Merge tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux
[sfrench/cifs-2.6.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44
45 #include <acpi/processor.h>
46
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50
51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
52 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
53 MODULE_LICENSE("GPL");
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64 #define HYGON_MSR_RANGE         (0x7)
65
66 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
67
68 struct acpi_cpufreq_data {
69         unsigned int resume;
70         unsigned int cpu_feature;
71         unsigned int acpi_perf_cpu;
72         cpumask_var_t freqdomain_cpus;
73         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75 };
76
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79
80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81 {
82         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 }
84
85 static struct cpufreq_driver acpi_cpufreq_driver;
86
87 static unsigned int acpi_pstate_strict;
88
89 static bool boost_state(unsigned int cpu)
90 {
91         u32 lo, hi;
92         u64 msr;
93
94         switch (boot_cpu_data.x86_vendor) {
95         case X86_VENDOR_INTEL:
96                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
97                 msr = lo | ((u64)hi << 32);
98                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
99         case X86_VENDOR_HYGON:
100         case X86_VENDOR_AMD:
101                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102                 msr = lo | ((u64)hi << 32);
103                 return !(msr & MSR_K7_HWCR_CPB_DIS);
104         }
105         return false;
106 }
107
108 static int boost_set_msr(bool enable)
109 {
110         u32 msr_addr;
111         u64 msr_mask, val;
112
113         switch (boot_cpu_data.x86_vendor) {
114         case X86_VENDOR_INTEL:
115                 msr_addr = MSR_IA32_MISC_ENABLE;
116                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
117                 break;
118         case X86_VENDOR_HYGON:
119         case X86_VENDOR_AMD:
120                 msr_addr = MSR_K7_HWCR;
121                 msr_mask = MSR_K7_HWCR_CPB_DIS;
122                 break;
123         default:
124                 return -EINVAL;
125         }
126
127         rdmsrl(msr_addr, val);
128
129         if (enable)
130                 val &= ~msr_mask;
131         else
132                 val |= msr_mask;
133
134         wrmsrl(msr_addr, val);
135         return 0;
136 }
137
138 static void boost_set_msr_each(void *p_en)
139 {
140         bool enable = (bool) p_en;
141
142         boost_set_msr(enable);
143 }
144
145 static int set_boost(int val)
146 {
147         get_online_cpus();
148         on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
149         put_online_cpus();
150         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
151
152         return 0;
153 }
154
155 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
156 {
157         struct acpi_cpufreq_data *data = policy->driver_data;
158
159         if (unlikely(!data))
160                 return -ENODEV;
161
162         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
163 }
164
165 cpufreq_freq_attr_ro(freqdomain_cpus);
166
167 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
168 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
169                          size_t count)
170 {
171         int ret;
172         unsigned int val = 0;
173
174         if (!acpi_cpufreq_driver.set_boost)
175                 return -EINVAL;
176
177         ret = kstrtouint(buf, 10, &val);
178         if (ret || val > 1)
179                 return -EINVAL;
180
181         set_boost(val);
182
183         return count;
184 }
185
186 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
187 {
188         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
189 }
190
191 cpufreq_freq_attr_rw(cpb);
192 #endif
193
194 static int check_est_cpu(unsigned int cpuid)
195 {
196         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197
198         return cpu_has(cpu, X86_FEATURE_EST);
199 }
200
201 static int check_amd_hwpstate_cpu(unsigned int cpuid)
202 {
203         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
204
205         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
206 }
207
208 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
209 {
210         struct acpi_cpufreq_data *data = policy->driver_data;
211         struct acpi_processor_performance *perf;
212         int i;
213
214         perf = to_perf_data(data);
215
216         for (i = 0; i < perf->state_count; i++) {
217                 if (value == perf->states[i].status)
218                         return policy->freq_table[i].frequency;
219         }
220         return 0;
221 }
222
223 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
224 {
225         struct acpi_cpufreq_data *data = policy->driver_data;
226         struct cpufreq_frequency_table *pos;
227         struct acpi_processor_performance *perf;
228
229         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
