9cde50cb322008a02a1d38c56f68a9a07f923fac
[sfrench/cifs-2.6.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *                      16B     32B     32B-F   48B     R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels             2       1/4     1       6       2/8
42  * Control Width        16      16      16      16      32
43  * Counter Width        16      32      32      32/48   32/48
44  * Shared Start/Stop    Y       Y       Y       Y       N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62
63 enum sh_cmt_model {
64         SH_CMT_16BIT,
65         SH_CMT_32BIT,
66         SH_CMT_48BIT,
67         SH_CMT0_RCAR_GEN2,
68         SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72         enum sh_cmt_model model;
73
74         unsigned int channels_mask;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         u32 overflow_bit;
78         u32 clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         u32 (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               u32 value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         u32 (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91         struct sh_cmt_device *cmt;
92
93         unsigned int index;     /* Index in the documentation */
94         unsigned int hwidx;     /* Real hardware index */
95
96         void __iomem *iostart;
97         void __iomem *ioctrl;
98
99         unsigned int timer_bit;
100         unsigned long flags;
101         u32 match_value;
102         u32 next_match_value;
103         u32 max_match_value;
104         raw_spinlock_t lock;
105         struct clock_event_device ced;
106         struct clocksource cs;
107         u64 total_cycles;
108         bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112         struct platform_device *pdev;
113
114         const struct sh_cmt_info *info;
115
116         void __iomem *mapbase;
117         struct clk *clk;
118         unsigned long rate;
119
120         raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122         struct sh_cmt_channel *channels;
123         unsigned int num_channels;
124         unsigned int hw_channels;
125
126         bool has_clockevent;
127         bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF              (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF              (1 << 15)
139 #define SH_CMT32_CMCSR_OVF              (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
141 #define SH_CMT32_CMCSR_STTF             (1 << 12)
142 #define SH_CMT32_CMCSR_STPF             (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
144 #define SH_CMT32_CMCSR_CMS              (1 << 9)
145 #define SH_CMT32_CMCSR_CMM              (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
157
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160         return ioread16(base + (offs << 1));
161 }
162
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165         return ioread32(base + (offs << 2));
166 }
167
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170         iowrite16(value, base + (offs << 1));
171 }
172
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175         iowrite32(value, base + (offs << 2));
176 }
177
178 static const struct sh_cmt_info sh_cmt_info[] = {
179         [SH_CMT_16BIT] = {
180                 .model = SH_CMT_16BIT,
181                 .width = 16,
182                 .overflow_bit = SH_CMT16_CMCSR_CMF,
183                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184                 .read_control = sh_cmt_read16,
185                 .write_control = sh_cmt_write16,
186                 .read_count = sh_cmt_read16,
187                 .write_count = sh_cmt_write16,
188         },
189         [SH_CMT_32BIT] = {
190                 .model = SH_CMT_32BIT,
191                 .width = 32,
192                 .overflow_bit = SH_CMT32_CMCSR_CMF,
193                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194                 .read_control = sh_cmt_read16,
195                 .write_control = sh_cmt_write16,
196                 .read_count = sh_cmt_read32,
197                 .write_count = sh_cmt_write32,
198         },
199         [SH_CMT_48BIT] = {
200                 .model = SH_CMT_48BIT,
201                 .channels_mask = 0x3f,
202                 .width = 32,
203                 .overflow_bit = SH_CMT32_CMCSR_CMF,
204                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205                 .read_control = sh_cmt_read32,
206                 .write_control = sh_cmt_write32,
207                 .read_count = sh_cmt_read32,
208                 .write_count = sh_cmt_write32,
209         },
210         [SH_CMT0_RCAR_GEN2] = {
211                 .model = SH_CMT0_RCAR_GEN2,
212                 .channels_mask = 0x60,
213                 .width = 32,
