);
1045
1046         intel_pstate_update_policies();
1047
1048         mutex_unlock(&intel_pstate_driver_lock);
1049
1050         return count;
1051 }
1052
1053 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1054                                   const char *buf, size_t count)
1055 {
1056         unsigned int input;
1057         int ret;
1058
1059         ret = sscanf(buf, "%u", &input);
1060         if (ret != 1)
1061                 return -EINVAL;
1062
1063         mutex_lock(&intel_pstate_driver_lock);
1064
1065         if (!intel_pstate_driver) {
1066                 mutex_unlock(&intel_pstate_driver_lock);
1067                 return -EAGAIN;
1068         }
1069
1070         mutex_lock(&intel_pstate_limits_lock);
1071
1072         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1073
1074         mutex_unlock(&intel_pstate_limits_lock);
1075
1076         intel_pstate_update_policies();
1077
1078         mutex_unlock(&intel_pstate_driver_lock);
1079
1080         return count;
1081 }
1082
1083 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1084                                   const char *buf, size_t count)
1085 {
1086         unsigned int input;
1087         int ret;
1088
1089         ret = sscanf(buf, "%u", &input);
1090         if (ret != 1)
1091                 return -EINVAL;
1092
1093         mutex_lock(&intel_pstate_driver_lock);
1094
1095         if (!intel_pstate_driver) {
1096                 mutex_unlock(&intel_pstate_driver_lock);
1097                 return -EAGAIN;
1098         }
1099
1100         mutex_lock(&intel_pstate_limits_lock);
1101
1102         global.min_perf_pct = clamp_t(int, input,
1103                                       min_perf_pct_min(), global.max_perf_pct);
1104
1105         mutex_unlock(&intel_pstate_limits_lock);
1106
1107         intel_pstate_update_policies();
1108
1109         mutex_unlock(&intel_pstate_driver_lock);
1110
1111         return count;
1112 }
1113
1114 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1115                                 struct kobj_attribute *attr, char *buf)
1116 {
1117         return sprintf(buf, "%u\n", hwp_boost);
1118 }
1119
1120 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1121                                        struct kobj_attribute *b,
1122                                        const char *buf, size_t count)
1123 {
1124         unsigned int input;
1125         int ret;
1126
1127         ret = kstrtouint(buf, 10, &input);
1128         if (ret)
1129                 return ret;
1130
1131         mutex_lock(&intel_pstate_driver_lock);
1132         hwp_boost = !!input;
1133         intel_pstate_update_policies();
1134         mutex_unlock(&intel_pstate_driver_lock);
1135
1136         return count;
1137 }
1138
1139 show_one(max_perf_pct, max_perf_pct);
1140 show_one(min_perf_pct, min_perf_pct);
1141
1142 define_one_global_rw(status);
1143 define_one_global_rw(no_turbo);
1144 define_one_global_rw(max_perf_pct);
1145 define_one_global_rw(min_perf_pct);
1146 define_one_global_ro(turbo_pct);
1147 define_one_global_ro(num_pstates);
1148 define_one_global_rw(hwp_dynamic_boost);
1149
1150 static struct attribute *intel_pstate_attributes[] = {
1151         &status.attr,
1152         &no_turbo.attr,
1153         &turbo_pct.attr,
1154         &num_pstates.attr,
1155         NULL
1156 };
1157
1158 static const struct attribute_group intel_pstate_attr_group = {
1159         .attrs = intel_pstate_attributes,
1160 };
1161
1162 static void __init intel_pstate_sysfs_expose_params(void)
1163 {
1164         struct kobject *intel_pstate_kobject;
1165         int rc;
1166
1167         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1168                                                 &cpu_subsys.dev_root->kobj);
1169         if (WARN_ON(!intel_pstate_kobject))
1170                 return;
1171
1172         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1173         if (WARN_ON(rc))
1174                 return;
1175
1176         /*
1177          * If per cpu limits are enforced there are no global limits, so
1178          * return without creating max/min_perf_pct attributes
1179          */
1180         if (per_cpu_limits)
1181                 return;
1182
1183         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1184         WARN_ON(rc);
1185
1186         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1187         WARN_ON(rc);
1188
1189         if (hwp_active) {
1190                 rc = sysfs_create_file(intel_pstate_kobject,
1191                                        &hwp_dynamic_boost.attr);
1192                 WARN_ON(rc);
1193         }
1194 }
1195 /************************** sysfs end ************************/
1196
1197 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1198 {
1199         /* First disable HWP notification interrupt as we don't process them */
1200         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1201                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1202
1203         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1204         cpudata->epp_policy = 0;
1205         if (cpudata->epp_default == -EINVAL)
1206                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1207 }
1208
1209 #define MSR_IA32_POWER_CTL_BIT_EE       19
1210
1211 /* Disable energy efficiency optimization */
1212 static void intel_pstate_disable_ee(int cpu)
1213 {
1214         u64 power_ctl;
1215         int ret;
1216
1217         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1218         if (ret)
1219                 return;
1220
1221         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1222                 pr_info("Disabling energy efficiency optimization\n");
1223                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1224                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1225         }
1226 }
1227
1228 static int atom_get_min_pstate(void)
1229 {
1230         u64 value;
1231
1232         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1233         return (value >> 8) & 0x7F;
1234 }
1235
1236 static int atom_get_max_pstate(void)
1237 {
1238         u64 value;
1239
1240         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1241         return (value >> 16) & 0x7F;
1242 }
1243
1244 static int atom_get_turbo_pstate(void)
1245 {
1246         u64 value;
1247
1248         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1249         return value & 0x7F;
1250 }
1251