230                 msr &= AMD_MSR_RANGE;
231         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
232                 msr &= HYGON_MSR_RANGE;
233         else
234                 msr &= INTEL_MSR_RANGE;
235
236         perf = to_perf_data(data);
237
238         cpufreq_for_each_entry(pos, policy->freq_table)
239                 if (msr == perf->states[pos->driver_data].status)
240                         return pos->frequency;
241         return policy->freq_table[0].frequency;
242 }
243
244 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
245 {
246         struct acpi_cpufreq_data *data = policy->driver_data;
247
248         switch (data->cpu_feature) {
249         case SYSTEM_INTEL_MSR_CAPABLE:
250         case SYSTEM_AMD_MSR_CAPABLE:
251                 return extract_msr(policy, val);
252         case SYSTEM_IO_CAPABLE:
253                 return extract_io(policy, val);
254         default:
255                 return 0;
256         }
257 }
258
259 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
260 {
261         u32 val, dummy;
262
263         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
264         return val;
265 }
266
267 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
268 {
269         u32 lo, hi;
270
271         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
272         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
273         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
274 }
275
276 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
277 {
278         u32 val, dummy;
279
280         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
281         return val;
282 }
283
284 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
285 {
286         wrmsr(MSR_AMD_PERF_CTL, val, 0);
287 }
288
289 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
290 {
291         u32 val;
292
293         acpi_os_read_port(reg->address, &val, reg->bit_width);
294         return val;
295 }
296
297 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
298 {
299         acpi_os_write_port(reg->address, val, reg->bit_width);
300 }
301
302 struct drv_cmd {
303         struct acpi_pct_register *reg;
304         u32 val;
305         union {
306                 void (*write)(struct acpi_pct_register *reg, u32 val);
307                 u32 (*read)(struct acpi_pct_register *reg);
308         } func;
309 };
310
311 /* Called via smp_call_function_single(), on the target CPU */
312 static void do_drv_read(void *_cmd)
313 {
314         struct drv_cmd *cmd = _cmd;
315
316         cmd->val = cmd->func.read(cmd->reg);
317 }
318
319 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
320 {
321         struct acpi_processor_performance *perf = to_perf_data(data);
322         struct drv_cmd cmd = {
323                 .reg = &perf->control_register,
324                 .func.read = data->cpu_freq_read,
325         };
326         int err;
327
328         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
329         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
330         return cmd.val;
331 }
332
333 /* Called via smp_call_function_many(), on the target CPUs */
334 static void do_drv_write(void *_cmd)
335 {
336         struct drv_cmd *cmd = _cmd;
337
338         cmd->func.write(cmd->reg, cmd->val);
339 }
340
341 static void drv_write(struct acpi_cpufreq_data *data,
342                       const struct cpumask *mask, u32 val)
343 {
344         struct acpi_processor_performance *perf = to_perf_data(data);
345         struct drv_cmd cmd = {
346                 .reg = &perf->control_register,
347                 .val = val,
348                 .func.write = data->cpu_freq_write,
349         };
350         int this_cpu;
351
352         this_cpu = get_cpu();
353         if (cpumask_test_cpu(this_cpu, mask))
354                 do_drv_write(&cmd);
355
356         smp_call_function_many(mask, do_drv_write, &cmd, 1);
357         put_cpu();
358 }
359
360 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
361 {
362         u32 val;
363
364         if (unlikely(cpumask_empty(mask)))
365                 return 0;
366
367         val = drv_read(data, mask);
368
369         pr_debug("%s = %u\n", __func__, val);
370
371         return val;
372 }
373
374 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
375 {
376         struct acpi_cpufreq_data *data;
377         struct cpufreq_policy *policy;
378         unsigned int freq;
379         unsigned int cached_freq;
380
381         pr_debug("%s (%d)\n", __func__, cpu);
382
383         policy = cpufreq_cpu_get_raw(cpu);
384         if (unlikely(!policy))
385                 return 0;
386
387         data = policy->driver_data;
388         if (unlikely(!data || !policy->freq_table))
389                 return 0;
390
391         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
392         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
393         if (freq != cached_freq) {
394                 /*
395                  * The dreaded BIOS frequency change behind our back.
396                  * Force set the frequency on next target call.
