Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107         SI_KCS, SI_SMIC, SI_BT
108 };
109
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111
112 #define DEVICE_NAME "ipmi_si"
113
114 static struct platform_driver ipmi_driver;
115
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120         /*
121          * Number of times the driver requested a timer while an operation
122          * was in progress.
123          */
124         SI_STAT_short_timeouts = 0,
125
126         /*
127          * Number of times the driver requested a timer while nothing was in
128          * progress.
129          */
130         SI_STAT_long_timeouts,
131
132         /* Number of times the interface was idle while being polled. */
133         SI_STAT_idles,
134
135         /* Number of interrupts the driver handled. */
136         SI_STAT_interrupts,
137
138         /* Number of time the driver got an ATTN from the hardware. */
139         SI_STAT_attentions,
140
141         /* Number of times the driver requested flags from the hardware. */
142         SI_STAT_flag_fetches,
143
144         /* Number of times the hardware didn't follow the state machine. */
145         SI_STAT_hosed_count,
146
147         /* Number of completed messages. */
148         SI_STAT_complete_transactions,
149
150         /* Number of IPMI events received from the hardware. */
151         SI_STAT_events,
152
153         /* Number of watchdog pretimeouts. */
154         SI_STAT_watchdog_pretimeouts,
155
156         /* Number of asynchronous messages received. */
157         SI_STAT_incoming_messages,
158
159
160         /* This *must* remain last, add new values above this. */
161         SI_NUM_STATS
162 };
163
164 struct smi_info {
165         int                    intf_num;
166         ipmi_smi_t             intf;
167         struct si_sm_data      *si_sm;
168         const struct si_sm_handlers *handlers;
169         enum si_type           si_type;
170         spinlock_t             si_lock;
171         struct ipmi_smi_msg    *waiting_msg;
172         struct ipmi_smi_msg    *curr_msg;
173         enum si_intf_state     si_state;
174
175         /*
176          * Used to handle the various types of I/O that can occur with
177          * IPMI
178          */
179         struct si_sm_io io;
180         int (*io_setup)(struct smi_info *info);
181         void (*io_cleanup)(struct smi_info *info);
182         int (*irq_setup)(struct smi_info *info);
183         void (*irq_cleanup)(struct smi_info *info);
184         unsigned int io_size;
185         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186         void (*addr_source_cleanup)(struct smi_info *info);
187         void *addr_source_data;
188
189         /*
190          * Per-OEM handler, called from handle_flags().  Returns 1
191          * when handle_flags() needs to be re-run or 0 indicating it
192          * set si_state itself.
193          */
194         int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
196         /*
197          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198          * is set to hold the flags until we are done handling everything
199          * from the flags.
200          */
201 #define RECEIVE_MSG_AVAIL       0x01
202 #define EVENT_MSG_BUFFER_FULL   0x02
203 #define WDT_PRE_TIMEOUT_INT     0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208                              OEM1_DATA_AVAIL | \
209                              OEM2_DATA_AVAIL)
210         unsigned char       msg_flags;
211
212         /* Does the BMC have an event buffer? */
213         bool                has_event_buffer;
214
215         /*
216          * If set to true, this will request events the next time the
217          * state machine is idle.
218          */
219         atomic_t            req_events;
220
221         /*
222          * If true, run the state machine to completion on every send
223          * call.  Generally used after a panic to make sure stuff goes
224          * out.
225          */
226         bool                run_to_completion;
227
228         /* The I/O port of an SI interface. */
229         int                 port;
230
231         /*
232          * The space between start addresses of the two ports.  For
233          * instance, if the first port is 0xca2 and the spacing is 4, then
234          * the second port is 0xca6.
235          */
236         unsigned int        spacing;
237
238         /* zero if no irq; */
239         int                 irq;
240
241         /* The timer for this si. */
242         struct timer_list   si_timer;
243
244         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245         bool                timer_running;
246
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249
250         /* Are we waiting for the events, pretimeouts, received msgs? */
251         atomic_t            need_watch;
252
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         bool interrupt_disabled;
260
261         /*
262          * Does the BMC support events?
263          */
264         bool supports_event_msg_buff;
265
266         /*
267          * Can we disable interrupts the global enables receive irq
268          * bit?  There are currently two forms of brokenness, some
269          * systems cannot disable the bit (which is technically within
270          * the spec but a bad idea) and some systems have the bit
271          * forced to zero even though interrupts work (which is
272          * clearly outside the spec).  The next bool tells which form
273          * of brokenness is present.
274          */
275         bool cannot_disable_irq;
276
277         /*
278          * Some systems are broken and cannot set the irq enable
279          * bit, even if they support interrupts.
280          */
281         bool irq_enable_broken;
282
283         /*
284          * Did we get an attention that we did not handle?
285          */
286         bool got_attn;
287
288         /* From the get device id response... */
289         struct ipmi_device_id device_id;
290
291         /* Driver model stuff. */
292         struct device *dev;
293         struct platform_device *pdev;
294
295         /*
296          * True if we allocated the device, false if it came from
297          * someplace else (like PCI).
298          */
299         bool dev_registered;
300
301         /* Slave address, could be reported from DMI. */
302         unsigned char slave_addr;
303
304         /* Counters and things for the proc filesystem. */
305         atomic_t stats[SI_NUM_STATS];
306
307         struct task_struct *thread;
308
309         struct list_head link;
310         union ipmi_smi_info_union addr_info;
311 };
312
313 #define smi_inc_stat(smi, stat) \
314         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317
318 #define SI_MAX_PARMS 4
319
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331
332 static bool unload_when_empty = true;
333
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342         struct timespec64 t;
343
344         getnstimeofday64(&t);
345         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356
357 static void deliver_recv_msg(struct smi_info *smi_info,
358                              struct ipmi_smi_msg *msg)
359 {
360         /* Deliver the message to the upper layer. */
361         if (smi_info->intf)
362                 ipmi_smi_msg_received(smi_info->intf, msg);
363         else
364                 ipmi_free_smi_msg(msg);
365 }
366
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369         struct ipmi_smi_msg *msg = smi_info->curr_msg;
370
371         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372                 cCode = IPMI_ERR_UNSPECIFIED;
373         /* else use it as is */
374
375         /* Make it a response */
376         msg->rsp[0] = msg->data[0] | 4;
377         msg->rsp[1] = msg->data[1];
378         msg->rsp[2] = cCode;
379         msg->rsp_size = 3;
380
381         smi_info->curr_msg = NULL;
382         deliver_recv_msg(smi_info, msg);
383 }
384
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387         int              rv;
388
389         if (!smi_info->waiting_msg) {
390                 smi_info->curr_msg = NULL;
391                 rv = SI_SM_IDLE;
392         } else {
393                 int err;
394
395                 smi_info->curr_msg = smi_info->waiting_msg;
396                 smi_info->waiting_msg = NULL;
397                 debug_timestamp("Start2");
398                 err = atomic_notifier_call_chain(&xaction_notifier_list,
399                                 0, smi_info);
400                 if (err & NOTIFY_STOP_MASK) {
401                         rv = SI_SM_CALL_WITHOUT_DELAY;
402                         goto out;
403                 }
404                 err = smi_info->handlers->start_transaction(
405                         smi_info->si_sm,
406                         smi_info->curr_msg->data,
407                         smi_info->curr_msg->data_size);
408                 if (err)
409                         return_hosed_msg(smi_info, err);
410
411                 rv = SI_SM_CALL_WITHOUT_DELAY;
412         }
413 out:
414         return rv;
415 }
416
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419         smi_info->last_timeout_jiffies = jiffies;
420         mod_timer(&smi_info->si_timer, new_val);
421         smi_info->timer_running = true;
422 }
423
424 /*
425  * Start a new message and (re)start the timer and thread.
426  */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428                           unsigned int size)
429 {
430         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431
432         if (smi_info->thread)
433                 wake_up_process(smi_info->thread);
434
435         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440         unsigned char msg[2];
441
442         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444
445         if (start_timer)
446                 start_new_msg(smi_info, msg, 2);
447         else
448                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449         smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454         unsigned char msg[3];
455
456         /* Make sure the watchdog pre-timeout flag is not set at startup. */
457         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459         msg[2] = WDT_PRE_TIMEOUT_INT;
460
461         if (start_timer)
462                 start_new_msg(smi_info, msg, 3);
463         else
464                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465         smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472         smi_info->curr_msg->data_size = 2;
473
474         start_new_msg(smi_info, smi_info->curr_msg->data,
475                       smi_info->curr_msg->data_size);
476         smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483         smi_info->curr_msg->data_size = 2;
484
485         start_new_msg(smi_info, smi_info->curr_msg->data,
486                       smi_info->curr_msg->data_size);
487         smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502                 smi_info->interrupt_disabled = true;
503                 start_check_enables(smi_info, start_timer);
504                 return true;
505         }
506         return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512                 smi_info->interrupt_disabled = false;
513                 start_check_enables(smi_info, true);
514                 return true;
515         }
516         return false;
517 }
518
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527         struct ipmi_smi_msg *msg;
528
529         msg = ipmi_alloc_smi_msg();
530         if (!msg) {
531                 if (!disable_si_irq(smi_info, true))
532                         smi_info->si_state = SI_NORMAL;
533         } else if (enable_si_irq(smi_info)) {
534                 ipmi_free_smi_msg(msg);
535                 msg = NULL;
536         }
537         return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544                 /* Watchdog pre-timeout */
545                 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547                 start_clear_flags(smi_info, true);
548                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549                 if (smi_info->intf)
550                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
551         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552                 /* Messages available. */
553                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554                 if (!smi_info->curr_msg)
555                         return;
556
557                 start_getting_msg_queue(smi_info);
558         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559                 /* Events available. */
560                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561                 if (!smi_info->curr_msg)
562                         return;
563
564                 start_getting_events(smi_info);
565         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566                    smi_info->oem_data_avail_handler) {
567                 if (smi_info->oem_data_avail_handler(smi_info))
568                         goto retry;
569         } else
570                 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577                              IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580                                  bool *irq_on)
581 {
582         u8 enables = 0;
583
584         if (smi_info->supports_event_msg_buff)
585                 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588              smi_info->cannot_disable_irq) &&
589             !smi_info->irq_enable_broken)
590                 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592         if (smi_info->supports_event_msg_buff &&
593             smi_info->irq && !smi_info->interrupt_disabled &&
594             !smi_info->irq_enable_broken)
595                 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599         return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608         if ((bool)irqstate == irq_on)
609                 return;
610
611         if (irq_on)
612                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614         else
615                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620         struct ipmi_smi_msg *msg;
621
622         debug_timestamp("Done");
623         switch (smi_info->si_state) {
624         case SI_NORMAL:
625                 if (!smi_info->curr_msg)
626                         break;
627
628                 smi_info->curr_msg->rsp_size
629                         = smi_info->handlers->get_result(
630                                 smi_info->si_sm,
631                                 smi_info->curr_msg->rsp,
632                                 IPMI_MAX_MSG_LENGTH);
633
634                 /*
635                  * Do this here becase deliver_recv_msg() releases the
636                  * lock, and a new message can be put in during the
637                  * time the lock is released.
638                  */
639                 msg = smi_info->curr_msg;
640                 smi_info->curr_msg = NULL;
641                 deliver_recv_msg(smi_info, msg);
642                 break;
643
644         case SI_GETTING_FLAGS:
645         {
646                 unsigned char msg[4];
647                 unsigned int  len;
648
649                 /* We got the flags from the SMI, now handle them. */
650                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651                 if (msg[2] != 0) {
652                         /* Error fetching flags, just give up for now. */
653                         smi_info->si_state = SI_NORMAL;
654                 } else if (len < 4) {
655                         /*
656                          * Hmm, no flags.  That's technically illegal, but
657                          * don't use uninitialized data.
658                          */
659                         smi_info->si_state = SI_NORMAL;
660                 } else {
661                         smi_info->msg_flags = msg[3];
662                         handle_flags(smi_info);
663                 }
664                 break;
665         }
666
667         case SI_CLEARING_FLAGS:
668         {
669                 unsigned char msg[3];
670
671                 /* We cleared the flags. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673                 if (msg[2] != 0) {
674                         /* Error clearing flags */
675                         dev_warn(smi_info->dev,
676                                  "Error clearing flags: %2.2x\n", msg[2]);
677                 }
678                 smi_info->si_state = SI_NORMAL;
679                 break;
680         }
681
682         case SI_GETTING_EVENTS:
683         {
684                 smi_info->curr_msg->rsp_size
685                         = smi_info->handlers->get_result(
686                                 smi_info->si_sm,
687                                 smi_info->curr_msg->rsp,
688                                 IPMI_MAX_MSG_LENGTH);
689
690                 /*
691                  * Do this here becase deliver_recv_msg() releases the
692                  * lock, and a new message can be put in during the
693                  * time the lock is released.
694                  */
695                 msg = smi_info->curr_msg;
696                 smi_info->curr_msg = NULL;
697                 if (msg->rsp[2] != 0) {
698                         /* Error getting event, probably done. */
699                         msg->done(msg);
700
701                         /* Take off the event flag. */
702                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703                         handle_flags(smi_info);
704                 } else {
705                         smi_inc_stat(smi_info, events);
706
707                         /*
708                          * Do this before we deliver the message
709                          * because delivering the message releases the
710                          * lock and something else can mess with the
711                          * state.
