Merge tag 'linux-kselftest-4.11-rc1-urgent_fix' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #define pr_fmt(fmt)     "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29
30 #include <asm/arch_timer.h>
31 #include <asm/virt.h>
32
33 #include <clocksource/arm_arch_timer.h>
34
35 #define CNTTIDR         0x08
36 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
37
38 #define CNTACR(n)       (0x40 + ((n) * 4))
39 #define CNTACR_RPCT     BIT(0)
40 #define CNTACR_RVCT     BIT(1)
41 #define CNTACR_RFRQ     BIT(2)
42 #define CNTACR_RVOFF    BIT(3)
43 #define CNTACR_RWVT     BIT(4)
44 #define CNTACR_RWPT     BIT(5)
45
46 #define CNTVCT_LO       0x08
47 #define CNTVCT_HI       0x0c
48 #define CNTFRQ          0x10
49 #define CNTP_TVAL       0x28
50 #define CNTP_CTL        0x2c
51 #define CNTV_TVAL       0x38
52 #define CNTV_CTL        0x3c
53
54 #define ARCH_CP15_TIMER BIT(0)
55 #define ARCH_MEM_TIMER  BIT(1)
56 static unsigned arch_timers_present __initdata;
57
58 static void __iomem *arch_counter_base;
59
60 struct arch_timer {
61         void __iomem *base;
62         struct clock_event_device evt;
63 };
64
65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66
67 static u32 arch_timer_rate;
68
69 enum ppi_nr {
70         PHYS_SECURE_PPI,
71         PHYS_NONSECURE_PPI,
72         VIRT_PPI,
73         HYP_PPI,
74         MAX_TIMER_PPI
75 };
76
77 static int arch_timer_ppi[MAX_TIMER_PPI];
78
79 static struct clock_event_device __percpu *arch_timer_evt;
80
81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82 static bool arch_timer_c3stop;
83 static bool arch_timer_mem_use_virtual;
84 static bool arch_counter_suspend_stop;
85
86 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87
88 static int __init early_evtstrm_cfg(char *buf)
89 {
90         return strtobool(buf, &evtstrm_enable);
91 }
92 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93
94 /*
95  * Architected system timer support.
96  */
97
98 #ifdef CONFIG_FSL_ERRATUM_A008585
99 /*
100  * The number of retries is an arbitrary value well beyond the highest number
101  * of iterations the loop has been observed to take.
102  */
103 #define __fsl_a008585_read_reg(reg) ({                  \
104         u64 _old, _new;                                 \
105         int _retries = 200;                             \
106                                                         \
107         do {                                            \
108                 _old = read_sysreg(reg);                \
109                 _new = read_sysreg(reg);                \
110                 _retries--;                             \
111         } while (unlikely(_old != _new) && _retries);   \
112                                                         \
113         WARN_ON_ONCE(!_retries);                        \
114         _new;                                           \
115 })
116
117 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
118 {
119         return __fsl_a008585_read_reg(cntp_tval_el0);
120 }
121
122 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
123 {
124         return __fsl_a008585_read_reg(cntv_tval_el0);
125 }
126
127 static u64 notrace fsl_a008585_read_cntvct_el0(void)
128 {
129         return __fsl_a008585_read_reg(cntvct_el0);
130 }
131 #endif
132
133 #ifdef CONFIG_HISILICON_ERRATUM_161010101
134 /*
135  * Verify whether the value of the second read is larger than the first by
136  * less than 32 is the only way to confirm the value is correct, so clear the
137  * lower 5 bits to check whether the difference is greater than 32 or not.
138  * Theoretically the erratum should not occur more than twice in succession
139  * when reading the system counter, but it is possible that some interrupts
140  * may lead to more than twice read errors, triggering the warning, so setting
141  * the number of retries far beyond the number of iterations the loop has been
142  * observed to take.
