Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91         return off;
92 }
93 void disable_cpufreq(void)
94 {
95         off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107         if (have_governor_per_policy())
108                 return &policy->kobj;
109         else
110                 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116         u64 idle_time;
117         u64 cur_wall_time;
118         u64 busy_time;
119
120         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121
122         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129         idle_time = cur_wall_time - busy_time;
130         if (wall)
131                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132
133         return div_u64(idle_time, NSEC_PER_USEC);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140         if (idle_time == -1ULL)
141                 return get_cpu_idle_time_jiffy(cpu, wall);
142         else if (!io_busy)
143                 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145         return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150                 unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154
155 /*
156  * This is a generic cpufreq init() routine which can be used by cpufreq
157  * drivers of SMP systems. It will do following:
158  * - validate & show freq table passed
159  * - set policies transition latency
160  * - policy->cpus with all possible CPUs
161  */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163                 struct cpufreq_frequency_table *table,
164                 unsigned int transition_latency)
165 {
166         policy->freq_table = table;
167         policy->cpuinfo.transition_latency = transition_latency;
168
169         /*
170          * The driver only supports the SMP configuration where all processors
171          * share the clock and voltage and clock.
172          */
173         cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180
181         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188
189         if (!policy || IS_ERR(policy->clk)) {
190                 pr_err("%s: No %s associated to cpu: %d\n",
191                        __func__, policy ? "clk" : "policy", cpu);
192                 return 0;
193         }
194
195         return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198
199 /**
200  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201  * @cpu: CPU to find the policy for.
202  *
203  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204  * the kobject reference counter of that policy.  Return a valid policy on
205  * success or NULL on failure.
206  *
207  * The policy returned by this function has to be released with the help of
208  * cpufreq_cpu_put() to balance its kobject reference counter properly.
209  */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212         struct cpufreq_policy *policy = NULL;
213         unsigned long flags;
214
215         if (WARN_ON(cpu >= nr_cpu_ids))
216                 return NULL;
217
218         /* get the cpufreq driver */
219         read_lock_irqsave(&cpufreq_driver_lock, flags);
220
221         if (cpufreq_driver) {
222                 /* get the CPU */
223                 policy = cpufreq_cpu_get_raw(cpu);
224                 if (policy)
225                         kobject_get(&policy->kobj);
226         }
227
228         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229
230         return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233
234 /**
235  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236  * @policy: cpufreq policy returned by cpufreq_cpu_get().
237  */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240         kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243
244 /**
245  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247  */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250         if (WARN_ON(!policy))
251                 return;
252
253         lockdep_assert_held(&policy->rwsem);
254
255         up_write(&policy->rwsem);
256
257         cpufreq_cpu_put(policy);
258 }
259
260 /**
261  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262  * @cpu: CPU to find the policy for.
263  *
264  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265  * if the policy returned by it is not NULL, acquire its rwsem for writing.
266  * Return the policy if it is active or release it and return NULL otherwise.
267  *
268  * The policy returned by this function has to be released with the help of
269  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270  * counter properly.
271  */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275
276         if (!policy)
277                 return NULL;
278
279         down_write(&policy->rwsem);
280
281         if (policy_is_inactive(policy)) {
282                 cpufreq_cpu_release(policy);
283                 return NULL;
284         }
285
286         return policy;
287 }
288
289 /*********************************************************************
290  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
291  *********************************************************************/
292
293 /**
294  * adjust_jiffies - adjust the system "loops_per_jiffy"
295  *
296  * This function alters the system "loops_per_jiffy" for the clock
297  * speed change. Note that loops_per_jiffy cannot be updated on SMP
298  * systems as each CPU might be scaled differently. So, use the arch
299  * per-CPU loops_per_jiffy value wherever possible.
300  */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304         static unsigned long l_p_j_ref;
305         static unsigned int l_p_j_ref_freq;
306
307         if (ci->flags & CPUFREQ_CONST_LOOPS)
308                 return;
309
310         if (!l_p_j_ref_freq) {
311                 l_p_j_ref = loops_per_jiffy;
312                 l_p_j_ref_freq = ci->old;
313                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314                          l_p_j_ref, l_p_j_ref_freq);
315         }
316         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318                                                                 ci->new);
319                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320                          loops_per_jiffy, ci->new);
321         }
322 #endif
323 }
324
325 /**
326  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327  * @policy: cpufreq policy to enable fast frequency switching for.
328  * @freqs: contain details of the frequency update.
329  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330  *
331  * This function calls the transition notifiers and the "adjust_jiffies"
332  * function. It is called twice on all CPU frequency changes that have
333  * external effects.
334  */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336                                       struct cpufreq_freqs *freqs,
337                                       unsigned int state)
338 {
339         int cpu;
340
341         BUG_ON(irqs_disabled());
342
343         if (cpufreq_disabled())
344                 return;
345
346         freqs->policy = policy;
347         freqs->flags = cpufreq_driver->flags;
348         pr_debug("notification %u of frequency transition to %u kHz\n",
349                  state, freqs->new);
350
351         switch (state) {
352         case CPUFREQ_PRECHANGE:
353                 /*
354                  * Detect if the driver reported a value as "old frequency"
355                  * which is not equal to what the cpufreq core thinks is
356                  * "old frequency".
357                  */
358                 if (policy->cur && policy->cur != freqs->old) {
359                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360                                  freqs->old, policy->cur);
361                         freqs->old = policy->cur;
362                 }
363
364                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365                                          CPUFREQ_PRECHANGE, freqs);
366
367                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368                 break;
369
370         case CPUFREQ_POSTCHANGE:
371                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373                          cpumask_pr_args(policy->cpus));
374
375                 for_each_cpu(cpu, policy->cpus)
376                         trace_cpu_frequency(freqs->new, cpu);
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_POSTCHANGE, freqs);
380
381                 cpufreq_stats_record_transition(policy, freqs->new);
382                 policy->cur = freqs->new;
383         }
384 }
385
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388                 struct cpufreq_freqs *freqs, int transition_failed)
389 {
390         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391         if (!transition_failed)
392                 return;
393
394         swap(freqs->old, freqs->new);
395         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400                 struct cpufreq_freqs *freqs)
401 {
402
403         /*
404          * Catch double invocations of _begin() which lead to self-deadlock.
405          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406          * doesn't invoke _begin() on their behalf, and hence the chances of
407          * double invocations are very low. Moreover, there are scenarios
408          * where these checks can emit false-positive warnings in these
409          * drivers; so we avoid that by skipping them altogether.
410          */
411         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412                                 && current == policy->transition_task);
413
414 wait:
415         wait_event(policy->transition_wait, !policy->transition_ongoing);
416
417         spin_lock(&policy->transition_lock);
418
419         if (unlikely(policy->transition_ongoing)) {
420                 spin_unlock(&policy->transition_lock);
421                 goto wait;
422         }
423
424         policy->transition_ongoing = true;
425         policy->transition_task = current;
426
427         spin_unlock(&policy->transition_lock);
428
429         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434                 struct cpufreq_freqs *freqs, int transition_failed)
435 {
436         if (WARN_ON(!policy->transition_ongoing))
437                 return;
438
439         cpufreq_notify_post_transition(policy, freqs, transition_failed);
440
441         policy->transition_ongoing = false;
442         policy->transition_task = NULL;
443
444         wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447
448 /*
449  * Fast frequency switching status count.  Positive means "enabled", negative
450  * means "disabled" and 0 means "not decided yet".
451  */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454
455 static void cpufreq_list_transition_notifiers(void)
456 {
457         struct notifier_block *nb;
458
459         pr_info("Registered transition notifiers:\n");
460
461         mutex_lock(&cpufreq_transition_notifier_list.mutex);
462
463         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464                 pr_info("%pS\n", nb->notifier_call);
465
466         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468
469 /**
470  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471  * @policy: cpufreq policy to enable fast frequency switching for.
472  *
473  * Try to enable fast frequency switching for @policy.
474  *
475  * The attempt will fail if there is at least one transition notifier registered
476  * at this point, as fast frequency switching is quite fundamentally at odds
477  * with transition notifiers.  Thus if successful, it will make registration of
478  * transition notifiers fail going forward.
479  */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482         lockdep_assert_held(&policy->rwsem);
483
484         if (!policy->fast_switch_possible)
485                 return;
486
487         mutex_lock(&cpufreq_fast_switch_lock);
488         if (cpufreq_fast_switch_count >= 0) {
489                 cpufreq_fast_switch_count++;
490                 policy->fast_switch_enabled = true;
491         } else {
492                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
493                         policy->cpu);
494                 cpufreq_list_transition_notifiers();
495         }
496         mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499
500 /**
501  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502  * @policy: cpufreq policy to disable fast frequency switching for.
503  */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506         mutex_lock(&cpufreq_fast_switch_lock);
507         if (policy->fast_switch_enabled) {
508                 policy->fast_switch_enabled = false;
509                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510                         cpufreq_fast_switch_count--;
511         }
512         mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515
516 /**
517  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518  * one.