712                          */
713                         handle_flags(smi_info);
714
715                         deliver_recv_msg(smi_info, msg);
716                 }
717                 break;
718         }
719
720         case SI_GETTING_MESSAGES:
721         {
722                 smi_info->curr_msg->rsp_size
723                         = smi_info->handlers->get_result(
724                                 smi_info->si_sm,
725                                 smi_info->curr_msg->rsp,
726                                 IPMI_MAX_MSG_LENGTH);
727
728                 /*
729                  * Do this here becase deliver_recv_msg() releases the
730                  * lock, and a new message can be put in during the
731                  * time the lock is released.
732                  */
733                 msg = smi_info->curr_msg;
734                 smi_info->curr_msg = NULL;
735                 if (msg->rsp[2] != 0) {
736                         /* Error getting event, probably done. */
737                         msg->done(msg);
738
739                         /* Take off the msg flag. */
740                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741                         handle_flags(smi_info);
742                 } else {
743                         smi_inc_stat(smi_info, incoming_messages);
744
745                         /*
746                          * Do this before we deliver the message
747                          * because delivering the message releases the
748                          * lock and something else can mess with the
749                          * state.
750                          */
751                         handle_flags(smi_info);
752
753                         deliver_recv_msg(smi_info, msg);
754                 }
755                 break;
756         }
757
758         case SI_CHECKING_ENABLES:
759         {
760                 unsigned char msg[4];
761                 u8 enables;
762                 bool irq_on;
763
764                 /* We got the flags from the SMI, now handle them. */
765                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766                 if (msg[2] != 0) {
767                         dev_warn(smi_info->dev,
768                                  "Couldn't get irq info: %x.\n", msg[2]);
769                         dev_warn(smi_info->dev,
770                                  "Maybe ok, but ipmi might run very slowly.\n");
771                         smi_info->si_state = SI_NORMAL;
772                         break;
773                 }
774                 enables = current_global_enables(smi_info, 0, &irq_on);
775                 if (smi_info->si_type == SI_BT)
776                         /* BT has its own interrupt enable bit. */
777                         check_bt_irq(smi_info, irq_on);
778                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779                         /* Enables are not correct, fix them. */
780                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783                         smi_info->handlers->start_transaction(
784                                 smi_info->si_sm, msg, 3);
785                         smi_info->si_state = SI_SETTING_ENABLES;
786                 } else if (smi_info->supports_event_msg_buff) {
787                         smi_info->curr_msg = ipmi_alloc_smi_msg();
788                         if (!smi_info->curr_msg) {
789                                 smi_info->si_state = SI_NORMAL;
790                                 break;
791                         }
792                         start_getting_events(smi_info);
793                 } else {
794                         smi_info->si_state = SI_NORMAL;
795                 }
796                 break;
797         }
798
799         case SI_SETTING_ENABLES:
800         {
801                 unsigned char msg[4];
802
803                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804                 if (msg[2] != 0)
805                         dev_warn(smi_info->dev,
806                                  "Could not set the global enables: 0x%x.\n",
807                                  msg[2]);
808
809                 if (smi_info->supports_event_msg_buff) {
810                         smi_info->curr_msg = ipmi_alloc_smi_msg();
811                         if (!smi_info->curr_msg) {
812                                 smi_info->si_state = SI_NORMAL;
813                                 break;
814                         }
815                         start_getting_events(smi_info);
816                 } else {
817                         smi_info->si_state = SI_NORMAL;
818                 }
819                 break;
820         }
821         }
822 }
823
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830                                            int time)
831 {
832         enum si_sm_result si_sm_result;
833
834 restart:
835         /*
836          * There used to be a loop here that waited a little while
837          * (around 25us) before giving up.  That turned out to be
838          * pointless, the minimum delays I was seeing were in the 300us
839          * range, which is far too long to wait in an interrupt.  So
840          * we just run until the state machine tells us something
841          * happened or it needs a delay.
842          */
843         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844         time = 0;
845         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849                 smi_inc_stat(smi_info, complete_transactions);
850
851                 handle_transaction_done(smi_info);
852                 goto restart;
853         } else if (si_sm_result == SI_SM_HOSED) {
854                 smi_inc_stat(smi_info, hosed_count);
855
856                 /*
857                  * Do the before return_hosed_msg, because that
858                  * releases the lock.
859                  */
860                 smi_info->si_state = SI_NORMAL;
861                 if (smi_info->curr_msg != NULL) {
862                         /*
863                          * If we were handling a user message, format
864                          * a response to send to the upper layer to
865                          * tell it about the error.
866                          */
867                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868                 }
869                 goto restart;
870         }
871
872         /*
873          * We prefer handling attn over new messages.  But don't do
874          * this if there is not yet an upper layer to handle anything.
875          */
876         if (likely(smi_info->intf) &&
877             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878                 unsigned char msg[2];
879
880                 if (smi_info->si_state != SI_NORMAL) {
881                         /*
882                          * We got an ATTN, but we are doing something else.
883                          * Handle the ATTN later.
884                          */
885                         smi_info->got_attn = true;
886                 } else {
887                         smi_info->got_attn = false;
888                         smi_inc_stat(smi_info, attentions);
889
890                         /*
891                          * Got a attn, send down a get message flags to see
892                          * what's causing it.  It would be better to handle
893                          * this in the upper layer, but due to the way
894                          * interrupts work with the SMI, that's not really
895                          * possible.
896                          */
897                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900                         start_new_msg(smi_info, msg, 2);
901                         smi_info->si_state = SI_GETTING_FLAGS;
902                         goto restart;
903                 }
904         }
905
906         /* If we are currently idle, try to start the next message. */
907         if (si_sm_result == SI_SM_IDLE) {
908                 smi_inc_stat(smi_info, idles);
909
910                 si_sm_result = start_next_msg(smi_info);
911                 if (si_sm_result != SI_SM_IDLE)
912                         goto restart;
913         }
914
915         if ((si_sm_result == SI_SM_IDLE)
916             && (atomic_read(&smi_info->req_events))) {
917                 /*
918                  * We are idle and the upper layer requested that I fetch
919                  * events, so do so.
920                  */
921                 atomic_set(&smi_info->req_events, 0);
922
923                 /*
924                  * Take this opportunity to check the interrupt and
925                  * message enable state for the BMC.  The BMC can be
926                  * asynchronously reset, and may thus get interrupts
927                  * disable and messages disabled.
928                  */
929                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930                         start_check_enables(smi_info, true);
931                 } else {
932                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933                         if (!smi_info->curr_msg)
934                                 goto out;
935
936                         start_getting_events(smi_info);
937                 }
938                 goto restart;
939         }
940
941         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942                 /* Ok it if fails, the timer will just go off. */
943                 if (del_timer(&smi_info->si_timer))
944                         smi_info->timer_running = false;
945         }
946
947 out:
948         return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956                 if (smi_info->thread)
957                         wake_up_process(smi_info->thread);
958
959                 start_next_msg(smi_info);
960                 smi_event_handler(smi_info, 0);
961         }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966         struct smi_info *smi_info = send_info;
967         enum si_sm_result result;
968
969         /*
970          * Currently, this function is called only in run-to-completion
971          * mode.  This means we are single-threaded, no need for locks.
972          */
973         result = smi_event_handler(smi_info, 0);
974         while (result != SI_SM_IDLE) {
975                 udelay(SI_SHORT_TIMEOUT_USEC);
976                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977         }
978 }
979
980 static void sender(void                *send_info,
981                    struct ipmi_smi_msg *msg)
982 {
983         struct smi_info   *smi_info = send_info;
984         unsigned long     flags;
985
986         debug_timestamp("Enqueue");
987
988         if (smi_info->run_to_completion) {
989                 /*
990                  * If we are running to completion, start it.  Upper
991                  * layer will call flush_messages to clear it out.
992                  */
993                 smi_info->waiting_msg = msg;
994                 return;
995         }
996
997         spin_lock_irqsave(&smi_info->si_lock, flags);
998         /*
999          * The following two lines don't need to be under the lock for
1000          * the lock's sake, but they do need SMP memory barriers to
1001          * avoid getting things out of order.  We are already claiming
1002          * the lock, anyway, so just do it under the lock to avoid the
1003          * ordering problem.
1004          */
1005         BUG_ON(smi_info->waiting_msg);
1006         smi_info->waiting_msg = msg;
1007         check_start_timer_thread(smi_info);
1008         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013         struct smi_info   *smi_info = send_info;
1014
1015         smi_info->run_to_completion = i_run_to_completion;
1016         if (i_run_to_completion)
1017                 flush_messages(smi_info);
1018 }
1019
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027         ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031         return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035                                         const struct smi_info *smi_info,
1036                                         struct timespec64 *busy_until)
1037 {
1038         unsigned int max_busy_us = 0;
1039
1040         if (smi_info->intf_num < num_max_busy_us)
1041                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043                 ipmi_si_set_not_busy(busy_until);
1044         else if (!ipmi_si_is_busy(busy_until)) {
1045                 getnstimeofday64(busy_until);
1046                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047         } else {
1048                 struct timespec64 now;
1049
1050                 getnstimeofday64(&now);
1051                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052                         ipmi_si_set_not_busy(busy_until);
1053                         return 0;
1054                 }
1055         }
1056         return 1;
1057 }
1058
1059
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071         struct smi_info *smi_info = data;
1072         unsigned long flags;
1073         enum si_sm_result smi_result;
1074         struct timespec64 busy_until;
1075
1076         ipmi_si_set_not_busy(&busy_until);
1077         set_user_nice(current, MAX_NICE);
1078         while (!kthread_should_stop()) {
1079                 int busy_wait;
1080
1081                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082                 smi_result = smi_event_handler(smi_info, 0);
1083
1084                 /*
1085                  * If the driver is doing something, there is a possible
1086                  * race with the timer.  If the timer handler see idle,
1087                  * and the thread here sees something else, the timer
1088                  * handler won't restart the timer even though it is
1089                  * required.  So start it here if necessary.
1090                  */
1091                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096                                                   &busy_until);
1097                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098                         ; /* do nothing */
1099                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100                         schedule();
1101                 else if (smi_result == SI_SM_IDLE) {
1102                         if (atomic_read(&smi_info->need_watch)) {
1103                                 schedule_timeout_interruptible(100);
1104                         } else {
1105                                 /* Wait to be woken up when we are needed. */
1106                                 __set_current_state(TASK_INTERRUPTIBLE);
1107                                 schedule();
1108                         }
1109                 } else
1110                         schedule_timeout_interruptible(1);
1111         }
1112         return 0;
1113 }
1114
1115
1116 static void poll(void *send_info)
1117 {
1118         struct smi_info *smi_info = send_info;
1119         unsigned long flags = 0;
1120         bool run_to_completion = smi_info->run_to_completion;
1121
1122         /*
1123          * Make sure there is some delay in the poll loop so we can
1124          * drive time forward and timeout things.
1125          */
1126         udelay(10);
1127         if (!run_to_completion)
1128                 spin_lock_irqsave(&smi_info->si_lock, flags);
1129         smi_event_handler(smi_info, 10);
1130         if (!run_to_completion)
1131                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133
1134 static void request_events(void *send_info)
1135 {
1136         struct smi_info *smi_info = send_info;
1137
1138         if (!smi_info->has_event_buffer)
1139                 return;
1140
1141         atomic_set(&smi_info->req_events, 1);
1142 }
1143
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146         struct smi_info *smi_info = send_info;
1147         unsigned long flags;
1148
1149         atomic_set(&smi_info->need_watch, enable);
1150         spin_lock_irqsave(&smi_info->si_lock, flags);
1151         check_start_timer_thread(smi_info);
1152         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154
1155 static int initialized;
1156
1157 static void smi_timeout(unsigned long data)
1158 {
1159         struct smi_info   *smi_info = (struct smi_info *) data;
1160         enum si_sm_result smi_result;
1161         unsigned long     flags;
1162         unsigned long     jiffies_now;
1163         long              time_diff;
1164         long              timeout;
1165
1166         spin_lock_irqsave(&(smi_info->si_lock), flags);
1167         debug_timestamp("Timer");
1168
1169         jiffies_now = jiffies;
1170         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171                      * SI_USEC_PER_JIFFY);
1172         smi_result = smi_event_handler(smi_info, time_diff);
1173
1174         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175                 /* Running with interrupts, only do long timeouts. */
1176                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177                 smi_inc_stat(smi_info, long_timeouts);
1178                 goto do_mod_timer;
1179         }
1180
1181         /*
1182          * If the state machine asks for a short delay, then shorten
1183          * the timer timeout.