143  */
144 #define __hisi_161010101_read_reg(reg) ({                               \
145         u64 _old, _new;                                         \
146         int _retries = 50;                                      \
147                                                                 \
148         do {                                                    \
149                 _old = read_sysreg(reg);                        \
150                 _new = read_sysreg(reg);                        \
151                 _retries--;                                     \
152         } while (unlikely((_new - _old) >> 5) && _retries);     \
153                                                                 \
154         WARN_ON_ONCE(!_retries);                                \
155         _new;                                                   \
156 })
157
158 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
159 {
160         return __hisi_161010101_read_reg(cntp_tval_el0);
161 }
162
163 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
164 {
165         return __hisi_161010101_read_reg(cntv_tval_el0);
166 }
167
168 static u64 notrace hisi_161010101_read_cntvct_el0(void)
169 {
170         return __hisi_161010101_read_reg(cntvct_el0);
171 }
172 #endif
173
174 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
175 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
176 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
177
178 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
179 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
180
181 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
182 #ifdef CONFIG_FSL_ERRATUM_A008585
183         {
184                 .id = "fsl,erratum-a008585",
185                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
186                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
187                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
188         },
189 #endif
190 #ifdef CONFIG_HISILICON_ERRATUM_161010101
191         {
192                 .id = "hisilicon,erratum-161010101",
193                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
194                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
195                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
196         },
197 #endif
198 };
199 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
200
201 static __always_inline
202 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
203                           struct clock_event_device *clk)
204 {
205         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
206                 struct arch_timer *timer = to_arch_timer(clk);
207                 switch (reg) {
208                 case ARCH_TIMER_REG_CTRL:
209                         writel_relaxed(val, timer->base + CNTP_CTL);
210                         break;
211                 case ARCH_TIMER_REG_TVAL:
212                         writel_relaxed(val, timer->base + CNTP_TVAL);
213                         break;
214                 }
215         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
216                 struct arch_timer *timer = to_arch_timer(clk);
217                 switch (reg) {
218                 case ARCH_TIMER_REG_CTRL:
219                         writel_relaxed(val, timer->base + CNTV_CTL);
220                         break;
221                 case ARCH_TIMER_REG_TVAL:
222                         writel_relaxed(val, timer->base + CNTV_TVAL);
223                         break;
224                 }
225         } else {
226                 arch_timer_reg_write_cp15(access, reg, val);
227         }
228 }
229
230 static __always_inline
231 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
232                         struct clock_event_device *clk)
233 {
234         u32 val;
235
236         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
237                 struct arch_timer *timer = to_arch_timer(clk);
238                 switch (reg) {
239                 case ARCH_TIMER_REG_CTRL:
240                         val = readl_relaxed(timer->base + CNTP_CTL);
241                         break;
242                 case ARCH_TIMER_REG_TVAL:
243                         val = readl_relaxed(timer->base + CNTP_TVAL);
244                         break;
245                 }
246         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
247                 struct arch_timer *timer = to_arch_timer(clk);
248                 switch (reg) {
249                 case ARCH_TIMER_REG_CTRL:
250                         val = readl_relaxed(timer->base + CNTV_CTL);
251                         break;
252                 case ARCH_TIMER_REG_TVAL:
253                         val = readl_relaxed(timer->base + CNTV_TVAL);
254                         break;
255                 }
256         } else {
257                 val = arch_timer_reg_read_cp15(access, reg);
258         }
259
260         return val;
261 }
262
263 static __always_inline irqreturn_t timer_handler(const int access,
264                                         struct clock_event_device *evt)
265 {
266         unsigned long ctrl;
267
268         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
269         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
270                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
271                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
272                 evt->event_handler(evt);
273                 return IRQ_HANDLED;
274         }
275
276         return IRQ_NONE;
277 }
278
279 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
280 {
281         struct clock_event_device *evt = dev_id;
282
283         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
284 }
285
286 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
287 {
288         struct clock_event_device *evt = dev_id;
289
290         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
291 }
292
293 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
294 {
295         struct clock_event_device *evt = dev_id;
296
297         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
298 }
299
300 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
301 {
302         struct clock_event_device *evt = dev_id;
303
304         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
305 }
306
307 static __always_inline int timer_shutdown(const int access,
308                                           struct clock_event_device *clk)
309 {
310         unsigned long ctrl;
311
312         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
313         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
314         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
315
316         return 0;
317 }
318