519  * @target_freq: target frequency to resolve.
520  *
521  * The target to driver frequency mapping is cached in the policy.
522  *
523  * Return: Lowest driver-supported frequency greater than or equal to the
524  * given target_freq, subject to policy (min/max) and driver limitations.
525  */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527                                          unsigned int target_freq)
528 {
529         target_freq = clamp_val(target_freq, policy->min, policy->max);
530         policy->cached_target_freq = target_freq;
531
532         if (cpufreq_driver->target_index) {
533                 int idx;
534
535                 idx = cpufreq_frequency_table_target(policy, target_freq,
536                                                      CPUFREQ_RELATION_L);
537                 policy->cached_resolved_idx = idx;
538                 return policy->freq_table[idx].frequency;
539         }
540
541         if (cpufreq_driver->resolve_freq)
542                 return cpufreq_driver->resolve_freq(policy, target_freq);
543
544         return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550         unsigned int latency;
551
552         if (policy->transition_delay_us)
553                 return policy->transition_delay_us;
554
555         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556         if (latency) {
557                 /*
558                  * For platforms that can change the frequency very fast (< 10
559                  * us), the above formula gives a decent transition delay. But
560                  * for platforms where transition_latency is in milliseconds, it
561                  * ends up giving unrealistic values.
562                  *
563                  * Cap the default transition delay to 10 ms, which seems to be
564                  * a reasonable amount of time after which we should reevaluate
565                  * the frequency.
566                  */
567                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568         }
569
570         return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573
574 /*********************************************************************
575  *                          SYSFS INTERFACE                          *
576  *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578                           struct kobj_attribute *attr, char *buf)
579 {
580         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584                            const char *buf, size_t count)
585 {
586         int ret, enable;
587
588         ret = sscanf(buf, "%d", &enable);
589         if (ret != 1 || enable < 0 || enable > 1)
590                 return -EINVAL;
591
592         if (cpufreq_boost_trigger_state(enable)) {
593                 pr_err("%s: Cannot %s BOOST!\n",
594                        __func__, enable ? "enable" : "disable");
595                 return -EINVAL;
596         }
597
598         pr_debug("%s: cpufreq BOOST %s\n",
599                  __func__, enable ? "enabled" : "disabled");
600
601         return count;
602 }
603 define_one_global_rw(boost);
604
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607         struct cpufreq_governor *t;
608
609         for_each_governor(t)
610                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611                         return t;
612
613         return NULL;
614 }
615
616 static int cpufreq_parse_policy(char *str_governor,
617                                 struct cpufreq_policy *policy)
618 {
619         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621                 return 0;
622         }
623         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
625                 return 0;
626         }
627         return -EINVAL;
628 }
629
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  */
633 static int cpufreq_parse_governor(char *str_governor,
634                                   struct cpufreq_policy *policy)
635 {
636         struct cpufreq_governor *t;
637
638         mutex_lock(&cpufreq_governor_mutex);
639
640         t = find_governor(str_governor);
641         if (!t) {
642                 int ret;
643
644                 mutex_unlock(&cpufreq_governor_mutex);
645
646                 ret = request_module("cpufreq_%s", str_governor);
647                 if (ret)
648                         return -EINVAL;
649
650                 mutex_lock(&cpufreq_governor_mutex);
651
652                 t = find_governor(str_governor);
653         }
654         if (t && !try_module_get(t->owner))
655                 t = NULL;
656
657         mutex_unlock(&cpufreq_governor_mutex);
658
659         if (t) {
660                 policy->governor = t;
661                 return 0;
662         }
663
664         return -EINVAL;
665 }
666
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674
675 #define show_one(file_name, object)                     \
676 static ssize_t show_##file_name                         \
677 (struct cpufreq_policy *policy, char *buf)              \
678 {                                                       \
679         return sprintf(buf, "%u\n", policy->object);    \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690         return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695         ssize_t ret;
696         unsigned int freq;
697
698         freq = arch_freq_get_on_cpu(policy->cpu);
699         if (freq)
700                 ret = sprintf(buf, "%u\n", freq);
701         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702                         cpufreq_driver->get)
703                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704         else
705                 ret = sprintf(buf, "%u\n", policy->cur);
706         return ret;
707 }
708
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)                    \
713 static ssize_t store_##file_name                                        \
714 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
715 {                                                                       \
716         unsigned long val;                                              \
717         int ret;                                                        \
718                                                                         \
719         ret = sscanf(buf, "%lu", &val);                                 \
720         if (ret != 1)                                                   \
721                 return -EINVAL;                                         \
722                                                                         \
723         ret = dev_pm_qos_update_request(policy->object##_freq_req, val);\
724         return ret >= 0 ? count : ret;                                  \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734                                         char *buf)
735 {
736         unsigned int cur_freq = __cpufreq_get(policy);
737
738         if (cur_freq)
739                 return sprintf(buf, "%u\n", cur_freq);
740
741         return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750                 return sprintf(buf, "powersave\n");
751         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752                 return sprintf(buf, "performance\n");
753         else if (policy->governor)
754                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755                                 policy->governor->name);
756         return -EINVAL;
757 }
758
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763                                         const char *buf, size_t count)
764 {
765         int ret;
766         char    str_governor[16];
767         struct cpufreq_policy new_policy;
768
769         memcpy(&new_policy, policy, sizeof(*policy));
770
771         ret = sscanf(buf, "%15s", str_governor);
772         if (ret != 1)
773                 return -EINVAL;
774
775         if (cpufreq_driver->setpolicy) {
776                 if (cpufreq_parse_policy(str_governor, &new_policy))
777                         return -EINVAL;
778         } else {
779                 if (cpufreq_parse_governor(str_governor, &new_policy))
780                         return -EINVAL;
781         }
782
783         ret = cpufreq_set_policy(policy, &new_policy);
784
785         if (new_policy.governor)
786                 module_put(new_policy.governor->owner);
787
788         return ret ? ret : count;
789 }
790
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803                                                 char *buf)
804 {
805         ssize_t i = 0;
806         struct cpufreq_governor *t;
807
808         if (!has_target()) {
809                 i += sprintf(buf, "performance powersave");
810                 goto out;
811         }
812
813         for_each_governor(t) {
814                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815                     - (CPUFREQ_NAME_LEN + 2)))
816                         goto out;
817                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818         }
819 out:
820         i += sprintf(&buf[i], "\n");
821         return i;
822 }
823
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826         ssize_t i = 0;
827         unsigned int cpu;
828
829         for_each_cpu(cpu, mask) {
830                 if (i)
831                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833                 if (i >= (PAGE_SIZE - 5))
834                         break;
835         }
836         i += sprintf(&buf[i], "\n");
837         return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847         return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855         return cpufreq_show_cpus(policy->cpus, buf);
856 }
857
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859                                         const char *buf, size_t count)
860 {
861         unsigned int freq = 0;
862         unsigned int ret;
863
864         if (!policy->governor || !policy->governor->store_setspeed)
865                 return -EINVAL;
866
867         ret = sscanf(buf, "%u", &freq);
868         if (ret != 1)
869                 return -EINVAL;
870
871         policy->governor->store_setspeed(policy, freq);
872
873         return count;
874 }
875
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878         if (!policy->governor || !policy->governor->show_setspeed)
879                 return sprintf(buf, "<unsupported>\n");
880
881         return policy->governor->show_setspeed(policy, buf);
882 }
883
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889         unsigned int limit;
890         int ret;
891         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892         if (!ret)
893                 return sprintf(buf, "%u\n", limit);
894         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911
912 static struct attribute *default_attrs[] = {
913         &cpuinfo_min_freq.attr,
914         &cpuinfo_max_freq.attr,
915         &cpuinfo_transition_latency.attr,
916         &scaling_min_freq.attr,
917         &scaling_max_freq.attr,
918         &affected_cpus.attr,
919         &related_cpus.attr,
920         &scaling_governor.attr,
921         &scaling_driver.attr,
922         &scaling_available_governors.attr,
923         &scaling_setspeed.attr,
924         NULL
925 };
926
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932         struct cpufreq_policy *policy = to_policy(kobj);
933         struct freq_attr *fattr = to_attr(attr);
934         ssize_t ret;
935
936         down_read(&policy->rwsem);
937         ret = fattr->show(policy, buf);
938         up_read(&policy->rwsem);
939
940         return ret;
941 }
942
943 static ssize_t store(struct kobject *kobj, struct attribute *attr,
944                      const char *buf, size_t count)
945 {
946         struct cpufreq_policy *policy = to_policy(kobj);
947         struct freq_attr *fattr = to_attr(attr);
948         ssize_t ret = -EINVAL;
949
950         /*
951          * cpus_read_trylock() is used here to work around a circular lock
952          * dependency problem with respect to the cpufreq_register_driver().