214                 .overflow_bit = SH_CMT32_CMCSR_CMF,
215                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216                 .read_control = sh_cmt_read32,
217                 .write_control = sh_cmt_write32,
218                 .read_count = sh_cmt_read32,
219                 .write_count = sh_cmt_write32,
220         },
221         [SH_CMT1_RCAR_GEN2] = {
222                 .model = SH_CMT1_RCAR_GEN2,
223                 .channels_mask = 0xff,
224                 .width = 32,
225                 .overflow_bit = SH_CMT32_CMCSR_CMF,
226                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227                 .read_control = sh_cmt_read32,
228                 .write_control = sh_cmt_write32,
229                 .read_count = sh_cmt_read32,
230                 .write_count = sh_cmt_write32,
231         },
232 };
233
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237
238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 {
240         if (ch->iostart)
241                 return ch->cmt->info->read_control(ch->iostart, 0);
242         else
243                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244 }
245
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247 {
248         if (ch->iostart)
249                 ch->cmt->info->write_control(ch->iostart, 0, value);
250         else
251                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253
254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260 {
261         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262 }
263
264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265 {
266         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267 }
268
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270 {
271         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272 }
273
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275 {
276         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277 }
278
279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280 {
281         u32 v1, v2, v3;
282         u32 o1, o2;
283
284         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287         do {
288                 o2 = o1;
289                 v1 = sh_cmt_read_cmcnt(ch);
290                 v2 = sh_cmt_read_cmcnt(ch);
291                 v3 = sh_cmt_read_cmcnt(ch);
292                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296         *has_wrapped = o1;
297         return v2;
298 }
299
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301 {
302         unsigned long flags;
303         u32 value;
304
305         /* start stop register shared by multiple timer channels */
306         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307         value = sh_cmt_read_cmstr(ch);
308
309         if (start)
310                 value |= 1 << ch->timer_bit;
311         else
312                 value &= ~(1 << ch->timer_bit);
313
314         sh_cmt_write_cmstr(ch, value);
315         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316 }
317
318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
319 {
320         int k, ret;
321
322         pm_runtime_get_sync(&ch->cmt->pdev->dev);
323         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324
325         /* enable clock */
326         ret = clk_enable(ch->cmt->clk);
327         if (ret) {
328                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329                         ch->index);
330                 goto err0;
331         }
332
333         /* make sure channel is disabled */
334         sh_cmt_start_stop_ch(ch, 0);
335
336         /* configure channel, periodic mode and maximum timeout */
337         if (ch->cmt->info->width == 16) {
338                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339                                    SH_CMT16_CMCSR_CKS512);
340         } else {
341                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342                                    SH_CMT32_CMCSR_CMTOUT_IE |
343                                    SH_CMT32_CMCSR_CMR_IRQ |
344                                    SH_CMT32_CMCSR_CKS_RCLK8);
345         }
346
347         sh_cmt_write_cmcor(ch, 0xffffffff);
348         sh_cmt_write_cmcnt(ch, 0);
349
350         /*
351          * According to the sh73a0 user's manual, as CMCNT can be operated
352          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
353          * modifying CMCNT register; two RCLK cycles are necessary before
354          * this register is either read or any modification of the value
355          * it holds is reflected in the LSI's actual operation.
356          *
357          * While at it, we're supposed to clear out the CMCNT as of this
358          * moment, so make sure it's processed properly here.  This will
359          * take RCLKx2 at maximum.
