Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / drivers / clk / ti / fapll.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License as
4  * published by the Free Software Foundation version 2.
5  *
6  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7  * kind, whether express or implied; without even the implied warranty
8  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  */
11
12 #include <linux/clk-provider.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/clk/ti.h>
19
20 /* FAPLL Control Register PLL_CTRL */
21 #define FAPLL_MAIN_MULT_N_SHIFT 16
22 #define FAPLL_MAIN_DIV_P_SHIFT  8
23 #define FAPLL_MAIN_LOCK         BIT(7)
24 #define FAPLL_MAIN_PLLEN        BIT(3)
25 #define FAPLL_MAIN_BP           BIT(2)
26 #define FAPLL_MAIN_LOC_CTL      BIT(0)
27
28 #define FAPLL_MAIN_MAX_MULT_N   0xffff
29 #define FAPLL_MAIN_MAX_DIV_P    0xff
30 #define FAPLL_MAIN_CLEAR_MASK   \
31         ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
32          (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
33          FAPLL_MAIN_LOC_CTL)
34
35 /* FAPLL powerdown register PWD */
36 #define FAPLL_PWD_OFFSET        4
37
38 #define MAX_FAPLL_OUTPUTS       7
39 #define FAPLL_MAX_RETRIES       1000
40
41 #define to_fapll(_hw)           container_of(_hw, struct fapll_data, hw)
42 #define to_synth(_hw)           container_of(_hw, struct fapll_synth, hw)
43
44 /* The bypass bit is inverted on the ddr_pll.. */
45 #define fapll_is_ddr_pll(va)    (((u32)(va) & 0xffff) == 0x0440)
46
47 /*
48  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
49  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
50  */
51 #define is_ddr_pll_clk1(va)     (((u32)(va) & 0xffff) == 0x044c)
52 #define is_audio_pll_clk1(va)   (((u32)(va) & 0xffff) == 0x04a8)
53
54 /* Synthesizer divider register */
55 #define SYNTH_LDMDIV1           BIT(8)
56
57 /* Synthesizer frequency register */
58 #define SYNTH_LDFREQ            BIT(31)
59
60 #define SYNTH_PHASE_K           8
61 #define SYNTH_MAX_INT_DIV       0xf
62 #define SYNTH_MAX_DIV_M         0xff
63
64 struct fapll_data {
65         struct clk_hw hw;
66         void __iomem *base;
67         const char *name;
68         struct clk *clk_ref;
69         struct clk *clk_bypass;
70         struct clk_onecell_data outputs;
71         bool bypass_bit_inverted;
72 };
73
74 struct fapll_synth {
75         struct clk_hw hw;
76         struct fapll_data *fd;
77         int index;
78         void __iomem *freq;
79         void __iomem *div;
80         const char *name;
81         struct clk *clk_pll;
82 };
83
84 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
85 {
86         u32 v = readl_relaxed(fd->base);
87
88         if (fd->bypass_bit_inverted)
89                 return !(v & FAPLL_MAIN_BP);
90         else
91                 return !!(v & FAPLL_MAIN_BP);
92 }
93
94 static void ti_fapll_set_bypass(struct fapll_data *fd)
95 {
96         u32 v = readl_relaxed(fd->base);
97
98         if (fd->bypass_bit_inverted)
99                 v &= ~FAPLL_MAIN_BP;
100         else
101                 v |= FAPLL_MAIN_BP;
102         writel_relaxed(v, fd->base);
103 }
104
105 static void ti_fapll_clear_bypass(struct fapll_data *fd)
106 {
107         u32 v = readl_relaxed(fd->base);
108
109         if (fd->bypass_bit_inverted)
110                 v |= FAPLL_MAIN_BP;
111         else
112                 v &= ~FAPLL_MAIN_BP;
113         writel_relaxed(v, fd->base);
114 }
115
116 static int ti_fapll_wait_lock(struct fapll_data *fd)
117 {
118         int retries = FAPLL_MAX_RETRIES;
119         u32 v;
120
121         while ((v = readl_relaxed(fd->base))) {
122                 if (v & FAPLL_MAIN_LOCK)
123                         return 0;
124
125                 if (retries-- <= 0)
126                         break;
127
128                 udelay(1);
129         }
130
131         pr_err("%s failed to lock\n", fd->name);
132
133         return -ETIMEDOUT;
134 }
135
136 static int ti_fapll_enable(struct clk_hw *hw)
137 {
138         struct fapll_data *fd = to_fapll(hw);
139         u32 v = readl_relaxed(fd->base);
140
141         v |= FAPLL_MAIN_PLLEN;
142         writel_relaxed(v, fd->base);
143         ti_fapll_wait_lock(fd);
144
145         return 0;
146 }
147
148 static void ti_fapll_disable(struct clk_hw *hw)
149 {
150         struct fapll_data *fd = to_fapll(hw);
151         u32 v = readl_relaxed(fd->base);
152
153         v &= ~FAPLL_MAIN_PLLEN;
154         writel_relaxed(v, fd->base);