319 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
320 {
321         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
322 }
323
324 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
325 {
326         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
327 }
328
329 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
330 {
331         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
332 }
333
334 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
335 {
336         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
337 }
338
339 static __always_inline void set_next_event(const int access, unsigned long evt,
340                                            struct clock_event_device *clk)
341 {
342         unsigned long ctrl;
343         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
344         ctrl |= ARCH_TIMER_CTRL_ENABLE;
345         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
346         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
347         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348 }
349
350 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
351 static __always_inline void erratum_set_next_event_generic(const int access,
352                 unsigned long evt, struct clock_event_device *clk)
353 {
354         unsigned long ctrl;
355         u64 cval = evt + arch_counter_get_cntvct();
356
357         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
358         ctrl |= ARCH_TIMER_CTRL_ENABLE;
359         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
360
361         if (access == ARCH_TIMER_PHYS_ACCESS)
362                 write_sysreg(cval, cntp_cval_el0);
363         else if (access == ARCH_TIMER_VIRT_ACCESS)
364                 write_sysreg(cval, cntv_cval_el0);
365
366         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
367 }
368
369 static int erratum_set_next_event_virt(unsigned long evt,
370                                            struct clock_event_device *clk)
371 {
372         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
373         return 0;
374 }
375
376 static int erratum_set_next_event_phys(unsigned long evt,
377                                            struct clock_event_device *clk)
378 {
379         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
380         return 0;
381 }
382 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
383
384 static int arch_timer_set_next_event_virt(unsigned long evt,
385                                           struct clock_event_device *clk)
386 {
387         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
388         return 0;
389 }
390
391 static int arch_timer_set_next_event_phys(unsigned long evt,
392                                           struct clock_event_device *clk)
393 {
394         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
395         return 0;
396 }
397
398 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
399                                               struct clock_event_device *clk)
400 {
401         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
402         return 0;
403 }
404
405 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
406                                               struct clock_event_device *clk)
407 {
408         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
409         return 0;
410 }
411
412 static void erratum_workaround_set_sne(struct clock_event_device *clk)
413 {
414 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
415         if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
416                 return;
417
418         if (arch_timer_uses_ppi == VIRT_PPI)
419                 clk->set_next_event = erratum_set_next_event_virt;
420         else
421                 clk->set_next_event = erratum_set_next_event_phys;
422 #endif
423 }
424
425 static void __arch_timer_setup(unsigned type,
426                                struct clock_event_device *clk)
427 {
428         clk->features = CLOCK_EVT_FEAT_ONESHOT;
429
430         if (type == ARCH_CP15_TIMER) {
431                 if (arch_timer_c3stop)
432                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
433                 clk->name = "arch_sys_timer";
434                 clk->rating = 450;
435                 clk->cpumask = cpumask_of(smp_processor_id());
436                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
437                 switch (arch_timer_uses_ppi) {
438                 case VIRT_PPI:
439                         clk->set_state_shutdown = arch_timer_shutdown_virt;
440                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
441                         clk->set_next_event = arch_timer_set_next_event_virt;
442                         break;
443                 case PHYS_SECURE_PPI:
444                 case PHYS_NONSECURE_PPI:
445                 case HYP_PPI:
446                         clk->set_state_shutdown = arch_timer_shutdown_phys;
447                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
448                         clk->set_next_event = arch_timer_set_next_event_phys;
449                         break;
450                 default:
451                         BUG();
452                 }
453
454                 erratum_workaround_set_sne(clk);
455         } else {
456                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
457                 clk->name = "arch_mem_timer";
458                 clk->rating = 400;
459                 clk->cpumask = cpu_all_mask;
460                 if (arch_timer_mem_use_virtual) {
461                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
462                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
463                         clk->set_next_event =
464                                 arch_timer_set_next_event_virt_mem;
465                 } else {
466                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
467                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
468                         clk->set_next_event =
469                                 arch_timer_set_next_event_phys_mem;
470                 }
471         }
472
473         clk->set_state_shutdown(clk);
474
475         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
476 }
477
478 static void arch_timer_evtstrm_enable(int divider)
479 {
480         u32 cntkctl = arch_timer_get_cntkctl();
481
482         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
483         /* Set the divider and enable virtual event stream */
484         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
485                         | ARCH_TIMER_VIRT_EVT_EN;
486         arch_timer_set_cntkctl(cntkctl);
487         elf_hwcap |= HWCAP_EVTSTRM;
488 #ifdef CONFIG_COMPAT