397                  */
398                 data->resume = 1;
399         }
400
401         pr_debug("cur freq = %u\n", freq);
402
403         return freq;
404 }
405
406 static unsigned int check_freqs(struct cpufreq_policy *policy,
407                                 const struct cpumask *mask, unsigned int freq)
408 {
409         struct acpi_cpufreq_data *data = policy->driver_data;
410         unsigned int cur_freq;
411         unsigned int i;
412
413         for (i = 0; i < 100; i++) {
414                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
415                 if (cur_freq == freq)
416                         return 1;
417                 udelay(10);
418         }
419         return 0;
420 }
421
422 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
423                                unsigned int index)
424 {
425         struct acpi_cpufreq_data *data = policy->driver_data;
426         struct acpi_processor_performance *perf;
427         const struct cpumask *mask;
428         unsigned int next_perf_state = 0; /* Index into perf table */
429         int result = 0;
430
431         if (unlikely(!data)) {
432                 return -ENODEV;
433         }
434
435         perf = to_perf_data(data);
436         next_perf_state = policy->freq_table[index].driver_data;
437         if (perf->state == next_perf_state) {
438                 if (unlikely(data->resume)) {
439                         pr_debug("Called after resume, resetting to P%d\n",
440                                 next_perf_state);
441                         data->resume = 0;
442                 } else {
443                         pr_debug("Already at target state (P%d)\n",
444                                 next_perf_state);
445                         return 0;
446                 }
447         }
448
449         /*
450          * The core won't allow CPUs to go away until the governor has been
451          * stopped, so we can rely on the stability of policy->cpus.
452          */
453         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
454                 cpumask_of(policy->cpu) : policy->cpus;
455
456         drv_write(data, mask, perf->states[next_perf_state].control);
457
458         if (acpi_pstate_strict) {
459                 if (!check_freqs(policy, mask,
460                                  policy->freq_table[index].frequency)) {
461                         pr_debug("%s (%d)\n", __func__, policy->cpu);
462                         result = -EAGAIN;
463                 }
464         }
465
466         if (!result)
467                 perf->state = next_perf_state;
468
469         return result;
470 }
471
472 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
473                                              unsigned int target_freq)
474 {
475         struct acpi_cpufreq_data *data = policy->driver_data;
476         struct acpi_processor_performance *perf;
477         struct cpufreq_frequency_table *entry;
478         unsigned int next_perf_state, next_freq, index;
479
480         /*
481          * Find the closest frequency above target_freq.
482          */
483         if (policy->cached_target_freq == target_freq)
484                 index = policy->cached_resolved_idx;
485         else
486                 index = cpufreq_table_find_index_dl(policy, target_freq);
487
488         entry = &policy->freq_table[index];
489         next_freq = entry->frequency;
490         next_perf_state = entry->driver_data;
491
492         perf = to_perf_data(data);
493         if (perf->state == next_perf_state) {
494                 if (unlikely(data->resume))
495                         data->resume = 0;
496                 else
497                         return next_freq;
498         }
499
500         data->cpu_freq_write(&perf->control_register,
501                              perf->states[next_perf_state].control);
502         perf->state = next_perf_state;
503         return next_freq;
504 }
505
506 static unsigned long
507 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
508 {
509         struct acpi_processor_performance *perf;
510
511         perf = to_perf_data(data);
512         if (cpu_khz) {
513                 /* search the closest match to cpu_khz */
514                 unsigned int i;
515                 unsigned long freq;
516                 unsigned long freqn = perf->states[0].core_frequency * 1000;
517
518                 for (i = 0; i < (perf->state_count-1); i++) {
519                         freq = freqn;
520                         freqn = perf->states[i+1].core_frequency * 1000;
521                         if ((2 * cpu_khz) > (freqn + freq)) {
522                                 perf->state = i;
523                                 return freq;
524                         }
525                 }
526                 perf->state = perf->state_count-1;
527                 return freqn;
528         } else {
529                 /* assume CPU is at P0... */
530                 perf->state = 0;
531                 return perf->states[0].core_frequency * 1000;
532         }
533 }
534
535 static void free_acpi_perf_data(void)
536 {
537         unsigned int i;
538
539         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
540         for_each_possible_cpu(i)
541                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
542                                  ->shared_cpu_map);
543         free_percpu(acpi_perf_data);
544 }
545
546 static int cpufreq_boost_online(unsigned int cpu)
547 {
548         /*
549          * On the CPU_UP path we simply keep the boost-disable flag
550          * in sync with the current global state.
551          */
552         return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
553 }
554
555 static int cpufreq_boost_down_prep(unsigned int cpu)
556 {
557         /*
558          * Clear the boost-disable bit on the CPU_DOWN path so that
559          * this cpu cannot block the remaining ones from boosting.
560          */
561         return boost_set_msr(1);
562 }
563
564 /*
565  * acpi_cpufreq_early_init - initialize ACPI P-States library
566  *
567  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
568  * in order to determine correct frequency and voltage pairings. We can
569  * do _PDC and _PSD and find out the processor dependency for the
570  * actual init that will happen later...