953          */
954         if (!cpus_read_trylock())
955                 return -EBUSY;
956
957         if (cpu_online(policy->cpu)) {
958                 down_write(&policy->rwsem);
959                 ret = fattr->store(policy, buf, count);
960                 up_write(&policy->rwsem);
961         }
962
963         cpus_read_unlock();
964
965         return ret;
966 }
967
968 static void cpufreq_sysfs_release(struct kobject *kobj)
969 {
970         struct cpufreq_policy *policy = to_policy(kobj);
971         pr_debug("last reference is dropped\n");
972         complete(&policy->kobj_unregister);
973 }
974
975 static const struct sysfs_ops sysfs_ops = {
976         .show   = show,
977         .store  = store,
978 };
979
980 static struct kobj_type ktype_cpufreq = {
981         .sysfs_ops      = &sysfs_ops,
982         .default_attrs  = default_attrs,
983         .release        = cpufreq_sysfs_release,
984 };
985
986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
987 {
988         struct device *dev = get_cpu_device(cpu);
989
990         if (unlikely(!dev))
991                 return;
992
993         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
994                 return;
995
996         dev_dbg(dev, "%s: Adding symlink\n", __func__);
997         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
998                 dev_err(dev, "cpufreq symlink creation failed\n");
999 }
1000
1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002                                    struct device *dev)
1003 {
1004         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005         sysfs_remove_link(&dev->kobj, "cpufreq");
1006 }
1007
1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1009 {
1010         struct freq_attr **drv_attr;
1011         int ret = 0;
1012
1013         /* set up files for this cpu device */
1014         drv_attr = cpufreq_driver->attr;
1015         while (drv_attr && *drv_attr) {
1016                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017                 if (ret)
1018                         return ret;
1019                 drv_attr++;
1020         }
1021         if (cpufreq_driver->get) {
1022                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023                 if (ret)
1024                         return ret;
1025         }
1026
1027         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028         if (ret)
1029                 return ret;
1030
1031         if (cpufreq_driver->bios_limit) {
1032                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033                 if (ret)
1034                         return ret;
1035         }
1036
1037         return 0;
1038 }
1039
1040 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1041 {
1042         return NULL;
1043 }
1044
1045 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046 {
1047         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048         struct cpufreq_policy new_policy;
1049
1050         memcpy(&new_policy, policy, sizeof(*policy));
1051
1052         def_gov = cpufreq_default_governor();
1053
1054         if (has_target()) {
1055                 /*
1056                  * Update governor of new_policy to the governor used before
1057                  * hotplug
1058                  */
1059                 gov = find_governor(policy->last_governor);
1060                 if (gov) {
1061                         pr_debug("Restoring governor %s for cpu %d\n",
1062                                 policy->governor->name, policy->cpu);
1063                 } else {
1064                         if (!def_gov)
1065                                 return -ENODATA;
1066                         gov = def_gov;
1067                 }
1068                 new_policy.governor = gov;
1069         } else {
1070                 /* Use the default policy if there is no last_policy. */
1071                 if (policy->last_policy) {
1072                         new_policy.policy = policy->last_policy;
1073                 } else {
1074                         if (!def_gov)
1075                                 return -ENODATA;
1076                         cpufreq_parse_policy(def_gov->name, &new_policy);
1077                 }
1078         }
1079
1080         return cpufreq_set_policy(policy, &new_policy);
1081 }
1082
1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1084 {
1085         int ret = 0;
1086
1087         /* Has this CPU been taken care of already? */
1088         if (cpumask_test_cpu(cpu, policy->cpus))
1089                 return 0;
1090
1091         down_write(&policy->rwsem);
1092         if (has_target())
1093                 cpufreq_stop_governor(policy);
1094
1095         cpumask_set_cpu(cpu, policy->cpus);
1096
1097         if (has_target()) {
1098                 ret = cpufreq_start_governor(policy);
1099                 if (ret)
1100                         pr_err("%s: Failed to start governor\n", __func__);
1101         }
1102         up_write(&policy->rwsem);
1103         return ret;
1104 }
1105
1106 void refresh_frequency_limits(struct cpufreq_policy *policy)
1107 {
1108         struct cpufreq_policy new_policy;
1109
1110         if (!policy_is_inactive(policy)) {
1111                 new_policy = *policy;
1112                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1113
1114                 cpufreq_set_policy(policy, &new_policy);
1115         }
1116 }
1117 EXPORT_SYMBOL(refresh_frequency_limits);
1118
1119 static void handle_update(struct work_struct *work)
1120 {
1121         struct cpufreq_policy *policy =
1122                 container_of(work, struct cpufreq_policy, update);
1123
1124         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125         down_write(&policy->rwsem);
1126         refresh_frequency_limits(policy);
1127         up_write(&policy->rwsem);
1128 }
1129
1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131                                 void *data)
1132 {
1133         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134
1135         schedule_work(&policy->update);
1136         return 0;
1137 }
1138
1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140                                 void *data)
1141 {
1142         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143
1144         schedule_work(&policy->update);
1145         return 0;
1146 }
1147
1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149 {
1150         struct kobject *kobj;
1151         struct completion *cmp;
1152
1153         down_write(&policy->rwsem);
1154         cpufreq_stats_free_table(policy);
1155         kobj = &policy->kobj;
1156         cmp = &policy->kobj_unregister;
1157         up_write(&policy->rwsem);
1158         kobject_put(kobj);
1159
1160         /*
1161          * We need to make sure that the underlying kobj is
1162          * actually not referenced anymore by anybody before we
1163          * proceed with unloading.
1164          */
1165         pr_debug("waiting for dropping of refcount\n");
1166         wait_for_completion(cmp);
1167         pr_debug("wait complete\n");
1168 }
1169
1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171 {
1172         struct cpufreq_policy *policy;
1173         struct device *dev = get_cpu_device(cpu);
1174         int ret;
1175
1176         if (!dev)
1177                 return NULL;
1178
1179         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180         if (!policy)
1181                 return NULL;
1182
1183         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184                 goto err_free_policy;
1185
1186         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187                 goto err_free_cpumask;
1188
1189         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190                 goto err_free_rcpumask;
1191
1192         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193                                    cpufreq_global_kobject, "policy%u", cpu);
1194         if (ret) {
1195                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196                 /*
1197                  * The entire policy object will be freed below, but the extra
1198                  * memory allocated for the kobject name needs to be freed by
1199                  * releasing the kobject.
1200                  */
1201                 kobject_put(&policy->kobj);
1202                 goto err_free_real_cpus;
1203         }
1204
1205         policy->nb_min.notifier_call = cpufreq_notifier_min;
1206         policy->nb_max.notifier_call = cpufreq_notifier_max;
1207
1208         ret = dev_pm_qos_add_notifier(dev, &policy->nb_min,
1209                                       DEV_PM_QOS_MIN_FREQUENCY);
1210         if (ret) {
1211                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1212                         ret, cpumask_pr_args(policy->cpus));
1213                 goto err_kobj_remove;
1214         }
1215
1216         ret = dev_pm_qos_add_notifier(dev, &policy->nb_max,
1217                                       DEV_PM_QOS_MAX_FREQUENCY);
1218         if (ret) {
1219                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1220                         ret, cpumask_pr_args(policy->cpus));
1221                 goto err_min_qos_notifier;
1222         }
1223
1224         INIT_LIST_HEAD(&policy->policy_list);
1225         init_rwsem(&policy->rwsem);
1226         spin_lock_init(&policy->transition_lock);
1227         init_waitqueue_head(&policy->transition_wait);
1228         init_completion(&policy->kobj_unregister);
1229         INIT_WORK(&policy->update, handle_update);
1230
1231         policy->cpu = cpu;
1232         return policy;
1233
1234 err_min_qos_notifier:
1235         dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1236                                    DEV_PM_QOS_MIN_FREQUENCY);
1237 err_kobj_remove:
1238         cpufreq_policy_put_kobj(policy);
1239 err_free_real_cpus:
1240         free_cpumask_var(policy->real_cpus);
1241 err_free_rcpumask:
1242         free_cpumask_var(policy->related_cpus);
1243 err_free_cpumask:
1244         free_cpumask_var(policy->cpus);
1245 err_free_policy:
1246         kfree(policy);
1247
1248         return NULL;
1249 }
1250
1251 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1252 {
1253         struct device *dev = get_cpu_device(policy->cpu);
1254         unsigned long flags;
1255         int cpu;
1256
1257         /* Remove policy from list */
1258         write_lock_irqsave(&cpufreq_driver_lock, flags);
1259         list_del(&policy->policy_list);
1260
1261         for_each_cpu(cpu, policy->related_cpus)
1262                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1263         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1264
1265         dev_pm_qos_remove_notifier(dev, &policy->nb_max,
1266                                    DEV_PM_QOS_MAX_FREQUENCY);
1267         dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1268                                    DEV_PM_QOS_MIN_FREQUENCY);
1269         dev_pm_qos_remove_request(policy->max_freq_req);
1270         dev_pm_qos_remove_request(policy->min_freq_req);
1271         kfree(policy->min_freq_req);
1272
1273         cpufreq_policy_put_kobj(policy);
1274         free_cpumask_var(policy->real_cpus);
1275         free_cpumask_var(policy->related_cpus);
1276         free_cpumask_var(policy->cpus);
1277         kfree(policy);
1278 }
1279
1280 static int cpufreq_online(unsigned int cpu)
1281 {
1282         struct cpufreq_policy *policy;
1283         bool new_policy;
1284         unsigned long flags;
1285         unsigned int j;
1286         int ret;
1287
1288         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1289
1290         /* Check if this CPU already has a policy to manage it */
1291         policy = per_cpu(cpufreq_cpu_data, cpu);
1292         if (policy) {
1293                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1294                 if (!policy_is_inactive(policy))
1295                         return cpufreq_add_policy_cpu(policy, cpu);
1296
1297                 /* This is the only online CPU for the policy.  Start over. */
1298                 new_policy = false;
1299                 down_write(&policy->rwsem);
1300                 policy->cpu = cpu;
1301                 policy->governor = NULL;
1302                 up_write(&policy->rwsem);
1303         } else {
1304                 new_policy = true;
1305                 policy = cpufreq_policy_alloc(cpu);
1306                 if (!policy)
1307                         return -ENOMEM;
1308         }
1309
1310         if (!new_policy && cpufreq_driver->online) {
1311                 ret = cpufreq_driver->online(policy);
1312                 if (ret) {
1313                         pr_debug("%s: %d: initialization failed\n", __func__,
1314                                  __LINE__);
1315                         goto out_exit_policy;
1316                 }
1317
1318                 /* Recover policy->cpus using related_cpus */
1319                 cpumask_copy(policy->cpus, policy->related_cpus);
1320         } else {
1321                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1322
1323                 /*
1324                  * Call driver. From then on the cpufreq must be able
1325                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1326                  */
1327                 ret = cpufreq_driver->init(policy);
1328                 if (ret) {
1329                         pr_debug("%s: %d: initialization failed\n", __func__,
1330                                  __LINE__);
1331                         goto out_free_policy;
1332                 }
1333
1334                 ret = cpufreq_table_validate_and_sort(policy);
1335                 if (ret)
1336                         goto out_exit_policy;
1337
1338                 /* related_cpus should at least include policy->cpus. */
1339                 cpumask_copy(policy->related_cpus, policy->cpus);
1340         }
1341
1342         down_write(&policy->rwsem);
1343         /*
1344          * affected cpus must always be the one, which are online. We aren't
1345          * managing offline cpus here.