1252 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1253 {
1254         u64 val;
1255         int32_t vid_fp;
1256         u32 vid;
1257
1258         val = (u64)pstate << 8;
1259         if (global.no_turbo && !global.turbo_disabled)
1260                 val |= (u64)1 << 32;
1261
1262         vid_fp = cpudata->vid.min + mul_fp(
1263                 int_tofp(pstate - cpudata->pstate.min_pstate),
1264                 cpudata->vid.ratio);
1265
1266         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1267         vid = ceiling_fp(vid_fp);
1268
1269         if (pstate > cpudata->pstate.max_pstate)
1270                 vid = cpudata->vid.turbo;
1271
1272         return val | vid;
1273 }
1274
1275 static int silvermont_get_scaling(void)
1276 {
1277         u64 value;
1278         int i;
1279         /* Defined in Table 35-6 from SDM (Sept 2015) */
1280         static int silvermont_freq_table[] = {
1281                 83300, 100000, 133300, 116700, 80000};
1282
1283         rdmsrl(MSR_FSB_FREQ, value);
1284         i = value & 0x7;
1285         WARN_ON(i > 4);
1286
1287         return silvermont_freq_table[i];
1288 }
1289
1290 static int airmont_get_scaling(void)
1291 {
1292         u64 value;
1293         int i;
1294         /* Defined in Table 35-10 from SDM (Sept 2015) */
1295         static int airmont_freq_table[] = {
1296                 83300, 100000, 133300, 116700, 80000,
1297                 93300, 90000, 88900, 87500};
1298
1299         rdmsrl(MSR_FSB_FREQ, value);
1300         i = value & 0xF;
1301         WARN_ON(i > 8);
1302
1303         return airmont_freq_table[i];
1304 }
1305
1306 static void atom_get_vid(struct cpudata *cpudata)
1307 {
1308         u64 value;
1309
1310         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1311         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1312         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1313         cpudata->vid.ratio = div_fp(
1314                 cpudata->vid.max - cpudata->vid.min,
1315                 int_tofp(cpudata->pstate.max_pstate -
1316                         cpudata->pstate.min_pstate));
1317
1318         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1319         cpudata->vid.turbo = value & 0x7f;
1320 }
1321
1322 static int core_get_min_pstate(void)
1323 {
1324         u64 value;
1325
1326         rdmsrl(MSR_PLATFORM_INFO, value);
1327         return (value >> 40) & 0xFF;
1328 }
1329
1330 static int core_get_max_pstate_physical(void)
1331 {
1332         u64 value;
1333
1334         rdmsrl(MSR_PLATFORM_INFO, value);
1335         return (value >> 8) & 0xFF;
1336 }
1337
1338 static int core_get_tdp_ratio(u64 plat_info)
1339 {
1340         /* Check how many TDP levels present */
1341         if (plat_info & 0x600000000) {
1342                 u64 tdp_ctrl;
1343                 u64 tdp_ratio;
1344                 int tdp_msr;
1345                 int err;
1346
1347                 /* Get the TDP level (0, 1, 2) to get ratios */
1348                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1349                 if (err)
1350                         return err;
1351
1352                 /* TDP MSR are continuous starting at 0x648 */
1353                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1354                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1355                 if (err)
1356                         return err;
1357
1358                 /* For level 1 and 2, bits[23:16] contain the ratio */
1359                 if (tdp_ctrl & 0x03)
1360                         tdp_ratio >>= 16;
1361
1362                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1363                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1364
1365                 return (int)tdp_ratio;
1366         }
1367
1368         return -ENXIO;
1369 }
1370
1371 static int core_get_max_pstate(void)
1372 {
1373         u64 tar;
1374         u64 plat_info;
1375         int max_pstate;
1376         int tdp_ratio;
1377         int err;
1378
1379         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1380         max_pstate = (plat_info >> 8) & 0xFF;
1381
1382         tdp_ratio = core_get_tdp_ratio(plat_info);
1383         if (tdp_ratio <= 0)
1384                 return max_pstate;
1385
1386         if (hwp_active) {
1387                 /* Turbo activation ratio is not used on HWP platforms */
1388                 return tdp_ratio;
1389         }
1390
1391         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1392         if (!err) {
1393                 int tar_levels;
1394
1395                 /* Do some sanity checking for safety */
1396                 tar_levels = tar & 0xff;
1397                 if (tdp_ratio - 1 == tar_levels) {
1398                         max_pstate = tar_levels;
1399                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1400                 }
1401         }
1402
1403         return max_pstate;
1404 }
1405
1406 static int core_get_turbo_pstate(void)
1407 {
1408         u64 value;
1409         int nont, ret;
1410
1411         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1412         nont = core_get_max_pstate();
1413         ret = (value) & 255;
1414         if (ret <= nont)
1415                 ret = nont;
1416         return ret;
1417 }
1418
1419 static inline int core_get_scaling(void)
1420 {
1421         return 100000;
1422 }
1423
1424 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1425 {
1426         u64 val;
1427
1428         val = (u64)pstate << 8;
1429         if (global.no_turbo && !global.turbo_disabled)
1430                 val |= (u64)1 << 32;
1431
1432         return val;
1433 }
1434
1435 static int knl_get_aperf_mperf_shift(void)
1436 {
1437         return 10;
1438 }
1439
1440 static int knl_get_turbo_pstate(void)
1441 {
1442         u64 value;
1443         int nont, ret;
1444
1445         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1446         nont = core_get_max_pstate();
1447         ret = (((value) >> 8) & 0xFF);
1448         if (ret <= nont)
1449                 ret = nont;
1450         return ret;
1451 }
1452
1453 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1454 {
1455         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1456         cpu->pstate.current_pstate = pstate;
1457         /*
1458          * Generally, there is no guarantee that this code will always run on
1459          * the CPU being updated, so force the register update to run on the
1460          * right CPU.
