Merge remote-tracking branches 'asoc/fix/adsp', 'asoc/fix/atmel', 'asoc/fix/hdac...
[sfrench/cifs-2.6.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #define pr_fmt(fmt)     "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTVCT_LO       0x08
48 #define CNTVCT_HI       0x0c
49 #define CNTFRQ          0x10
50 #define CNTP_TVAL       0x28
51 #define CNTP_CTL        0x2c
52 #define CNTV_TVAL       0x38
53 #define CNTV_CTL        0x3c
54
55 #define ARCH_CP15_TIMER BIT(0)
56 #define ARCH_MEM_TIMER  BIT(1)
57 static unsigned arch_timers_present __initdata;
58
59 static void __iomem *arch_counter_base;
60
61 struct arch_timer {
62         void __iomem *base;
63         struct clock_event_device evt;
64 };
65
66 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
67
68 static u32 arch_timer_rate;
69
70 enum ppi_nr {
71         PHYS_SECURE_PPI,
72         PHYS_NONSECURE_PPI,
73         VIRT_PPI,
74         HYP_PPI,
75         MAX_TIMER_PPI
76 };
77
78 static int arch_timer_ppi[MAX_TIMER_PPI];
79
80 static struct clock_event_device __percpu *arch_timer_evt;
81
82 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83 static bool arch_timer_c3stop;
84 static bool arch_timer_mem_use_virtual;
85 static bool arch_counter_suspend_stop;
86
87 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
88
89 static int __init early_evtstrm_cfg(char *buf)
90 {
91         return strtobool(buf, &evtstrm_enable);
92 }
93 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
94
95 /*
96  * Architected system timer support.
97  */
98
99 #ifdef CONFIG_FSL_ERRATUM_A008585
100 /*
101  * The number of retries is an arbitrary value well beyond the highest number
102  * of iterations the loop has been observed to take.
103  */
104 #define __fsl_a008585_read_reg(reg) ({                  \
105         u64 _old, _new;                                 \
106         int _retries = 200;                             \
107                                                         \
108         do {                                            \
109                 _old = read_sysreg(reg);                \
110                 _new = read_sysreg(reg);                \
111                 _retries--;                             \
112         } while (unlikely(_old != _new) && _retries);   \
113                                                         \
114         WARN_ON_ONCE(!_retries);                        \
115         _new;                                           \
116 })
117
118 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
119 {
120         return __fsl_a008585_read_reg(cntp_tval_el0);
121 }
122
123 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
124 {
125         return __fsl_a008585_read_reg(cntv_tval_el0);
126 }
127
128 static u64 notrace fsl_a008585_read_cntvct_el0(void)
129 {
130         return __fsl_a008585_read_reg(cntvct_el0);
131 }
132 #endif
133
134 #ifdef CONFIG_HISILICON_ERRATUM_161010101
135 /*
136  * Verify whether the value of the second read is larger than the first by
137  * less than 32 is the only way to confirm the value is correct, so clear the
138  * lower 5 bits to check whether the difference is greater than 32 or not.
139  * Theoretically the erratum should not occur more than twice in succession
140  * when reading the system counter, but it is possible that some interrupts
141  * may lead to more than twice read errors, triggering the warning, so setting
142  * the number of retries far beyond the number of iterations the loop has been
143  * observed to take.