1346          */
1347         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1348
1349         if (new_policy) {
1350                 struct device *dev = get_cpu_device(cpu);
1351
1352                 for_each_cpu(j, policy->related_cpus) {
1353                         per_cpu(cpufreq_cpu_data, j) = policy;
1354                         add_cpu_dev_symlink(policy, j);
1355                 }
1356
1357                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1358                                                GFP_KERNEL);
1359                 if (!policy->min_freq_req)
1360                         goto out_destroy_policy;
1361
1362                 ret = dev_pm_qos_add_request(dev, policy->min_freq_req,
1363                                              DEV_PM_QOS_MIN_FREQUENCY,
1364                                              policy->min);
1365                 if (ret < 0) {
1366                         /*
1367                          * So we don't call dev_pm_qos_remove_request() for an
1368                          * uninitialized request.
1369                          */
1370                         kfree(policy->min_freq_req);
1371                         policy->min_freq_req = NULL;
1372
1373                         dev_err(dev, "Failed to add min-freq constraint (%d)\n",
1374                                 ret);
1375                         goto out_destroy_policy;
1376                 }
1377
1378                 /*
1379                  * This must be initialized right here to avoid calling
1380                  * dev_pm_qos_remove_request() on uninitialized request in case
1381                  * of errors.
1382                  */
1383                 policy->max_freq_req = policy->min_freq_req + 1;
1384
1385                 ret = dev_pm_qos_add_request(dev, policy->max_freq_req,
1386                                              DEV_PM_QOS_MAX_FREQUENCY,
1387                                              policy->max);
1388                 if (ret < 0) {
1389                         policy->max_freq_req = NULL;
1390                         dev_err(dev, "Failed to add max-freq constraint (%d)\n",
1391                                 ret);
1392                         goto out_destroy_policy;
1393                 }
1394         }
1395
1396         if (cpufreq_driver->get && has_target()) {
1397                 policy->cur = cpufreq_driver->get(policy->cpu);
1398                 if (!policy->cur) {
1399                         pr_err("%s: ->get() failed\n", __func__);
1400                         goto out_destroy_policy;
1401                 }
1402         }
1403
1404         /*
1405          * Sometimes boot loaders set CPU frequency to a value outside of
1406          * frequency table present with cpufreq core. In such cases CPU might be
1407          * unstable if it has to run on that frequency for long duration of time
1408          * and so its better to set it to a frequency which is specified in
1409          * freq-table. This also makes cpufreq stats inconsistent as
1410          * cpufreq-stats would fail to register because current frequency of CPU
1411          * isn't found in freq-table.
1412          *
1413          * Because we don't want this change to effect boot process badly, we go
1414          * for the next freq which is >= policy->cur ('cur' must be set by now,
1415          * otherwise we will end up setting freq to lowest of the table as 'cur'
1416          * is initialized to zero).
1417          *
1418          * We are passing target-freq as "policy->cur - 1" otherwise
1419          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1420          * equal to target-freq.
1421          */
1422         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1423             && has_target()) {
1424                 /* Are we running at unknown frequency ? */
1425                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1426                 if (ret == -EINVAL) {
1427                         /* Warn user and fix it */
1428                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1429                                 __func__, policy->cpu, policy->cur);
1430                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1431                                 CPUFREQ_RELATION_L);
1432
1433                         /*
1434                          * Reaching here after boot in a few seconds may not
1435                          * mean that system will remain stable at "unknown"
1436                          * frequency for longer duration. Hence, a BUG_ON().
1437                          */
1438                         BUG_ON(ret);
1439                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1440                                 __func__, policy->cpu, policy->cur);
1441                 }
1442         }
1443
1444         if (new_policy) {
1445                 ret = cpufreq_add_dev_interface(policy);
1446                 if (ret)
1447                         goto out_destroy_policy;
1448
1449                 cpufreq_stats_create_table(policy);
1450
1451                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1452                 list_add(&policy->policy_list, &cpufreq_policy_list);
1453                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1454         }
1455
1456         ret = cpufreq_init_policy(policy);
1457         if (ret) {
1458                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1459                        __func__, cpu, ret);
1460                 goto out_destroy_policy;
1461         }
1462
1463         up_write(&policy->rwsem);
1464
1465         kobject_uevent(&policy->kobj, KOBJ_ADD);
1466
1467         /* Callback for handling stuff after policy is ready */
1468         if (cpufreq_driver->ready)
1469                 cpufreq_driver->ready(policy);
1470
1471         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1472                 policy->cdev = of_cpufreq_cooling_register(policy);
1473
1474         pr_debug("initialization complete\n");
1475
1476         return 0;
1477
1478 out_destroy_policy:
1479         for_each_cpu(j, policy->real_cpus)
1480                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1481
1482         up_write(&policy->rwsem);
1483
1484 out_exit_policy:
1485         if (cpufreq_driver->exit)
1486                 cpufreq_driver->exit(policy);
1487
1488 out_free_policy:
1489         cpufreq_policy_free(policy);
1490         return ret;
1491 }
1492
1493 /**
1494  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1495  * @dev: CPU device.
1496  * @sif: Subsystem interface structure pointer (not used)
1497  */
1498 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1499 {
1500         struct cpufreq_policy *policy;
1501         unsigned cpu = dev->id;
1502         int ret;
1503
1504         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1505
1506         if (cpu_online(cpu)) {
1507                 ret = cpufreq_online(cpu);
1508                 if (ret)
1509                         return ret;
1510         }
1511
1512         /* Create sysfs link on CPU registration */
1513         policy = per_cpu(cpufreq_cpu_data, cpu);
1514         if (policy)
1515                 add_cpu_dev_symlink(policy, cpu);
1516
1517         return 0;
1518 }
1519
1520 static int cpufreq_offline(unsigned int cpu)
1521 {
1522         struct cpufreq_policy *policy;
1523         int ret;
1524
1525         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1526
1527         policy = cpufreq_cpu_get_raw(cpu);
1528         if (!policy) {
1529                 pr_debug("%s: No cpu_data found\n", __func__);
1530                 return 0;
1531         }
1532
1533         down_write(&policy->rwsem);
1534         if (has_target())
1535                 cpufreq_stop_governor(policy);
1536
1537         cpumask_clear_cpu(cpu, policy->cpus);
1538
1539         if (policy_is_inactive(policy)) {
1540                 if (has_target())
1541                         strncpy(policy->last_governor, policy->governor->name,
1542                                 CPUFREQ_NAME_LEN);
1543                 else
1544                         policy->last_policy = policy->policy;
1545         } else if (cpu == policy->cpu) {
1546                 /* Nominate new CPU */
1547                 policy->cpu = cpumask_any(policy->cpus);
1548         }
1549
1550         /* Start governor again for active policy */
1551         if (!policy_is_inactive(policy)) {
1552                 if (has_target()) {
1553                         ret = cpufreq_start_governor(policy);
1554                         if (ret)
1555                                 pr_err("%s: Failed to start governor\n", __func__);
1556                 }
1557
1558                 goto unlock;
1559         }
1560
1561         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1562                 cpufreq_cooling_unregister(policy->cdev);
1563                 policy->cdev = NULL;
1564         }
1565
1566         if (cpufreq_driver->stop_cpu)
1567                 cpufreq_driver->stop_cpu(policy);
1568
1569         if (has_target())
1570                 cpufreq_exit_governor(policy);
1571
1572         /*
1573          * Perform the ->offline() during light-weight tear-down, as
1574          * that allows fast recovery when the CPU comes back.