155 }
156
157 static int ti_fapll_is_enabled(struct clk_hw *hw)
158 {
159         struct fapll_data *fd = to_fapll(hw);
160         u32 v = readl_relaxed(fd->base);
161
162         return v & FAPLL_MAIN_PLLEN;
163 }
164
165 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
166                                           unsigned long parent_rate)
167 {
168         struct fapll_data *fd = to_fapll(hw);
169         u32 fapll_n, fapll_p, v;
170         long long rate;
171
172         if (ti_fapll_clock_is_bypass(fd))
173                 return parent_rate;
174
175         rate = parent_rate;
176
177         /* PLL pre-divider is P and multiplier is N */
178         v = readl_relaxed(fd->base);
179         fapll_p = (v >> 8) & 0xff;
180         if (fapll_p)
181                 do_div(rate, fapll_p);
182         fapll_n = v >> 16;
183         if (fapll_n)
184                 rate *= fapll_n;
185
186         return rate;
187 }
188
189 static u8 ti_fapll_get_parent(struct clk_hw *hw)
190 {
191         struct fapll_data *fd = to_fapll(hw);
192
193         if (ti_fapll_clock_is_bypass(fd))
194                 return 1;
195
196         return 0;
197 }
198
199 static int ti_fapll_set_div_mult(unsigned long rate,
200                                  unsigned long parent_rate,
201                                  u32 *pre_div_p, u32 *mult_n)
202 {
203         /*
204          * So far no luck getting decent clock with PLL divider,
205          * PLL does not seem to lock and the signal does not look
206          * right. It seems the divider can only be used together
207          * with the multiplier?
208          */
209         if (rate < parent_rate) {
210                 pr_warn("FAPLL main divider rates unsupported\n");
211                 return -EINVAL;
212         }
213
214         *mult_n = rate / parent_rate;
215         if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
216                 return -EINVAL;
217         *pre_div_p = 1;
218
219         return 0;
220 }
221
222 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
223                                 unsigned long *parent_rate)
224 {
225         u32 pre_div_p, mult_n;
226         int error;
227
228         if (!rate)
229                 return -EINVAL;
230
231         error = ti_fapll_set_div_mult(rate, *parent_rate,
232                                       &pre_div_p, &mult_n);
233         if (error)
234                 return error;
235
236         rate = *parent_rate / pre_div_p;
237         rate *= mult_n;
238
239         return rate;
240 }
241
242 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
243                              unsigned long parent_rate)
244 {
245         struct fapll_data *fd = to_fapll(hw);
246         u32 pre_div_p, mult_n, v;
247         int error;
248
249         if (!rate)
250                 return -EINVAL;
251
252         error = ti_fapll_set_div_mult(rate, parent_rate,
253                                       &pre_div_p, &mult_n);
254         if (error)
255                 return error;
256
257         ti_fapll_set_bypass(fd);
258         v = readl_relaxed(fd->base);
259         v &= ~FAPLL_MAIN_CLEAR_MASK;
260         v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
261         v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
262         writel_relaxed(v, fd->base);
263         if (ti_fapll_is_enabled(hw))
264                 ti_fapll_wait_lock(fd);
265         ti_fapll_clear_bypass(fd);
266
267         return 0;
268 }
269
270 static struct clk_ops ti_fapll_ops = {
271         .enable = ti_fapll_enable,
272         .disable = ti_fapll_disable,
273         .is_enabled = ti_fapll_is_enabled,
274         .recalc_rate = ti_fapll_recalc_rate,
275         .get_parent = ti_fapll_get_parent,
276         .round_rate = ti_fapll_round_rate,
277         .set_rate = ti_fapll_set_rate,
278 };
279
280 static int ti_fapll_synth_enable(struct clk_hw *hw)
281 {
282         struct fapll_synth *synth = to_synth(hw);
283         u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
284
285         v &= ~(1 << synth->index);
286         writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
287
288         return 0;
289 }
290
291 static void ti_fapll_synth_disable(struct clk_hw *hw)
292 {
293         struct fapll_synth *synth = to_synth(hw);
294         u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
295
296         v |= 1 << synth->index;
297         writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