489         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
490 #endif
491 }
492
493 static void arch_timer_configure_evtstream(void)
494 {
495         int evt_stream_div, pos;
496
497         /* Find the closest power of two to the divisor */
498         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
499         pos = fls(evt_stream_div);
500         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
501                 pos--;
502         /* enable event stream */
503         arch_timer_evtstrm_enable(min(pos, 15));
504 }
505
506 static void arch_counter_set_user_access(void)
507 {
508         u32 cntkctl = arch_timer_get_cntkctl();
509
510         /* Disable user access to the timers and the physical counter */
511         /* Also disable virtual event stream */
512         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
513                         | ARCH_TIMER_USR_VT_ACCESS_EN
514                         | ARCH_TIMER_VIRT_EVT_EN
515                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
516
517         /* Enable user access to the virtual counter */
518         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
519
520         arch_timer_set_cntkctl(cntkctl);
521 }
522
523 static bool arch_timer_has_nonsecure_ppi(void)
524 {
525         return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
526                 arch_timer_ppi[PHYS_NONSECURE_PPI]);
527 }
528
529 static u32 check_ppi_trigger(int irq)
530 {
531         u32 flags = irq_get_trigger_type(irq);
532
533         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
534                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
535                 pr_warn("WARNING: Please fix your firmware\n");
536                 flags = IRQF_TRIGGER_LOW;
537         }
538
539         return flags;
540 }
541
542 static int arch_timer_starting_cpu(unsigned int cpu)
543 {
544         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
545         u32 flags;
546
547         __arch_timer_setup(ARCH_CP15_TIMER, clk);
548
549         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
550         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
551
552         if (arch_timer_has_nonsecure_ppi()) {
553                 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
554                 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
555         }
556
557         arch_counter_set_user_access();
558         if (evtstrm_enable)
559                 arch_timer_configure_evtstream();
560
561         return 0;
562 }
563
564 static void
565 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
566 {
567         /* Who has more than one independent system counter? */
568         if (arch_timer_rate)
569                 return;
570
571         /*
572          * Try to determine the frequency from the device tree or CNTFRQ,
573          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
574          */
575         if (!acpi_disabled ||
576             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
577                 if (cntbase)
578                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
579                 else
580                         arch_timer_rate = arch_timer_get_cntfrq();
581         }
582
583         /* Check the timer frequency. */
584         if (arch_timer_rate == 0)
585                 pr_warn("Architected timer frequency not available\n");
586 }
587
588 static void arch_timer_banner(unsigned type)
589 {
590         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
591                      type & ARCH_CP15_TIMER ? "cp15" : "",
592                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
593                      type & ARCH_MEM_TIMER ? "mmio" : "",
594                      (unsigned long)arch_timer_rate / 1000000,
595                      (unsigned long)(arch_timer_rate / 10000) % 100,
596                      type & ARCH_CP15_TIMER ?
597                      (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
598                         "",
599                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
600                      type & ARCH_MEM_TIMER ?
601                         arch_timer_mem_use_virtual ? "virt" : "phys" :
602                         "");
603 }
604
605 u32 arch_timer_get_rate(void)
606 {
607         return arch_timer_rate;
608 }
609
610 static u64 arch_counter_get_cntvct_mem(void)
611 {
612         u32 vct_lo, vct_hi, tmp_hi;
613
614         do {
615                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
616                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
617                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
618         } while (vct_hi != tmp_hi);
619
620         return ((u64) vct_hi << 32) | vct_lo;
621 }
622
623 /*
624  * Default to cp15 based access because arm64 uses this function for
625  * sched_clock() before DT is probed and the cp15 method is guaranteed
626  * to exist on arm64. arm doesn't use this before DT is probed so even
627  * if we don't have the cp15 accessors we won't have a problem.
628  */
629 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
630
631 static u64 arch_counter_read(struct clocksource *cs)
632 {
633         return arch_timer_read_counter();
634 }
635
636 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
637 {
638         return arch_timer_read_counter();
639 }
640
641 static struct clocksource clocksource_counter = {
642         .name   = "arch_sys_counter",
643         .rating = 400,
644         .read   = arch_counter_read,
645         .mask   = CLOCKSOURCE_MASK(56),
646         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
647 };
648
649 static struct cyclecounter cyclecounter __ro_after_init = {
650         .read   = arch_counter_read_cc,
651         .mask   = CLOCKSOURCE_MASK(56),
652 };
653
654 static struct arch_timer_kvm_info arch_timer_kvm_info;
655
656 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
657 {
658         return &arch_timer_kvm_info;
659 }
660
661 static void __init arch_counter_register(unsigned type)
662 {
663         u64 start_count;
664
665         /* Register the CP15 based counter if we have one */
666         if (type & ARCH_CP15_TIMER) {
667                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
668                         arch_timer_read_counter = arch_counter_get_cntvct;
669                 else
670                         arch_timer_read_counter = arch_counter_get_cntpct;
671
672                 clocksource_counter.archdata.vdso_direct = true;
673
674 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
675                 /*
676                  * Don't use the vdso fastpath if errata require using
677                  * the out-of-line counter accessor.
