80c5bf590acbfc0f5ee9632511b261fe3e433d7a
[sfrench/cifs-2.6.git] / drivers / cpufreq / ia64-acpi-cpufreq.c
1 /*
2  * This file provides the ACPI based P-state support. This
3  * module works with generic cpufreq infrastructure. Most of
4  * the code is based on i386 version
5  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
6  *
7  * Copyright (C) 2005 Intel Corp
8  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/proc_fs.h>
19 #include <asm/io.h>
20 #include <linux/uaccess.h>
21 #include <asm/pal.h>
22
23 #include <linux/acpi.h>
24 #include <acpi/processor.h>
25
26 MODULE_AUTHOR("Venkatesh Pallipadi");
27 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
28 MODULE_LICENSE("GPL");
29
30 struct cpufreq_acpi_io {
31         struct acpi_processor_performance       acpi_data;
32         unsigned int                            resume;
33 };
34
35 struct cpufreq_acpi_req {
36         unsigned int            cpu;
37         unsigned int            state;
38 };
39
40 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
41
42 static struct cpufreq_driver acpi_cpufreq_driver;
43
44
45 static int
46 processor_set_pstate (
47         u32     value)
48 {
49         s64 retval;
50
51         pr_debug("processor_set_pstate\n");
52
53         retval = ia64_pal_set_pstate((u64)value);
54
55         if (retval) {
56                 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
57                         value, retval);
58                 return -ENODEV;
59         }
60         return (int)retval;
61 }
62
63
64 static int
65 processor_get_pstate (
66         u32     *value)
67 {
68         u64     pstate_index = 0;
69         s64     retval;
70
71         pr_debug("processor_get_pstate\n");
72
73         retval = ia64_pal_get_pstate(&pstate_index,
74                                      PAL_GET_PSTATE_TYPE_INSTANT);
75         *value = (u32) pstate_index;
76
77         if (retval)
78                 pr_debug("Failed to get current freq with "
79                         "error 0x%lx, idx 0x%x\n", retval, *value);
80
81         return (int)retval;
82 }
83
84
85 /* To be used only after data->acpi_data is initialized */
86 static unsigned
87 extract_clock (
88         struct cpufreq_acpi_io *data,
89         unsigned value)
90 {
91         unsigned long i;
92
93         pr_debug("extract_clock\n");
94
95         for (i = 0; i < data->acpi_data.state_count; i++) {
96                 if (value == data->acpi_data.states[i].status)
97                         return data->acpi_data.states[i].core_frequency;
98         }
99         return data->acpi_data.states[i-1].core_frequency;
100 }
101
102
103 static long
104 processor_get_freq (
105         void *arg)
106 {
107         struct cpufreq_acpi_req *req = arg;
108         unsigned int            cpu = req->cpu;
109         struct cpufreq_acpi_io  *data = acpi_io_data[cpu];
110         u32                     value;
111         int                     ret;
112
113         pr_debug("processor_get_freq\n");
114         if (smp_processor_id() != cpu)
115                 return -EAGAIN;
116
117         /* processor_get_pstate gets the instantaneous frequency */
118         ret = processor_get_pstate(&value);
119         if (ret) {
120                 pr_warn("get performance failed with error %d\n", ret);
121                 return ret;
122         }
123         return 1000 * extract_clock(data, value);
124 }
125
126
127 static long
128 processor_set_freq (
129         void *arg)
130 {
131         struct cpufreq_acpi_req *req = arg;
132         unsigned int            cpu = req->cpu;
133         struct cpufreq_acpi_io  *data = acpi_io_data[cpu];
134         int                     ret, state = req->state;
135         u32                     value;
136
137         pr_debug("processor_set_freq\n");
138         if (smp_processor_id() != cpu)
139                 return -EAGAIN;
140
141         if (state == data->acpi_data.state) {
142                 if (unlikely(data->resume)) {
143                         pr_debug("Called after resume, resetting to P%d\n", state);
144                         data->resume = 0;
145                 } else {
146                         pr_debug("Already at target state (P%d)\n", state);
147                         return 0;
148                 }
149         }
150
151         pr_debug("Transitioning from P%d to P%d\n",
152                 data->acpi_data.state, state);
153
154         /*
155          * First we write the target state's 'control' value to the
156          * control_register.