298 }
299
300 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
301 {
302         struct fapll_synth *synth = to_synth(hw);
303         u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
304
305         return !(v & (1 << synth->index));
306 }
307
308 /*
309  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
310  */
311 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
312                                                 unsigned long parent_rate)
313 {
314         struct fapll_synth *synth = to_synth(hw);
315         u32 synth_div_m;
316         long long rate;
317
318         /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
319         if (!synth->div)
320                 return 32768;
321
322         /*
323          * PLL in bypass sets the synths in bypass mode too. The PLL rate
324          * can be also be set to 27MHz, so we can't use parent_rate to
325          * check for bypass mode.
326          */
327         if (ti_fapll_clock_is_bypass(synth->fd))
328                 return parent_rate;
329
330         rate = parent_rate;
331
332         /*
333          * Synth frequency integer and fractional divider.
334          * Note that the phase output K is 8, so the result needs
335          * to be multiplied by SYNTH_PHASE_K.
336          */
337         if (synth->freq) {
338                 u32 v, synth_int_div, synth_frac_div, synth_div_freq;
339
340                 v = readl_relaxed(synth->freq);
341                 synth_int_div = (v >> 24) & 0xf;
342                 synth_frac_div = v & 0xffffff;
343                 synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
344                 rate *= 10000000;
345                 do_div(rate, synth_div_freq);
346                 rate *= SYNTH_PHASE_K;
347         }
348
349         /* Synth post-divider M */
350         synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
351
352         return DIV_ROUND_UP_ULL(rate, synth_div_m);
353 }
354
355 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
356                                                   unsigned long parent_rate)
357 {
358         struct fapll_synth *synth = to_synth(hw);
359         unsigned long current_rate, frac_rate;
360         u32 post_div_m;
361
362         current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
363         post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
364         frac_rate = current_rate * post_div_m;
365
366         return frac_rate;
367 }
368
369 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
370                                         unsigned long rate,
371                                         unsigned long parent_rate)
372 {
373         u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
374
375         post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
376         post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
377         if (post_div_m > SYNTH_MAX_DIV_M)
378                 return -EINVAL;
379         if (!post_div_m)
380                 post_div_m = 1;
381
382         for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
383                 synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
384                                                  SYNTH_PHASE_K *
385                                                  10000000,
386                                                  rate * post_div_m);
387                 synth_frac_div = synth_int_div % 10000000;
388                 synth_int_div /= 10000000;
389
390                 if (synth_int_div <= SYNTH_MAX_INT_DIV)
391                         break;
392         }
393
394         if (synth_int_div > SYNTH_MAX_INT_DIV)
395                 return -EINVAL;
396
397         v = readl_relaxed(synth->freq);
398         v &= ~0x1fffffff;
399         v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
400         v |= (synth_frac_div & 0xffffff);
401         v |= SYNTH_LDFREQ;
402         writel_relaxed(v, synth->freq);
403
404         return post_div_m;
405 }
406
407 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
408                                       unsigned long *parent_rate)
409 {
410         struct fapll_synth *synth = to_synth(hw);
411         struct fapll_data *fd = synth->fd;
412         unsigned long r;
413
414         if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
415                 return -EINVAL;
416
417         /* Only post divider m available with no fractional divider? */