1184          */
1185         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186                 smi_inc_stat(smi_info, short_timeouts);
1187                 timeout = jiffies + 1;
1188         } else {
1189                 smi_inc_stat(smi_info, long_timeouts);
1190                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191         }
1192
1193 do_mod_timer:
1194         if (smi_result != SI_SM_IDLE)
1195                 smi_mod_timer(smi_info, timeout);
1196         else
1197                 smi_info->timer_running = false;
1198         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203         struct smi_info *smi_info = data;
1204         unsigned long   flags;
1205
1206         spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208         smi_inc_stat(smi_info, interrupts);
1209
1210         debug_timestamp("Interrupt");
1211
1212         smi_event_handler(smi_info, 0);
1213         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214         return IRQ_HANDLED;
1215 }
1216
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219         struct smi_info *smi_info = data;
1220         /* We need to clear the IRQ flag for the BT interface. */
1221         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224         return si_irq_handler(irq, data);
1225 }
1226
1227 static int smi_start_processing(void       *send_info,
1228                                 ipmi_smi_t intf)
1229 {
1230         struct smi_info *new_smi = send_info;
1231         int             enable = 0;
1232
1233         new_smi->intf = intf;
1234
1235         /* Set up the timer that drives the interface. */
1236         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238
1239         /* Try to claim any interrupts. */
1240         if (new_smi->irq_setup)
1241                 new_smi->irq_setup(new_smi);
1242
1243         /*
1244          * Check if the user forcefully enabled the daemon.
1245          */
1246         if (new_smi->intf_num < num_force_kipmid)
1247                 enable = force_kipmid[new_smi->intf_num];
1248         /*
1249          * The BT interface is efficient enough to not need a thread,
1250          * and there is no need for a thread if we have interrupts.
1251          */
1252         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253                 enable = 1;
1254
1255         if (enable) {
1256                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257                                               "kipmi%d", new_smi->intf_num);
1258                 if (IS_ERR(new_smi->thread)) {
1259                         dev_notice(new_smi->dev, "Could not start"
1260                                    " kernel thread due to error %ld, only using"
1261                                    " timers to drive the interface\n",
1262                                    PTR_ERR(new_smi->thread));
1263                         new_smi->thread = NULL;
1264                 }
1265         }
1266
1267         return 0;
1268 }
1269
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272         struct smi_info *smi = send_info;
1273
1274         data->addr_src = smi->addr_source;
1275         data->dev = smi->dev;
1276         data->addr_info = smi->addr_info;
1277         get_device(smi->dev);
1278
1279         return 0;
1280 }
1281
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284         struct smi_info   *smi_info = send_info;
1285
1286         if (!enable)
1287                 atomic_set(&smi_info->req_events, 0);
1288 }
1289
1290 static const struct ipmi_smi_handlers handlers = {
1291         .owner                  = THIS_MODULE,
1292         .start_processing       = smi_start_processing,
1293         .get_smi_info           = get_smi_info,
1294         .sender                 = sender,
1295         .request_events         = request_events,
1296         .set_need_watch         = set_need_watch,
1297         .set_maintenance_mode   = set_maintenance_mode,
1298         .set_run_to_completion  = set_run_to_completion,
1299         .flush_messages         = flush_messages,
1300         .poll                   = poll,
1301 };
1302
1303 /*
1304  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306  */
1307
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311
1312 #define DEFAULT_REGSPACING      1
1313 #define DEFAULT_REGSIZE         1
1314
1315 #ifdef CONFIG_ACPI
1316 static bool          si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool          si_trydmi = true;
1320 #endif
1321 static bool          si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool          si_trypci = true;
1324 #endif
1325 static char          *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char          si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int  ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int           irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int           regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int           regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int           regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342
1343 #define IPMI_IO_ADDR_SPACE  0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1351                  " Documentation/IPMI.txt in the kernel sources for the"
1352                  " gory details.");
1353
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357                  " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362                  " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1366                  " default scan of the interfaces identified via platform"
1367                  " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1371                  " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1375                  " interface separated by commas.  The types are 'kcs',"
1376                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1377                  " the first interface to kcs and the second to bt");
1378 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1380                  " addresses separated by commas.  Only use if an interface"
1381                  " is in memory.  Otherwise, set it to zero or leave"
1382                  " it blank.");
1383 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1385                  " addresses separated by commas.  Only use if an interface"
1386                  " is a port.  Otherwise, set it to zero or leave"
1387                  " it blank.");
1388 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1390                  " addresses separated by commas.  Only use if an interface"
1391                  " has an interrupt.  Otherwise, set it to zero or leave"
1392                  " it blank.");
1393 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1395                  " and each successive register used by the interface.  For"
1396                  " instance, if the start address is 0xca2 and the spacing"
1397                  " is 2, then the second address is at 0xca4.  Defaults"
1398                  " to 1.");
1399 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1401                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1403                  " the 8-bit IPMI register has to be read from a larger"
1404                  " register.");
1405 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1407                  " IPMI register, in bits.  For instance, if the data"
1408                  " is read from a 32-bit word and the IPMI data is in"
1409                  " bit 8-15, then the shift would be 8");
1410 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1412                  " the controller.  Normally this is 0x20, but can be"
1413                  " overridden by this parm.  This is an array indexed"
1414                  " by interface number.");
1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1417                  " disabled(0).  Normally the IPMI driver auto-detects"
1418                  " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1421                  " specified or found, default is 1.  Setting to 0"
1422                  " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us,
1425                  "Max time (in microseconds) to busy-wait for IPMI data before"
1426                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427                  " if kipmid is using up a lot of CPU time.");
1428
1429
1430 static void std_irq_cleanup(struct smi_info *info)
1431 {
1432         if (info->si_type == SI_BT)
1433                 /* Disable the interrupt in the BT interface. */
1434                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1435         free_irq(info->irq, info);
1436 }
1437
1438 static int std_irq_setup(struct smi_info *info)
1439 {
1440         int rv;
1441
1442         if (!info->irq)
1443                 return 0;
1444
1445         if (info->si_type == SI_BT) {
1446                 rv = request_irq(info->irq,
1447                                  si_bt_irq_handler,
1448                                  IRQF_SHARED,
1449                                  DEVICE_NAME,
1450                                  info);
1451                 if (!rv)
1452                         /* Enable the interrupt in the BT interface. */
1453                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1454                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1455         } else
1456                 rv = request_irq(info->irq,
1457                                  si_irq_handler,
1458                                  IRQF_SHARED,
1459                                  DEVICE_NAME,
1460                                  info);
1461         if (rv) {
1462                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1463                          " running polled\n",
1464                          DEVICE_NAME, info->irq);
1465                 info->irq = 0;
1466         } else {
1467                 info->irq_cleanup = std_irq_cleanup;
1468                 dev_info(info->dev, "Using irq %d\n", info->irq);
1469         }
1470
1471         return rv;
1472 }
1473
1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1475 {
1476         unsigned int addr = io->addr_data;
1477
1478         return inb(addr + (offset * io->regspacing));
1479 }
1480
1481 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1482                       unsigned char b)
1483 {
1484         unsigned int addr = io->addr_data;
1485
1486         outb(b, addr + (offset * io->regspacing));
1487 }
1488
1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1490 {
1491         unsigned int addr = io->addr_data;
1492
1493         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1494 }
1495
1496 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1497                       unsigned char b)
1498 {
1499         unsigned int addr = io->addr_data;
1500
1501         outw(b << io->regshift, addr + (offset * io->regspacing));
1502 }
1503
1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1505 {
1506         unsigned int addr = io->addr_data;
1507
1508         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1509 }
1510
1511 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1512                       unsigned char b)
1513 {
1514         unsigned int addr = io->addr_data;
1515
1516         outl(b << io->regshift, addr+(offset * io->regspacing));
1517 }
1518
1519 static void port_cleanup(struct smi_info *info)
1520 {
1521         unsigned int addr = info->io.addr_data;
1522         int          idx;
1523
1524         if (addr) {
1525                 for (idx = 0; idx < info->io_size; idx++)
1526                         release_region(addr + idx * info->io.regspacing,
1527                                        info->io.regsize);
1528         }
1529 }
1530
1531 static int port_setup(struct smi_info *info)
1532 {
1533         unsigned int addr = info->io.addr_data;
1534         int          idx;
1535
1536         if (!addr)
1537                 return -ENODEV;
1538
1539         info->io_cleanup = port_cleanup;
1540
1541         /*
1542          * Figure out the actual inb/inw/inl/etc routine to use based
1543          * upon the register size.
1544          */
1545         switch (info->io.regsize) {
1546         case 1:
1547                 info->io.inputb = port_inb;
1548                 info->io.outputb = port_outb;
1549                 break;
1550         case 2:
1551                 info->io.inputb = port_inw;
1552                 info->io.outputb = port_outw;
1553                 break;
1554         case 4:
1555                 info->io.inputb = port_inl;
1556                 info->io.outputb = port_outl;
1557                 break;
1558         default:
1559                 dev_warn(info->dev, "Invalid register size: %d\n",
1560                          info->io.regsize);
1561                 return -EINVAL;
1562         }
1563
1564         /*
1565          * Some BIOSes reserve disjoint I/O regions in their ACPI
1566          * tables.  This causes problems when trying to register the
1567          * entire I/O region.  Therefore we must register each I/O
1568          * port separately.
1569          */
1570         for (idx = 0; idx < info->io_size; idx++) {
1571                 if (request_region(addr + idx * info->io.regspacing,
1572                                    info->io.regsize, DEVICE_NAME) == NULL) {
1573                         /* Undo allocations */
1574                         while (idx--)
1575                                 release_region(addr + idx * info->io.regspacing,
1576                                                info->io.regsize);
1577                         return -EIO;
1578                 }
1579         }
1580         return 0;
1581 }
1582
1583 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1584                                   unsigned int offset)
1585 {
1586         return readb((io->addr)+(offset * io->regspacing));
1587 }
1588
1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1590                           unsigned char b)
1591 {
1592         writeb(b, (io->addr)+(offset * io->regspacing));
1593 }
1594
1595 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1596                                   unsigned int offset)
1597 {
1598         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599                 & 0xff;
1600 }
1601
1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1603                           unsigned char b)
1604 {
1605         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1606 }
1607
1608 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1609                                   unsigned int offset)
1610 {
1611         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1612                 & 0xff;
1613 }
1614
1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1616                           unsigned char b)
1617 {
1618         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1619 }
1620
1621 #ifdef readq
1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1623 {
1624         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1625                 & 0xff;
1626 }
1627
1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1629                      unsigned char b)
1630 {
1631         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1632 }
1633 #endif
1634
1635 static void mem_region_cleanup(struct smi_info *info, int num)
1636 {
1637         unsigned long addr = info->io.addr_data;
1638         int idx;
1639
1640         for (idx = 0; idx < num; idx++)
1641                 release_mem_region(addr + idx * info->io.regspacing,
1642                                    info->io.regsize);
1643 }
1644
1645 static void mem_cleanup(struct smi_info *info)
1646 {
1647         if (info->io.addr) {
1648                 iounmap(info->io.addr);
1649                 mem_region_cleanup(info, info->io_size);
1650         }
1651 }
1652
1653 static int mem_setup(struct smi_info *info)
1654 {
1655         unsigned long addr = info->io.addr_data;
1656         int           mapsize, idx;
1657
1658         if (!addr)
1659                 return -ENODEV;
1660
1661         info->io_cleanup = mem_cleanup;
1662
1663         /*
1664          * Figure out the actual readb/readw/readl/etc routine to use based
1665          * upon the register size.
1666          */
1667         switch (info->io.regsize) {
1668         case 1:
1669                 info->io.inputb = intf_mem_inb;
1670                 info->io.outputb = intf_mem_outb;
1671                 break;
1672         case 2:
1673                 info->io.inputb = intf_mem_inw;
1674                 info->io.outputb = intf_mem_outw;
1675                 break;
1676         case 4:
1677                 info->io.inputb = intf_mem_inl;
1678                 info->io.outputb = intf_mem_outl;
1679                 break;
1680 #ifdef readq
1681         case 8:
1682                 info->io.inputb = mem_inq;
1683                 info->io.outputb = mem_outq;
1684                 break;
1685 #endif
1686         default:
1687                 dev_warn(info->dev, "Invalid register size: %d\n",
1688                          info->io.regsize);
1689                 return -EINVAL;
1690         }
1691
1692         /*
1693          * Some BIOSes reserve disjoint memory regions in their ACPI
1694          * tables.  This causes problems when trying to request the
1695          * entire region.  Therefore we must request each register
1696          * separately.
1697          */
1698         for (idx = 0; idx < info->io_size; idx++) {
1699                 if (request_mem_region(addr + idx * info->io.regspacing,
1700                                        info->io.regsize, DEVICE_NAME) == NULL) {
1701                         /* Undo allocations */
1702                         mem_region_cleanup(info, idx);
1703                         return -EIO;
1704                 }
1705         }
1706
1707         /*
1708          * Calculate the total amount of memory to claim.  This is an
1709          * unusual looking calculation, but it avoids claiming any
1710          * more memory than it has to.  It will claim everything
1711          * between the first address to the end of the last full
1712          * register.