144  */
145 #define __hisi_161010101_read_reg(reg) ({                               \
146         u64 _old, _new;                                         \
147         int _retries = 50;                                      \
148                                                                 \
149         do {                                                    \
150                 _old = read_sysreg(reg);                        \
151                 _new = read_sysreg(reg);                        \
152                 _retries--;                                     \
153         } while (unlikely((_new - _old) >> 5) && _retries);     \
154                                                                 \
155         WARN_ON_ONCE(!_retries);                                \
156         _new;                                                   \
157 })
158
159 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
160 {
161         return __hisi_161010101_read_reg(cntp_tval_el0);
162 }
163
164 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
165 {
166         return __hisi_161010101_read_reg(cntv_tval_el0);
167 }
168
169 static u64 notrace hisi_161010101_read_cntvct_el0(void)
170 {
171         return __hisi_161010101_read_reg(cntvct_el0);
172 }
173 #endif
174
175 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
176 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
177 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
178
179 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
180 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
181
182 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
183 #ifdef CONFIG_FSL_ERRATUM_A008585
184         {
185                 .id = "fsl,erratum-a008585",
186                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
187                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
188                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
189         },
190 #endif
191 #ifdef CONFIG_HISILICON_ERRATUM_161010101
192         {
193                 .id = "hisilicon,erratum-161010101",
194                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
195                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
196                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
197         },
198 #endif
199 };
200 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
201
202 static __always_inline
203 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
204                           struct clock_event_device *clk)
205 {
206         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
207                 struct arch_timer *timer = to_arch_timer(clk);
208                 switch (reg) {
209                 case ARCH_TIMER_REG_CTRL:
210                         writel_relaxed(val, timer->base + CNTP_CTL);
211                         break;
212                 case ARCH_TIMER_REG_TVAL:
213                         writel_relaxed(val, timer->base + CNTP_TVAL);
214                         break;
215                 }
216         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
217                 struct arch_timer *timer = to_arch_timer(clk);
218                 switch (reg) {
219                 case ARCH_TIMER_REG_CTRL:
220                         writel_relaxed(val, timer->base + CNTV_CTL);
221                         break;
222                 case ARCH_TIMER_REG_TVAL:
223                         writel_relaxed(val, timer->base + CNTV_TVAL);
224                         break;
225                 }
226         } else {
227                 arch_timer_reg_write_cp15(access, reg, val);
228         }
229 }
230
231 static __always_inline
232 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
233                         struct clock_event_device *clk)
234 {
235         u32 val;
236
237         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
238                 struct arch_timer *timer = to_arch_timer(clk);
239                 switch (reg) {
240                 case ARCH_TIMER_REG_CTRL:
241                         val = readl_relaxed(timer->base + CNTP_CTL);
242                         break;
243                 case ARCH_TIMER_REG_TVAL:
244                         val = readl_relaxed(timer->base + CNTP_TVAL);
245                         break;
246                 }
247         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
248                 struct arch_timer *timer = to_arch_timer(clk);
249                 switch (reg) {
250                 case ARCH_TIMER_REG_CTRL:
251                         val = readl_relaxed(timer->base + CNTV_CTL);
252                         break;
253                 case ARCH_TIMER_REG_TVAL:
254                         val = readl_relaxed(timer->base + CNTV_TVAL);
255                         break;
256                 }
257         } else {
258                 val = arch_timer_reg_read_cp15(access, reg);
259         }
260
261         return val;
262 }
263
264 static __always_inline irqreturn_t timer_handler(const int access,
265                                         struct clock_event_device *evt)
266 {
267         unsigned long ctrl;
268
269         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
270         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
271                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
272                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
273                 evt->event_handler(evt);
274                 return IRQ_HANDLED;
275         }
276
277         return IRQ_NONE;
278 }
279
280 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
281 {
282         struct clock_event_device *evt = dev_id;
283
284         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
285 }
286
287 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
288 {
289         struct clock_event_device *evt = dev_id;
290
291         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
292 }
293
294 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
295 {
296         struct clock_event_device *evt = dev_id;
297
298         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
299 }
300
301 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
302 {
303         struct clock_event_device *evt = dev_id;
304
305         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
306 }
307
308 static __always_inline int timer_shutdown(const int access,
309                                           struct clock_event_device *clk)
310 {
311         unsigned long ctrl;
312
313         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
314         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
315         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
316
317         return 0;
318 }
319