418         if (!synth->freq) {
419                 unsigned long frac_rate;
420                 u32 synth_post_div_m;
421
422                 frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
423                 synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
424                 r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
425                 goto out;
426         }
427
428         r = *parent_rate * SYNTH_PHASE_K;
429         if (rate > r)
430                 goto out;
431
432         r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
433         if (rate < r)
434                 goto out;
435
436         r = rate;
437 out:
438         return r;
439 }
440
441 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
442                                    unsigned long parent_rate)
443 {
444         struct fapll_synth *synth = to_synth(hw);
445         struct fapll_data *fd = synth->fd;
446         unsigned long frac_rate, post_rate = 0;
447         u32 post_div_m = 0, v;
448
449         if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
450                 return -EINVAL;
451
452         /* Produce the rate with just post divider M? */
453         frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
454         if (frac_rate < rate) {
455                 if (!synth->freq)
456                         return -EINVAL;
457         } else {
458                 post_div_m = DIV_ROUND_UP(frac_rate, rate);
459                 if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
460                         post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
461                 if (!synth->freq && !post_rate)
462                         return -EINVAL;
463         }
464
465         /* Need to recalculate the fractional divider? */
466         if ((post_rate != rate) && synth->freq)
467                 post_div_m = ti_fapll_synth_set_frac_rate(synth,
468                                                           rate,
469                                                           parent_rate);
470
471         v = readl_relaxed(synth->div);
472         v &= ~SYNTH_MAX_DIV_M;
473         v |= post_div_m;
474         v |= SYNTH_LDMDIV1;
475         writel_relaxed(v, synth->div);
476
477         return 0;
478 }
479
480 static struct clk_ops ti_fapll_synt_ops = {
481         .enable = ti_fapll_synth_enable,
482         .disable = ti_fapll_synth_disable,
483         .is_enabled = ti_fapll_synth_is_enabled,
484         .recalc_rate = ti_fapll_synth_recalc_rate,
485         .round_rate = ti_fapll_synth_round_rate,
486         .set_rate = ti_fapll_synth_set_rate,
487 };
488
489 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
490                                                 void __iomem *freq,
491                                                 void __iomem *div,
492                                                 int index,
493                                                 const char *name,
494                                                 const char *parent,
495                                                 struct clk *pll_clk)
496 {
497         struct clk_init_data *init;
498         struct fapll_synth *synth;
499
500         init = kzalloc(sizeof(*init), GFP_KERNEL);
501         if (!init)
502                 return ERR_PTR(-ENOMEM);
503
504         init->ops = &ti_fapll_synt_ops;
505         init->name = name;
506         init->parent_names = &parent;
507         init->num_parents = 1;
508
509         synth = kzalloc(sizeof(*synth), GFP_KERNEL);
510         if (!synth)
511                 goto free;
512
513         synth->fd = fd;
514         synth->index = index;
515         synth->freq = freq;
516         synth->div = div;
517         synth->name = name;
518         synth->hw.init = init;
519         synth->clk_pll = pll_clk;
520
521         return clk_register(NULL, &synth->hw);
522
523 free:
524         kfree(synth);
525         kfree(init);
526
527         return ERR_PTR(-ENOMEM);
528 }
529
530 static void __init ti_fapll_setup(struct device_node *node)
531 {
532         struct fapll_data *fd;
533         struct clk_init_data *init = NULL;
534         const char *parent_name[2];
535         struct clk *pll_clk;
536         int i;
537
538         fd = kzalloc(sizeof(*fd), GFP_KERNEL);
539         if (!fd)
540                 return;
541
542         fd->outputs.clks = kzalloc(sizeof(struct clk *) *