360          */
361         for (k = 0; k < 100; k++) {
362                 if (!sh_cmt_read_cmcnt(ch))
363                         break;
364                 udelay(1);
365         }
366
367         if (sh_cmt_read_cmcnt(ch)) {
368                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369                         ch->index);
370                 ret = -ETIMEDOUT;
371                 goto err1;
372         }
373
374         /* enable channel */
375         sh_cmt_start_stop_ch(ch, 1);
376         return 0;
377  err1:
378         /* stop clock */
379         clk_disable(ch->cmt->clk);
380
381  err0:
382         return ret;
383 }
384
385 static void sh_cmt_disable(struct sh_cmt_channel *ch)
386 {
387         /* disable channel */
388         sh_cmt_start_stop_ch(ch, 0);
389
390         /* disable interrupts in CMT block */
391         sh_cmt_write_cmcsr(ch, 0);
392
393         /* stop clock */
394         clk_disable(ch->cmt->clk);
395
396         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397         pm_runtime_put(&ch->cmt->pdev->dev);
398 }
399
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408                                               int absolute)
409 {
410         u32 value = ch->next_match_value;
411         u32 new_match;
412         u32 delay = 0;
413         u32 now = 0;
414         u32 has_wrapped;
415
416         now = sh_cmt_get_counter(ch, &has_wrapped);
417         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419         if (has_wrapped) {
420                 /* we're competing with the interrupt handler.
421                  *  -> let the interrupt handler reprogram the timer.
422                  *  -> interrupt number two handles the event.
423                  */
424                 ch->flags |= FLAG_SKIPEVENT;
425                 return;
426         }
427
428         if (absolute)
429                 now = 0;
430
431         do {
432                 /* reprogram the timer hardware,
433                  * but don't save the new match value yet.
434                  */
435                 new_match = now + value + delay;
436                 if (new_match > ch->max_match_value)
437                         new_match = ch->max_match_value;
438
439                 sh_cmt_write_cmcor(ch, new_match);
440
441                 now = sh_cmt_get_counter(ch, &has_wrapped);
442                 if (has_wrapped && (new_match > ch->match_value)) {
443                         /* we are changing to a greater match value,
444                          * so this wrap must be caused by the counter
445                          * matching the old value.
446                          * -> first interrupt reprograms the timer.
447                          * -> interrupt number two handles the event.
448                          */
449                         ch->flags |= FLAG_SKIPEVENT;
450                         break;
451                 }
452
453                 if (has_wrapped) {
454                         /* we are changing to a smaller match value,
455                          * so the wrap must be caused by the counter
456                          * matching the new value.
457                          * -> save programmed match value.
458                          * -> let isr handle the event.
459                          */
460                         ch->match_value = new_match;
461                         break;
462                 }
463
464                 /* be safe: verify hardware settings */
465                 if (now < new_match) {
466                         /* timer value is below match value, all good.
467                          * this makes sure we won't miss any match events.
468                          * -> save programmed match value.
469                          * -> let isr handle the event.
470                          */
471                         ch->match_value = new_match;
472                         break;
473                 }
474
475                 /* the counter has reached a value greater
476                  * than our new match value. and since the
477                  * has_wrapped flag isn't set we must have
478                  * programmed a too close event.
479                  * -> increase delay and retry.
480                  */
481                 if (delay)
482                         delay <<= 1;
483                 else
484                         delay = 1;
485
486                 if (!delay)
487                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488                                  ch->index);
489
490         } while (delay);
491 }
492
493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495         if (delta > ch->max_match_value)
496                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497                          ch->index);
498
499         ch->next_match_value = delta;
500         sh_cmt_clock_event_program_verify(ch, 0);
501 }
502
503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505         unsigned long flags;
506
507         raw_spin_lock_irqsave(&ch->lock, flags);
508         __sh_cmt_set_next(ch, delta);
509         raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511
512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514         struct sh_cmt_channel *ch = dev_id;
515
516         /* clear flags */
517         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518                            ch->cmt->info->clear_bits);
519
520         /* update clock source counter to begin with if enabled
521          * the wrap flag should be cleared by the timer specific
522          * isr before we end up here.