320 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
321 {
322         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
323 }
324
325 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
326 {
327         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
328 }
329
330 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
331 {
332         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
333 }
334
335 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
336 {
337         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
338 }
339
340 static __always_inline void set_next_event(const int access, unsigned long evt,
341                                            struct clock_event_device *clk)
342 {
343         unsigned long ctrl;
344         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
345         ctrl |= ARCH_TIMER_CTRL_ENABLE;
346         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
347         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
348         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
349 }
350
351 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
352 static __always_inline void erratum_set_next_event_generic(const int access,
353                 unsigned long evt, struct clock_event_device *clk)
354 {
355         unsigned long ctrl;
356         u64 cval = evt + arch_counter_get_cntvct();
357
358         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
359         ctrl |= ARCH_TIMER_CTRL_ENABLE;
360         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
361
362         if (access == ARCH_TIMER_PHYS_ACCESS)
363                 write_sysreg(cval, cntp_cval_el0);
364         else if (access == ARCH_TIMER_VIRT_ACCESS)
365                 write_sysreg(cval, cntv_cval_el0);
366
367         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
368 }
369
370 static int erratum_set_next_event_virt(unsigned long evt,
371                                            struct clock_event_device *clk)
372 {
373         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
374         return 0;
375 }
376
377 static int erratum_set_next_event_phys(unsigned long evt,
378                                            struct clock_event_device *clk)
379 {
380         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
381         return 0;
382 }
383 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
384
385 static int arch_timer_set_next_event_virt(unsigned long evt,
386                                           struct clock_event_device *clk)
387 {
388         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
389         return 0;
390 }
391
392 static int arch_timer_set_next_event_phys(unsigned long evt,
393                                           struct clock_event_device *clk)
394 {
395         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
396         return 0;
397 }
398
399 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
400                                               struct clock_event_device *clk)
401 {
402         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
403         return 0;
404 }
405
406 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
407                                               struct clock_event_device *clk)
408 {
409         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
410         return 0;
411 }
412
413 static void erratum_workaround_set_sne(struct clock_event_device *clk)
414 {
415 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
416         if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
417                 return;
418
419         if (arch_timer_uses_ppi == VIRT_PPI)
420                 clk->set_next_event = erratum_set_next_event_virt;
421         else
422                 clk->set_next_event = erratum_set_next_event_phys;
423 #endif
424 }
425
426 static void __arch_timer_setup(unsigned type,
427                                struct clock_event_device *clk)
428 {
429         clk->features = CLOCK_EVT_FEAT_ONESHOT;
430
431         if (type == ARCH_CP15_TIMER) {
432                 if (arch_timer_c3stop)
433                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
434                 clk->name = "arch_sys_timer";
435                 clk->rating = 450;
436                 clk->cpumask = cpumask_of(smp_processor_id());
437                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
438                 switch (arch_timer_uses_ppi) {
439                 case VIRT_PPI:
440                         clk->set_state_shutdown = arch_timer_shutdown_virt;
441                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
442                         clk->set_next_event = arch_timer_set_next_event_virt;
443                         break;
444                 case PHYS_SECURE_PPI:
445                 case PHYS_NONSECURE_PPI:
446                 case HYP_PPI:
447                         clk->set_state_shutdown = arch_timer_shutdown_phys;
448                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
449                         clk->set_next_event = arch_timer_set_next_event_phys;
450                         break;
451                 default:
452                         BUG();
453                 }
454
455                 erratum_workaround_set_sne(clk);
456         } else {
457                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
458                 clk->name = "arch_mem_timer";
459                 clk->rating = 400;
460                 clk->cpumask = cpu_all_mask;
461                 if (arch_timer_mem_use_virtual) {
462                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
463                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
464                         clk->set_next_event =
465                                 arch_timer_set_next_event_virt_mem;
466                 } else {
467                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
468                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
469                         clk->set_next_event =
470                                 arch_timer_set_next_event_phys_mem;
471                 }
472         }
473
474         clk->set_state_shutdown(clk);
475
476         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
477 }
478
479 static void arch_timer_evtstrm_enable(int divider)
480 {
481         u32 cntkctl = arch_timer_get_cntkctl();
482
483         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
484         /* Set the divider and enable virtual event stream */
485         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
486                         | ARCH_TIMER_VIRT_EVT_EN;
487         arch_timer_set_cntkctl(cntkctl);
488         elf_hwcap |= HWCAP_EVTSTRM;
489 #ifdef CONFIG_COMPAT