543                                    MAX_FAPLL_OUTPUTS + 1,
544                                    GFP_KERNEL);
545         if (!fd->outputs.clks)
546                 goto free;
547
548         init = kzalloc(sizeof(*init), GFP_KERNEL);
549         if (!init)
550                 goto free;
551
552         init->ops = &ti_fapll_ops;
553         init->name = node->name;
554
555         init->num_parents = of_clk_get_parent_count(node);
556         if (init->num_parents != 2) {
557                 pr_err("%s must have two parents\n", node->name);
558                 goto free;
559         }
560
561         parent_name[0] = of_clk_get_parent_name(node, 0);
562         parent_name[1] = of_clk_get_parent_name(node, 1);
563         init->parent_names = parent_name;
564
565         fd->clk_ref = of_clk_get(node, 0);
566         if (IS_ERR(fd->clk_ref)) {
567                 pr_err("%s could not get clk_ref\n", node->name);
568                 goto free;
569         }
570
571         fd->clk_bypass = of_clk_get(node, 1);
572         if (IS_ERR(fd->clk_bypass)) {
573                 pr_err("%s could not get clk_bypass\n", node->name);
574                 goto free;
575         }
576
577         fd->base = of_iomap(node, 0);
578         if (!fd->base) {
579                 pr_err("%s could not get IO base\n", node->name);
580                 goto free;
581         }
582
583         if (fapll_is_ddr_pll(fd->base))
584                 fd->bypass_bit_inverted = true;
585
586         fd->name = node->name;
587         fd->hw.init = init;
588
589         /* Register the parent PLL */
590         pll_clk = clk_register(NULL, &fd->hw);
591         if (IS_ERR(pll_clk))
592                 goto unmap;
593
594         fd->outputs.clks[0] = pll_clk;
595         fd->outputs.clk_num++;
596
597         /*
598          * Set up the child synthesizers starting at index 1 as the
599          * PLL output is at index 0. We need to check the clock-indices
600          * for numbering in case there are holes in the synth mapping,
601          * and then probe the synth register to see if it has a FREQ
602          * register available.
603          */
604         for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
605                 const char *output_name;
606                 void __iomem *freq, *div;
607                 struct clk *synth_clk;
608                 int output_instance;
609                 u32 v;
610
611                 if (of_property_read_string_index(node, "clock-output-names",
612                                                   i, &output_name))
613                         continue;
614
615                 if (of_property_read_u32_index(node, "clock-indices", i,
616                                                &output_instance))
617                         output_instance = i;
618
619                 freq = fd->base + (output_instance * 8);
620                 div = freq + 4;
621
622                 /* Check for hardwired audio_pll_clk1 */
623                 if (is_audio_pll_clk1(freq)) {
624                         freq = NULL;
625                         div = NULL;
626                 } else {
627                         /* Does the synthesizer have a FREQ register? */
628                         v = readl_relaxed(freq);
629                         if (!v)
630                                 freq = NULL;
631                 }
632                 synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
633                                                  output_name, node->name,
634                                                  pll_clk);
635                 if (IS_ERR(synth_clk))
636                         continue;
637
638                 fd->outputs.clks[output_instance] = synth_clk;
639                 fd->outputs.clk_num++;
640
641                 clk_register_clkdev(synth_clk, output_name, NULL);
642         }
643
644         /* Register the child synthesizers as the FAPLL outputs */
645         of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
646         /* Add clock alias for the outputs */
647
648         kfree(init);
649
650         return;
651
652 unmap:
653         iounmap(fd->base);
654 free:
655         if (fd->clk_bypass)
656                 clk_put(fd->clk_bypass);
657         if (fd->clk_ref)
658                 clk_put(fd->clk_ref);
659         kfree(fd->outputs.clks);
660         kfree(fd);
661         kfree(init);
662 }
663
664 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);