1461          */
1462         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1463                       pstate_funcs.get_val(cpu, pstate));
1464 }
1465
1466 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1467 {
1468         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1469 }
1470
1471 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1472 {
1473         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1474
1475         update_turbo_state();
1476         intel_pstate_set_pstate(cpu, pstate);
1477 }
1478
1479 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1480 {
1481         cpu->pstate.min_pstate = pstate_funcs.get_min();
1482         cpu->pstate.max_pstate = pstate_funcs.get_max();
1483         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1484         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1485         cpu->pstate.scaling = pstate_funcs.get_scaling();
1486         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1487
1488         if (hwp_active && !hwp_mode_bdw) {
1489                 unsigned int phy_max, current_max;
1490
1491                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1492                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1493         } else {
1494                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1495         }
1496
1497         if (pstate_funcs.get_aperf_mperf_shift)
1498                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1499
1500         if (pstate_funcs.get_vid)
1501                 pstate_funcs.get_vid(cpu);
1502
1503         intel_pstate_set_min_pstate(cpu);
1504 }
1505
1506 /*
1507  * Long hold time will keep high perf limits for long time,
1508  * which negatively impacts perf/watt for some workloads,
1509  * like specpower. 3ms is based on experiements on some
1510  * workoads.
1511  */
1512 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1513
1514 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1515 {
1516         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1517         u32 max_limit = (hwp_req & 0xff00) >> 8;
1518         u32 min_limit = (hwp_req & 0xff);
1519         u32 boost_level1;
1520
1521         /*
1522          * Cases to consider (User changes via sysfs or boot time):
1523          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1524          *      No boost, return.
1525          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1526          *     Should result in one level boost only for P0.
1527          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1528          *     Should result in two level boost:
1529          *         (min + p1)/2 and P1.
1530          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1531          *     Should result in three level boost:
1532          *        (min + p1)/2, P1 and P0.
1533          */
1534
1535         /* If max and min are equal or already at max, nothing to boost */
1536         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1537                 return;
1538
1539         if (!cpu->hwp_boost_min)
1540                 cpu->hwp_boost_min = min_limit;
1541
1542         /* level at half way mark between min and guranteed */
1543         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1544
1545         if (cpu->hwp_boost_min < boost_level1)
1546                 cpu->hwp_boost_min = boost_level1;
1547         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1548                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1549         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1550                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1551                 cpu->hwp_boost_min = max_limit;
1552         else
1553                 return;
1554
1555         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1556         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1557         cpu->last_update = cpu->sample.time;
1558 }
1559
1560 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1561 {
1562         if (cpu->hwp_boost_min) {
1563                 bool expired;
1564
1565                 /* Check if we are idle for hold time to boost down */
1566                 expired = time_after64(cpu->sample.time, cpu->last_update +
1567                                        hwp_boost_hold_time_ns);
1568                 if (expired) {
1569                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1570                         cpu->hwp_boost_min = 0;
1571                 }
1572         }
1573         cpu->last_update = cpu->sample.time;
1574 }
1575
1576 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1577                                                       u64 time)
1578 {
1579         cpu->sample.time = time;
1580
1581         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1582                 bool do_io = false;
1583
1584                 cpu->sched_flags = 0;
1585                 /*
1586                  * Set iowait_boost flag and update time. Since IO WAIT flag
1587                  * is set all the time, we can't just conclude that there is
1588                  * some IO bound activity is scheduled on this CPU with just
1589                  * one occurrence. If we receive at least two in two
1590                  * consecutive ticks, then we treat as boost candidate.
1591                  */
1592                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1593                         do_io = true;
1594
1595                 cpu->last_io_update = time;
1596
1597                 if (do_io)
1598                         intel_pstate_hwp_boost_up(cpu);
1599
1600         } else {
1601                 intel_pstate_hwp_boost_down(cpu);
1602         }
1603 }
1604
1605 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1606                                                 u64 time, unsigned int flags)
1607 {
1608         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1609
1610         cpu->sched_flags |= flags;
1611
1612         if (smp_processor_id() == cpu->cpu)
1613                 intel_pstate_update_util_hwp_local(cpu, time);
1614 }
1615
1616 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1617 {
1618         struct sample *sample = &cpu->sample;
1619
1620         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1621 }
1622
1623 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1624 {
1625         u64 aperf, mperf;
1626         unsigned long flags;
1627         u64 tsc;
1628
1629         local_irq_save(flags);
1630         rdmsrl(MSR_IA32_APERF, aperf);
1631         rdmsrl(MSR_IA32_MPERF, mperf);
1632         tsc = rdtsc();
1633         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1634                 local_irq_restore(flags);
1635                 return false;
1636         }
1637         local_irq_restore(flags);
1638
1639         cpu->last_sample_time = cpu->sample.time;
1640         cpu->sample.time = time;
1641         cpu->sample.aperf = aperf;
1642         cpu->sample.mperf = mperf;
1643         cpu->sample.tsc =  tsc;
1644         cpu->sample.aperf -= cpu->prev_aperf;
1645         cpu->sample.mperf -= cpu->prev_mperf;
1646         cpu->sample.tsc -= cpu->prev_tsc;
1647
1648         cpu->prev_aperf = aperf;
1649         cpu->prev_mperf = mperf;
1650         cpu->prev_tsc = tsc;
1651         /*
1652          * First time this function is invoked in a given cycle, all of the
1653          * previous sample data fields are equal to zero or stale and they must
1654          * be populated with meaningful numbers for things to work, so assume
1655          * that sample.time will always be reset before setting the utilization
1656          * update hook and make the caller skip the sample then.
1657          */
1658         if (cpu->last_sample_time) {
1659                 intel_pstate_calc_avg_perf(cpu);
1660                 return true;
1661         }
1662         return false;
1663 }
1664
1665 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1666 {
1667         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1668 }
1669
1670 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1671 {
1672         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1673                           cpu->sample.core_avg_perf);
1674 }
1675
1676 static inline int32_t get_target_pstate(struct cpudata *cpu)
1677 {
1678         struct sample *sample = &cpu->sample;
1679         int32_t busy_frac;
1680         int target, avg_pstate;
1681
1682         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1683                            sample->tsc);
1684
1685         if (busy_frac < cpu->iowait_boost)
1686                 busy_frac = cpu->iowait_boost;
1687
1688         sample->busy_scaled = busy_frac * 100;
1689
1690         target = global.no_turbo || global.turbo_disabled ?