490         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
491 #endif
492 }
493
494 static void arch_timer_configure_evtstream(void)
495 {
496         int evt_stream_div, pos;
497
498         /* Find the closest power of two to the divisor */
499         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
500         pos = fls(evt_stream_div);
501         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
502                 pos--;
503         /* enable event stream */
504         arch_timer_evtstrm_enable(min(pos, 15));
505 }
506
507 static void arch_counter_set_user_access(void)
508 {
509         u32 cntkctl = arch_timer_get_cntkctl();
510
511         /* Disable user access to the timers and the physical counter */
512         /* Also disable virtual event stream */
513         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
514                         | ARCH_TIMER_USR_VT_ACCESS_EN
515                         | ARCH_TIMER_VIRT_EVT_EN
516                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
517
518         /* Enable user access to the virtual counter */
519         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
520
521         arch_timer_set_cntkctl(cntkctl);
522 }
523
524 static bool arch_timer_has_nonsecure_ppi(void)
525 {
526         return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
527                 arch_timer_ppi[PHYS_NONSECURE_PPI]);
528 }
529
530 static u32 check_ppi_trigger(int irq)
531 {
532         u32 flags = irq_get_trigger_type(irq);
533
534         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
535                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
536                 pr_warn("WARNING: Please fix your firmware\n");
537                 flags = IRQF_TRIGGER_LOW;
538         }
539
540         return flags;
541 }
542
543 static int arch_timer_starting_cpu(unsigned int cpu)
544 {
545         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
546         u32 flags;
547
548         __arch_timer_setup(ARCH_CP15_TIMER, clk);
549
550         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
551         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
552
553         if (arch_timer_has_nonsecure_ppi()) {
554                 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
555                 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
556         }
557
558         arch_counter_set_user_access();
559         if (evtstrm_enable)
560                 arch_timer_configure_evtstream();
561
562         return 0;
563 }
564
565 static void
566 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
567 {
568         /* Who has more than one independent system counter? */
569         if (arch_timer_rate)
570                 return;
571
572         /*
573          * Try to determine the frequency from the device tree or CNTFRQ,
574          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
575          */
576         if (!acpi_disabled ||
577             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
578                 if (cntbase)
579                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
580                 else
581                         arch_timer_rate = arch_timer_get_cntfrq();
582         }
583
584         /* Check the timer frequency. */
585         if (arch_timer_rate == 0)
586                 pr_warn("Architected timer frequency not available\n");
587 }
588
589 static void arch_timer_banner(unsigned type)
590 {
591         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
592                      type & ARCH_CP15_TIMER ? "cp15" : "",
593                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
594                      type & ARCH_MEM_TIMER ? "mmio" : "",
595                      (unsigned long)arch_timer_rate / 1000000,
596                      (unsigned long)(arch_timer_rate / 10000) % 100,
597                      type & ARCH_CP15_TIMER ?
598                      (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
599                         "",
600                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
601                      type & ARCH_MEM_TIMER ?
602                         arch_timer_mem_use_virtual ? "virt" : "phys" :
603                         "");
604 }
605
606 u32 arch_timer_get_rate(void)
607 {
608         return arch_timer_rate;
609 }
610
611 static u64 arch_counter_get_cntvct_mem(void)
612 {
613         u32 vct_lo, vct_hi, tmp_hi;
614
615         do {
616                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
617                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
618                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
619         } while (vct_hi != tmp_hi);
620
621         return ((u64) vct_hi << 32) | vct_lo;
622 }
623
624 /*
625  * Default to cp15 based access because arm64 uses this function for
626  * sched_clock() before DT is probed and the cp15 method is guaranteed
627  * to exist on arm64. arm doesn't use this before DT is probed so even
628  * if we don't have the cp15 accessors we won't have a problem.
629  */
630 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
631
632 static u64 arch_counter_read(struct clocksource *cs)
633 {
634         return arch_timer_read_counter();
635 }
636
637 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
638 {
639         return arch_timer_read_counter();
640 }
641
642 static struct clocksource clocksource_counter = {
643         .name   = "arch_sys_counter",
644         .rating = 400,
645         .read   = arch_counter_read,
646         .mask   = CLOCKSOURCE_MASK(56),
647         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
648 };
649
650 static struct cyclecounter cyclecounter __ro_after_init = {
651         .read   = arch_counter_read_cc,
652         .mask   = CLOCKSOURCE_MASK(56),
653 };
654
655 static struct arch_timer_kvm_info arch_timer_kvm_info;
656
657 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
658 {
659         return &arch_timer_kvm_info;
660 }
661
662 static void __init arch_counter_register(unsigned type)
663 {
664         u64 start_count;
665
666         /* Register the CP15 based counter if we have one */
667         if (type & ARCH_CP15_TIMER) {
668                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
669                         arch_timer_read_counter = arch_counter_get_cntvct;
670                 else
671                         arch_timer_read_counter = arch_counter_get_cntpct;
672
673                 clocksource_counter.archdata.vdso_direct = true;
674
675 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
676                 /*
677                  * Don't use the vdso fastpath if errata require using
678                  * the out-of-line counter accessor.