571  */
572 static int __init acpi_cpufreq_early_init(void)
573 {
574         unsigned int i;
575         pr_debug("%s\n", __func__);
576
577         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
578         if (!acpi_perf_data) {
579                 pr_debug("Memory allocation error for acpi_perf_data.\n");
580                 return -ENOMEM;
581         }
582         for_each_possible_cpu(i) {
583                 if (!zalloc_cpumask_var_node(
584                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
585                         GFP_KERNEL, cpu_to_node(i))) {
586
587                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
588                         free_acpi_perf_data();
589                         return -ENOMEM;
590                 }
591         }
592
593         /* Do initialization in ACPI core */
594         acpi_processor_preregister_performance(acpi_perf_data);
595         return 0;
596 }
597
598 #ifdef CONFIG_SMP
599 /*
600  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
601  * or do it in BIOS firmware and won't inform about it to OS. If not
602  * detected, this has a side effect of making CPU run at a different speed
603  * than OS intended it to run at. Detect it and handle it cleanly.
604  */
605 static int bios_with_sw_any_bug;
606
607 static int sw_any_bug_found(const struct dmi_system_id *d)
608 {
609         bios_with_sw_any_bug = 1;
610         return 0;
611 }
612
613 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
614         {
615                 .callback = sw_any_bug_found,
616                 .ident = "Supermicro Server X6DLP",
617                 .matches = {
618                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
619                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
620                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
621                 },
622         },
623         { }
624 };
625
626 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
627 {
628         /* Intel Xeon Processor 7100 Series Specification Update
629          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
630          * AL30: A Machine Check Exception (MCE) Occurring during an
631          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
632          * Both Processor Cores to Lock Up. */
633         if (c->x86_vendor == X86_VENDOR_INTEL) {
634                 if ((c->x86 == 15) &&
635                     (c->x86_model == 6) &&
636                     (c->x86_stepping == 8)) {
637                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
638                         return -ENODEV;
639                     }
640                 }
641         return 0;
642 }
643 #endif
644
645 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
646 {
647         unsigned int i;
648         unsigned int valid_states = 0;
649         unsigned int cpu = policy->cpu;
650         struct acpi_cpufreq_data *data;
651         unsigned int result = 0;
652         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
653         struct acpi_processor_performance *perf;
654         struct cpufreq_frequency_table *freq_table;
655 #ifdef CONFIG_SMP
656         static int blacklisted;
657 #endif
658
659         pr_debug("%s\n", __func__);
660
661 #ifdef CONFIG_SMP
662         if (blacklisted)
663                 return blacklisted;
664         blacklisted = acpi_cpufreq_blacklist(c);
665         if (blacklisted)
666                 return blacklisted;
667 #endif
668
669         data = kzalloc(sizeof(*data), GFP_KERNEL);
670         if (!data)
671                 return -ENOMEM;
672
673         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
674                 result = -ENOMEM;
675                 goto err_free;
676         }
677
678         perf = per_cpu_ptr(acpi_perf_data, cpu);
679         data->acpi_perf_cpu = cpu;
680         policy->driver_data = data;
681
682         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
683                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
684
685         result = acpi_processor_register_performance(perf, cpu);
686         if (result)
687                 goto err_free_mask;
688
689         policy->shared_type = perf->shared_type;
690
691         /*
692          * Will let policy->cpus know about dependency only when software
693          * coordination is required.