1691                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1692         target += target >> 2;
1693         target = mul_fp(target, busy_frac);
1694         if (target < cpu->pstate.min_pstate)
1695                 target = cpu->pstate.min_pstate;
1696
1697         /*
1698          * If the average P-state during the previous cycle was higher than the
1699          * current target, add 50% of the difference to the target to reduce
1700          * possible performance oscillations and offset possible performance
1701          * loss related to moving the workload from one CPU to another within
1702          * a package/module.
1703          */
1704         avg_pstate = get_avg_pstate(cpu);
1705         if (avg_pstate > target)
1706                 target += (avg_pstate - target) >> 1;
1707
1708         return target;
1709 }
1710
1711 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1712 {
1713         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1714         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1715
1716         return clamp_t(int, pstate, min_pstate, max_pstate);
1717 }
1718
1719 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1720 {
1721         if (pstate == cpu->pstate.current_pstate)
1722                 return;
1723
1724         cpu->pstate.current_pstate = pstate;
1725         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1726 }
1727
1728 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1729 {
1730         int from = cpu->pstate.current_pstate;
1731         struct sample *sample;
1732         int target_pstate;
1733
1734         update_turbo_state();
1735
1736         target_pstate = get_target_pstate(cpu);
1737         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1738         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1739         intel_pstate_update_pstate(cpu, target_pstate);
1740
1741         sample = &cpu->sample;
1742         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1743                 fp_toint(sample->busy_scaled),
1744                 from,
1745                 cpu->pstate.current_pstate,
1746                 sample->mperf,
1747                 sample->aperf,
1748                 sample->tsc,
1749                 get_avg_frequency(cpu),
1750                 fp_toint(cpu->iowait_boost * 100));
1751 }
1752
1753 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1754                                      unsigned int flags)
1755 {
1756         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1757         u64 delta_ns;
1758
1759         /* Don't allow remote callbacks */
1760         if (smp_processor_id() != cpu->cpu)
1761                 return;
1762
1763         delta_ns = time - cpu->last_update;
1764         if (flags & SCHED_CPUFREQ_IOWAIT) {
1765                 /* Start over if the CPU may have been idle. */
1766                 if (delta_ns > TICK_NSEC) {
1767                         cpu->iowait_boost = ONE_EIGHTH_FP;
1768                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1769                         cpu->iowait_boost <<= 1;
1770                         if (cpu->iowait_boost > int_tofp(1))
1771                                 cpu->iowait_boost = int_tofp(1);
1772                 } else {
1773                         cpu->iowait_boost = ONE_EIGHTH_FP;
1774                 }
1775         } else if (cpu->iowait_boost) {
1776                 /* Clear iowait_boost if the CPU may have been idle. */
1777                 if (delta_ns > TICK_NSEC)
1778                         cpu->iowait_boost = 0;
1779                 else
1780                         cpu->iowait_boost >>= 1;
1781         }
1782         cpu->last_update = time;
1783         delta_ns = time - cpu->sample.time;
1784         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1785                 return;
1786
1787         if (intel_pstate_sample(cpu, time))
1788                 intel_pstate_adjust_pstate(cpu);
1789 }
1790
1791 static struct pstate_funcs core_funcs = {
1792         .get_max = core_get_max_pstate,
1793         .get_max_physical = core_get_max_pstate_physical,
1794         .get_min = core_get_min_pstate,
1795         .get_turbo = core_get_turbo_pstate,
1796         .get_scaling = core_get_scaling,
1797         .get_val = core_get_val,
1798 };
1799
1800 static const struct pstate_funcs silvermont_funcs = {
1801         .get_max = atom_get_max_pstate,
1802         .get_max_physical = atom_get_max_pstate,
1803         .get_min = atom_get_min_pstate,
1804         .get_turbo = atom_get_turbo_pstate,
1805         .get_val = atom_get_val,
1806         .get_scaling = silvermont_get_scaling,
1807         .get_vid = atom_get_vid,
1808 };
1809
1810 static const struct pstate_funcs airmont_funcs = {
1811         .get_max = atom_get_max_pstate,
1812         .get_max_physical = atom_get_max_pstate,
1813         .get_min = atom_get_min_pstate,
1814         .get_turbo = atom_get_turbo_pstate,
1815         .get_val = atom_get_val,
1816         .get_scaling = airmont_get_scaling,
1817         .get_vid = atom_get_vid,
1818 };
1819
1820 static const struct pstate_funcs knl_funcs = {
1821         .get_max = core_get_max_pstate,
1822         .get_max_physical = core_get_max_pstate_physical,
1823         .get_min = core_get_min_pstate,
1824         .get_turbo = knl_get_turbo_pstate,
1825         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1826         .get_scaling = core_get_scaling,
1827         .get_val = core_get_val,
1828 };
1829
1830 #define ICPU(model, policy) \
1831         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1832                         (unsigned long)&policy }
1833
1834 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1835         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1836         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1837         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1838         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1839         ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1840         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1841         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1842         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1843         ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1844         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1845         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1846         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1847         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1848         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1849         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1850         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1851         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1852         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1853         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1854         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1855         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1856         {}
1857 };
1858 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1859
1860 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1861         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1862         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1863         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1864         {}
1865 };
1866
1867 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1868         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1869         {}
1870 };
1871
1872 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1873         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1874         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1875         {}
1876 };
1877
1878 static int intel_pstate_init_cpu(unsigned int cpunum)
1879 {
1880         struct cpudata *cpu;
1881
1882         cpu = all_cpu_data[cpunum];
1883
1884         if (!cpu) {
1885                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1886                 if (!cpu)
1887                         return -ENOMEM;
1888
1889                 all_cpu_data[cpunum] = cpu;
1890
1891                 cpu->epp_default = -EINVAL;
1892                 cpu->epp_powersave = -EINVAL;
1893                 cpu->epp_saved = -EINVAL;
1894         }
1895
1896         cpu = all_cpu_data[cpunum];
1897
1898         cpu->cpu = cpunum;
1899
1900         if (hwp_active) {
1901                 const struct x86_cpu_id *id;
1902
1903                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1904                 if (id)
1905                         intel_pstate_disable_ee(cpunum);
1906
1907                 intel_pstate_hwp_enable(cpu);
1908
1909                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1910                 if (id && intel_pstate_acpi_pm_profile_server())
1911                         hwp_boost = true;
1912         }
1913
1914         intel_pstate_get_cpu_pstates(cpu);
1915
1916         pr_debug("controlling: cpu %d\n", cpunum);
1917
1918         return 0;
1919 }
1920
1921 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1922 {
1923         struct cpudata *cpu = all_cpu_data[cpu_num];
1924
1925         if (hwp_active && !hwp_boost)
1926                 return;
1927
1928         if (cpu->update_util_set)
1929                 return;
1930
1931         /* Prevent intel_pstate_update_util() from using stale data. */
1932         cpu->sample.time = 0;
1933         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1934                                      (hwp_active ?