679                  */
680                 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
681                         clocksource_counter.archdata.vdso_direct = false;
682 #endif
683         } else {
684                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
685         }
686
687         if (!arch_counter_suspend_stop)
688                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
689         start_count = arch_timer_read_counter();
690         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
691         cyclecounter.mult = clocksource_counter.mult;
692         cyclecounter.shift = clocksource_counter.shift;
693         timecounter_init(&arch_timer_kvm_info.timecounter,
694                          &cyclecounter, start_count);
695
696         /* 56 bits minimum, so we assume worst case rollover */
697         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
698 }
699
700 static void arch_timer_stop(struct clock_event_device *clk)
701 {
702         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
703                  clk->irq, smp_processor_id());
704
705         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
706         if (arch_timer_has_nonsecure_ppi())
707                 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
708
709         clk->set_state_shutdown(clk);
710 }
711
712 static int arch_timer_dying_cpu(unsigned int cpu)
713 {
714         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
715
716         arch_timer_stop(clk);
717         return 0;
718 }
719
720 #ifdef CONFIG_CPU_PM
721 static unsigned int saved_cntkctl;
722 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
723                                     unsigned long action, void *hcpu)
724 {
725         if (action == CPU_PM_ENTER)
726                 saved_cntkctl = arch_timer_get_cntkctl();
727         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
728                 arch_timer_set_cntkctl(saved_cntkctl);
729         return NOTIFY_OK;
730 }
731
732 static struct notifier_block arch_timer_cpu_pm_notifier = {
733         .notifier_call = arch_timer_cpu_pm_notify,
734 };
735
736 static int __init arch_timer_cpu_pm_init(void)
737 {
738         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
739 }
740
741 static void __init arch_timer_cpu_pm_deinit(void)
742 {
743         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
744 }
745
746 #else
747 static int __init arch_timer_cpu_pm_init(void)
748 {
749         return 0;
750 }
751
752 static void __init arch_timer_cpu_pm_deinit(void)
753 {
754 }
755 #endif
756
757 static int __init arch_timer_register(void)
758 {
759         int err;
760         int ppi;
761
762         arch_timer_evt = alloc_percpu(struct clock_event_device);
763         if (!arch_timer_evt) {
764                 err = -ENOMEM;
765                 goto out;
766         }
767
768         ppi = arch_timer_ppi[arch_timer_uses_ppi];
769         switch (arch_timer_uses_ppi) {
770         case VIRT_PPI:
771                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
772                                          "arch_timer", arch_timer_evt);
773                 break;
774         case PHYS_SECURE_PPI:
775         case PHYS_NONSECURE_PPI:
776                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
777                                          "arch_timer", arch_timer_evt);
778                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
779                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
780                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
781                                                  "arch_timer", arch_timer_evt);
782                         if (err)
783                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
784                                                 arch_timer_evt);
785                 }
786                 break;
787         case HYP_PPI:
788                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
789                                          "arch_timer", arch_timer_evt);
790                 break;
791         default:
792                 BUG();
793         }
794
795         if (err) {
796                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
797                        ppi, err);
798                 goto out_free;
799         }
800
801         err = arch_timer_cpu_pm_init();
802         if (err)
803                 goto out_unreg_notify;
804
805
806         /* Register and immediately configure the timer on the boot CPU */
807         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
808                                 "clockevents/arm/arch_timer:starting",
809                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
810         if (err)
811                 goto out_unreg_cpupm;
812         return 0;
813
814 out_unreg_cpupm:
815         arch_timer_cpu_pm_deinit();
816
817 out_unreg_notify:
818         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
819         if (arch_timer_has_nonsecure_ppi())
820                 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
821                                 arch_timer_evt);
822
823 out_free:
824         free_percpu(arch_timer_evt);
825 out:
826         return err;
827 }
828
829 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