523          */
524         if (ch->flags & FLAG_CLOCKSOURCE)
525                 ch->total_cycles += ch->match_value + 1;
526
527         if (!(ch->flags & FLAG_REPROGRAM))
528                 ch->next_match_value = ch->max_match_value;
529
530         ch->flags |= FLAG_IRQCONTEXT;
531
532         if (ch->flags & FLAG_CLOCKEVENT) {
533                 if (!(ch->flags & FLAG_SKIPEVENT)) {
534                         if (clockevent_state_oneshot(&ch->ced)) {
535                                 ch->next_match_value = ch->max_match_value;
536                                 ch->flags |= FLAG_REPROGRAM;
537                         }
538
539                         ch->ced.event_handler(&ch->ced);
540                 }
541         }
542
543         ch->flags &= ~FLAG_SKIPEVENT;
544
545         if (ch->flags & FLAG_REPROGRAM) {
546                 ch->flags &= ~FLAG_REPROGRAM;
547                 sh_cmt_clock_event_program_verify(ch, 1);
548
549                 if (ch->flags & FLAG_CLOCKEVENT)
550                         if ((clockevent_state_shutdown(&ch->ced))
551                             || (ch->match_value == ch->next_match_value))
552                                 ch->flags &= ~FLAG_REPROGRAM;
553         }
554
555         ch->flags &= ~FLAG_IRQCONTEXT;
556
557         return IRQ_HANDLED;
558 }
559
560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562         int ret = 0;
563         unsigned long flags;
564
565         raw_spin_lock_irqsave(&ch->lock, flags);
566
567         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568                 ret = sh_cmt_enable(ch);
569
570         if (ret)
571                 goto out;
572         ch->flags |= flag;
573
574         /* setup timeout if no clockevent */
575         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
576                 __sh_cmt_set_next(ch, ch->max_match_value);
577  out:
578         raw_spin_unlock_irqrestore(&ch->lock, flags);
579
580         return ret;
581 }
582
583 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
584 {
585         unsigned long flags;
586         unsigned long f;
587
588         raw_spin_lock_irqsave(&ch->lock, flags);
589
590         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
591         ch->flags &= ~flag;
592
593         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
594                 sh_cmt_disable(ch);
595
596         /* adjust the timeout to maximum if only clocksource left */
597         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
598                 __sh_cmt_set_next(ch, ch->max_match_value);
599
600         raw_spin_unlock_irqrestore(&ch->lock, flags);
601 }
602
603 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
604 {
605         return container_of(cs, struct sh_cmt_channel, cs);
606 }
607
608 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
609 {
610         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
611         unsigned long flags;
612         u32 has_wrapped;
613         u64 value;
614         u32 raw;
615
616         raw_spin_lock_irqsave(&ch->lock, flags);
617         value = ch->total_cycles;
618         raw = sh_cmt_get_counter(ch, &has_wrapped);
619
620         if (unlikely(has_wrapped))
621                 raw += ch->match_value + 1;
622         raw_spin_unlock_irqrestore(&ch->lock, flags);
623
624         return value + raw;
625 }
626
627 static int sh_cmt_clocksource_enable(struct clocksource *cs)
628 {
629         int ret;
630         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
631
632         WARN_ON(ch->cs_enabled);
633
634         ch->total_cycles = 0;
635
636         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
637         if (!ret)
638                 ch->cs_enabled = true;
639
640         return ret;
641 }
642
643 static void sh_cmt_clocksource_disable(struct clocksource *cs)
644 {
645         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
646
647         WARN_ON(!ch->cs_enabled);
648
649         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
650         ch->cs_enabled = false;
651 }
652
653 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
654 {
655         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656
657         if (!ch->cs_enabled)
658                 return;
659
660         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
661         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
662 }
663
664 static void sh_cmt_clocksource_resume(struct clocksource *cs)
665 {
666         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
667
668         if (!ch->cs_enabled)
669                 return;
670
671         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
672         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
673 }
674
675 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
676                                        const char *name)
677 {
678         struct clocksource *cs = &ch->cs;
679
680         cs->name = name;
681         cs->rating = 125;
682         cs->read = sh_cmt_clocksource_read;
683         cs->enable = sh_cmt_clocksource_enable;
684         cs->disable = sh_cmt_clocksource_disable;
685         cs->suspend = sh_cmt_clocksource_suspend;
686         cs->resume = sh_cmt_clocksource_resume;
687         cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
688         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
689
690         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
691                  ch->index);
692
693         clocksource_register_hz(cs, ch->cmt->rate);
694         return 0;
695 }
696