1575          */
1576         if (cpufreq_driver->offline) {
1577                 cpufreq_driver->offline(policy);
1578         } else if (cpufreq_driver->exit) {
1579                 cpufreq_driver->exit(policy);
1580                 policy->freq_table = NULL;
1581         }
1582
1583 unlock:
1584         up_write(&policy->rwsem);
1585         return 0;
1586 }
1587
1588 /**
1589  * cpufreq_remove_dev - remove a CPU device
1590  *
1591  * Removes the cpufreq interface for a CPU device.
1592  */
1593 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1594 {
1595         unsigned int cpu = dev->id;
1596         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1597
1598         if (!policy)
1599                 return;
1600
1601         if (cpu_online(cpu))
1602                 cpufreq_offline(cpu);
1603
1604         cpumask_clear_cpu(cpu, policy->real_cpus);
1605         remove_cpu_dev_symlink(policy, dev);
1606
1607         if (cpumask_empty(policy->real_cpus)) {
1608                 /* We did light-weight exit earlier, do full tear down now */
1609                 if (cpufreq_driver->offline)
1610                         cpufreq_driver->exit(policy);
1611
1612                 cpufreq_policy_free(policy);
1613         }
1614 }
1615
1616 /**
1617  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1618  *      in deep trouble.
1619  *      @policy: policy managing CPUs
1620  *      @new_freq: CPU frequency the CPU actually runs at
1621  *
1622  *      We adjust to current frequency first, and need to clean up later.
1623  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1624  */
1625 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1626                                 unsigned int new_freq)
1627 {
1628         struct cpufreq_freqs freqs;
1629
1630         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1631                  policy->cur, new_freq);
1632
1633         freqs.old = policy->cur;
1634         freqs.new = new_freq;
1635
1636         cpufreq_freq_transition_begin(policy, &freqs);
1637         cpufreq_freq_transition_end(policy, &freqs, 0);
1638 }
1639
1640 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1641 {
1642         unsigned int new_freq;
1643
1644         new_freq = cpufreq_driver->get(policy->cpu);
1645         if (!new_freq)
1646                 return 0;
1647
1648         /*
1649          * If fast frequency switching is used with the given policy, the check
1650          * against policy->cur is pointless, so skip it in that case.
1651          */
1652         if (policy->fast_switch_enabled || !has_target())
1653                 return new_freq;
1654
1655         if (policy->cur != new_freq) {
1656                 cpufreq_out_of_sync(policy, new_freq);
1657                 if (update)
1658                         schedule_work(&policy->update);
1659         }
1660
1661         return new_freq;
1662 }
1663
1664 /**
1665  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1666  * @cpu: CPU number
1667  *
1668  * This is the last known freq, without actually getting it from the driver.
1669  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1670  */
1671 unsigned int cpufreq_quick_get(unsigned int cpu)
1672 {
1673         struct cpufreq_policy *policy;
1674         unsigned int ret_freq = 0;
1675         unsigned long flags;
1676
1677         read_lock_irqsave(&cpufreq_driver_lock, flags);
1678
1679         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1680                 ret_freq = cpufreq_driver->get(cpu);
1681                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1682                 return ret_freq;
1683         }
1684
1685         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1686
1687         policy = cpufreq_cpu_get(cpu);
1688         if (policy) {
1689                 ret_freq = policy->cur;
1690                 cpufreq_cpu_put(policy);
1691         }
1692
1693         return ret_freq;
1694 }
1695 EXPORT_SYMBOL(cpufreq_quick_get);
1696
1697 /**
1698  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1699  * @cpu: CPU number
1700  *
1701  * Just return the max possible frequency for a given CPU.
1702  */
1703 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1704 {
1705         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1706         unsigned int ret_freq = 0;
1707
1708         if (policy) {
1709                 ret_freq = policy->max;
1710                 cpufreq_cpu_put(policy);
1711         }
1712
1713         return ret_freq;
1714 }
1715 EXPORT_SYMBOL(cpufreq_quick_get_max);
1716
1717 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1718 {
1719         if (unlikely(policy_is_inactive(policy)))
1720                 return 0;
1721
1722         return cpufreq_verify_current_freq(policy, true);
1723 }
1724
1725 /**
1726  * cpufreq_get - get the current CPU frequency (in kHz)
1727  * @cpu: CPU number
1728  *
1729  * Get the CPU current (static) CPU frequency
1730  */
1731 unsigned int cpufreq_get(unsigned int cpu)
1732 {
1733         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1734         unsigned int ret_freq = 0;
1735
1736         if (policy) {
1737                 down_read(&policy->rwsem);
1738                 if (cpufreq_driver->get)
1739                         ret_freq = __cpufreq_get(policy);
1740                 up_read(&policy->rwsem);
1741
1742                 cpufreq_cpu_put(policy);
1743         }
1744
1745         return ret_freq;
1746 }
1747 EXPORT_SYMBOL(cpufreq_get);
1748
1749 static struct subsys_interface cpufreq_interface = {
1750         .name           = "cpufreq",
1751         .subsys         = &cpu_subsys,
1752         .add_dev        = cpufreq_add_dev,
1753         .remove_dev     = cpufreq_remove_dev,
1754 };
1755
1756 /*
1757  * In case platform wants some specific frequency to be configured
1758  * during suspend..
1759  */
1760 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1761 {
1762         int ret;
1763
1764         if (!policy->suspend_freq) {
1765                 pr_debug("%s: suspend_freq not defined\n", __func__);
1766                 return 0;
1767         }
1768
1769         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1770                         policy->suspend_freq);
1771
1772         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1773                         CPUFREQ_RELATION_H);
1774         if (ret)
1775                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1776                                 __func__, policy->suspend_freq, ret);
1777
1778         return ret;
1779 }
1780 EXPORT_SYMBOL(cpufreq_generic_suspend);
1781
1782 /**
1783  * cpufreq_suspend() - Suspend CPUFreq governors
1784  *
1785  * Called during system wide Suspend/Hibernate cycles for suspending governors
1786  * as some platforms can't change frequency after this point in suspend cycle.
1787  * Because some of the devices (like: i2c, regulators, etc) they use for
1788  * changing frequency are suspended quickly after this point.
1789  */
1790 void cpufreq_suspend(void)
1791 {
1792         struct cpufreq_policy *policy;
1793
1794         if (!cpufreq_driver)
1795                 return;
1796
1797         if (!has_target() && !cpufreq_driver->suspend)
1798                 goto suspend;
1799
1800         pr_debug("%s: Suspending Governors\n", __func__);
1801
1802         for_each_active_policy(policy) {
1803                 if (has_target()) {
1804                         down_write(&policy->rwsem);
1805                         cpufreq_stop_governor(policy);
1806                         up_write(&policy->rwsem);
1807                 }
1808
1809                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1810                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1811                                 policy);
1812         }
1813
1814 suspend:
1815         cpufreq_suspended = true;
1816 }
1817
1818 /**
1819  * cpufreq_resume() - Resume CPUFreq governors
1820  *
1821  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1822  * are suspended with cpufreq_suspend().
1823  */
1824 void cpufreq_resume(void)
1825 {
1826         struct cpufreq_policy *policy;
1827         int ret;
1828
1829         if (!cpufreq_driver)
1830                 return;
1831
1832         if (unlikely(!cpufreq_suspended))
1833                 return;
1834
1835         cpufreq_suspended = false;
1836
1837         if (!has_target() && !cpufreq_driver->resume)
1838                 return;
1839
1840         pr_debug("%s: Resuming Governors\n", __func__);
1841
1842         for_each_active_policy(policy) {
1843                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1844                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1845                                 policy);
1846                 } else if (has_target()) {
1847                         down_write(&policy->rwsem);
1848                         ret = cpufreq_start_governor(policy);
1849                         up_write(&policy->rwsem);
1850
1851                         if (ret)
1852                                 pr_err("%s: Failed to start governor for policy: %p\n",
1853                                        __func__, policy);
1854                 }
1855         }
1856 }
1857
1858 /**
1859  *      cpufreq_get_current_driver - return current driver's name
1860  *
1861  *      Return the name string of the currently loaded cpufreq driver
1862  *      or NULL, if none.