678                  */
679                 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
680                         clocksource_counter.archdata.vdso_direct = false;
681 #endif
682         } else {
683                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
684         }
685
686         if (!arch_counter_suspend_stop)
687                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
688         start_count = arch_timer_read_counter();
689         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
690         cyclecounter.mult = clocksource_counter.mult;
691         cyclecounter.shift = clocksource_counter.shift;
692         timecounter_init(&arch_timer_kvm_info.timecounter,
693                          &cyclecounter, start_count);
694
695         /* 56 bits minimum, so we assume worst case rollover */
696         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
697 }
698
699 static void arch_timer_stop(struct clock_event_device *clk)
700 {
701         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
702                  clk->irq, smp_processor_id());
703
704         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
705         if (arch_timer_has_nonsecure_ppi())
706                 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
707
708         clk->set_state_shutdown(clk);
709 }
710
711 static int arch_timer_dying_cpu(unsigned int cpu)
712 {
713         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
714
715         arch_timer_stop(clk);
716         return 0;
717 }
718
719 #ifdef CONFIG_CPU_PM
720 static unsigned int saved_cntkctl;
721 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
722                                     unsigned long action, void *hcpu)
723 {
724         if (action == CPU_PM_ENTER)
725                 saved_cntkctl = arch_timer_get_cntkctl();
726         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
727                 arch_timer_set_cntkctl(saved_cntkctl);
728         return NOTIFY_OK;
729 }
730
731 static struct notifier_block arch_timer_cpu_pm_notifier = {
732         .notifier_call = arch_timer_cpu_pm_notify,
733 };
734
735 static int __init arch_timer_cpu_pm_init(void)
736 {
737         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
738 }
739
740 static void __init arch_timer_cpu_pm_deinit(void)
741 {
742         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
743 }
744
745 #else
746 static int __init arch_timer_cpu_pm_init(void)
747 {
748         return 0;
749 }
750
751 static void __init arch_timer_cpu_pm_deinit(void)
752 {
753 }
754 #endif
755
756 static int __init arch_timer_register(void)
757 {
758         int err;
759         int ppi;
760
761         arch_timer_evt = alloc_percpu(struct clock_event_device);
762         if (!arch_timer_evt) {
763                 err = -ENOMEM;
764                 goto out;
765         }
766
767         ppi = arch_timer_ppi[arch_timer_uses_ppi];
768         switch (arch_timer_uses_ppi) {
769         case VIRT_PPI:
770                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
771                                          "arch_timer", arch_timer_evt);
772                 break;
773         case PHYS_SECURE_PPI:
774         case PHYS_NONSECURE_PPI:
775                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
776                                          "arch_timer", arch_timer_evt);
777                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
778                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
779                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
780                                                  "arch_timer", arch_timer_evt);
781                         if (err)
782                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
783                                                 arch_timer_evt);
784                 }
785                 break;
786         case HYP_PPI:
787                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
788                                          "arch_timer", arch_timer_evt);
789                 break;
790         default:
791                 BUG();
792         }
793
794         if (err) {
795                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
796                        ppi, err);
797                 goto out_free;
798         }
799
800         err = arch_timer_cpu_pm_init();
801         if (err)
802                 goto out_unreg_notify;
803
804
805         /* Register and immediately configure the timer on the boot CPU */
806         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
807                                 "clockevents/arm/arch_timer:starting",
808                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
809         if (err)
810                 goto out_unreg_cpupm;
811         return 0;
812
813 out_unreg_cpupm:
814         arch_timer_cpu_pm_deinit();
815
816 out_unreg_notify:
817         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
818         if (arch_timer_has_nonsecure_ppi())
819                 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
820                                 arch_timer_evt);
821
822 out_free:
823         free_percpu(arch_timer_evt);
824 out:
825         return err;
826 }
827
828 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