1935                                       intel_pstate_update_util_hwp :
1936                                       intel_pstate_update_util));
1937         cpu->update_util_set = true;
1938 }
1939
1940 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1941 {
1942         struct cpudata *cpu_data = all_cpu_data[cpu];
1943
1944         if (!cpu_data->update_util_set)
1945                 return;
1946
1947         cpufreq_remove_update_util_hook(cpu);
1948         cpu_data->update_util_set = false;
1949         synchronize_rcu();
1950 }
1951
1952 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1953 {
1954         return global.turbo_disabled || global.no_turbo ?
1955                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1956 }
1957
1958 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1959                                             struct cpudata *cpu)
1960 {
1961         int max_freq = intel_pstate_get_max_freq(cpu);
1962         int32_t max_policy_perf, min_policy_perf;
1963         int max_state, turbo_max;
1964
1965         /*
1966          * HWP needs some special consideration, because on BDX the
1967          * HWP_REQUEST uses abstract value to represent performance
1968          * rather than pure ratios.
1969          */
1970         if (hwp_active) {
1971                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1972         } else {
1973                 max_state = global.no_turbo || global.turbo_disabled ?
1974                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1975                 turbo_max = cpu->pstate.turbo_pstate;
1976         }
1977
1978         max_policy_perf = max_state * policy->max / max_freq;
1979         if (policy->max == policy->min) {
1980                 min_policy_perf = max_policy_perf;
1981         } else {
1982                 min_policy_perf = max_state * policy->min / max_freq;
1983                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1984                                           0, max_policy_perf);
1985         }
1986
1987         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1988                  policy->cpu, max_state,
1989                  min_policy_perf, max_policy_perf);
1990
1991         /* Normalize user input to [min_perf, max_perf] */
1992         if (per_cpu_limits) {
1993                 cpu->min_perf_ratio = min_policy_perf;
1994                 cpu->max_perf_ratio = max_policy_perf;
1995         } else {
1996                 int32_t global_min, global_max;
1997
1998                 /* Global limits are in percent of the maximum turbo P-state. */
1999                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2000                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2001                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2002
2003                 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2004                          global_min, global_max);
2005
2006                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2007                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2008                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2009                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2010
2011                 /* Make sure min_perf <= max_perf */
2012                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2013                                           cpu->max_perf_ratio);
2014
2015         }
2016         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2017                  cpu->max_perf_ratio,
2018                  cpu->min_perf_ratio);
2019 }
2020
2021 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2022 {
2023         struct cpudata *cpu;
2024
2025         if (!policy->cpuinfo.max_freq)
2026                 return -ENODEV;
2027
2028         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2029                  policy->cpuinfo.max_freq, policy->max);
2030
2031         cpu = all_cpu_data[policy->cpu];
2032         cpu->policy = policy->policy;
2033
2034         mutex_lock(&intel_pstate_limits_lock);
2035
2036         intel_pstate_update_perf_limits(policy, cpu);
2037
2038         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2039                 /*
2040                  * NOHZ_FULL CPUs need this as the governor callback may not
2041                  * be invoked on them.
2042                  */
2043                 intel_pstate_clear_update_util_hook(policy->cpu);
2044                 intel_pstate_max_within_limits(cpu);
2045         } else {
2046                 intel_pstate_set_update_util_hook(policy->cpu);
2047         }
2048
2049         if (hwp_active) {
2050                 /*
2051                  * When hwp_boost was active before and dynamically it
2052                  * was turned off, in that case we need to clear the
2053                  * update util hook.