694          */
695         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
696             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
697                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
698         }
699         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
700
701 #ifdef CONFIG_SMP
702         dmi_check_system(sw_any_bug_dmi_table);
703         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
704                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
705                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
706         }
707
708         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
709                 cpumask_clear(policy->cpus);
710                 cpumask_set_cpu(cpu, policy->cpus);
711                 cpumask_copy(data->freqdomain_cpus,
712                              topology_sibling_cpumask(cpu));
713                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
714                 pr_info_once("overriding BIOS provided _PSD data\n");
715         }
716 #endif
717
718         /* capability check */
719         if (perf->state_count <= 1) {
720                 pr_debug("No P-States\n");
721                 result = -ENODEV;
722                 goto err_unreg;
723         }
724
725         if (perf->control_register.space_id != perf->status_register.space_id) {
726                 result = -ENODEV;
727                 goto err_unreg;
728         }
729
730         switch (perf->control_register.space_id) {
731         case ACPI_ADR_SPACE_SYSTEM_IO:
732                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
733                     boot_cpu_data.x86 == 0xf) {
734                         pr_debug("AMD K8 systems must use native drivers.\n");
735                         result = -ENODEV;
736                         goto err_unreg;
737                 }
738                 pr_debug("SYSTEM IO addr space\n");
739                 data->cpu_feature = SYSTEM_IO_CAPABLE;
740                 data->cpu_freq_read = cpu_freq_read_io;
741                 data->cpu_freq_write = cpu_freq_write_io;
742                 break;
743         case ACPI_ADR_SPACE_FIXED_HARDWARE:
744                 pr_debug("HARDWARE addr space\n");
745                 if (check_est_cpu(cpu)) {
746                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
747                         data->cpu_freq_read = cpu_freq_read_intel;
748                         data->cpu_freq_write = cpu_freq_write_intel;
749                         break;
750                 }
751                 if (check_amd_hwpstate_cpu(cpu)) {
752                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
753                         data->cpu_freq_read = cpu_freq_read_amd;
754                         data->cpu_freq_write = cpu_freq_write_amd;
755                         break;
756                 }
757                 result = -ENODEV;
758                 goto err_unreg;
759         default:
760                 pr_debug("Unknown addr space %d\n",
761                         (u32) (perf->control_register.space_id));
762                 result = -ENODEV;
763                 goto err_unreg;
764         }
765
766         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
767                              GFP_KERNEL);
768         if (!freq_table) {
769                 result = -ENOMEM;
770                 goto err_unreg;
771         }
772
773         /* detect transition latency */
774         policy->cpuinfo.transition_latency = 0;
775         for (i = 0; i < perf->state_count; i++) {
776                 if ((perf->states[i].transition_latency * 1000) >
777                     policy->cpuinfo.transition_latency)
778                         policy->cpuinfo.transition_latency =
779                             perf->states[i].transition_latency * 1000;
780         }
781
782         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
783         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
784             policy->cpuinfo.transition_latency > 20 * 1000) {
785                 policy->cpuinfo.transition_latency = 20 * 1000;
786                 pr_info_once("P-state transition latency capped at 20 uS\n");
787         }
788
789         /* table init */
790         for (i = 0; i < perf->state_count; i++) {
791                 if (i > 0 && perf->states[i].core_frequency >=
792                     freq_table[valid_states-1].frequency / 1000)
793                         continue;
794
795                 freq_table[valid_states].driver_data = i;
796                 freq_table[valid_states].frequency =
797                     perf->states[i].core_frequency * 1000;
798                 valid_states++;
799         }
800         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
801         policy->freq_table = freq_table;
802         perf->state = 0;
803
804         switch (perf->control_register.space_id) {
805         case ACPI_ADR_SPACE_SYSTEM_IO:
806                 /*
807                  * The core will not set policy->cur, because
808                  * cpufreq_driver->get is NULL, so we need to set it here.
809                  * However, we have to guess it, because the current speed is
810                  * unknown and not detectable via IO ports.
811                  */
812                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
813                 break;
814         case ACPI_ADR_SPACE_FIXED_HARDWARE:
815                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
816                 break;
817         default:
818                 break;
819         }
820
821         /* notify BIOS that we exist */
822         acpi_processor_notify_smm(THIS_MODULE);
823
824         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
825         for (i = 0; i < perf->state_count; i++)
826                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
827                         (i == perf->state ? '*' : ' '), i,
828                         (u32) perf->states[i].core_frequency,
829                         (u32) perf->states[i].power,
830                         (u32) perf->states[i].transition_latency);
831
832         /*
833          * the first call to ->target() should result in us actually
834          * writing something to the appropriate registers.