1713          */
1714         mapsize = ((info->io_size * info->io.regspacing)
1715                    - (info->io.regspacing - info->io.regsize));
1716         info->io.addr = ioremap(addr, mapsize);
1717         if (info->io.addr == NULL) {
1718                 mem_region_cleanup(info, info->io_size);
1719                 return -EIO;
1720         }
1721         return 0;
1722 }
1723
1724 /*
1725  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1726  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1727  * Options are:
1728  *   rsp=<regspacing>
1729  *   rsi=<regsize>
1730  *   rsh=<regshift>
1731  *   irq=<irq>
1732  *   ipmb=<ipmb addr>
1733  */
1734 enum hotmod_op { HM_ADD, HM_REMOVE };
1735 struct hotmod_vals {
1736         const char *name;
1737         const int  val;
1738 };
1739
1740 static const struct hotmod_vals hotmod_ops[] = {
1741         { "add",        HM_ADD },
1742         { "remove",     HM_REMOVE },
1743         { NULL }
1744 };
1745
1746 static const struct hotmod_vals hotmod_si[] = {
1747         { "kcs",        SI_KCS },
1748         { "smic",       SI_SMIC },
1749         { "bt",         SI_BT },
1750         { NULL }
1751 };
1752
1753 static const struct hotmod_vals hotmod_as[] = {
1754         { "mem",        IPMI_MEM_ADDR_SPACE },
1755         { "i/o",        IPMI_IO_ADDR_SPACE },
1756         { NULL }
1757 };
1758
1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1760                      char **curr)
1761 {
1762         char *s;
1763         int  i;
1764
1765         s = strchr(*curr, ',');
1766         if (!s) {
1767                 pr_warn(PFX "No hotmod %s given.\n", name);
1768                 return -EINVAL;
1769         }
1770         *s = '\0';
1771         s++;
1772         for (i = 0; v[i].name; i++) {
1773                 if (strcmp(*curr, v[i].name) == 0) {
1774                         *val = v[i].val;
1775                         *curr = s;
1776                         return 0;
1777                 }
1778         }
1779
1780         pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781         return -EINVAL;
1782 }
1783
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785                                const char *name, int *val)
1786 {
1787         char *n;
1788
1789         if (strcmp(curr, name) == 0) {
1790                 if (!option) {
1791                         pr_warn(PFX "No option given for '%s'\n", curr);
1792                         return -EINVAL;
1793                 }
1794                 *val = simple_strtoul(option, &n, 0);
1795                 if ((*n != '\0') || (*option == '\0')) {
1796                         pr_warn(PFX "Bad option given for '%s'\n", curr);
1797                         return -EINVAL;
1798                 }
1799                 return 1;
1800         }
1801         return 0;
1802 }
1803
1804 static struct smi_info *smi_info_alloc(void)
1805 {
1806         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1807
1808         if (info)
1809                 spin_lock_init(&info->si_lock);
1810         return info;
1811 }
1812
1813 static int hotmod_handler(const char *val, struct kernel_param *kp)
1814 {
1815         char *str = kstrdup(val, GFP_KERNEL);
1816         int  rv;
1817         char *next, *curr, *s, *n, *o;
1818         enum hotmod_op op;
1819         enum si_type si_type;
1820         int  addr_space;
1821         unsigned long addr;
1822         int regspacing;
1823         int regsize;
1824         int regshift;
1825         int irq;
1826         int ipmb;
1827         int ival;
1828         int len;
1829         struct smi_info *info;
1830
1831         if (!str)
1832                 return -ENOMEM;
1833
1834         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1835         len = strlen(str);
1836         ival = len - 1;
1837         while ((ival >= 0) && isspace(str[ival])) {
1838                 str[ival] = '\0';
1839                 ival--;
1840         }
1841
1842         for (curr = str; curr; curr = next) {
1843                 regspacing = 1;
1844                 regsize = 1;
1845                 regshift = 0;
1846                 irq = 0;
1847                 ipmb = 0; /* Choose the default if not specified */
1848
1849                 next = strchr(curr, ':');
1850                 if (next) {
1851                         *next = '\0';
1852                         next++;
1853                 }
1854
1855                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1856                 if (rv)
1857                         break;
1858                 op = ival;
1859
1860                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1861                 if (rv)
1862                         break;
1863                 si_type = ival;
1864
1865                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1866                 if (rv)
1867                         break;
1868
1869                 s = strchr(curr, ',');
1870                 if (s) {
1871                         *s = '\0';
1872                         s++;
1873                 }
1874                 addr = simple_strtoul(curr, &n, 0);
1875                 if ((*n != '\0') || (*curr == '\0')) {
1876                         pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1877                         break;
1878                 }
1879
1880                 while (s) {
1881                         curr = s;
1882                         s = strchr(curr, ',');
1883                         if (s) {
1884                                 *s = '\0';
1885                                 s++;
1886                         }
1887                         o = strchr(curr, '=');
1888                         if (o) {
1889                                 *o = '\0';
1890                                 o++;
1891                         }
1892                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1893                         if (rv < 0)
1894                                 goto out;
1895                         else if (rv)
1896                                 continue;
1897                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1898                         if (rv < 0)
1899                                 goto out;
1900                         else if (rv)
1901                                 continue;
1902                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1903                         if (rv < 0)
1904                                 goto out;
1905                         else if (rv)
1906                                 continue;
1907                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1908                         if (rv < 0)
1909                                 goto out;
1910                         else if (rv)
1911                                 continue;
1912                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1913                         if (rv < 0)
1914                                 goto out;
1915                         else if (rv)
1916                                 continue;
1917
1918                         rv = -EINVAL;
1919                         pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1920                         goto out;
1921                 }
1922
1923                 if (op == HM_ADD) {
1924                         info = smi_info_alloc();
1925                         if (!info) {
1926                                 rv = -ENOMEM;
1927                                 goto out;
1928                         }
1929
1930                         info->addr_source = SI_HOTMOD;
1931                         info->si_type = si_type;
1932                         info->io.addr_data = addr;
1933                         info->io.addr_type = addr_space;
1934                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1935                                 info->io_setup = mem_setup;
1936                         else
1937                                 info->io_setup = port_setup;
1938
1939                         info->io.addr = NULL;
1940                         info->io.regspacing = regspacing;
1941                         if (!info->io.regspacing)
1942                                 info->io.regspacing = DEFAULT_REGSPACING;
1943                         info->io.regsize = regsize;
1944                         if (!info->io.regsize)
1945                                 info->io.regsize = DEFAULT_REGSPACING;
1946                         info->io.regshift = regshift;
1947                         info->irq = irq;
1948                         if (info->irq)
1949                                 info->irq_setup = std_irq_setup;
1950                         info->slave_addr = ipmb;
1951
1952                         rv = add_smi(info);
1953                         if (rv) {
1954                                 kfree(info);
1955                                 goto out;
1956                         }
1957                         mutex_lock(&smi_infos_lock);
1958                         rv = try_smi_init(info);
1959                         mutex_unlock(&smi_infos_lock);
1960                         if (rv) {
1961                                 cleanup_one_si(info);
1962                                 goto out;
1963                         }
1964                 } else {
1965                         /* remove */
1966                         struct smi_info *e, *tmp_e;
1967
1968                         mutex_lock(&smi_infos_lock);
1969                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1970                                 if (e->io.addr_type != addr_space)
1971                                         continue;
1972                                 if (e->si_type != si_type)
1973                                         continue;
1974                                 if (e->io.addr_data == addr)
1975                                         cleanup_one_si(e);
1976                         }
1977                         mutex_unlock(&smi_infos_lock);
1978                 }
1979         }
1980         rv = len;
1981 out:
1982         kfree(str);
1983         return rv;
1984 }
1985
1986 static int hardcode_find_bmc(void)
1987 {
1988         int ret = -ENODEV;
1989         int             i;
1990         struct smi_info *info;
1991
1992         for (i = 0; i < SI_MAX_PARMS; i++) {
1993                 if (!ports[i] && !addrs[i])
1994                         continue;
1995
1996                 info = smi_info_alloc();
1997                 if (!info)
1998                         return -ENOMEM;
1999
2000                 info->addr_source = SI_HARDCODED;
2001                 pr_info(PFX "probing via hardcoded address\n");
2002
2003                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2004                         info->si_type = SI_KCS;
2005                 } else if (strcmp(si_type[i], "smic") == 0) {
2006                         info->si_type = SI_SMIC;
2007                 } else if (strcmp(si_type[i], "bt") == 0) {
2008                         info->si_type = SI_BT;
2009                 } else {
2010                         pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2011                                 i, si_type[i]);
2012                         kfree(info);
2013                         continue;
2014                 }
2015
2016                 if (ports[i]) {
2017                         /* An I/O port */
2018                         info->io_setup = port_setup;
2019                         info->io.addr_data = ports[i];
2020                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2021                 } else if (addrs[i]) {
2022                         /* A memory port */
2023                         info->io_setup = mem_setup;
2024                         info->io.addr_data = addrs[i];
2025                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2026                 } else {
2027                         pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2028                                 i);
2029                         kfree(info);
2030                         continue;
2031                 }
2032
2033                 info->io.addr = NULL;
2034                 info->io.regspacing = regspacings[i];
2035                 if (!info->io.regspacing)
2036                         info->io.regspacing = DEFAULT_REGSPACING;
2037                 info->io.regsize = regsizes[i];
2038                 if (!info->io.regsize)
2039                         info->io.regsize = DEFAULT_REGSPACING;
2040                 info->io.regshift = regshifts[i];
2041                 info->irq = irqs[i];
2042                 if (info->irq)
2043                         info->irq_setup = std_irq_setup;
2044                 info->slave_addr = slave_addrs[i];
2045
2046                 if (!add_smi(info)) {
2047                         mutex_lock(&smi_infos_lock);
2048                         if (try_smi_init(info))
2049                                 cleanup_one_si(info);
2050                         mutex_unlock(&smi_infos_lock);
2051                         ret = 0;
2052                 } else {
2053                         kfree(info);
2054                 }
2055         }
2056         return ret;
2057 }
2058
2059 #ifdef CONFIG_ACPI
2060
2061 /*
2062  * Once we get an ACPI failure, we don't try any more, because we go
2063  * through the tables sequentially.  Once we don't find a table, there
2064  * are no more.
2065  */
2066 static int acpi_failure;
2067
2068 /* For GPE-type interrupts. */
2069 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2070         u32 gpe_number, void *context)
2071 {
2072         struct smi_info *smi_info = context;
2073         unsigned long   flags;
2074
2075         spin_lock_irqsave(&(smi_info->si_lock), flags);
2076
2077         smi_inc_stat(smi_info, interrupts);
2078
2079         debug_timestamp("ACPI_GPE");
2080
2081         smi_event_handler(smi_info, 0);
2082         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2083
2084         return ACPI_INTERRUPT_HANDLED;
2085 }
2086
2087 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2088 {
2089         if (!info->irq)
2090                 return;
2091
2092         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2093 }
2094
2095 static int acpi_gpe_irq_setup(struct smi_info *info)
2096 {
2097         acpi_status status;
2098
2099         if (!info->irq)
2100                 return 0;
2101
2102         status = acpi_install_gpe_handler(NULL,
2103                                           info->irq,
2104                                           ACPI_GPE_LEVEL_TRIGGERED,
2105                                           &ipmi_acpi_gpe,
2106                                           info);
2107         if (status != AE_OK) {
2108                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2109                          " running polled\n", DEVICE_NAME, info->irq);
2110                 info->irq = 0;
2111                 return -EINVAL;
2112         } else {
2113                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2114                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2115                 return 0;
2116         }
2117 }
2118
2119 /*
2120  * Defined at
2121  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2122  */
2123 struct SPMITable {
2124         s8      Signature[4];
2125         u32     Length;
2126         u8      Revision;
2127         u8      Checksum;
2128         s8      OEMID[6];
2129         s8      OEMTableID[8];
2130         s8      OEMRevision[4];
2131         s8      CreatorID[4];
2132         s8      CreatorRevision[4];
2133         u8      InterfaceType;
2134         u8      IPMIlegacy;
2135         s16     SpecificationRevision;
2136
2137         /*
2138          * Bit 0 - SCI interrupt supported
2139          * Bit 1 - I/O APIC/SAPIC
2140          */
2141         u8      InterruptType;
2142
2143         /*
2144          * If bit 0 of InterruptType is set, then this is the SCI
2145          * interrupt in the GPEx_STS register.
2146          */
2147         u8      GPE;
2148
2149         s16     Reserved;
2150
2151         /*
2152          * If bit 1 of InterruptType is set, then this is the I/O
2153          * APIC/SAPIC interrupt.