2054                  */
2055                 if (!hwp_boost)
2056                         intel_pstate_clear_update_util_hook(policy->cpu);
2057                 intel_pstate_hwp_set(policy->cpu);
2058         }
2059
2060         mutex_unlock(&intel_pstate_limits_lock);
2061
2062         return 0;
2063 }
2064
2065 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2066                                          struct cpudata *cpu)
2067 {
2068         if (!hwp_active &&
2069             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2070             policy->max < policy->cpuinfo.max_freq &&
2071             policy->max > cpu->pstate.max_freq) {
2072                 pr_debug("policy->max > max non turbo frequency\n");
2073                 policy->max = policy->cpuinfo.max_freq;
2074         }
2075 }
2076
2077 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2078 {
2079         struct cpudata *cpu = all_cpu_data[policy->cpu];
2080
2081         update_turbo_state();
2082         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2083                                      intel_pstate_get_max_freq(cpu));
2084
2085         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2086             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2087                 return -EINVAL;
2088
2089         intel_pstate_adjust_policy_max(policy, cpu);
2090
2091         return 0;
2092 }
2093
2094 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2095 {
2096         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2097 }
2098
2099 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2100 {
2101         pr_debug("CPU %d exiting\n", policy->cpu);
2102
2103         intel_pstate_clear_update_util_hook(policy->cpu);
2104         if (hwp_active) {
2105                 intel_pstate_hwp_save_state(policy);
2106                 intel_pstate_hwp_force_min_perf(policy->cpu);
2107         } else {
2108                 intel_cpufreq_stop_cpu(policy);
2109         }
2110 }
2111
2112 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2113 {
2114         intel_pstate_exit_perf_limits(policy);
2115
2116         policy->fast_switch_possible = false;
2117
2118         return 0;
2119 }
2120
2121 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2122 {
2123         struct cpudata *cpu;
2124         int rc;
2125
2126         rc = intel_pstate_init_cpu(policy->cpu);
2127         if (rc)
2128                 return rc;
2129
2130         cpu = all_cpu_data[policy->cpu];
2131
2132         cpu->max_perf_ratio = 0xFF;
2133         cpu->min_perf_ratio = 0;
2134
2135         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2136         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2137
2138         /* cpuinfo and default policy values */
2139         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2140         update_turbo_state();
2141         policy->cpuinfo.max_freq = global.turbo_disabled ?
2142                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2143         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2144
2145         if (hwp_active) {
2146                 unsigned int max_freq;
2147
2148                 max_freq = global.turbo_disabled ?
2149                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2150                 if (max_freq < policy->cpuinfo.max_freq)
2151                         policy->cpuinfo.max_freq = max_freq;
2152         }
2153
2154         intel_pstate_init_acpi_perf_limits(policy);
2155
2156         policy->fast_switch_possible = true;
2157
2158         return 0;
2159 }
2160
2161 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2162 {
2163         int ret = __intel_pstate_cpu_init(policy);
2164
2165         if (ret)
2166                 return ret;
2167
2168         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2169                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2170         else
2171                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2172
2173         return 0;
2174 }
2175
2176 static struct cpufreq_driver intel_pstate = {
2177         .flags          = CPUFREQ_CONST_LOOPS,
2178         .verify         = intel_pstate_verify_policy,
2179         .setpolicy      = intel_pstate_set_policy,
2180         .suspend        = intel_pstate_hwp_save_state,
2181         .resume         = intel_pstate_resume,
2182         .init           = intel_pstate_cpu_init,
2183         .exit           = intel_pstate_cpu_exit,
2184         .stop_cpu       = intel_pstate_stop_cpu,
2185         .name           = "intel_pstate",
2186 };
2187
2188 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2189 {
2190         struct cpudata *cpu = all_cpu_data[policy->cpu];
2191
2192         update_turbo_state();
2193         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2194                                      intel_pstate_get_max_freq(cpu));
2195
2196         intel_pstate_adjust_policy_max(policy, cpu);
2197
2198         intel_pstate_update_perf_limits(policy, cpu);
2199
2200         return 0;
2201 }
2202
2203 /* Use of trace in passive mode:
2204  *
2205  * In passive mode the trace core_busy field (also known as the
2206  * performance field, and lablelled as such on the graphs; also known as
2207  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2208  * driver call was via the normal or fast switch path. Various graphs
2209  * output from the intel_pstate_tracer.py utility that include core_busy
2210  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2211  * so we use 10 to indicate the the normal path through the driver, and
2212  * 90 to indicate the fast switch path through the driver.
2213  * The scaled_busy field is not used, and is set to 0.
2214  */
2215
2216 #define INTEL_PSTATE_TRACE_TARGET 10
2217 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2218
2219 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2220 {
2221         struct sample *sample;
2222
2223         if (!trace_pstate_sample_enabled())
2224                 return;
2225
2226         if (!intel_pstate_sample(cpu, ktime_get()))
2227                 return;
2228
2229         sample = &cpu->sample;
2230         trace_pstate_sample(trace_type,
2231                 0,
2232                 old_pstate,
2233                 cpu->pstate.current_pstate,
2234                 sample->mperf,
2235                 sample->aperf,
2236                 sample->tsc,
2237                 get_avg_frequency(cpu),
2238                 fp_toint(cpu->iowait_boost * 100));
2239 }
2240
2241 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2242                                 unsigned int target_freq,
2243                                 unsigned int relation)
2244 {
2245         struct cpudata *cpu = all_cpu_data[policy->cpu];
2246         struct cpufreq_freqs freqs;
2247         int target_pstate, old_pstate;
2248
2249         update_turbo_state();
2250
2251         freqs.old = policy->cur;
2252         freqs.new = target_freq;
2253
2254         cpufreq_freq_transition_begin(policy, &freqs);
2255         switch (relation) {
2256         case CPUFREQ_RELATION_L:
2257                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2258                 break;
2259         case CPUFREQ_RELATION_H:
2260                 target_pstate = freqs.new / cpu->pstate.scaling;
2261                 break;
2262         default:
2263                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2264                 break;
2265         }