1863  */
1864 const char *cpufreq_get_current_driver(void)
1865 {
1866         if (cpufreq_driver)
1867                 return cpufreq_driver->name;
1868
1869         return NULL;
1870 }
1871 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1872
1873 /**
1874  *      cpufreq_get_driver_data - return current driver data
1875  *
1876  *      Return the private data of the currently loaded cpufreq
1877  *      driver, or NULL if no cpufreq driver is loaded.
1878  */
1879 void *cpufreq_get_driver_data(void)
1880 {
1881         if (cpufreq_driver)
1882                 return cpufreq_driver->driver_data;
1883
1884         return NULL;
1885 }
1886 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1887
1888 /*********************************************************************
1889  *                     NOTIFIER LISTS INTERFACE                      *
1890  *********************************************************************/
1891
1892 /**
1893  *      cpufreq_register_notifier - register a driver with cpufreq
1894  *      @nb: notifier function to register
1895  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1896  *
1897  *      Add a driver to one of two lists: either a list of drivers that
1898  *      are notified about clock rate changes (once before and once after
1899  *      the transition), or a list of drivers that are notified about
1900  *      changes in cpufreq policy.
1901  *
1902  *      This function may sleep, and has the same return conditions as
1903  *      blocking_notifier_chain_register.
1904  */
1905 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1906 {
1907         int ret;
1908
1909         if (cpufreq_disabled())
1910                 return -EINVAL;
1911
1912         switch (list) {
1913         case CPUFREQ_TRANSITION_NOTIFIER:
1914                 mutex_lock(&cpufreq_fast_switch_lock);
1915
1916                 if (cpufreq_fast_switch_count > 0) {
1917                         mutex_unlock(&cpufreq_fast_switch_lock);
1918                         return -EBUSY;
1919                 }
1920                 ret = srcu_notifier_chain_register(
1921                                 &cpufreq_transition_notifier_list, nb);
1922                 if (!ret)
1923                         cpufreq_fast_switch_count--;
1924
1925                 mutex_unlock(&cpufreq_fast_switch_lock);
1926                 break;
1927         case CPUFREQ_POLICY_NOTIFIER:
1928                 ret = blocking_notifier_chain_register(
1929                                 &cpufreq_policy_notifier_list, nb);
1930                 break;
1931         default:
1932                 ret = -EINVAL;
1933         }
1934
1935         return ret;
1936 }
1937 EXPORT_SYMBOL(cpufreq_register_notifier);
1938
1939 /**
1940  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1941  *      @nb: notifier block to be unregistered
1942  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1943  *
1944  *      Remove a driver from the CPU frequency notifier list.
1945  *
1946  *      This function may sleep, and has the same return conditions as
1947  *      blocking_notifier_chain_unregister.
1948  */
1949 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1950 {
1951         int ret;
1952
1953         if (cpufreq_disabled())
1954                 return -EINVAL;
1955
1956         switch (list) {
1957         case CPUFREQ_TRANSITION_NOTIFIER:
1958                 mutex_lock(&cpufreq_fast_switch_lock);
1959
1960                 ret = srcu_notifier_chain_unregister(
1961                                 &cpufreq_transition_notifier_list, nb);
1962                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1963                         cpufreq_fast_switch_count++;
1964
1965                 mutex_unlock(&cpufreq_fast_switch_lock);
1966                 break;
1967         case CPUFREQ_POLICY_NOTIFIER:
1968                 ret = blocking_notifier_chain_unregister(
1969                                 &cpufreq_policy_notifier_list, nb);
1970                 break;
1971         default:
1972                 ret = -EINVAL;
1973         }
1974
1975         return ret;
1976 }
1977 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1978
1979
1980 /*********************************************************************
1981  *                              GOVERNORS                            *
1982  *********************************************************************/
1983
1984 /**
1985  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1986  * @policy: cpufreq policy to switch the frequency for.
1987  * @target_freq: New frequency to set (may be approximate).
1988  *
1989  * Carry out a fast frequency switch without sleeping.
1990  *
1991  * The driver's ->fast_switch() callback invoked by this function must be
1992  * suitable for being called from within RCU-sched read-side critical sections
1993  * and it is expected to select the minimum available frequency greater than or
1994  * equal to @target_freq (CPUFREQ_RELATION_L).
1995  *
1996  * This function must not be called if policy->fast_switch_enabled is unset.
1997  *
1998  * Governors calling this function must guarantee that it will never be invoked
1999  * twice in parallel for the same policy and that it will never be called in
2000  * parallel with either ->target() or ->target_index() for the same policy.
2001  *
2002  * Returns the actual frequency set for the CPU.
2003  *
2004  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2005  * error condition, the hardware configuration must be preserved.
2006  */
2007 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2008                                         unsigned int target_freq)
2009 {
2010         target_freq = clamp_val(target_freq, policy->min, policy->max);
2011
2012         return cpufreq_driver->fast_switch(policy, target_freq);
2013 }
2014 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2015
2016 /* Must set freqs->new to intermediate frequency */
2017 static int __target_intermediate(struct cpufreq_policy *policy,
2018                                  struct cpufreq_freqs *freqs, int index)
2019 {
2020         int ret;
2021
2022         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2023
2024         /* We don't need to switch to intermediate freq */
2025         if (!freqs->new)
2026                 return 0;
2027
2028         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2029                  __func__, policy->cpu, freqs->old, freqs->new);
2030
2031         cpufreq_freq_transition_begin(policy, freqs);
2032         ret = cpufreq_driver->target_intermediate(policy, index);
2033         cpufreq_freq_transition_end(policy, freqs, ret);
2034
2035         if (ret)
2036                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2037                        __func__, ret);
2038
2039         return ret;
2040 }
2041
2042 static int __target_index(struct cpufreq_policy *policy, int index)
2043 {
2044         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2045         unsigned int intermediate_freq = 0;
2046         unsigned int newfreq = policy->freq_table[index].frequency;
2047         int retval = -EINVAL;
2048         bool notify;
2049
2050         if (newfreq == policy->cur)
2051                 return 0;
2052
2053         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2054         if (notify) {
2055                 /* Handle switching to intermediate frequency */
2056                 if (cpufreq_driver->get_intermediate) {
2057                         retval = __target_intermediate(policy, &freqs, index);
2058                         if (retval)
2059                                 return retval;
2060
2061                         intermediate_freq = freqs.new;
2062                         /* Set old freq to intermediate */
2063                         if (intermediate_freq)
2064                                 freqs.old = freqs.new;
2065                 }
2066
2067                 freqs.new = newfreq;
2068                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2069                          __func__, policy->cpu, freqs.old, freqs.new);
2070
2071                 cpufreq_freq_transition_begin(policy, &freqs);
2072         }
2073
2074         retval = cpufreq_driver->target_index(policy, index);
2075         if (retval)
2076                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2077                        retval);
2078
2079         if (notify) {
2080                 cpufreq_freq_transition_end(policy, &freqs, retval);
2081
2082                 /*
2083                  * Failed after setting to intermediate freq? Driver should have
2084                  * reverted back to initial frequency and so should we. Check
2085                  * here for intermediate_freq instead of get_intermediate, in
2086                  * case we haven't switched to intermediate freq at all.
2087                  */
2088                 if (unlikely(retval && intermediate_freq)) {
2089                         freqs.old = intermediate_freq;
2090                         freqs.new = policy->restore_freq;
2091                         cpufreq_freq_transition_begin(policy, &freqs);
2092                         cpufreq_freq_transition_end(policy, &freqs, 0);
2093                 }
2094         }
2095
2096         return retval;
2097 }
2098
2099 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2100                             unsigned int target_freq,
2101                             unsigned int relation)
2102 {
2103         unsigned int old_target_freq = target_freq;
2104         int index;
2105
2106         if (cpufreq_disabled())
2107                 return -ENODEV;
2108
2109         /* Make sure that target_freq is within supported range */
2110         target_freq = clamp_val(target_freq, policy->min, policy->max);
2111
2112         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2113                  policy->cpu, target_freq, relation, old_target_freq);
2114
2115         /*
2116          * This might look like a redundant call as we are checking it again
2117          * after finding index. But it is left intentionally for cases where
2118          * exactly same freq is called again and so we can save on few function
2119          * calls.