2154          */
2155         u32     GlobalSystemInterrupt;
2156
2157         /* The actual register address. */
2158         struct acpi_generic_address addr;
2159
2160         u8      UID[4];
2161
2162         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2163 };
2164
2165 static int try_init_spmi(struct SPMITable *spmi)
2166 {
2167         struct smi_info  *info;
2168         int rv;
2169
2170         if (spmi->IPMIlegacy != 1) {
2171                 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2172                 return -ENODEV;
2173         }
2174
2175         info = smi_info_alloc();
2176         if (!info) {
2177                 pr_err(PFX "Could not allocate SI data (3)\n");
2178                 return -ENOMEM;
2179         }
2180
2181         info->addr_source = SI_SPMI;
2182         pr_info(PFX "probing via SPMI\n");
2183
2184         /* Figure out the interface type. */
2185         switch (spmi->InterfaceType) {
2186         case 1: /* KCS */
2187                 info->si_type = SI_KCS;
2188                 break;
2189         case 2: /* SMIC */
2190                 info->si_type = SI_SMIC;
2191                 break;
2192         case 3: /* BT */
2193                 info->si_type = SI_BT;
2194                 break;
2195         case 4: /* SSIF, just ignore */
2196                 kfree(info);
2197                 return -EIO;
2198         default:
2199                 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2200                         spmi->InterfaceType);
2201                 kfree(info);
2202                 return -EIO;
2203         }
2204
2205         if (spmi->InterruptType & 1) {
2206                 /* We've got a GPE interrupt. */
2207                 info->irq = spmi->GPE;
2208                 info->irq_setup = acpi_gpe_irq_setup;
2209         } else if (spmi->InterruptType & 2) {
2210                 /* We've got an APIC/SAPIC interrupt. */
2211                 info->irq = spmi->GlobalSystemInterrupt;
2212                 info->irq_setup = std_irq_setup;
2213         } else {
2214                 /* Use the default interrupt setting. */
2215                 info->irq = 0;
2216                 info->irq_setup = NULL;
2217         }
2218
2219         if (spmi->addr.bit_width) {
2220                 /* A (hopefully) properly formed register bit width. */
2221                 info->io.regspacing = spmi->addr.bit_width / 8;
2222         } else {
2223                 info->io.regspacing = DEFAULT_REGSPACING;
2224         }
2225         info->io.regsize = info->io.regspacing;
2226         info->io.regshift = spmi->addr.bit_offset;
2227
2228         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2229                 info->io_setup = mem_setup;
2230                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2231         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2232                 info->io_setup = port_setup;
2233                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2234         } else {
2235                 kfree(info);
2236                 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2237                 return -EIO;
2238         }
2239         info->io.addr_data = spmi->addr.address;
2240
2241         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2242                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2243                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2244                 info->irq);
2245
2246         rv = add_smi(info);
2247         if (rv)
2248                 kfree(info);
2249
2250         return rv;
2251 }
2252
2253 static void spmi_find_bmc(void)
2254 {
2255         acpi_status      status;
2256         struct SPMITable *spmi;
2257         int              i;
2258
2259         if (acpi_disabled)
2260                 return;
2261
2262         if (acpi_failure)
2263                 return;
2264
2265         for (i = 0; ; i++) {
2266                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2267                                         (struct acpi_table_header **)&spmi);
2268                 if (status != AE_OK)
2269                         return;
2270
2271                 try_init_spmi(spmi);
2272         }
2273 }
2274 #endif
2275
2276 #ifdef CONFIG_DMI
2277 struct dmi_ipmi_data {
2278         u8              type;
2279         u8              addr_space;
2280         unsigned long   base_addr;
2281         u8              irq;
2282         u8              offset;
2283         u8              slave_addr;
2284 };
2285
2286 static int decode_dmi(const struct dmi_header *dm,
2287                                 struct dmi_ipmi_data *dmi)
2288 {
2289         const u8        *data = (const u8 *)dm;
2290         unsigned long   base_addr;
2291         u8              reg_spacing;
2292         u8              len = dm->length;
2293
2294         dmi->type = data[4];
2295
2296         memcpy(&base_addr, data+8, sizeof(unsigned long));
2297         if (len >= 0x11) {
2298                 if (base_addr & 1) {
2299                         /* I/O */
2300                         base_addr &= 0xFFFE;
2301                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2302                 } else
2303                         /* Memory */
2304                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2305
2306                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2307                    is odd. */
2308                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2309
2310                 dmi->irq = data[0x11];
2311
2312                 /* The top two bits of byte 0x10 hold the register spacing. */
2313                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2314                 switch (reg_spacing) {
2315                 case 0x00: /* Byte boundaries */
2316                     dmi->offset = 1;
2317                     break;
2318                 case 0x01: /* 32-bit boundaries */
2319                     dmi->offset = 4;
2320                     break;
2321                 case 0x02: /* 16-byte boundaries */
2322                     dmi->offset = 16;
2323                     break;
2324                 default:
2325                     /* Some other interface, just ignore it. */
2326                     return -EIO;
2327                 }
2328         } else {
2329                 /* Old DMI spec. */
2330                 /*
2331                  * Note that technically, the lower bit of the base
2332                  * address should be 1 if the address is I/O and 0 if
2333                  * the address is in memory.  So many systems get that
2334                  * wrong (and all that I have seen are I/O) so we just
2335                  * ignore that bit and assume I/O.  Systems that use
2336                  * memory should use the newer spec, anyway.
2337                  */
2338                 dmi->base_addr = base_addr & 0xfffe;
2339                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2340                 dmi->offset = 1;
2341         }
2342
2343         dmi->slave_addr = data[6];
2344
2345         return 0;
2346 }
2347
2348 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2349 {
2350         struct smi_info *info;
2351
2352         info = smi_info_alloc();
2353         if (!info) {
2354                 pr_err(PFX "Could not allocate SI data\n");
2355                 return;
2356         }
2357
2358         info->addr_source = SI_SMBIOS;
2359         pr_info(PFX "probing via SMBIOS\n");
2360
2361         switch (ipmi_data->type) {
2362         case 0x01: /* KCS */
2363                 info->si_type = SI_KCS;
2364                 break;
2365         case 0x02: /* SMIC */
2366                 info->si_type = SI_SMIC;
2367                 break;
2368         case 0x03: /* BT */
2369                 info->si_type = SI_BT;
2370                 break;
2371         default:
2372                 kfree(info);
2373                 return;
2374         }
2375
2376         switch (ipmi_data->addr_space) {
2377         case IPMI_MEM_ADDR_SPACE:
2378                 info->io_setup = mem_setup;
2379                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2380                 break;
2381
2382         case IPMI_IO_ADDR_SPACE:
2383                 info->io_setup = port_setup;
2384                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2385                 break;
2386
2387         default:
2388                 kfree(info);
2389                 pr_warn(PFX "Unknown SMBIOS I/O Address type: %d\n",
2390                         ipmi_data->addr_space);
2391                 return;
2392         }
2393         info->io.addr_data = ipmi_data->base_addr;
2394
2395         info->io.regspacing = ipmi_data->offset;
2396         if (!info->io.regspacing)
2397                 info->io.regspacing = DEFAULT_REGSPACING;
2398         info->io.regsize = DEFAULT_REGSPACING;
2399         info->io.regshift = 0;
2400
2401         info->slave_addr = ipmi_data->slave_addr;
2402
2403         info->irq = ipmi_data->irq;
2404         if (info->irq)
2405                 info->irq_setup = std_irq_setup;
2406
2407         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2408                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2409                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2410                 info->irq);
2411
2412         if (add_smi(info))
2413                 kfree(info);
2414 }
2415
2416 static void dmi_find_bmc(void)
2417 {
2418         const struct dmi_device *dev = NULL;
2419         struct dmi_ipmi_data data;
2420         int                  rv;
2421
2422         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2423                 memset(&data, 0, sizeof(data));
2424                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2425                                 &data);
2426                 if (!rv)
2427                         try_init_dmi(&data);
2428         }
2429 }
2430 #endif /* CONFIG_DMI */
2431
2432 #ifdef CONFIG_PCI
2433
2434 #define PCI_ERMC_CLASSCODE              0x0C0700
2435 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2436 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2437 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2438 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2439 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2440
2441 #define PCI_HP_VENDOR_ID    0x103C
2442 #define PCI_MMC_DEVICE_ID   0x121A
2443 #define PCI_MMC_ADDR_CW     0x10
2444
2445 static void ipmi_pci_cleanup(struct smi_info *info)
2446 {
2447         struct pci_dev *pdev = info->addr_source_data;
2448
2449         pci_disable_device(pdev);
2450 }
2451
2452 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2453 {
2454         if (info->si_type == SI_KCS) {
2455                 unsigned char   status;
2456                 int             regspacing;
2457
2458                 info->io.regsize = DEFAULT_REGSIZE;
2459                 info->io.regshift = 0;
2460                 info->io_size = 2;
2461                 info->handlers = &kcs_smi_handlers;
2462
2463                 /* detect 1, 4, 16byte spacing */
2464                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2465                         info->io.regspacing = regspacing;
2466                         if (info->io_setup(info)) {
2467                                 dev_err(info->dev,
2468                                         "Could not setup I/O space\n");
2469                                 return DEFAULT_REGSPACING;
2470                         }
2471                         /* write invalid cmd */
2472                         info->io.outputb(&info->io, 1, 0x10);
2473                         /* read status back */
2474                         status = info->io.inputb(&info->io, 1);
2475                         info->io_cleanup(info);
2476                         if (status)
2477                                 return regspacing;
2478                         regspacing *= 4;
2479                 }
2480         }
2481         return DEFAULT_REGSPACING;
2482 }
2483
2484 static int ipmi_pci_probe(struct pci_dev *pdev,
2485                                     const struct pci_device_id *ent)
2486 {
2487         int rv;
2488         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2489         struct smi_info *info;
2490
2491         info = smi_info_alloc();
2492         if (!info)
2493                 return -ENOMEM;
2494
2495         info->addr_source = SI_PCI;
2496         dev_info(&pdev->dev, "probing via PCI");
2497
2498         switch (class_type) {
2499         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2500                 info->si_type = SI_SMIC;
2501                 break;
2502
2503         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2504                 info->si_type = SI_KCS;
2505                 break;
2506
2507         case PCI_ERMC_CLASSCODE_TYPE_BT:
2508                 info->si_type = SI_BT;
2509                 break;
2510
2511         default:
2512                 kfree(info);
2513                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2514                 return -ENOMEM;
2515         }
2516
2517         rv = pci_enable_device(pdev);
2518         if (rv) {
2519                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2520                 kfree(info);
2521                 return rv;
2522         }
2523
2524         info->addr_source_cleanup = ipmi_pci_cleanup;
2525         info->addr_source_data = pdev;
2526
2527         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2528                 info->io_setup = port_setup;
2529                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2530         } else {
2531                 info->io_setup = mem_setup;
2532                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2533         }
2534         info->io.addr_data = pci_resource_start(pdev, 0);
2535
2536         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2537         info->io.regsize = DEFAULT_REGSIZE;
2538         info->io.regshift = 0;
2539
2540         info->irq = pdev->irq;
2541         if (info->irq)
2542                 info->irq_setup = std_irq_setup;
2543
2544         info->dev = &pdev->dev;
2545         pci_set_drvdata(pdev, info);
2546
2547         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2548                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2549                 info->irq);
2550
2551         rv = add_smi(info);
2552         if (rv) {
2553                 kfree(info);
2554                 pci_disable_device(pdev);
2555         }
2556
2557         return rv;
2558 }
2559
2560 static void ipmi_pci_remove(struct pci_dev *pdev)
2561 {
2562         struct smi_info *info = pci_get_drvdata(pdev);
2563         cleanup_one_si(info);
2564 }
2565
2566 static const struct pci_device_id ipmi_pci_devices[] = {
2567         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2568         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2569         { 0, }
2570 };
2571 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2572
2573 static struct pci_driver ipmi_pci_driver = {
2574         .name =         DEVICE_NAME,
2575         .id_table =     ipmi_pci_devices,
2576         .probe =        ipmi_pci_probe,
2577         .remove =       ipmi_pci_remove,
2578 };
2579 #endif /* CONFIG_PCI */
2580
2581 #ifdef CONFIG_OF
2582 static const struct of_device_id of_ipmi_match[] = {
2583         { .type = "ipmi", .compatible = "ipmi-kcs",
2584           .data = (void *)(unsigned long) SI_KCS },
2585         { .type = "ipmi", .compatible = "ipmi-smic",
2586           .data = (void *)(unsigned long) SI_SMIC },
2587         { .type = "ipmi", .compatible = "ipmi-bt",
2588           .data = (void *)(unsigned long) SI_BT },
2589         {},
2590 };
2591 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2592
2593 static int of_ipmi_probe(struct platform_device *dev)
2594 {
2595         const struct of_device_id *match;
2596         struct smi_info *info;
2597         struct resource resource;
2598         const __be32 *regsize, *regspacing, *regshift;
2599         struct device_node *np = dev->dev.of_node;
2600         int ret;
2601         int proplen;
2602
2603         dev_info(&dev->dev, "probing via device tree\n");
2604
2605         match = of_match_device(of_ipmi_match, &dev->dev);
2606         if (!match)
2607                 return -ENODEV;
2608
2609         if (!of_device_is_available(np))
2610                 return -EINVAL;
2611
2612         ret = of_address_to_resource(np, 0, &resource);
2613         if (ret) {
2614                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2615                 return ret;
2616         }
2617
2618         regsize = of_get_property(np, "reg-size", &proplen);
2619         if (regsize && proplen != 4) {
2620                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2621                 return -EINVAL;
2622         }
2623
2624         regspacing = of_get_property(np, "reg-spacing", &proplen);