697 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
698 {
699         return container_of(ced, struct sh_cmt_channel, ced);
700 }
701
702 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
703 {
704         sh_cmt_start(ch, FLAG_CLOCKEVENT);
705
706         if (periodic)
707                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
708         else
709                 sh_cmt_set_next(ch, ch->max_match_value);
710 }
711
712 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
713 {
714         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
715
716         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
717         return 0;
718 }
719
720 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
721                                         int periodic)
722 {
723         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
724
725         /* deal with old setting first */
726         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
727                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
728
729         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
730                  ch->index, periodic ? "periodic" : "oneshot");
731         sh_cmt_clock_event_start(ch, periodic);
732         return 0;
733 }
734
735 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
736 {
737         return sh_cmt_clock_event_set_state(ced, 0);
738 }
739
740 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
741 {
742         return sh_cmt_clock_event_set_state(ced, 1);
743 }
744
745 static int sh_cmt_clock_event_next(unsigned long delta,
746                                    struct clock_event_device *ced)
747 {
748         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749
750         BUG_ON(!clockevent_state_oneshot(ced));
751         if (likely(ch->flags & FLAG_IRQCONTEXT))
752                 ch->next_match_value = delta - 1;
753         else
754                 sh_cmt_set_next(ch, delta - 1);
755
756         return 0;
757 }
758
759 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
760 {
761         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
764         clk_unprepare(ch->cmt->clk);
765 }
766
767 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
768 {
769         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
770
771         clk_prepare(ch->cmt->clk);
772         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
773 }
774
775 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
776                                       const char *name)
777 {
778         struct clock_event_device *ced = &ch->ced;
779         int irq;
780         int ret;
781
782         irq = platform_get_irq(ch->cmt->pdev, ch->index);
783         if (irq < 0)
784                 return irq;
785
786         ret = request_irq(irq, sh_cmt_interrupt,
787                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
788                           dev_name(&ch->cmt->pdev->dev), ch);
789         if (ret) {
790                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
791                         ch->index, irq);
792                 return ret;
793         }
794
795         ced->name = name;
796         ced->features = CLOCK_EVT_FEAT_PERIODIC;
797         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
798         ced->rating = 125;
799         ced->cpumask = cpu_possible_mask;
800         ced->set_next_event = sh_cmt_clock_event_next;
801         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
802         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
803         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
804         ced->suspend = sh_cmt_clock_event_suspend;
805         ced->resume = sh_cmt_clock_event_resume;
806
807         /* TODO: calculate good shift from rate and counter bit width */
808         ced->shift = 32;
809         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
810         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
811         ced->max_delta_ticks = ch->max_match_value;
812         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
813         ced->min_delta_ticks = 0x1f;
814
815         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
816                  ch->index);
817         clockevents_register_device(ced);
818
819         return 0;
820 }
821
822 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
823                            bool clockevent, bool clocksource)
824 {
825         int ret;
826
827         if (clockevent) {
828                 ch->cmt->has_clockevent = true;
829                 ret = sh_cmt_register_clockevent(ch, name);
830                 if (ret < 0)
831                         return ret;
832         }
833
834         if (clocksource) {
835                 ch->cmt->has_clocksource = true;
836                 sh_cmt_register_clocksource(ch, name);
837         }
838
839         return 0;
840 }
841
842 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
843                                 unsigned int hwidx, bool clockevent,
844                                 bool clocksource, struct sh_cmt_device *cmt)
845 {
846         int ret;
847
848         /* Skip unused channels. */
849         if (!clockevent && !clocksource)
850                 return 0;
851
852         ch->cmt = cmt;
853         ch->index = index;
854         ch->hwidx = hwidx;
855         ch->timer_bit = hwidx;
856
857         /*
858          * Compute the address of the channel control register block. For the
859          * timers with a per-channel start/stop register, compute its address
860          * as well.
