MIPS: IP32: Remove unnecessary if not even harmful volatile keywords.
[sfrench/cifs-2.6.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47
48 #define PFX "IPMI message handler: "
49
50 #define IPMI_DRIVER_VERSION "39.2"
51
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
54
55 static int initialized;
56
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
60
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
63
64 #define MAX_EVENTS_IN_QUEUE     25
65
66 /*
67  * Don't let a message sit in a queue forever, always time it with at lest
68  * the max message timer.  This is in milliseconds.
69  */
70 #define MAX_MSG_TIMEOUT         60000
71
72 /*
73  * The main "user" data structure.
74  */
75 struct ipmi_user {
76         struct list_head link;
77
78         /* Set to "0" when the user is destroyed. */
79         int valid;
80
81         struct kref refcount;
82
83         /* The upper layer that handles receive messages. */
84         struct ipmi_user_hndl *handler;
85         void             *handler_data;
86
87         /* The interface this user is bound to. */
88         ipmi_smi_t intf;
89
90         /* Does this interface receive IPMI events? */
91         int gets_events;
92 };
93
94 struct cmd_rcvr {
95         struct list_head link;
96
97         ipmi_user_t   user;
98         unsigned char netfn;
99         unsigned char cmd;
100         unsigned int  chans;
101
102         /*
103          * This is used to form a linked lised during mass deletion.
104          * Since this is in an RCU list, we cannot use the link above
105          * or change any data until the RCU period completes.  So we
106          * use this next variable during mass deletion so we can have
107          * a list and don't have to wait and restart the search on
108          * every individual deletion of a command.
109          */
110         struct cmd_rcvr *next;
111 };
112
113 struct seq_table {
114         unsigned int         inuse : 1;
115         unsigned int         broadcast : 1;
116
117         unsigned long        timeout;
118         unsigned long        orig_timeout;
119         unsigned int         retries_left;
120
121         /*
122          * To verify on an incoming send message response that this is
123          * the message that the response is for, we keep a sequence id
124          * and increment it every time we send a message.
125          */
126         long                 seqid;
127
128         /*
129          * This is held so we can properly respond to the message on a
130          * timeout, and it is used to hold the temporary data for
131          * retransmission, too.
132          */
133         struct ipmi_recv_msg *recv_msg;
134 };
135
136 /*
137  * Store the information in a msgid (long) to allow us to find a
138  * sequence table entry from the msgid.
139  */
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
141
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
143         do {                                                            \
144                 seq = ((msgid >> 26) & 0x3f);                           \
145                 seqid = (msgid & 0x3fffff);                             \
146         } while (0)
147
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
149
150 struct ipmi_channel {
151         unsigned char medium;
152         unsigned char protocol;
153
154         /*
155          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
156          * but may be changed by the user.
157          */
158         unsigned char address;
159
160         /*
161          * My LUN.  This should generally stay the SMS LUN, but just in
162          * case...
163          */
164         unsigned char lun;
165 };
166
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
169         char                   *name;
170         struct ipmi_proc_entry *next;
171 };
172 #endif
173
174 struct bmc_device {
175         struct platform_device *dev;
176         struct ipmi_device_id  id;
177         unsigned char          guid[16];
178         int                    guid_set;
179
180         struct kref            refcount;
181
182         /* bmc device attributes */
183         struct device_attribute device_id_attr;
184         struct device_attribute provides_dev_sdrs_attr;
185         struct device_attribute revision_attr;
186         struct device_attribute firmware_rev_attr;
187         struct device_attribute version_attr;
188         struct device_attribute add_dev_support_attr;
189         struct device_attribute manufacturer_id_attr;
190         struct device_attribute product_id_attr;
191         struct device_attribute guid_attr;
192         struct device_attribute aux_firmware_rev_attr;
193 };
194
195 /*
196  * Various statistics for IPMI, these index stats[] in the ipmi_smi
197  * structure.
198  */
199 enum ipmi_stat_indexes {
200         /* Commands we got from the user that were invalid. */
201         IPMI_STAT_sent_invalid_commands = 0,
202
203         /* Commands we sent to the MC. */
204         IPMI_STAT_sent_local_commands,
205
206         /* Responses from the MC that were delivered to a user. */
207         IPMI_STAT_handled_local_responses,
208
209         /* Responses from the MC that were not delivered to a user. */
210         IPMI_STAT_unhandled_local_responses,
211
212         /* Commands we sent out to the IPMB bus. */
213         IPMI_STAT_sent_ipmb_commands,
214
215         /* Commands sent on the IPMB that had errors on the SEND CMD */
216         IPMI_STAT_sent_ipmb_command_errs,
217
218         /* Each retransmit increments this count. */
219         IPMI_STAT_retransmitted_ipmb_commands,
220
221         /*
222          * When a message times out (runs out of retransmits) this is
223          * incremented.
224          */
225         IPMI_STAT_timed_out_ipmb_commands,
226
227         /*
228          * This is like above, but for broadcasts.  Broadcasts are
229          * *not* included in the above count (they are expected to
230          * time out).
231          */
232         IPMI_STAT_timed_out_ipmb_broadcasts,
233
234         /* Responses I have sent to the IPMB bus. */
235         IPMI_STAT_sent_ipmb_responses,
236
237         /* The response was delivered to the user. */
238         IPMI_STAT_handled_ipmb_responses,
239
240         /* The response had invalid data in it. */
241         IPMI_STAT_invalid_ipmb_responses,
242
243         /* The response didn't have anyone waiting for it. */
244         IPMI_STAT_unhandled_ipmb_responses,
245
246         /* Commands we sent out to the IPMB bus. */
247         IPMI_STAT_sent_lan_commands,
248
249         /* Commands sent on the IPMB that had errors on the SEND CMD */
250         IPMI_STAT_sent_lan_command_errs,
251
252         /* Each retransmit increments this count. */
253         IPMI_STAT_retransmitted_lan_commands,
254
255         /*
256          * When a message times out (runs out of retransmits) this is
257          * incremented.