2625         if (regspacing && proplen != 4) {
2626                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2627                 return -EINVAL;
2628         }
2629
2630         regshift = of_get_property(np, "reg-shift", &proplen);
2631         if (regshift && proplen != 4) {
2632                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2633                 return -EINVAL;
2634         }
2635
2636         info = smi_info_alloc();
2637
2638         if (!info) {
2639                 dev_err(&dev->dev,
2640                         "could not allocate memory for OF probe\n");
2641                 return -ENOMEM;
2642         }
2643
2644         info->si_type           = (enum si_type) match->data;
2645         info->addr_source       = SI_DEVICETREE;
2646         info->irq_setup         = std_irq_setup;
2647
2648         if (resource.flags & IORESOURCE_IO) {
2649                 info->io_setup          = port_setup;
2650                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2651         } else {
2652                 info->io_setup          = mem_setup;
2653                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2654         }
2655
2656         info->io.addr_data      = resource.start;
2657
2658         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2659         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2660         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2661
2662         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2663         info->dev               = &dev->dev;
2664
2665         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2666                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2667                 info->irq);
2668
2669         dev_set_drvdata(&dev->dev, info);
2670
2671         ret = add_smi(info);
2672         if (ret) {
2673                 kfree(info);
2674                 return ret;
2675         }
2676         return 0;
2677 }
2678 #else
2679 #define of_ipmi_match NULL
2680 static int of_ipmi_probe(struct platform_device *dev)
2681 {
2682         return -ENODEV;
2683 }
2684 #endif
2685
2686 #ifdef CONFIG_ACPI
2687 static int acpi_ipmi_probe(struct platform_device *dev)
2688 {
2689         struct smi_info *info;
2690         struct resource *res, *res_second;
2691         acpi_handle handle;
2692         acpi_status status;
2693         unsigned long long tmp;
2694         int rv = -EINVAL;
2695
2696         if (!si_tryacpi)
2697                return 0;
2698
2699         handle = ACPI_HANDLE(&dev->dev);
2700         if (!handle)
2701                 return -ENODEV;
2702
2703         info = smi_info_alloc();
2704         if (!info)
2705                 return -ENOMEM;
2706
2707         info->addr_source = SI_ACPI;
2708         dev_info(&dev->dev, PFX "probing via ACPI\n");
2709
2710         info->addr_info.acpi_info.acpi_handle = handle;
2711
2712         /* _IFT tells us the interface type: KCS, BT, etc */
2713         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2714         if (ACPI_FAILURE(status)) {
2715                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2716                 goto err_free;
2717         }
2718
2719         switch (tmp) {
2720         case 1:
2721                 info->si_type = SI_KCS;
2722                 break;
2723         case 2:
2724                 info->si_type = SI_SMIC;
2725                 break;
2726         case 3:
2727                 info->si_type = SI_BT;
2728                 break;
2729         case 4: /* SSIF, just ignore */
2730                 rv = -ENODEV;
2731                 goto err_free;
2732         default:
2733                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2734                 goto err_free;
2735         }
2736
2737         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2738         if (res) {
2739                 info->io_setup = port_setup;
2740                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2741         } else {
2742                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2743                 if (res) {
2744                         info->io_setup = mem_setup;
2745                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2746                 }
2747         }
2748         if (!res) {
2749                 dev_err(&dev->dev, "no I/O or memory address\n");
2750                 goto err_free;
2751         }
2752         info->io.addr_data = res->start;
2753
2754         info->io.regspacing = DEFAULT_REGSPACING;
2755         res_second = platform_get_resource(dev,
2756                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2757                                         IORESOURCE_IO : IORESOURCE_MEM,
2758                                1);
2759         if (res_second) {
2760                 if (res_second->start > info->io.addr_data)
2761                         info->io.regspacing =
2762                                 res_second->start - info->io.addr_data;
2763         }
2764         info->io.regsize = DEFAULT_REGSPACING;
2765         info->io.regshift = 0;
2766
2767         /* If _GPE exists, use it; otherwise use standard interrupts */
2768         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2769         if (ACPI_SUCCESS(status)) {
2770                 info->irq = tmp;
2771                 info->irq_setup = acpi_gpe_irq_setup;
2772         } else {
2773                 int irq = platform_get_irq(dev, 0);
2774
2775                 if (irq > 0) {
2776                         info->irq = irq;
2777                         info->irq_setup = std_irq_setup;
2778                 }
2779         }
2780
2781         info->dev = &dev->dev;
2782         platform_set_drvdata(dev, info);
2783
2784         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2785                  res, info->io.regsize, info->io.regspacing,
2786                  info->irq);
2787
2788         rv = add_smi(info);
2789         if (rv)
2790                 kfree(info);
2791
2792         return rv;
2793
2794 err_free:
2795         kfree(info);
2796         return rv;
2797 }
2798
2799 static const struct acpi_device_id acpi_ipmi_match[] = {
2800         { "IPI0001", 0 },
2801         { },
2802 };
2803 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2804 #else
2805 static int acpi_ipmi_probe(struct platform_device *dev)
2806 {
2807         return -ENODEV;
2808 }
2809 #endif
2810
2811 static int ipmi_probe(struct platform_device *dev)
2812 {
2813         if (of_ipmi_probe(dev) == 0)
2814                 return 0;
2815
2816         return acpi_ipmi_probe(dev);
2817 }
2818
2819 static int ipmi_remove(struct platform_device *dev)
2820 {
2821         struct smi_info *info = dev_get_drvdata(&dev->dev);
2822
2823         cleanup_one_si(info);
2824         return 0;
2825 }
2826
2827 static struct platform_driver ipmi_driver = {
2828         .driver = {
2829                 .name = DEVICE_NAME,
2830                 .of_match_table = of_ipmi_match,
2831                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2832         },
2833         .probe          = ipmi_probe,
2834         .remove         = ipmi_remove,
2835 };
2836
2837 #ifdef CONFIG_PARISC
2838 static int ipmi_parisc_probe(struct parisc_device *dev)
2839 {
2840         struct smi_info *info;
2841         int rv;
2842
2843         info = smi_info_alloc();
2844
2845         if (!info) {
2846                 dev_err(&dev->dev,
2847                         "could not allocate memory for PARISC probe\n");
2848                 return -ENOMEM;
2849         }
2850
2851         info->si_type           = SI_KCS;
2852         info->addr_source       = SI_DEVICETREE;
2853         info->io_setup          = mem_setup;
2854         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2855         info->io.addr_data      = dev->hpa.start;
2856         info->io.regsize        = 1;
2857         info->io.regspacing     = 1;
2858         info->io.regshift       = 0;
2859         info->irq               = 0; /* no interrupt */
2860         info->irq_setup         = NULL;
2861         info->dev               = &dev->dev;
2862
2863         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2864
2865         dev_set_drvdata(&dev->dev, info);
2866
2867         rv = add_smi(info);
2868         if (rv) {
2869                 kfree(info);
2870                 return rv;
2871         }
2872
2873         return 0;
2874 }
2875
2876 static int ipmi_parisc_remove(struct parisc_device *dev)
2877 {
2878         cleanup_one_si(dev_get_drvdata(&dev->dev));
2879         return 0;
2880 }
2881
2882 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2883         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2884         { 0, }
2885 };
2886
2887 static struct parisc_driver ipmi_parisc_driver = {
2888         .name =         "ipmi",
2889         .id_table =     ipmi_parisc_tbl,
2890         .probe =        ipmi_parisc_probe,
2891         .remove =       ipmi_parisc_remove,
2892 };
2893 #endif /* CONFIG_PARISC */
2894
2895 static int wait_for_msg_done(struct smi_info *smi_info)
2896 {
2897         enum si_sm_result     smi_result;
2898
2899         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2900         for (;;) {
2901                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2902                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2903                         schedule_timeout_uninterruptible(1);
2904                         smi_result = smi_info->handlers->event(
2905                                 smi_info->si_sm, jiffies_to_usecs(1));
2906                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2907                         smi_result = smi_info->handlers->event(
2908                                 smi_info->si_sm, 0);
2909                 } else
2910                         break;
2911         }
2912         if (smi_result == SI_SM_HOSED)
2913                 /*
2914                  * We couldn't get the state machine to run, so whatever's at
2915                  * the port is probably not an IPMI SMI interface.
2916                  */
2917                 return -ENODEV;
2918
2919         return 0;
2920 }
2921
2922 static int try_get_dev_id(struct smi_info *smi_info)
2923 {
2924         unsigned char         msg[2];
2925         unsigned char         *resp;
2926         unsigned long         resp_len;
2927         int                   rv = 0;
2928
2929         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2930         if (!resp)
2931                 return -ENOMEM;
2932
2933         /*
2934          * Do a Get Device ID command, since it comes back with some
2935          * useful info.
2936          */
2937         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2938         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2939         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2940
2941         rv = wait_for_msg_done(smi_info);
2942         if (rv)
2943                 goto out;
2944
2945         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2946                                                   resp, IPMI_MAX_MSG_LENGTH);
2947
2948         /* Check and record info from the get device id, in case we need it. */
2949         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2950
2951 out:
2952         kfree(resp);
2953         return rv;
2954 }
2955
2956 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2957 {
2958         unsigned char         msg[3];
2959         unsigned char         *resp;
2960         unsigned long         resp_len;
2961         int                   rv;
2962
2963         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2964         if (!resp)
2965                 return -ENOMEM;
2966
2967         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2968         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2969         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2970
2971         rv = wait_for_msg_done(smi_info);
2972         if (rv) {
2973                 dev_warn(smi_info->dev,
2974                          "Error getting response from get global enables command: %d\n",
2975                          rv);
2976                 goto out;
2977         }
2978
2979         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2980                                                   resp, IPMI_MAX_MSG_LENGTH);
2981
2982         if (resp_len < 4 ||
2983                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2984                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2985                         resp[2] != 0) {
2986                 dev_warn(smi_info->dev,
2987                          "Invalid return from get global enables command: %ld %x %x %x\n",
2988                          resp_len, resp[0], resp[1], resp[2]);
2989                 rv = -EINVAL;
2990                 goto out;
2991         } else {
2992                 *enables = resp[3];
2993         }
2994
2995 out:
2996         kfree(resp);
2997         return rv;
2998 }
2999
3000 /*
3001  * Returns 1 if it gets an error from the command.
3002  */
3003 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3004 {
3005         unsigned char         msg[3];
3006         unsigned char         *resp;
3007         unsigned long         resp_len;
3008         int                   rv;
3009
3010         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3011         if (!resp)
3012                 return -ENOMEM;
3013
3014         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3015         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3016         msg[2] = enables;
3017         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3018
3019         rv = wait_for_msg_done(smi_info);
3020         if (rv) {
3021                 dev_warn(smi_info->dev,
3022                          "Error getting response from set global enables command: %d\n",
3023                          rv);
3024                 goto out;
3025         }
3026
3027         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3028                                                   resp, IPMI_MAX_MSG_LENGTH);
3029
3030         if (resp_len < 3 ||
3031                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3032                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3033                 dev_warn(smi_info->dev,
3034                          "Invalid return from set global enables command: %ld %x %x\n",
3035                          resp_len, resp[0], resp[1]);
3036                 rv = -EINVAL;
3037                 goto out;
3038         }
3039
3040         if (resp[2] != 0)
3041                 rv = 1;
3042
3043 out:
3044         kfree(resp);
3045         return rv;
3046 }
3047
3048 /*
3049  * Some BMCs do not support clearing the receive irq bit in the global
3050  * enables (even if they don't support interrupts on the BMC).  Check
3051  * for this and handle it properly.
3052  */
3053 static void check_clr_rcv_irq(struct smi_info *smi_info)
3054 {
3055         u8 enables = 0;
3056         int rv;
3057
3058         rv = get_global_enables(smi_info, &enables);
3059         if (!rv) {
3060                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3061                         /* Already clear, should work ok. */
3062                         return;
3063
3064                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3065                 rv = set_global_enables(smi_info, enables);
3066         }
3067
3068         if (rv < 0) {
3069                 dev_err(smi_info->dev,
3070                         "Cannot check clearing the rcv irq: %d\n", rv);
3071                 return;
3072         }
3073
3074         if (rv) {
3075                 /*
3076                  * An error when setting the event buffer bit means
3077                  * clearing the bit is not supported.
3078                  */
3079                 dev_warn(smi_info->dev,
3080                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3081                 smi_info->cannot_disable_irq = true;
3082         }
3083 }
3084
3085 /*
3086  * Some BMCs do not support setting the interrupt bits in the global
3087  * enables even if they support interrupts.  Clearly bad, but we can
3088  * compensate.
3089  */
3090 static void check_set_rcv_irq(struct smi_info *smi_info)
3091 {
3092         u8 enables = 0;
3093         int rv;
3094
3095         if (!smi_info->irq)
3096                 return;
3097
3098         rv = get_global_enables(smi_info, &enables);
3099         if (!rv) {
3100                 enables |= IPMI_BMC_RCV_MSG_INTR;
3101                 rv = set_global_enables(smi_info, enables);
3102         }
3103
3104         if (rv < 0) {
3105                 dev_err(smi_info->dev,
3106                         "Cannot check setting the rcv irq: %d\n", rv);
3107                 return;
3108         }
3109
3110         if (rv) {
3111                 /*
3112                  * An error when setting the event buffer bit means
3113                  * setting the bit is not supported.