861          */
862         switch (cmt->info->model) {
863         case SH_CMT_16BIT:
864                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865                 break;
866         case SH_CMT_32BIT:
867         case SH_CMT_48BIT:
868                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869                 break;
870         case SH_CMT0_RCAR_GEN2:
871         case SH_CMT1_RCAR_GEN2:
872                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
873                 ch->ioctrl = ch->iostart + 0x10;
874                 ch->timer_bit = 0;
875                 break;
876         }
877
878         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
879                 ch->max_match_value = ~0;
880         else
881                 ch->max_match_value = (1 << cmt->info->width) - 1;
882
883         ch->match_value = ch->max_match_value;
884         raw_spin_lock_init(&ch->lock);
885
886         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
887                               clockevent, clocksource);
888         if (ret) {
889                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
890                         ch->index);
891                 return ret;
892         }
893         ch->cs_enabled = false;
894
895         return 0;
896 }
897
898 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
899 {
900         struct resource *mem;
901
902         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
903         if (!mem) {
904                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
905                 return -ENXIO;
906         }
907
908         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
909         if (cmt->mapbase == NULL) {
910                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
911                 return -ENXIO;
912         }
913
914         return 0;
915 }
916
917 static const struct platform_device_id sh_cmt_id_table[] = {
918         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
919         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
920         { }
921 };
922 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
923
924 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
925         {
926                 /* deprecated, preserved for backward compatibility */
927                 .compatible = "renesas,cmt-48",
928                 .data = &sh_cmt_info[SH_CMT_48BIT]
929         },
930         {
931                 /* deprecated, preserved for backward compatibility */
932                 .compatible = "renesas,cmt-48-gen2",
933                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
934         },
935         {
936                 .compatible = "renesas,r8a7740-cmt1",
937                 .data = &sh_cmt_info[SH_CMT_48BIT]
938         },
939         {
940                 .compatible = "renesas,sh73a0-cmt1",
941                 .data = &sh_cmt_info[SH_CMT_48BIT]
942         },
943         {
944                 .compatible = "renesas,rcar-gen2-cmt0",
945                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
946         },
947         {
948                 .compatible = "renesas,rcar-gen2-cmt1",
949                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
950         },
951         {
952                 .compatible = "renesas,rcar-gen3-cmt0",
953                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
954         },
955         {
956                 .compatible = "renesas,rcar-gen3-cmt1",
957                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
958         },
959         { }
960 };
961 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
962
963 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
964 {
965         unsigned int mask;
966         unsigned int i;
967         int ret;
968
969         cmt->pdev = pdev;
970         raw_spin_lock_init(&cmt->lock);
971
972         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973                 cmt->info = of_device_get_match_data(&pdev->dev);
974                 cmt->hw_channels = cmt->info->channels_mask;
975         } else if (pdev->dev.platform_data) {
976                 struct sh_timer_config *cfg = pdev->dev.platform_data;
977                 const struct platform_device_id *id = pdev->id_entry;
978
979                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
980                 cmt->hw_channels = cfg->channels_mask;
981         } else {
982                 dev_err(&cmt->pdev->dev, "missing platform data\n");
983                 return -ENXIO;
984         }
985
986         /* Get hold of clock. */
987         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988         if (IS_ERR(cmt->clk)) {
989                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
990                 return PTR_ERR(cmt->clk);
991         }
992
993         ret = clk_prepare(cmt->clk);
994         if (ret < 0)
995                 goto err_clk_put;
996
997         /* Determine clock rate. */
998         ret = clk_enable(cmt->clk);
999         if (ret < 0)
1000                 goto err_clk_unprepare;
1001
1002         if (cmt->info->width == 16)
1003                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1004         else
1005                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1006
1007         clk_disable(cmt->clk);
1008
1009         /* Map the memory resource(s). */
1010         ret = sh_cmt_map_memory(cmt);
1011         if (ret < 0)
1012                 goto err_clk_unprepare;
1013
1014         /* Allocate and setup the channels. */
1015         cmt->num_channels = hweight8(cmt->hw_channels);
1016         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017                                 GFP_KERNEL);
1018         if (cmt->channels == NULL) {
1019                 ret = -ENOMEM;
1020                 goto err_unmap;
1021         }
1022
1023         /*
1024          * Use the first channel as a clock event device and the second channel
1025          * as a clock source. If only one channel is available use it for both.