2266         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2267         old_pstate = cpu->pstate.current_pstate;
2268         if (target_pstate != cpu->pstate.current_pstate) {
2269                 cpu->pstate.current_pstate = target_pstate;
2270                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2271                               pstate_funcs.get_val(cpu, target_pstate));
2272         }
2273         freqs.new = target_pstate * cpu->pstate.scaling;
2274         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2275         cpufreq_freq_transition_end(policy, &freqs, false);
2276
2277         return 0;
2278 }
2279
2280 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2281                                               unsigned int target_freq)
2282 {
2283         struct cpudata *cpu = all_cpu_data[policy->cpu];
2284         int target_pstate, old_pstate;
2285
2286         update_turbo_state();
2287
2288         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2289         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2290         old_pstate = cpu->pstate.current_pstate;
2291         intel_pstate_update_pstate(cpu, target_pstate);
2292         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2293         return target_pstate * cpu->pstate.scaling;
2294 }
2295
2296 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2297 {
2298         int ret = __intel_pstate_cpu_init(policy);
2299
2300         if (ret)
2301                 return ret;
2302
2303         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2304         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2305         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2306         policy->cur = policy->cpuinfo.min_freq;
2307
2308         return 0;
2309 }
2310
2311 static struct cpufreq_driver intel_cpufreq = {
2312         .flags          = CPUFREQ_CONST_LOOPS,
2313         .verify         = intel_cpufreq_verify_policy,
2314         .target         = intel_cpufreq_target,
2315         .fast_switch    = intel_cpufreq_fast_switch,
2316         .init           = intel_cpufreq_cpu_init,
2317         .exit           = intel_pstate_cpu_exit,
2318         .stop_cpu       = intel_cpufreq_stop_cpu,
2319         .name           = "intel_cpufreq",
2320 };
2321
2322 static struct cpufreq_driver *default_driver = &intel_pstate;
2323
2324 static void intel_pstate_driver_cleanup(void)
2325 {
2326         unsigned int cpu;
2327
2328         get_online_cpus();
2329         for_each_online_cpu(cpu) {
2330                 if (all_cpu_data[cpu]) {
2331                         if (intel_pstate_driver == &intel_pstate)
2332                                 intel_pstate_clear_update_util_hook(cpu);
2333
2334                         kfree(all_cpu_data[cpu]);
2335                         all_cpu_data[cpu] = NULL;
2336                 }
2337         }
2338         put_online_cpus();
2339         intel_pstate_driver = NULL;
2340 }
2341
2342 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2343 {
2344         int ret;
2345
2346         memset(&global, 0, sizeof(global));
2347         global.max_perf_pct = 100;
2348
2349         intel_pstate_driver = driver;
2350         ret = cpufreq_register_driver(intel_pstate_driver);
2351         if (ret) {
2352                 intel_pstate_driver_cleanup();
2353                 return ret;
2354         }
2355
2356         global.min_perf_pct = min_perf_pct_min();
2357
2358         return 0;
2359 }
2360
2361 static int intel_pstate_unregister_driver(void)
2362 {
2363         if (hwp_active)
2364                 return -EBUSY;
2365
2366         cpufreq_unregister_driver(intel_pstate_driver);
2367         intel_pstate_driver_cleanup();
2368
2369         return 0;
2370 }
2371
2372 static ssize_t intel_pstate_show_status(char *buf)
2373 {
2374         if (!intel_pstate_driver)
2375                 return sprintf(buf, "off\n");
2376
2377         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2378                                         "active" : "passive");
2379 }
2380
2381 static int intel_pstate_update_status(const char *buf, size_t size)
2382 {
2383         int ret;
2384
2385         if (size == 3 && !strncmp(buf, "off", size))
2386                 return intel_pstate_driver ?
2387                         intel_pstate_unregister_driver() : -EINVAL;
2388
2389         if (size == 6 && !strncmp(buf, "active", size)) {
2390                 if (intel_pstate_driver) {
2391                         if (intel_pstate_driver == &intel_pstate)
2392                                 return 0;
2393
2394                         ret = intel_pstate_unregister_driver();
2395                         if (ret)
2396                                 return ret;
2397                 }
2398
2399                 return intel_pstate_register_driver(&intel_pstate);
2400         }
2401
2402         if (size == 7 && !strncmp(buf, "passive", size)) {
2403                 if (intel_pstate_driver) {
2404                         if (intel_pstate_driver == &intel_cpufreq)
2405                                 return 0;
2406
2407                         ret = intel_pstate_unregister_driver();
2408                         if (ret)
2409                                 return ret;
2410                 }
2411
2412                 return intel_pstate_register_driver(&intel_cpufreq);
2413         }
2414
2415         return -EINVAL;
2416 }
2417
2418 static int no_load __initdata;
2419 static int no_hwp __initdata;
2420 static int hwp_only __initdata;
2421 static unsigned int force_load __initdata;
2422
2423 static int __init intel_pstate_msrs_not_valid(void)
2424 {
2425         if (!pstate_funcs.get_max() ||
2426             !pstate_funcs.get_min() ||
2427             !pstate_funcs.get_turbo())
2428                 return -ENODEV;
2429
2430         return 0;
2431 }
2432
2433 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2434 {
2435         pstate_funcs.get_max   = funcs->get_max;
2436         pstate_funcs.get_max_physical = funcs->get_max_physical;
2437         pstate_funcs.get_min   = funcs->get_min;
2438         pstate_funcs.get_turbo = funcs->get_turbo;
2439         pstate_funcs.get_scaling = funcs->get_scaling;
2440         pstate_funcs.get_val   = funcs->get_val;
2441         pstate_funcs.get_vid   = funcs->get_vid;
2442         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2443 }
2444
2445 #ifdef CONFIG_ACPI
2446
2447 static bool __init intel_pstate_no_acpi_pss(void)
2448 {
2449         int i;
2450
2451         for_each_possible_cpu(i) {
2452                 acpi_status status;
2453                 union acpi_object *pss;
2454                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2455                 struct acpi_processor *pr = per_cpu(processors, i);
2456
2457                 if (!pr)
2458                         continue;
2459
2460                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2461                 if (ACPI_FAILURE(status))
2462                         continue;
2463
2464                 pss = buffer.pointer;
2465                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2466                         kfree(pss);
2467                         return false;
2468                 }
2469
2470                 kfree(pss);
2471         }
2472
2473         pr_debug("ACPI _PSS not found\n");
2474         return true;
2475 }
2476
2477 static bool __init intel_pstate_no_acpi_pcch(void)
2478 {
2479         acpi_status status;
2480         acpi_handle handle;
2481
2482         status = acpi_get_handle(NULL, "\\_SB", &handle);
2483         if (ACPI_FAILURE(status))