830 {
831         int ret;
832         irq_handler_t func;
833         struct arch_timer *t;
834
835         t = kzalloc(sizeof(*t), GFP_KERNEL);
836         if (!t)
837                 return -ENOMEM;
838
839         t->base = base;
840         t->evt.irq = irq;
841         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
842
843         if (arch_timer_mem_use_virtual)
844                 func = arch_timer_handler_virt_mem;
845         else
846                 func = arch_timer_handler_phys_mem;
847
848         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
849         if (ret) {
850                 pr_err("arch_timer: Failed to request mem timer irq\n");
851                 kfree(t);
852         }
853
854         return ret;
855 }
856
857 static const struct of_device_id arch_timer_of_match[] __initconst = {
858         { .compatible   = "arm,armv7-timer",    },
859         { .compatible   = "arm,armv8-timer",    },
860         {},
861 };
862
863 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
864         { .compatible   = "arm,armv7-timer-mem", },
865         {},
866 };
867
868 static bool __init
869 arch_timer_needs_probing(int type, const struct of_device_id *matches)
870 {
871         struct device_node *dn;
872         bool needs_probing = false;
873
874         dn = of_find_matching_node(NULL, matches);
875         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
876                 needs_probing = true;
877         of_node_put(dn);
878
879         return needs_probing;
880 }
881
882 static int __init arch_timer_common_init(void)
883 {
884         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
885
886         /* Wait until both nodes are probed if we have two timers */
887         if ((arch_timers_present & mask) != mask) {
888                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
889                         return 0;
890                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
891                         return 0;
892         }
893
894         arch_timer_banner(arch_timers_present);
895         arch_counter_register(arch_timers_present);
896         return arch_timer_arch_init();
897 }
898
899 static int __init arch_timer_init(void)
900 {
901         int ret;
902         /*
903          * If HYP mode is available, we know that the physical timer
904          * has been configured to be accessible from PL1. Use it, so
905          * that a guest can use the virtual timer instead.
906          *
907          * If no interrupt provided for virtual timer, we'll have to
908          * stick to the physical timer. It'd better be accessible...
909          *
910          * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
911          * accesses to CNTP_*_EL1 registers are silently redirected to
912          * their CNTHP_*_EL2 counterparts, and use a different PPI
913          * number.
914          */
915         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
916                 bool has_ppi;
917
918                 if (is_kernel_in_hyp_mode()) {
919                         arch_timer_uses_ppi = HYP_PPI;
920                         has_ppi = !!arch_timer_ppi[HYP_PPI];
921                 } else {
922                         arch_timer_uses_ppi = PHYS_SECURE_PPI;
923                         has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
924                                    !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
925                 }
926
927                 if (!has_ppi) {
928                         pr_warn("arch_timer: No interrupt available, giving up\n");
929                         return -EINVAL;
930                 }
931         }
932
933         ret = arch_timer_register();
934         if (ret)
935                 return ret;
936
937         ret = arch_timer_common_init();
938         if (ret)
939                 return ret;
940
941         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
942         
943         return 0;
944 }
945
946 static int __init arch_timer_of_init(struct device_node *np)
947 {
948         int i;
949
950         if (arch_timers_present & ARCH_CP15_TIMER) {
951                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
952                 return 0;
953         }
954
955         arch_timers_present |= ARCH_CP15_TIMER;
956         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
957                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
958
959         arch_timer_detect_rate(NULL, np);
960
961         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
962
963 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
964         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
965                 if (of_property_read_bool(np, ool_workarounds[i].id)) {
966                         timer_unstable_counter_workaround = &ool_workarounds[i];
967                         static_branch_enable(&arch_timer_read_ool_enabled);
968                         pr_info("arch_timer: Enabling workaround for %s\n",
969                                 timer_unstable_counter_workaround->id);
970                         break;
971                 }
972         }
973 #endif
974
975         /*
976          * If we cannot rely on firmware initializing the timer registers then
977          * we should use the physical timers instead.