1026          */
1027         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028                 unsigned int hwidx = ffs(mask) - 1;
1029                 bool clocksource = i == 1 || cmt->num_channels == 1;
1030                 bool clockevent = i == 0;
1031
1032                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033                                            clockevent, clocksource, cmt);
1034                 if (ret < 0)
1035                         goto err_unmap;
1036
1037                 mask &= ~(1 << hwidx);
1038         }
1039
1040         platform_set_drvdata(pdev, cmt);
1041
1042         return 0;
1043
1044 err_unmap:
1045         kfree(cmt->channels);
1046         iounmap(cmt->mapbase);
1047 err_clk_unprepare:
1048         clk_unprepare(cmt->clk);
1049 err_clk_put:
1050         clk_put(cmt->clk);
1051         return ret;
1052 }
1053
1054 static int sh_cmt_probe(struct platform_device *pdev)
1055 {
1056         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057         int ret;
1058
1059         if (!is_sh_early_platform_device(pdev)) {
1060                 pm_runtime_set_active(&pdev->dev);
1061                 pm_runtime_enable(&pdev->dev);
1062         }
1063
1064         if (cmt) {
1065                 dev_info(&pdev->dev, "kept as earlytimer\n");
1066                 goto out;
1067         }
1068
1069         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070         if (cmt == NULL)
1071                 return -ENOMEM;
1072
1073         ret = sh_cmt_setup(cmt, pdev);
1074         if (ret) {
1075                 kfree(cmt);
1076                 pm_runtime_idle(&pdev->dev);
1077                 return ret;
1078         }
1079         if (is_sh_early_platform_device(pdev))
1080                 return 0;
1081
1082  out:
1083         if (cmt->has_clockevent || cmt->has_clocksource)
1084                 pm_runtime_irq_safe(&pdev->dev);
1085         else
1086                 pm_runtime_idle(&pdev->dev);
1087
1088         return 0;
1089 }
1090
1091 static int sh_cmt_remove(struct platform_device *pdev)
1092 {
1093         return -EBUSY; /* cannot unregister clockevent and clocksource */
1094 }
1095
1096 static struct platform_driver sh_cmt_device_driver = {
1097         .probe          = sh_cmt_probe,
1098         .remove         = sh_cmt_remove,
1099         .driver         = {
1100                 .name   = "sh_cmt",
1101                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1102         },
1103         .id_table       = sh_cmt_id_table,
1104 };
1105
1106 static int __init sh_cmt_init(void)
1107 {
1108         return platform_driver_register(&sh_cmt_device_driver);
1109 }
1110
1111 static void __exit sh_cmt_exit(void)
1112 {
1113         platform_driver_unregister(&sh_cmt_device_driver);
1114 }
1115
1116 #ifdef CONFIG_SUPERH
1117 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118 #endif
1119
1120 subsys_initcall(sh_cmt_init);
1121 module_exit(sh_cmt_exit);
1122
1123 MODULE_AUTHOR("Magnus Damm");
1124 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125 MODULE_LICENSE("GPL v2");