157          */
158         value = (u32) data->acpi_data.states[state].control;
159
160         pr_debug("Transitioning to state: 0x%08x\n", value);
161
162         ret = processor_set_pstate(value);
163         if (ret) {
164                 pr_warn("Transition failed with error %d\n", ret);
165                 return -ENODEV;
166         }
167
168         data->acpi_data.state = state;
169         return 0;
170 }
171
172
173 static unsigned int
174 acpi_cpufreq_get (
175         unsigned int            cpu)
176 {
177         struct cpufreq_acpi_req req;
178         long ret;
179
180         req.cpu = cpu;
181         ret = work_on_cpu(cpu, processor_get_freq, &req);
182
183         return ret > 0 ? (unsigned int) ret : 0;
184 }
185
186
187 static int
188 acpi_cpufreq_target (
189         struct cpufreq_policy   *policy,
190         unsigned int index)
191 {
192         struct cpufreq_acpi_req req;
193
194         req.cpu = policy->cpu;
195         req.state = index;
196
197         return work_on_cpu(req.cpu, processor_set_freq, &req);
198 }
199
200 static int
201 acpi_cpufreq_cpu_init (
202         struct cpufreq_policy   *policy)
203 {
204         unsigned int            i;
205         unsigned int            cpu = policy->cpu;
206         struct cpufreq_acpi_io  *data;
207         unsigned int            result = 0;
208         struct cpufreq_frequency_table *freq_table;
209
210         pr_debug("acpi_cpufreq_cpu_init\n");
211
212         data = kzalloc(sizeof(*data), GFP_KERNEL);
213         if (!data)
214                 return (-ENOMEM);
215
216         acpi_io_data[cpu] = data;
217
218         result = acpi_processor_register_performance(&data->acpi_data, cpu);
219
220         if (result)
221                 goto err_free;
222
223         /* capability check */
224         if (data->acpi_data.state_count <= 1) {
225                 pr_debug("No P-States\n");
226                 result = -ENODEV;
227                 goto err_unreg;
228         }
229
230         if ((data->acpi_data.control_register.space_id !=
231                                         ACPI_ADR_SPACE_FIXED_HARDWARE) ||
232             (data->acpi_data.status_register.space_id !=
233                                         ACPI_ADR_SPACE_FIXED_HARDWARE)) {
234                 pr_debug("Unsupported address space [%d, %d]\n",
235                         (u32) (data->acpi_data.control_register.space_id),
236                         (u32) (data->acpi_data.status_register.space_id));
237                 result = -ENODEV;
238                 goto err_unreg;
239         }
240
241         /* alloc freq_table */
242         freq_table = kcalloc(data->acpi_data.state_count + 1,
243                                    sizeof(*freq_table),
244                                    GFP_KERNEL);
245         if (!freq_table) {
246                 result = -ENOMEM;
247                 goto err_unreg;
248         }
249
250         /* detect transition latency */
251         policy->cpuinfo.transition_latency = 0;
252         for (i=0; i<data->acpi_data.state_count; i++) {
253                 if ((data->acpi_data.states[i].transition_latency * 1000) >
254                     policy->cpuinfo.transition_latency) {
255                         policy->cpuinfo.transition_latency =
256                             data->acpi_data.states[i].transition_latency * 1000;
257                 }
258         }
259
260         /* table init */
261         for (i = 0; i <= data->acpi_data.state_count; i++)
262         {
263                 if (i < data->acpi_data.state_count) {
264                         freq_table[i].frequency =
265                               data->acpi_data.states[i].core_frequency * 1000;
266                 } else {
267                         freq_table[i].frequency = CPUFREQ_TABLE_END;
268                 }
269         }
270
271         policy->freq_table = freq_table;
272
273         /* notify BIOS that we exist */
274         acpi_processor_notify_smm(THIS_MODULE);
275
276         pr_info("CPU%u - ACPI performance management activated\n", cpu);
277
278         for (i = 0; i < data->acpi_data.state_count; i++)
279                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
280                         (i == data->acpi_data.state?'*':' '), i,
281                         (u32) data->acpi_data.states[i].core_frequency,
282                         (u32) data->acpi_data.states[i].power,
283                         (u32) data->acpi_data.states[i].transition_latency,
284                         (u32) data->acpi_data.states[i].bus_master_latency,
285                         (u32) data->acpi_data.states[i].status,
286                         (u32) data->acpi_data.states[i].control);
287
288         /* the first call to ->target() should result in us actually
289          * writing something to the appropriate registers. */
290         data->resume = 1;
291
292         return (result);
293
294  err_unreg:
295         acpi_processor_unregister_performance(cpu);
296  err_free:
297         kfree(data);
298         acpi_io_data[cpu] = NULL;
299
300         return (result);
301 }
302
303
304 static int
305 acpi_cpufreq_cpu_exit (
306         struct cpufreq_policy   *policy)
307 {
308         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
309
310         pr_debug("acpi_cpufreq_cpu_exit\n");
311
312         if (data) {
313                 acpi_io_data[policy->cpu] = NULL;
314                 acpi_processor_unregister_performance(policy->cpu);
315                 kfree(policy->freq_table);
316                 kfree(data);
317         }
318
319         return (0);
320 }
321
322
323 static struct cpufreq_driver acpi_cpufreq_driver = {
324         .verify         = cpufreq_generic_frequency_table_verify,
325         .target_index   = acpi_cpufreq_target,
326         .get            = acpi_cpufreq_get,
327         .init           = acpi_cpufreq_cpu_init,
328         .exit           = acpi_cpufreq_cpu_exit,
329         .name           = "acpi-cpufreq",
330         .attr           = cpufreq_generic_attr,
331 };
332
333
334 static int __init
335 acpi_cpufreq_init (void)
336 {
337         pr_debug("acpi_cpufreq_init\n");
338
339         return cpufreq_register_driver(&acpi_cpufreq_driver);
340 }
341
342
343 static void __exit
344 acpi_cpufreq_exit (void)
345 {
346         pr_debug("acpi_cpufreq_exit\n");
347
348         cpufreq_unregister_driver(&acpi_cpufreq_driver);
349 }
350
351 late_initcall(acpi_cpufreq_init);
352 module_exit(acpi_cpufreq_exit);