829 {
830         int ret;
831         irq_handler_t func;
832         struct arch_timer *t;
833
834         t = kzalloc(sizeof(*t), GFP_KERNEL);
835         if (!t)
836                 return -ENOMEM;
837
838         t->base = base;
839         t->evt.irq = irq;
840         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
841
842         if (arch_timer_mem_use_virtual)
843                 func = arch_timer_handler_virt_mem;
844         else
845                 func = arch_timer_handler_phys_mem;
846
847         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
848         if (ret) {
849                 pr_err("arch_timer: Failed to request mem timer irq\n");
850                 kfree(t);
851         }
852
853         return ret;
854 }
855
856 static const struct of_device_id arch_timer_of_match[] __initconst = {
857         { .compatible   = "arm,armv7-timer",    },
858         { .compatible   = "arm,armv8-timer",    },
859         {},
860 };
861
862 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
863         { .compatible   = "arm,armv7-timer-mem", },
864         {},
865 };
866
867 static bool __init
868 arch_timer_needs_probing(int type, const struct of_device_id *matches)
869 {
870         struct device_node *dn;
871         bool needs_probing = false;
872
873         dn = of_find_matching_node(NULL, matches);
874         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
875                 needs_probing = true;
876         of_node_put(dn);
877
878         return needs_probing;
879 }
880
881 static int __init arch_timer_common_init(void)
882 {
883         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
884
885         /* Wait until both nodes are probed if we have two timers */
886         if ((arch_timers_present & mask) != mask) {
887                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
888                         return 0;
889                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
890                         return 0;
891         }
892
893         arch_timer_banner(arch_timers_present);
894         arch_counter_register(arch_timers_present);
895         return arch_timer_arch_init();
896 }
897
898 static int __init arch_timer_init(void)
899 {
900         int ret;
901         /*
902          * If HYP mode is available, we know that the physical timer
903          * has been configured to be accessible from PL1. Use it, so
904          * that a guest can use the virtual timer instead.
905          *
906          * If no interrupt provided for virtual timer, we'll have to
907          * stick to the physical timer. It'd better be accessible...
908          *
909          * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
910          * accesses to CNTP_*_EL1 registers are silently redirected to
911          * their CNTHP_*_EL2 counterparts, and use a different PPI
912          * number.
913          */
914         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
915                 bool has_ppi;
916
917                 if (is_kernel_in_hyp_mode()) {
918                         arch_timer_uses_ppi = HYP_PPI;
919                         has_ppi = !!arch_timer_ppi[HYP_PPI];
920                 } else {
921                         arch_timer_uses_ppi = PHYS_SECURE_PPI;
922                         has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
923                                    !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
924                 }
925
926                 if (!has_ppi) {
927                         pr_warn("arch_timer: No interrupt available, giving up\n");
928                         return -EINVAL;
929                 }
930         }
931
932         ret = arch_timer_register();
933         if (ret)
934                 return ret;
935
936         ret = arch_timer_common_init();
937         if (ret)
938                 return ret;
939
940         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
941         
942         return 0;
943 }
944
945 static int __init arch_timer_of_init(struct device_node *np)
946 {
947         int i;
948
949         if (arch_timers_present & ARCH_CP15_TIMER) {
950                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
951                 return 0;
952         }
953
954         arch_timers_present |= ARCH_CP15_TIMER;
955         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
956                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
957
958         arch_timer_detect_rate(NULL, np);
959
960         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
961
962 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
963         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
964                 if (of_property_read_bool(np, ool_workarounds[i].id)) {
965                         timer_unstable_counter_workaround = &ool_workarounds[i];
966                         static_branch_enable(&arch_timer_read_ool_enabled);
967                         pr_info("arch_timer: Enabling workaround for %s\n",
968                                 timer_unstable_counter_workaround->id);
969                         break;
970                 }
971         }
972 #endif
973
974         /*
975          * If we cannot rely on firmware initializing the timer registers then
976          * we should use the physical timers instead.