2120          */
2121         if (target_freq == policy->cur)
2122                 return 0;
2123
2124         /* Save last value to restore later on errors */
2125         policy->restore_freq = policy->cur;
2126
2127         if (cpufreq_driver->target)
2128                 return cpufreq_driver->target(policy, target_freq, relation);
2129
2130         if (!cpufreq_driver->target_index)
2131                 return -EINVAL;
2132
2133         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2134
2135         return __target_index(policy, index);
2136 }
2137 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2138
2139 int cpufreq_driver_target(struct cpufreq_policy *policy,
2140                           unsigned int target_freq,
2141                           unsigned int relation)
2142 {
2143         int ret = -EINVAL;
2144
2145         down_write(&policy->rwsem);
2146
2147         ret = __cpufreq_driver_target(policy, target_freq, relation);
2148
2149         up_write(&policy->rwsem);
2150
2151         return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2154
2155 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2156 {
2157         return NULL;
2158 }
2159
2160 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2161 {
2162         int ret;
2163
2164         /* Don't start any governor operations if we are entering suspend */
2165         if (cpufreq_suspended)
2166                 return 0;
2167         /*
2168          * Governor might not be initiated here if ACPI _PPC changed
2169          * notification happened, so check it.
2170          */
2171         if (!policy->governor)
2172                 return -EINVAL;
2173
2174         /* Platform doesn't want dynamic frequency switching ? */
2175         if (policy->governor->dynamic_switching &&
2176             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2177                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2178
2179                 if (gov) {
2180                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2181                                 policy->governor->name, gov->name);
2182                         policy->governor = gov;
2183                 } else {
2184                         return -EINVAL;
2185                 }
2186         }
2187
2188         if (!try_module_get(policy->governor->owner))
2189                 return -EINVAL;
2190
2191         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2192
2193         if (policy->governor->init) {
2194                 ret = policy->governor->init(policy);
2195                 if (ret) {
2196                         module_put(policy->governor->owner);
2197                         return ret;
2198                 }
2199         }
2200
2201         return 0;
2202 }
2203
2204 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2205 {
2206         if (cpufreq_suspended || !policy->governor)
2207                 return;
2208
2209         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2210
2211         if (policy->governor->exit)
2212                 policy->governor->exit(policy);
2213
2214         module_put(policy->governor->owner);
2215 }
2216
2217 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2218 {
2219         int ret;
2220
2221         if (cpufreq_suspended)
2222                 return 0;
2223
2224         if (!policy->governor)
2225                 return -EINVAL;
2226
2227         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2228
2229         if (cpufreq_driver->get)
2230                 cpufreq_verify_current_freq(policy, false);
2231
2232         if (policy->governor->start) {
2233                 ret = policy->governor->start(policy);
2234                 if (ret)
2235                         return ret;
2236         }
2237
2238         if (policy->governor->limits)
2239                 policy->governor->limits(policy);
2240
2241         return 0;
2242 }
2243
2244 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2245 {
2246         if (cpufreq_suspended || !policy->governor)
2247                 return;
2248
2249         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2250
2251         if (policy->governor->stop)
2252                 policy->governor->stop(policy);
2253 }
2254
2255 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2256 {
2257         if (cpufreq_suspended || !policy->governor)
2258                 return;
2259
2260         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2261
2262         if (policy->governor->limits)
2263                 policy->governor->limits(policy);
2264 }
2265
2266 int cpufreq_register_governor(struct cpufreq_governor *governor)
2267 {
2268         int err;
2269
2270         if (!governor)
2271                 return -EINVAL;
2272
2273         if (cpufreq_disabled())
2274                 return -ENODEV;
2275
2276         mutex_lock(&cpufreq_governor_mutex);
2277
2278         err = -EBUSY;
2279         if (!find_governor(governor->name)) {
2280                 err = 0;
2281                 list_add(&governor->governor_list, &cpufreq_governor_list);
2282         }
2283
2284         mutex_unlock(&cpufreq_governor_mutex);
2285         return err;
2286 }
2287 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2288
2289 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2290 {
2291         struct cpufreq_policy *policy;
2292         unsigned long flags;
2293
2294         if (!governor)
2295                 return;
2296
2297         if (cpufreq_disabled())
2298                 return;
2299
2300         /* clear last_governor for all inactive policies */
2301         read_lock_irqsave(&cpufreq_driver_lock, flags);
2302         for_each_inactive_policy(policy) {
2303                 if (!strcmp(policy->last_governor, governor->name)) {
2304                         policy->governor = NULL;
2305                         strcpy(policy->last_governor, "\0");
2306                 }
2307         }
2308         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2309
2310         mutex_lock(&cpufreq_governor_mutex);
2311         list_del(&governor->governor_list);
2312         mutex_unlock(&cpufreq_governor_mutex);
2313 }
2314 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2315
2316
2317 /*********************************************************************
2318  *                          POLICY INTERFACE                         *
2319  *********************************************************************/
2320
2321 /**
2322  * cpufreq_get_policy - get the current cpufreq_policy
2323  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2324  *      is written
2325  *
2326  * Reads the current cpufreq policy.
2327  */
2328 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2329 {
2330         struct cpufreq_policy *cpu_policy;
2331         if (!policy)
2332                 return -EINVAL;
2333
2334         cpu_policy = cpufreq_cpu_get(cpu);
2335         if (!cpu_policy)
2336                 return -EINVAL;
2337
2338         memcpy(policy, cpu_policy, sizeof(*policy));
2339
2340         cpufreq_cpu_put(cpu_policy);
2341         return 0;
2342 }
2343 EXPORT_SYMBOL(cpufreq_get_policy);
2344
2345 /**
2346  * cpufreq_set_policy - Modify cpufreq policy parameters.
2347  * @policy: Policy object to modify.
2348  * @new_policy: New policy data.
2349  *
2350  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2351  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2352  * the driver's ->verify() callback again and run the notifiers for it again
2353  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2354  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2355  * callback (if present) or carry out a governor update for @policy.  That is,
2356  * run the current governor's ->limits() callback (if the governor field in
2357  * @new_policy points to the same object as the one in @policy) or replace the
2358  * governor for @policy with the new one stored in @new_policy.
2359  *
2360  * The cpuinfo part of @policy is not updated by this function.
2361  */
2362 int cpufreq_set_policy(struct cpufreq_policy *policy,
2363                        struct cpufreq_policy *new_policy)
2364 {
2365         struct cpufreq_governor *old_gov;
2366         struct device *cpu_dev = get_cpu_device(policy->cpu);
2367         int ret;
2368
2369         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2370                  new_policy->cpu, new_policy->min, new_policy->max);
2371
2372         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2373
2374         /*
2375          * PM QoS framework collects all the requests from users and provide us
2376          * the final aggregated value here.
2377          */
2378         new_policy->min = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MIN_FREQUENCY);
2379         new_policy->max = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MAX_FREQUENCY);
2380
2381         /* verify the cpu speed can be set within this limit */
2382         ret = cpufreq_driver->verify(new_policy);
2383         if (ret)
2384                 return ret;
2385
2386         /*
2387          * The notifier-chain shall be removed once all the users of
2388          * CPUFREQ_ADJUST are moved to use the QoS framework.
2389          */
2390         /* adjust if necessary - all reasons */
2391         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2392                         CPUFREQ_ADJUST, new_policy);
2393
2394         /*
2395          * verify the cpu speed can be set within this limit, which might be
2396          * different to the first one
2397          */
2398         ret = cpufreq_driver->verify(new_policy);
2399         if (ret)
2400                 return ret;
2401
2402         /* notification of the new policy */
2403         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2404                         CPUFREQ_NOTIFY, new_policy);
2405
2406         policy->min = new_policy->min;
2407         policy->max = new_policy->max;
2408         trace_cpu_frequency_limits(policy);
2409
2410         policy->cached_target_freq = UINT_MAX;
2411
2412         pr_debug("new min and max freqs are %u - %u kHz\n",
2413                  policy->min, policy->max);
2414
2415         if (cpufreq_driver->setpolicy) {
2416                 policy->policy = new_policy->policy;
2417                 pr_debug("setting range\n");
2418                 return cpufreq_driver->setpolicy(policy);
2419         }
2420
2421         if (new_policy->governor == policy->governor) {
2422                 pr_debug("governor limits update\n");
2423                 cpufreq_governor_limits(policy);
2424                 return 0;
2425         }
2426
2427         pr_debug("governor switch\n");
2428
2429         /* save old, working values */
2430         old_gov = policy->governor;
2431         /* end old governor */
2432         if (old_gov) {
2433                 cpufreq_stop_governor(policy);
2434                 cpufreq_exit_governor(policy);
2435         }
2436
2437         /* start new governor */
2438         policy->governor = new_policy->governor;
2439         ret = cpufreq_init_governor(policy);
2440         if (!ret) {
2441                 ret = cpufreq_start_governor(policy);
2442                 if (!ret) {
2443                         pr_debug("governor change\n");
2444                         sched_cpufreq_governor_change(policy, old_gov);
2445                         return 0;
2446                 }
2447                 cpufreq_exit_governor(policy);
2448         }
2449
2450         /* new governor failed, so re-start old one */
2451         pr_debug("starting governor %s failed\n", policy->governor->name);
2452         if (old_gov) {
2453                 policy->governor = old_gov;
2454                 if (cpufreq_init_governor(policy))
2455                         policy->governor = NULL;
2456                 else
2457                         cpufreq_start_governor(policy);
2458         }
2459
2460         return ret;
2461 }
2462
2463 /**
2464  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2465  * @cpu: CPU to re-evaluate the policy for.