835          */
836         data->resume = 1;
837
838         policy->fast_switch_possible = !acpi_pstate_strict &&
839                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
840
841         return result;
842
843 err_unreg:
844         acpi_processor_unregister_performance(cpu);
845 err_free_mask:
846         free_cpumask_var(data->freqdomain_cpus);
847 err_free:
848         kfree(data);
849         policy->driver_data = NULL;
850
851         return result;
852 }
853
854 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
855 {
856         struct acpi_cpufreq_data *data = policy->driver_data;
857
858         pr_debug("%s\n", __func__);
859
860         policy->fast_switch_possible = false;
861         policy->driver_data = NULL;
862         acpi_processor_unregister_performance(data->acpi_perf_cpu);
863         free_cpumask_var(data->freqdomain_cpus);
864         kfree(policy->freq_table);
865         kfree(data);
866
867         return 0;
868 }
869
870 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
871 {
872         struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
873                                                               policy->cpu);
874
875         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
876                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
877 }
878
879 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
880 {
881         struct acpi_cpufreq_data *data = policy->driver_data;
882
883         pr_debug("%s\n", __func__);
884
885         data->resume = 1;
886
887         return 0;
888 }
889
890 static struct freq_attr *acpi_cpufreq_attr[] = {
891         &cpufreq_freq_attr_scaling_available_freqs,
892         &freqdomain_cpus,
893 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
894         &cpb,
895 #endif
896         NULL,
897 };
898
899 static struct cpufreq_driver acpi_cpufreq_driver = {
900         .verify         = cpufreq_generic_frequency_table_verify,
901         .target_index   = acpi_cpufreq_target,
902         .fast_switch    = acpi_cpufreq_fast_switch,
903         .bios_limit     = acpi_processor_get_bios_limit,
904         .init           = acpi_cpufreq_cpu_init,
905         .exit           = acpi_cpufreq_cpu_exit,
906         .ready          = acpi_cpufreq_cpu_ready,
907         .resume         = acpi_cpufreq_resume,
908         .name           = "acpi-cpufreq",
909         .attr           = acpi_cpufreq_attr,
910 };
911
912 static enum cpuhp_state acpi_cpufreq_online;
913
914 static void __init acpi_cpufreq_boost_init(void)
915 {
916         int ret;
917
918         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
919                 pr_debug("Boost capabilities not present in the processor\n");
920                 return;
921         }
922
923         acpi_cpufreq_driver.set_boost = set_boost;
924         acpi_cpufreq_driver.boost_enabled = boost_state(0);
925
926         /*
927          * This calls the online callback on all online cpu and forces all
928          * MSRs to the same value.
929          */
930         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
931                                 cpufreq_boost_online, cpufreq_boost_down_prep);
932         if (ret < 0) {
933                 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
934                 return;
935         }
936         acpi_cpufreq_online = ret;
937 }
938
939 static void acpi_cpufreq_boost_exit(void)
940 {
941         if (acpi_cpufreq_online > 0)
942                 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
943 }
944
945 static int __init acpi_cpufreq_init(void)
946 {
947         int ret;
948
949         if (acpi_disabled)
950                 return -ENODEV;
951
952         /* don't keep reloading if cpufreq_driver exists */
953         if (cpufreq_get_current_driver())
954                 return -EEXIST;
955
956         pr_debug("%s\n", __func__);
957
958         ret = acpi_cpufreq_early_init();
959         if (ret)
960                 return ret;
961
962 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
963         /* this is a sysfs file with a strange name and an even stranger
964          * semantic - per CPU instantiation, but system global effect.
965          * Lets enable it only on AMD CPUs for compatibility reasons and
966          * only if configured. This is considered legacy code, which
967          * will probably be removed at some point in the future.
968          */
969         if (!check_amd_hwpstate_cpu(0)) {
970                 struct freq_attr **attr;
971
972                 pr_debug("CPB unsupported, do not expose it\n");
973
974                 for (attr = acpi_cpufreq_attr; *attr; attr++)
975                         if (*attr == &cpb) {
976                                 *attr = NULL;
977                                 break;
978                         }
979         }
980 #endif
981         acpi_cpufreq_boost_init();
982
983         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
984         if (ret) {
985                 free_acpi_perf_data();
986                 acpi_cpufreq_boost_exit();
987         }
988         return ret;
989 }
990
991 static void __exit acpi_cpufreq_exit(void)
992 {
993         pr_debug("%s\n", __func__);
994
995         acpi_cpufreq_boost_exit();
996
997         cpufreq_unregister_driver(&acpi_cpufreq_driver);
998
999         free_acpi_perf_data();
1000 }
1001
1002 module_param(acpi_pstate_strict, uint, 0644);
1003 MODULE_PARM_DESC(acpi_pstate_strict,
1004         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1005         "performed during frequency changes.");
1006
1007 late_initcall(acpi_cpufreq_init);
1008 module_exit(acpi_cpufreq_exit);
1009
1010 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1011         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1012         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1013         {}
1014 };
1015 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1016
1017 static const struct acpi_device_id processor_device_ids[] = {
1018         {ACPI_PROCESSOR_OBJECT_HID, },
1019         {ACPI_PROCESSOR_DEVICE_HID, },
1020         {},
1021 };
1022 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1023
1024 MODULE_ALIAS("acpi");