977          */
978         if (IS_ENABLED(CONFIG_ARM) &&
979             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
980                 arch_timer_uses_ppi = PHYS_SECURE_PPI;
981
982         /* On some systems, the counter stops ticking when in suspend. */
983         arch_counter_suspend_stop = of_property_read_bool(np,
984                                                          "arm,no-tick-in-suspend");
985
986         return arch_timer_init();
987 }
988 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
989 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
990
991 static int __init arch_timer_mem_init(struct device_node *np)
992 {
993         struct device_node *frame, *best_frame = NULL;
994         void __iomem *cntctlbase, *base;
995         unsigned int irq, ret = -EINVAL;
996         u32 cnttidr;
997
998         arch_timers_present |= ARCH_MEM_TIMER;
999         cntctlbase = of_iomap(np, 0);
1000         if (!cntctlbase) {
1001                 pr_err("arch_timer: Can't find CNTCTLBase\n");
1002                 return -ENXIO;
1003         }
1004
1005         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1006
1007         /*
1008          * Try to find a virtual capable frame. Otherwise fall back to a
1009          * physical capable frame.
1010          */
1011         for_each_available_child_of_node(np, frame) {
1012                 int n;
1013                 u32 cntacr;
1014
1015                 if (of_property_read_u32(frame, "frame-number", &n)) {
1016                         pr_err("arch_timer: Missing frame-number\n");
1017                         of_node_put(frame);
1018                         goto out;
1019                 }
1020
1021                 /* Try enabling everything, and see what sticks */
1022                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1023                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1024                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
1025                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
1026
1027                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
1028                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1029                         of_node_put(best_frame);
1030                         best_frame = frame;
1031                         arch_timer_mem_use_virtual = true;
1032                         break;
1033                 }
1034
1035                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1036                         continue;
1037
1038                 of_node_put(best_frame);
1039                 best_frame = of_node_get(frame);
1040         }
1041
1042         ret= -ENXIO;
1043         base = arch_counter_base = of_io_request_and_map(best_frame, 0,
1044                                                          "arch_mem_timer");
1045         if (IS_ERR(base)) {
1046                 pr_err("arch_timer: Can't map frame's registers\n");
1047                 goto out;
1048         }
1049
1050         if (arch_timer_mem_use_virtual)
1051                 irq = irq_of_parse_and_map(best_frame, 1);
1052         else
1053                 irq = irq_of_parse_and_map(best_frame, 0);
1054
1055         ret = -EINVAL;
1056         if (!irq) {
1057                 pr_err("arch_timer: Frame missing %s irq",
1058                        arch_timer_mem_use_virtual ? "virt" : "phys");
1059                 goto out;
1060         }
1061
1062         arch_timer_detect_rate(base, np);
1063         ret = arch_timer_mem_register(base, irq);
1064         if (ret)
1065                 goto out;
1066
1067         return arch_timer_common_init();
1068 out:
1069         iounmap(cntctlbase);
1070         of_node_put(best_frame);
1071         return ret;
1072 }
1073 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1074                        arch_timer_mem_init);
1075
1076 #ifdef CONFIG_ACPI
1077 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1078 {
1079         int trigger, polarity;
1080
1081         if (!interrupt)
1082                 return 0;
1083
1084         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1085                         : ACPI_LEVEL_SENSITIVE;
1086
1087         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1088                         : ACPI_ACTIVE_HIGH;
1089
1090         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1091 }
1092
1093 /* Initialize per-processor generic timer */
1094 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1095 {
1096         struct acpi_table_gtdt *gtdt;
1097
1098         if (arch_timers_present & ARCH_CP15_TIMER) {
1099                 pr_warn("arch_timer: already initialized, skipping\n");
1100                 return -EINVAL;
1101         }
1102
1103         gtdt = container_of(table, struct acpi_table_gtdt, header);
1104
1105         arch_timers_present |= ARCH_CP15_TIMER;
1106
1107         arch_timer_ppi[PHYS_SECURE_PPI] =
1108                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1109                 gtdt->secure_el1_flags);
1110
1111         arch_timer_ppi[PHYS_NONSECURE_PPI] =
1112                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1113                 gtdt->non_secure_el1_flags);
1114
1115         arch_timer_ppi[VIRT_PPI] =
1116                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1117                 gtdt->virtual_timer_flags);
1118
1119         arch_timer_ppi[HYP_PPI] =
1120                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1121                 gtdt->non_secure_el2_flags);
1122
1123         /* Get the frequency from CNTFRQ */
1124         arch_timer_detect_rate(NULL, NULL);
1125
1126         /* Always-on capability */
1127         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1128
1129         arch_timer_init();
1130         return 0;
1131 }
1132 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1133 #endif