3114                  */
3115                 dev_warn(smi_info->dev,
3116                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3117                 smi_info->cannot_disable_irq = true;
3118                 smi_info->irq_enable_broken = true;
3119         }
3120 }
3121
3122 static int try_enable_event_buffer(struct smi_info *smi_info)
3123 {
3124         unsigned char         msg[3];
3125         unsigned char         *resp;
3126         unsigned long         resp_len;
3127         int                   rv = 0;
3128
3129         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3130         if (!resp)
3131                 return -ENOMEM;
3132
3133         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3134         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3135         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3136
3137         rv = wait_for_msg_done(smi_info);
3138         if (rv) {
3139                 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3140                 goto out;
3141         }
3142
3143         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3144                                                   resp, IPMI_MAX_MSG_LENGTH);
3145
3146         if (resp_len < 4 ||
3147                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3148                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3149                         resp[2] != 0) {
3150                 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3151                 rv = -EINVAL;
3152                 goto out;
3153         }
3154
3155         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3156                 /* buffer is already enabled, nothing to do. */
3157                 smi_info->supports_event_msg_buff = true;
3158                 goto out;
3159         }
3160
3161         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3162         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3163         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3164         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3165
3166         rv = wait_for_msg_done(smi_info);
3167         if (rv) {
3168                 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3169                 goto out;
3170         }
3171
3172         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3173                                                   resp, IPMI_MAX_MSG_LENGTH);
3174
3175         if (resp_len < 3 ||
3176                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3177                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3178                 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3179                 rv = -EINVAL;
3180                 goto out;
3181         }
3182
3183         if (resp[2] != 0)
3184                 /*
3185                  * An error when setting the event buffer bit means
3186                  * that the event buffer is not supported.
3187                  */
3188                 rv = -ENOENT;
3189         else
3190                 smi_info->supports_event_msg_buff = true;
3191
3192 out:
3193         kfree(resp);
3194         return rv;
3195 }
3196
3197 static int smi_type_proc_show(struct seq_file *m, void *v)
3198 {
3199         struct smi_info *smi = m->private;
3200
3201         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3202
3203         return 0;
3204 }
3205
3206 static int smi_type_proc_open(struct inode *inode, struct file *file)
3207 {
3208         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3209 }
3210
3211 static const struct file_operations smi_type_proc_ops = {
3212         .open           = smi_type_proc_open,
3213         .read           = seq_read,
3214         .llseek         = seq_lseek,
3215         .release        = single_release,
3216 };
3217
3218 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3219 {
3220         struct smi_info *smi = m->private;
3221
3222         seq_printf(m, "interrupts_enabled:    %d\n",
3223                        smi->irq && !smi->interrupt_disabled);
3224         seq_printf(m, "short_timeouts:        %u\n",
3225                        smi_get_stat(smi, short_timeouts));
3226         seq_printf(m, "long_timeouts:         %u\n",
3227                        smi_get_stat(smi, long_timeouts));
3228         seq_printf(m, "idles:                 %u\n",
3229                        smi_get_stat(smi, idles));
3230         seq_printf(m, "interrupts:            %u\n",
3231                        smi_get_stat(smi, interrupts));
3232         seq_printf(m, "attentions:            %u\n",
3233                        smi_get_stat(smi, attentions));
3234         seq_printf(m, "flag_fetches:          %u\n",
3235                        smi_get_stat(smi, flag_fetches));
3236         seq_printf(m, "hosed_count:           %u\n",
3237                        smi_get_stat(smi, hosed_count));
3238         seq_printf(m, "complete_transactions: %u\n",
3239                        smi_get_stat(smi, complete_transactions));
3240         seq_printf(m, "events:                %u\n",
3241                        smi_get_stat(smi, events));
3242         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3243                        smi_get_stat(smi, watchdog_pretimeouts));
3244         seq_printf(m, "incoming_messages:     %u\n",
3245                        smi_get_stat(smi, incoming_messages));
3246         return 0;
3247 }
3248
3249 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3250 {
3251         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3252 }
3253
3254 static const struct file_operations smi_si_stats_proc_ops = {
3255         .open           = smi_si_stats_proc_open,
3256         .read           = seq_read,
3257         .llseek         = seq_lseek,
3258         .release        = single_release,
3259 };
3260
3261 static int smi_params_proc_show(struct seq_file *m, void *v)
3262 {
3263         struct smi_info *smi = m->private;
3264
3265         seq_printf(m,
3266                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3267                    si_to_str[smi->si_type],
3268                    addr_space_to_str[smi->io.addr_type],
3269                    smi->io.addr_data,
3270                    smi->io.regspacing,
3271                    smi->io.regsize,
3272                    smi->io.regshift,
3273                    smi->irq,
3274                    smi->slave_addr);
3275
3276         return 0;
3277 }
3278
3279 static int smi_params_proc_open(struct inode *inode, struct file *file)
3280 {
3281         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3282 }
3283
3284 static const struct file_operations smi_params_proc_ops = {
3285         .open           = smi_params_proc_open,
3286         .read           = seq_read,
3287         .llseek         = seq_lseek,
3288         .release        = single_release,
3289 };
3290
3291 /*
3292  * oem_data_avail_to_receive_msg_avail
3293  * @info - smi_info structure with msg_flags set
3294  *
3295  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3296  * Returns 1 indicating need to re-run handle_flags().
3297  */
3298 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3299 {
3300         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3301                                RECEIVE_MSG_AVAIL);
3302         return 1;
3303 }
3304
3305 /*
3306  * setup_dell_poweredge_oem_data_handler
3307  * @info - smi_info.device_id must be populated
3308  *
3309  * Systems that match, but have firmware version < 1.40 may assert
3310  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3311  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3312  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3313  * as RECEIVE_MSG_AVAIL instead.
3314  *
3315  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3316  * assert the OEM[012] bits, and if it did, the driver would have to
3317  * change to handle that properly, we don't actually check for the
3318  * firmware version.
3319  * Device ID = 0x20                BMC on PowerEdge 8G servers
3320  * Device Revision = 0x80
3321  * Firmware Revision1 = 0x01       BMC version 1.40
3322  * Firmware Revision2 = 0x40       BCD encoded
3323  * IPMI Version = 0x51             IPMI 1.5
3324  * Manufacturer ID = A2 02 00      Dell IANA
3325  *
3326  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3327  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3328  *
3329  */
3330 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3331 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3332 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3333 #define DELL_IANA_MFR_ID 0x0002a2
3334 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3335 {
3336         struct ipmi_device_id *id = &smi_info->device_id;
3337         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3338                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3339                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3340                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3341                         smi_info->oem_data_avail_handler =
3342                                 oem_data_avail_to_receive_msg_avail;
3343                 } else if (ipmi_version_major(id) < 1 ||
3344                            (ipmi_version_major(id) == 1 &&
3345                             ipmi_version_minor(id) < 5)) {
3346                         smi_info->oem_data_avail_handler =
3347                                 oem_data_avail_to_receive_msg_avail;
3348                 }
3349         }
3350 }
3351
3352 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3353 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3354 {
3355         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3356
3357         /* Make it a response */
3358         msg->rsp[0] = msg->data[0] | 4;
3359         msg->rsp[1] = msg->data[1];
3360         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3361         msg->rsp_size = 3;
3362         smi_info->curr_msg = NULL;
3363         deliver_recv_msg(smi_info, msg);
3364 }
3365
3366 /*
3367  * dell_poweredge_bt_xaction_handler
3368  * @info - smi_info.device_id must be populated
3369  *
3370  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3371  * not respond to a Get SDR command if the length of the data
3372  * requested is exactly 0x3A, which leads to command timeouts and no
3373  * data returned.  This intercepts such commands, and causes userspace
3374  * callers to try again with a different-sized buffer, which succeeds.
3375  */
3376
3377 #define STORAGE_NETFN 0x0A
3378 #define STORAGE_CMD_GET_SDR 0x23
3379 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3380                                              unsigned long unused,
3381                                              void *in)
3382 {
3383         struct smi_info *smi_info = in;
3384         unsigned char *data = smi_info->curr_msg->data;
3385         unsigned int size   = smi_info->curr_msg->data_size;
3386         if (size >= 8 &&
3387             (data[0]>>2) == STORAGE_NETFN &&
3388             data[1] == STORAGE_CMD_GET_SDR &&
3389             data[7] == 0x3A) {
3390                 return_hosed_msg_badsize(smi_info);
3391                 return NOTIFY_STOP;
3392         }
3393         return NOTIFY_DONE;
3394 }
3395
3396 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3397         .notifier_call  = dell_poweredge_bt_xaction_handler,
3398 };
3399
3400 /*
3401  * setup_dell_poweredge_bt_xaction_handler
3402  * @info - smi_info.device_id must be filled in already
3403  *
3404  * Fills in smi_info.device_id.start_transaction_pre_hook
3405  * when we know what function to use there.
3406  */
3407 static void
3408 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3409 {
3410         struct ipmi_device_id *id = &smi_info->device_id;
3411         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3412             smi_info->si_type == SI_BT)
3413                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3414 }
3415
3416 /*
3417  * setup_oem_data_handler
3418  * @info - smi_info.device_id must be filled in already
3419  *
3420  * Fills in smi_info.device_id.oem_data_available_handler
3421  * when we know what function to use there.
3422  */
3423
3424 static void setup_oem_data_handler(struct smi_info *smi_info)
3425 {
3426         setup_dell_poweredge_oem_data_handler(smi_info);
3427 }
3428
3429 static void setup_xaction_handlers(struct smi_info *smi_info)
3430 {
3431         setup_dell_poweredge_bt_xaction_handler(smi_info);
3432 }
3433
3434 static void check_for_broken_irqs(struct smi_info *smi_info)
3435 {
3436         check_clr_rcv_irq(smi_info);
3437         check_set_rcv_irq(smi_info);
3438 }
3439
3440 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3441 {
3442         if (smi_info->thread != NULL)
3443                 kthread_stop(smi_info->thread);
3444         if (smi_info->timer_running)
3445                 del_timer_sync(&smi_info->si_timer);
3446 }
3447
3448 static int is_new_interface(struct smi_info *info)
3449 {
3450         struct smi_info *e;
3451
3452         list_for_each_entry(e, &smi_infos, link) {
3453                 if (e->io.addr_type != info->io.addr_type)
3454                         continue;
3455                 if (e->io.addr_data == info->io.addr_data) {
3456                         /*
3457                          * This is a cheap hack, ACPI doesn't have a defined
3458                          * slave address but SMBIOS does.  Pick it up from
3459                          * any source that has it available.
3460                          */
3461                         if (info->slave_addr && !e->slave_addr)
3462                                 e->slave_addr = info->slave_addr;
3463                         return 0;
3464                 }
3465         }
3466
3467         return 1;
3468 }
3469
3470 static int add_smi(struct smi_info *new_smi)
3471 {
3472         int rv = 0;
3473
3474         mutex_lock(&smi_infos_lock);
3475         if (!is_new_interface(new_smi)) {
3476                 pr_info(PFX "%s-specified %s state machine: duplicate\n",
3477                         ipmi_addr_src_to_str(new_smi->addr_source),
3478                         si_to_str[new_smi->si_type]);
3479                 rv = -EBUSY;
3480                 goto out_err;
3481         }
3482
3483         pr_info(PFX "Adding %s-specified %s state machine\n",
3484                 ipmi_addr_src_to_str(new_smi->addr_source),
3485                 si_to_str[new_smi->si_type]);
3486
3487         /* So we know not to free it unless we have allocated one. */
3488         new_smi->intf = NULL;
3489         new_smi->si_sm = NULL;
3490         new_smi->handlers = NULL;
3491
3492         list_add_tail(&new_smi->link, &smi_infos);
3493
3494 out_err:
3495         mutex_unlock(&smi_infos_lock);
3496         return rv;
3497 }
3498
3499 /*
3500  * Try to start up an interface.  Must be called with smi_infos_lock
3501  * held, primarily to keep smi_num consistent, we only one to do these
3502  * one at a time.
3503  */
3504 static int try_smi_init(struct smi_info *new_smi)
3505 {
3506         int rv = 0;
3507         int i;
3508         char *init_name = NULL;
3509
3510         pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3511                 ipmi_addr_src_to_str(new_smi->addr_source),
3512                 si_to_str[new_smi->si_type],
3513                 addr_space_to_str[new_smi->io.addr_type],
3514                 new_smi->io.addr_data,
3515                 new_smi->slave_addr, new_smi->irq);
3516
3517         switch (new_smi->si_type) {
3518         case SI_KCS:
3519                 new_smi->handlers = &kcs_smi_handlers;
3520                 break;
3521
3522         case SI_SMIC:
3523                 new_smi->handlers = &smic_smi_handlers;
3524                 break;
3525
3526         case SI_BT:
3527                 new_smi->handlers = &bt_smi_handlers;
3528                 break;
3529
3530         default:
3531                 /* No support for anything else yet. */
3532                 rv = -EIO;
3533                 goto out_err;
3534         }
3535
3536         new_smi->intf_num = smi_num;
3537
3538         /* Do this early so it's available for logs. */
3539         if (!new_smi->dev) {
3540                 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3541                                       new_smi->intf_num);
3542
3543                 /*
3544                  * If we don't already have a device from something
3545                  * else (like PCI), then register a new one.