978          */
979         if (IS_ENABLED(CONFIG_ARM) &&
980             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
981                 arch_timer_uses_ppi = PHYS_SECURE_PPI;
982
983         /* On some systems, the counter stops ticking when in suspend. */
984         arch_counter_suspend_stop = of_property_read_bool(np,
985                                                          "arm,no-tick-in-suspend");
986
987         return arch_timer_init();
988 }
989 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
990 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
991
992 static int __init arch_timer_mem_init(struct device_node *np)
993 {
994         struct device_node *frame, *best_frame = NULL;
995         void __iomem *cntctlbase, *base;
996         unsigned int irq, ret = -EINVAL;
997         u32 cnttidr;
998
999         arch_timers_present |= ARCH_MEM_TIMER;
1000         cntctlbase = of_iomap(np, 0);
1001         if (!cntctlbase) {
1002                 pr_err("arch_timer: Can't find CNTCTLBase\n");
1003                 return -ENXIO;
1004         }
1005
1006         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1007
1008         /*
1009          * Try to find a virtual capable frame. Otherwise fall back to a
1010          * physical capable frame.
1011          */
1012         for_each_available_child_of_node(np, frame) {
1013                 int n;
1014                 u32 cntacr;
1015
1016                 if (of_property_read_u32(frame, "frame-number", &n)) {
1017                         pr_err("arch_timer: Missing frame-number\n");
1018                         of_node_put(frame);
1019                         goto out;
1020                 }
1021
1022                 /* Try enabling everything, and see what sticks */
1023                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1024                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1025                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
1026                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
1027
1028                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
1029                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1030                         of_node_put(best_frame);
1031                         best_frame = frame;
1032                         arch_timer_mem_use_virtual = true;
1033                         break;
1034                 }
1035
1036                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1037                         continue;
1038
1039                 of_node_put(best_frame);
1040                 best_frame = of_node_get(frame);
1041         }
1042
1043         ret= -ENXIO;
1044         base = arch_counter_base = of_io_request_and_map(best_frame, 0,
1045                                                          "arch_mem_timer");
1046         if (IS_ERR(base)) {
1047                 pr_err("arch_timer: Can't map frame's registers\n");
1048                 goto out;
1049         }
1050
1051         if (arch_timer_mem_use_virtual)
1052                 irq = irq_of_parse_and_map(best_frame, 1);
1053         else
1054                 irq = irq_of_parse_and_map(best_frame, 0);
1055
1056         ret = -EINVAL;
1057         if (!irq) {
1058                 pr_err("arch_timer: Frame missing %s irq",
1059                        arch_timer_mem_use_virtual ? "virt" : "phys");
1060                 goto out;
1061         }
1062
1063         arch_timer_detect_rate(base, np);
1064         ret = arch_timer_mem_register(base, irq);
1065         if (ret)
1066                 goto out;
1067
1068         return arch_timer_common_init();
1069 out:
1070         iounmap(cntctlbase);
1071         of_node_put(best_frame);
1072         return ret;
1073 }
1074 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1075                        arch_timer_mem_init);
1076
1077 #ifdef CONFIG_ACPI
1078 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1079 {
1080         int trigger, polarity;
1081
1082         if (!interrupt)
1083                 return 0;
1084
1085         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1086                         : ACPI_LEVEL_SENSITIVE;
1087
1088         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1089                         : ACPI_ACTIVE_HIGH;
1090
1091         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1092 }
1093
1094 /* Initialize per-processor generic timer */
1095 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1096 {
1097         struct acpi_table_gtdt *gtdt;
1098
1099         if (arch_timers_present & ARCH_CP15_TIMER) {
1100                 pr_warn("arch_timer: already initialized, skipping\n");
1101                 return -EINVAL;
1102         }
1103
1104         gtdt = container_of(table, struct acpi_table_gtdt, header);
1105
1106         arch_timers_present |= ARCH_CP15_TIMER;
1107
1108         arch_timer_ppi[PHYS_SECURE_PPI] =
1109                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1110                 gtdt->secure_el1_flags);
1111
1112         arch_timer_ppi[PHYS_NONSECURE_PPI] =
1113                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1114                 gtdt->non_secure_el1_flags);
1115
1116         arch_timer_ppi[VIRT_PPI] =
1117                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1118                 gtdt->virtual_timer_flags);
1119
1120         arch_timer_ppi[HYP_PPI] =
1121                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1122                 gtdt->non_secure_el2_flags);
1123
1124         /* Get the frequency from CNTFRQ */
1125         arch_timer_detect_rate(NULL, NULL);
1126
1127         /* Always-on capability */
1128         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1129
1130         arch_timer_init();
1131         return 0;
1132 }
1133 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1134 #endif