2484                 goto not_found;
2485
2486         if (acpi_has_method(handle, "PCCH"))
2487                 return false;
2488
2489 not_found:
2490         pr_debug("ACPI PCCH not found\n");
2491         return true;
2492 }
2493
2494 static bool __init intel_pstate_has_acpi_ppc(void)
2495 {
2496         int i;
2497
2498         for_each_possible_cpu(i) {
2499                 struct acpi_processor *pr = per_cpu(processors, i);
2500
2501                 if (!pr)
2502                         continue;
2503                 if (acpi_has_method(pr->handle, "_PPC"))
2504                         return true;
2505         }
2506         pr_debug("ACPI _PPC not found\n");
2507         return false;
2508 }
2509
2510 enum {
2511         PSS,
2512         PPC,
2513 };
2514
2515 /* Hardware vendor-specific info that has its own power management modes */
2516 static struct acpi_platform_list plat_info[] __initdata = {
2517         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2518         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2519         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2520         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2521         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2522         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2523         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2524         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2525         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2526         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2527         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2528         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2529         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2530         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2531         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2532         { } /* End */
2533 };
2534
2535 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2536 {
2537         const struct x86_cpu_id *id;
2538         u64 misc_pwr;
2539         int idx;
2540
2541         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2542         if (id) {
2543                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2544                 if (misc_pwr & (1 << 8)) {
2545                         pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2546                         return true;
2547                 }
2548         }
2549
2550         idx = acpi_match_platform_list(plat_info);
2551         if (idx < 0)
2552                 return false;
2553
2554         switch (plat_info[idx].data) {
2555         case PSS:
2556                 if (!intel_pstate_no_acpi_pss())
2557                         return false;
2558
2559                 return intel_pstate_no_acpi_pcch();
2560         case PPC:
2561                 return intel_pstate_has_acpi_ppc() && !force_load;
2562         }
2563
2564         return false;
2565 }
2566
2567 static void intel_pstate_request_control_from_smm(void)
2568 {
2569         /*
2570          * It may be unsafe to request P-states control from SMM if _PPC support
2571          * has not been enabled.
2572          */
2573         if (acpi_ppc)
2574                 acpi_processor_pstate_control();
2575 }
2576 #else /* CONFIG_ACPI not enabled */
2577 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2578 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2579 static inline void intel_pstate_request_control_from_smm(void) {}
2580 #endif /* CONFIG_ACPI */
2581
2582 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2583
2584 #define ICPU_HWP(model, hwp_mode) \
2585         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2586
2587 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2588         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2589         ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2590         ICPU_HWP(X86_MODEL_ANY, 0),
2591         {}
2592 };
2593
2594 static int __init intel_pstate_init(void)
2595 {
2596         const struct x86_cpu_id *id;
2597         int rc;
2598
2599         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2600                 return -ENODEV;
2601
2602         if (no_load)
2603                 return -ENODEV;
2604
2605         id = x86_match_cpu(hwp_support_ids);
2606         if (id) {
2607                 copy_cpu_funcs(&core_funcs);
2608                 if (!no_hwp) {
2609                         hwp_active++;
2610                         hwp_mode_bdw = id->driver_data;
2611                         intel_pstate.attr = hwp_cpufreq_attrs;
2612                         goto hwp_cpu_matched;
2613                 }
2614         } else {
2615                 id = x86_match_cpu(intel_pstate_cpu_ids);
2616                 if (!id) {
2617                         pr_info("CPU model not supported\n");
2618                         return -ENODEV;
2619                 }
2620
2621                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2622         }
2623
2624         if (intel_pstate_msrs_not_valid()) {
2625                 pr_info("Invalid MSRs\n");
2626                 return -ENODEV;
2627         }
2628
2629 hwp_cpu_matched:
2630         /*
2631          * The Intel pstate driver will be ignored if the platform
2632          * firmware has its own power management modes.
2633          */
2634         if (intel_pstate_platform_pwr_mgmt_exists()) {
2635                 pr_info("P-states controlled by the platform\n");
2636                 return -ENODEV;
2637         }
2638
2639         if (!hwp_active && hwp_only)
2640                 return -ENOTSUPP;
2641
2642         pr_info("Intel P-state driver initializing\n");
2643
2644         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2645         if (!all_cpu_data)
2646                 return -ENOMEM;
2647
2648         intel_pstate_request_control_from_smm();
2649
2650         intel_pstate_sysfs_expose_params();
2651
2652         mutex_lock(&intel_pstate_driver_lock);
2653         rc = intel_pstate_register_driver(default_driver);
2654         mutex_unlock(&intel_pstate_driver_lock);
2655         if (rc)
2656                 return rc;
2657
2658         if (hwp_active)
2659                 pr_info("HWP enabled\n");
2660
2661         return 0;
2662 }
2663 device_initcall(intel_pstate_init);
2664
2665 static int __init intel_pstate_setup(char *str)
2666 {
2667         if (!str)
2668                 return -EINVAL;
2669
2670         if (!strcmp(str, "disable")) {
2671                 no_load = 1;
2672         } else if (!strcmp(str, "passive")) {
2673                 pr_info("Passive mode enabled\n");
2674                 default_driver = &intel_cpufreq;
2675                 no_hwp = 1;
2676         }
2677         if (!strcmp(str, "no_hwp")) {
2678                 pr_info("HWP disabled\n");
2679                 no_hwp = 1;
2680         }
2681         if (!strcmp(str, "force"))
2682                 force_load = 1;
2683         if (!strcmp(str, "hwp_only"))
2684                 hwp_only = 1;
2685         if (!strcmp(str, "per_cpu_perf_limits"))
2686                 per_cpu_limits = true;
2687
2688 #ifdef CONFIG_ACPI
2689         if (!strcmp(str, "support_acpi_ppc"))
2690                 acpi_ppc = true;
2691 #endif
2692
2693         return 0;
2694 }
2695 early_param("intel_pstate", intel_pstate_setup);
2696
2697 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2698 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2699 MODULE_LICENSE("GPL");