2466  *
2467  * Update the current frequency for the cpufreq policy of @cpu and use
2468  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2469  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2470  * for the policy in question, among other things.
2471  */
2472 void cpufreq_update_policy(unsigned int cpu)
2473 {
2474         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2475
2476         if (!policy)
2477                 return;
2478
2479         /*
2480          * BIOS might change freq behind our back
2481          * -> ask driver for current freq and notify governors about a change
2482          */
2483         if (cpufreq_driver->get && has_target() &&
2484             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2485                 goto unlock;
2486
2487         refresh_frequency_limits(policy);
2488
2489 unlock:
2490         cpufreq_cpu_release(policy);
2491 }
2492 EXPORT_SYMBOL(cpufreq_update_policy);
2493
2494 /**
2495  * cpufreq_update_limits - Update policy limits for a given CPU.
2496  * @cpu: CPU to update the policy limits for.
2497  *
2498  * Invoke the driver's ->update_limits callback if present or call
2499  * cpufreq_update_policy() for @cpu.
2500  */
2501 void cpufreq_update_limits(unsigned int cpu)
2502 {
2503         if (cpufreq_driver->update_limits)
2504                 cpufreq_driver->update_limits(cpu);
2505         else
2506                 cpufreq_update_policy(cpu);
2507 }
2508 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2509
2510 /*********************************************************************
2511  *               BOOST                                               *
2512  *********************************************************************/
2513 static int cpufreq_boost_set_sw(int state)
2514 {
2515         struct cpufreq_policy *policy;
2516         int ret = -EINVAL;
2517
2518         for_each_active_policy(policy) {
2519                 if (!policy->freq_table)
2520                         continue;
2521
2522                 ret = cpufreq_frequency_table_cpuinfo(policy,
2523                                                       policy->freq_table);
2524                 if (ret) {
2525                         pr_err("%s: Policy frequency update failed\n",
2526                                __func__);
2527                         break;
2528                 }
2529
2530                 ret = dev_pm_qos_update_request(policy->max_freq_req, policy->max);
2531                 if (ret < 0)
2532                         break;
2533         }
2534
2535         return ret;
2536 }
2537
2538 int cpufreq_boost_trigger_state(int state)
2539 {
2540         unsigned long flags;
2541         int ret = 0;
2542
2543         if (cpufreq_driver->boost_enabled == state)
2544                 return 0;
2545
2546         write_lock_irqsave(&cpufreq_driver_lock, flags);
2547         cpufreq_driver->boost_enabled = state;
2548         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2549
2550         ret = cpufreq_driver->set_boost(state);
2551         if (ret) {
2552                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2553                 cpufreq_driver->boost_enabled = !state;
2554                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2555
2556                 pr_err("%s: Cannot %s BOOST\n",
2557                        __func__, state ? "enable" : "disable");
2558         }
2559
2560         return ret;
2561 }
2562
2563 static bool cpufreq_boost_supported(void)
2564 {
2565         return cpufreq_driver->set_boost;
2566 }
2567
2568 static int create_boost_sysfs_file(void)
2569 {
2570         int ret;
2571
2572         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2573         if (ret)
2574                 pr_err("%s: cannot register global BOOST sysfs file\n",
2575                        __func__);
2576
2577         return ret;
2578 }
2579
2580 static void remove_boost_sysfs_file(void)
2581 {
2582         if (cpufreq_boost_supported())
2583                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2584 }
2585
2586 int cpufreq_enable_boost_support(void)
2587 {
2588         if (!cpufreq_driver)
2589                 return -EINVAL;
2590
2591         if (cpufreq_boost_supported())
2592                 return 0;
2593
2594         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2595
2596         /* This will get removed on driver unregister */
2597         return create_boost_sysfs_file();
2598 }
2599 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2600
2601 int cpufreq_boost_enabled(void)
2602 {
2603         return cpufreq_driver->boost_enabled;
2604 }
2605 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2606
2607 /*********************************************************************
2608  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2609  *********************************************************************/
2610 static enum cpuhp_state hp_online;
2611
2612 static int cpuhp_cpufreq_online(unsigned int cpu)
2613 {
2614         cpufreq_online(cpu);
2615
2616         return 0;
2617 }
2618
2619 static int cpuhp_cpufreq_offline(unsigned int cpu)
2620 {
2621         cpufreq_offline(cpu);
2622
2623         return 0;
2624 }
2625
2626 /**
2627  * cpufreq_register_driver - register a CPU Frequency driver
2628  * @driver_data: A struct cpufreq_driver containing the values#
2629  * submitted by the CPU Frequency driver.
2630  *
2631  * Registers a CPU Frequency driver to this core code. This code
2632  * returns zero on success, -EEXIST when another driver got here first
2633  * (and isn't unregistered in the meantime).
2634  *
2635  */
2636 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2637 {
2638         unsigned long flags;
2639         int ret;
2640
2641         if (cpufreq_disabled())
2642                 return -ENODEV;
2643
2644         if (!driver_data || !driver_data->verify || !driver_data->init ||
2645             !(driver_data->setpolicy || driver_data->target_index ||
2646                     driver_data->target) ||
2647              (driver_data->setpolicy && (driver_data->target_index ||
2648                     driver_data->target)) ||
2649              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2650              (!driver_data->online != !driver_data->offline))
2651                 return -EINVAL;
2652
2653         pr_debug("trying to register driver %s\n", driver_data->name);
2654
2655         /* Protect against concurrent CPU online/offline. */
2656         cpus_read_lock();
2657
2658         write_lock_irqsave(&cpufreq_driver_lock, flags);
2659         if (cpufreq_driver) {
2660                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2661                 ret = -EEXIST;
2662                 goto out;
2663         }
2664         cpufreq_driver = driver_data;
2665         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2666
2667         if (driver_data->setpolicy)
2668                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2669
2670         if (cpufreq_boost_supported()) {
2671                 ret = create_boost_sysfs_file();
2672                 if (ret)
2673                         goto err_null_driver;
2674         }
2675
2676         ret = subsys_interface_register(&cpufreq_interface);
2677         if (ret)
2678                 goto err_boost_unreg;
2679
2680         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2681             list_empty(&cpufreq_policy_list)) {
2682                 /* if all ->init() calls failed, unregister */
2683                 ret = -ENODEV;
2684                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2685                          driver_data->name);
2686                 goto err_if_unreg;
2687         }
2688
2689         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2690                                                    "cpufreq:online",
2691                                                    cpuhp_cpufreq_online,
2692                                                    cpuhp_cpufreq_offline);
2693         if (ret < 0)
2694                 goto err_if_unreg;
2695         hp_online = ret;
2696         ret = 0;
2697
2698         pr_debug("driver %s up and running\n", driver_data->name);
2699         goto out;
2700
2701 err_if_unreg:
2702         subsys_interface_unregister(&cpufreq_interface);
2703 err_boost_unreg:
2704         remove_boost_sysfs_file();
2705 err_null_driver:
2706         write_lock_irqsave(&cpufreq_driver_lock, flags);
2707         cpufreq_driver = NULL;
2708         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2709 out:
2710         cpus_read_unlock();
2711         return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2714
2715 /**
2716  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2717  *
2718  * Unregister the current CPUFreq driver. Only call this if you have
2719  * the right to do so, i.e. if you have succeeded in initialising before!
2720  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2721  * currently not initialised.
2722  */
2723 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2724 {
2725         unsigned long flags;
2726
2727         if (!cpufreq_driver || (driver != cpufreq_driver))
2728                 return -EINVAL;
2729
2730         pr_debug("unregistering driver %s\n", driver->name);
2731
2732         /* Protect against concurrent cpu hotplug */
2733         cpus_read_lock();
2734         subsys_interface_unregister(&cpufreq_interface);
2735         remove_boost_sysfs_file();
2736         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2737
2738         write_lock_irqsave(&cpufreq_driver_lock, flags);
2739
2740         cpufreq_driver = NULL;
2741
2742         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2743         cpus_read_unlock();
2744
2745         return 0;
2746 }
2747 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2748
2749 /*
2750  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2751  * or mutexes when secondary CPUs are halted.
2752  */
2753 static struct syscore_ops cpufreq_syscore_ops = {
2754         .shutdown = cpufreq_suspend,
2755 };
2756
2757 struct kobject *cpufreq_global_kobject;
2758 EXPORT_SYMBOL(cpufreq_global_kobject);
2759
2760 static int __init cpufreq_core_init(void)
2761 {
2762         if (cpufreq_disabled())
2763                 return -ENODEV;
2764
2765         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2766         BUG_ON(!cpufreq_global_kobject);
2767
2768         register_syscore_ops(&cpufreq_syscore_ops);
2769
2770         return 0;
2771 }
2772 module_param(off, int, 0444);
2773 core_initcall(cpufreq_core_init);