3546                  */
3547                 new_smi->pdev = platform_device_alloc("ipmi_si",
3548                                                       new_smi->intf_num);
3549                 if (!new_smi->pdev) {
3550                         pr_err(PFX "Unable to allocate platform device\n");
3551                         goto out_err;
3552                 }
3553                 new_smi->dev = &new_smi->pdev->dev;
3554                 new_smi->dev->driver = &ipmi_driver.driver;
3555                 /* Nulled by device_add() */
3556                 new_smi->dev->init_name = init_name;
3557         }
3558
3559         /* Allocate the state machine's data and initialize it. */
3560         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3561         if (!new_smi->si_sm) {
3562                 pr_err(PFX "Could not allocate state machine memory\n");
3563                 rv = -ENOMEM;
3564                 goto out_err;
3565         }
3566         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3567                                                         &new_smi->io);
3568
3569         /* Now that we know the I/O size, we can set up the I/O. */
3570         rv = new_smi->io_setup(new_smi);
3571         if (rv) {
3572                 dev_err(new_smi->dev, "Could not set up I/O space\n");
3573                 goto out_err;
3574         }
3575
3576         /* Do low-level detection first. */
3577         if (new_smi->handlers->detect(new_smi->si_sm)) {
3578                 if (new_smi->addr_source)
3579                         dev_err(new_smi->dev, "Interface detection failed\n");
3580                 rv = -ENODEV;
3581                 goto out_err;
3582         }
3583
3584         /*
3585          * Attempt a get device id command.  If it fails, we probably
3586          * don't have a BMC here.
3587          */
3588         rv = try_get_dev_id(new_smi);
3589         if (rv) {
3590                 if (new_smi->addr_source)
3591                         dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3592                 goto out_err;
3593         }
3594
3595         setup_oem_data_handler(new_smi);
3596         setup_xaction_handlers(new_smi);
3597         check_for_broken_irqs(new_smi);
3598
3599         new_smi->waiting_msg = NULL;
3600         new_smi->curr_msg = NULL;
3601         atomic_set(&new_smi->req_events, 0);
3602         new_smi->run_to_completion = false;
3603         for (i = 0; i < SI_NUM_STATS; i++)
3604                 atomic_set(&new_smi->stats[i], 0);
3605
3606         new_smi->interrupt_disabled = true;
3607         atomic_set(&new_smi->need_watch, 0);
3608
3609         rv = try_enable_event_buffer(new_smi);
3610         if (rv == 0)
3611                 new_smi->has_event_buffer = true;
3612
3613         /*
3614          * Start clearing the flags before we enable interrupts or the
3615          * timer to avoid racing with the timer.
3616          */
3617         start_clear_flags(new_smi, false);
3618
3619         /*
3620          * IRQ is defined to be set when non-zero.  req_events will
3621          * cause a global flags check that will enable interrupts.
3622          */
3623         if (new_smi->irq) {
3624                 new_smi->interrupt_disabled = false;
3625                 atomic_set(&new_smi->req_events, 1);
3626         }
3627
3628         if (new_smi->pdev) {
3629                 rv = platform_device_add(new_smi->pdev);
3630                 if (rv) {
3631                         dev_err(new_smi->dev,
3632                                 "Unable to register system interface device: %d\n",
3633                                 rv);
3634                         goto out_err;
3635                 }
3636                 new_smi->dev_registered = true;
3637         }
3638
3639         rv = ipmi_register_smi(&handlers,
3640                                new_smi,
3641                                &new_smi->device_id,
3642                                new_smi->dev,
3643                                new_smi->slave_addr);
3644         if (rv) {
3645                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3646                         rv);
3647                 goto out_err_stop_timer;
3648         }
3649
3650         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3651                                      &smi_type_proc_ops,
3652                                      new_smi);
3653         if (rv) {
3654                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3655                 goto out_err_stop_timer;
3656         }
3657
3658         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3659                                      &smi_si_stats_proc_ops,
3660                                      new_smi);
3661         if (rv) {
3662                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3663                 goto out_err_stop_timer;
3664         }
3665
3666         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3667                                      &smi_params_proc_ops,
3668                                      new_smi);
3669         if (rv) {
3670                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3671                 goto out_err_stop_timer;
3672         }
3673
3674         /* Don't increment till we know we have succeeded. */
3675         smi_num++;
3676
3677         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3678                  si_to_str[new_smi->si_type]);
3679
3680         WARN_ON(new_smi->dev->init_name != NULL);
3681         kfree(init_name);
3682
3683         return 0;
3684
3685 out_err_stop_timer:
3686         wait_for_timer_and_thread(new_smi);
3687
3688 out_err:
3689         new_smi->interrupt_disabled = true;
3690
3691         if (new_smi->intf) {
3692                 ipmi_smi_t intf = new_smi->intf;
3693                 new_smi->intf = NULL;
3694                 ipmi_unregister_smi(intf);
3695         }
3696
3697         if (new_smi->irq_cleanup) {
3698                 new_smi->irq_cleanup(new_smi);
3699                 new_smi->irq_cleanup = NULL;
3700         }
3701
3702         /*
3703          * Wait until we know that we are out of any interrupt
3704          * handlers might have been running before we freed the
3705          * interrupt.
3706          */
3707         synchronize_sched();
3708
3709         if (new_smi->si_sm) {
3710                 if (new_smi->handlers)
3711                         new_smi->handlers->cleanup(new_smi->si_sm);
3712                 kfree(new_smi->si_sm);
3713                 new_smi->si_sm = NULL;
3714         }
3715         if (new_smi->addr_source_cleanup) {
3716                 new_smi->addr_source_cleanup(new_smi);
3717                 new_smi->addr_source_cleanup = NULL;
3718         }
3719         if (new_smi->io_cleanup) {
3720                 new_smi->io_cleanup(new_smi);
3721                 new_smi->io_cleanup = NULL;
3722         }
3723
3724         if (new_smi->dev_registered) {
3725                 platform_device_unregister(new_smi->pdev);
3726                 new_smi->dev_registered = false;
3727                 new_smi->pdev = NULL;
3728         } else if (new_smi->pdev) {
3729                 platform_device_put(new_smi->pdev);
3730                 new_smi->pdev = NULL;
3731         }
3732
3733         kfree(init_name);
3734
3735         return rv;
3736 }
3737
3738 static int init_ipmi_si(void)
3739 {
3740         int  i;
3741         char *str;
3742         int  rv;
3743         struct smi_info *e;
3744         enum ipmi_addr_src type = SI_INVALID;
3745
3746         if (initialized)
3747                 return 0;
3748         initialized = 1;
3749
3750         if (si_tryplatform) {
3751                 rv = platform_driver_register(&ipmi_driver);
3752                 if (rv) {
3753                         pr_err(PFX "Unable to register driver: %d\n", rv);
3754                         return rv;
3755                 }
3756         }
3757
3758         /* Parse out the si_type string into its components. */
3759         str = si_type_str;
3760         if (*str != '\0') {
3761                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3762                         si_type[i] = str;
3763                         str = strchr(str, ',');
3764                         if (str) {
3765                                 *str = '\0';
3766                                 str++;
3767                         } else {
3768                                 break;
3769                         }
3770                 }
3771         }
3772
3773         pr_info("IPMI System Interface driver.\n");
3774
3775         /* If the user gave us a device, they presumably want us to use it */
3776         if (!hardcode_find_bmc())
3777                 return 0;
3778
3779 #ifdef CONFIG_PCI
3780         if (si_trypci) {
3781                 rv = pci_register_driver(&ipmi_pci_driver);
3782                 if (rv)
3783                         pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3784                 else
3785                         pci_registered = true;
3786         }
3787 #endif
3788
3789 #ifdef CONFIG_DMI
3790         if (si_trydmi)
3791                 dmi_find_bmc();
3792 #endif
3793
3794 #ifdef CONFIG_ACPI
3795         if (si_tryacpi)
3796                 spmi_find_bmc();
3797 #endif
3798
3799 #ifdef CONFIG_PARISC
3800         register_parisc_driver(&ipmi_parisc_driver);
3801         parisc_registered = true;
3802 #endif
3803
3804         /* We prefer devices with interrupts, but in the case of a machine
3805            with multiple BMCs we assume that there will be several instances
3806            of a given type so if we succeed in registering a type then also
3807            try to register everything else of the same type */
3808
3809         mutex_lock(&smi_infos_lock);
3810         list_for_each_entry(e, &smi_infos, link) {
3811                 /* Try to register a device if it has an IRQ and we either
3812                    haven't successfully registered a device yet or this
3813                    device has the same type as one we successfully registered */
3814                 if (e->irq && (!type || e->addr_source == type)) {
3815                         if (!try_smi_init(e)) {
3816                                 type = e->addr_source;
3817                         }
3818                 }
3819         }
3820
3821         /* type will only have been set if we successfully registered an si */
3822         if (type) {
3823                 mutex_unlock(&smi_infos_lock);
3824                 return 0;
3825         }
3826
3827         /* Fall back to the preferred device */
3828
3829         list_for_each_entry(e, &smi_infos, link) {
3830                 if (!e->irq && (!type || e->addr_source == type)) {
3831                         if (!try_smi_init(e)) {
3832                                 type = e->addr_source;
3833                         }
3834                 }
3835         }
3836         mutex_unlock(&smi_infos_lock);
3837
3838         if (type)
3839                 return 0;
3840
3841         mutex_lock(&smi_infos_lock);
3842         if (unload_when_empty && list_empty(&smi_infos)) {
3843                 mutex_unlock(&smi_infos_lock);
3844                 cleanup_ipmi_si();
3845                 pr_warn(PFX "Unable to find any System Interface(s)\n");
3846                 return -ENODEV;
3847         } else {
3848                 mutex_unlock(&smi_infos_lock);
3849                 return 0;
3850         }
3851 }
3852 module_init(init_ipmi_si);
3853
3854 static void cleanup_one_si(struct smi_info *to_clean)
3855 {
3856         int           rv = 0;
3857
3858         if (!to_clean)
3859                 return;
3860
3861         if (to_clean->intf) {
3862                 ipmi_smi_t intf = to_clean->intf;
3863
3864                 to_clean->intf = NULL;
3865                 rv = ipmi_unregister_smi(intf);
3866                 if (rv) {
3867                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3868                                rv);
3869                 }
3870         }
3871
3872         if (to_clean->dev)
3873                 dev_set_drvdata(to_clean->dev, NULL);
3874
3875         list_del(&to_clean->link);
3876
3877         /*
3878          * Make sure that interrupts, the timer and the thread are
3879          * stopped and will not run again.
3880          */
3881         if (to_clean->irq_cleanup)
3882                 to_clean->irq_cleanup(to_clean);
3883         wait_for_timer_and_thread(to_clean);
3884
3885         /*
3886          * Timeouts are stopped, now make sure the interrupts are off
3887          * in the BMC.  Note that timers and CPU interrupts are off,
3888          * so no need for locks.
3889          */
3890         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3891                 poll(to_clean);
3892                 schedule_timeout_uninterruptible(1);
3893         }
3894         disable_si_irq(to_clean, false);
3895         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3896                 poll(to_clean);
3897                 schedule_timeout_uninterruptible(1);
3898         }
3899
3900         if (to_clean->handlers)
3901                 to_clean->handlers->cleanup(to_clean->si_sm);
3902
3903         kfree(to_clean->si_sm);
3904
3905         if (to_clean->addr_source_cleanup)
3906                 to_clean->addr_source_cleanup(to_clean);
3907         if (to_clean->io_cleanup)
3908                 to_clean->io_cleanup(to_clean);
3909
3910         if (to_clean->dev_registered)
3911                 platform_device_unregister(to_clean->pdev);
3912
3913         kfree(to_clean);
3914 }
3915
3916 static void cleanup_ipmi_si(void)
3917 {
3918         struct smi_info *e, *tmp_e;
3919
3920         if (!initialized)
3921                 return;
3922
3923 #ifdef CONFIG_PCI
3924         if (pci_registered)
3925                 pci_unregister_driver(&ipmi_pci_driver);
3926 #endif
3927 #ifdef CONFIG_PARISC
3928         if (parisc_registered)
3929                 unregister_parisc_driver(&ipmi_parisc_driver);
3930 #endif
3931
3932         platform_driver_unregister(&ipmi_driver);
3933
3934         mutex_lock(&smi_infos_lock);
3935         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3936                 cleanup_one_si(e);
3937         mutex_unlock(&smi_infos_lock);
3938 }
3939 module_exit(cleanup_ipmi_si);
3940
3941 MODULE_LICENSE("GPL");
3942 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3943 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3944                    " system interfaces.");