258          */
259         IPMI_STAT_timed_out_lan_commands,
260
261         /* Responses I have sent to the IPMB bus. */
262         IPMI_STAT_sent_lan_responses,
263
264         /* The response was delivered to the user. */
265         IPMI_STAT_handled_lan_responses,
266
267         /* The response had invalid data in it. */
268         IPMI_STAT_invalid_lan_responses,
269
270         /* The response didn't have anyone waiting for it. */
271         IPMI_STAT_unhandled_lan_responses,
272
273         /* The command was delivered to the user. */
274         IPMI_STAT_handled_commands,
275
276         /* The command had invalid data in it. */
277         IPMI_STAT_invalid_commands,
278
279         /* The command didn't have anyone waiting for it. */
280         IPMI_STAT_unhandled_commands,
281
282         /* Invalid data in an event. */
283         IPMI_STAT_invalid_events,
284
285         /* Events that were received with the proper format. */
286         IPMI_STAT_events,
287
288         /* Retransmissions on IPMB that failed. */
289         IPMI_STAT_dropped_rexmit_ipmb_commands,
290
291         /* Retransmissions on LAN that failed. */
292         IPMI_STAT_dropped_rexmit_lan_commands,
293
294         /* This *must* remain last, add new values above this. */
295         IPMI_NUM_STATS
296 };
297
298
299 #define IPMI_IPMB_NUM_SEQ       64
300 #define IPMI_MAX_CHANNELS       16
301 struct ipmi_smi {
302         /* What interface number are we? */
303         int intf_num;
304
305         struct kref refcount;
306
307         /* Used for a list of interfaces. */
308         struct list_head link;
309
310         /*
311          * The list of upper layers that are using me.  seq_lock
312          * protects this.
313          */
314         struct list_head users;
315
316         /* Information to supply to users. */
317         unsigned char ipmi_version_major;
318         unsigned char ipmi_version_minor;
319
320         /* Used for wake ups at startup. */
321         wait_queue_head_t waitq;
322
323         struct bmc_device *bmc;
324         char *my_dev_name;
325         char *sysfs_name;
326
327         /*
328          * This is the lower-layer's sender routine.  Note that you
329          * must either be holding the ipmi_interfaces_mutex or be in
330          * an umpreemptible region to use this.  You must fetch the
331          * value into a local variable and make sure it is not NULL.
332          */
333         struct ipmi_smi_handlers *handlers;
334         void                     *send_info;
335
336 #ifdef CONFIG_PROC_FS
337         /* A list of proc entries for this interface. */
338         struct mutex           proc_entry_lock;
339         struct ipmi_proc_entry *proc_entries;
340 #endif
341
342         /* Driver-model device for the system interface. */
343         struct device          *si_dev;
344
345         /*
346          * A table of sequence numbers for this interface.  We use the
347          * sequence numbers for IPMB messages that go out of the
348          * interface to match them up with their responses.  A routine
349          * is called periodically to time the items in this list.
350          */
351         spinlock_t       seq_lock;
352         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
353         int curr_seq;
354
355         /*
356          * Messages that were delayed for some reason (out of memory,
357          * for instance), will go in here to be processed later in a
358          * periodic timer interrupt.
359          */
360         spinlock_t       waiting_msgs_lock;
361         struct list_head waiting_msgs;
362
363         /*
364          * The list of command receivers that are registered for commands
365          * on this interface.
366          */
367         struct mutex     cmd_rcvrs_mutex;
368         struct list_head cmd_rcvrs;
369
370         /*
371          * Events that were queues because no one was there to receive
372          * them.
373          */
374         spinlock_t       events_lock; /* For dealing with event stuff. */
375         struct list_head waiting_events;
376         unsigned int     waiting_events_count; /* How many events in queue? */
377         char             delivering_events;
378         char             event_msg_printed;
379
380         /*
381          * The event receiver for my BMC, only really used at panic
382          * shutdown as a place to store this.
383          */
384         unsigned char event_receiver;
385         unsigned char event_receiver_lun;
386         unsigned char local_sel_device;
387         unsigned char local_event_generator;
388
389         /* For handling of maintenance mode. */
390         int maintenance_mode;
391         int maintenance_mode_enable;
392         int auto_maintenance_timeout;
393         spinlock_t maintenance_mode_lock; /* Used in a timer... */
394
395         /*
396          * A cheap hack, if this is non-null and a message to an
397          * interface comes in with a NULL user, call this routine with
398          * it.  Note that the message will still be freed by the
399          * caller.  This only works on the system interface.
400          */
401         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
402
403         /*
404          * When we are scanning the channels for an SMI, this will
405          * tell which channel we are scanning.
406          */
407         int curr_channel;
408
409         /* Channel information */
410         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
411
412         /* Proc FS stuff. */
413         struct proc_dir_entry *proc_dir;
414         char                  proc_dir_name[10];
415
416         atomic_t stats[IPMI_NUM_STATS];
417
418         /*
419          * run_to_completion duplicate of smb_info, smi_info
420          * and ipmi_serial_info structures. Used to decrease numbers of
421          * parameters passed by "low" level IPMI code.
422          */
423         int run_to_completion;
424 };
425 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
426
427 /**
428  * The driver model view of the IPMI messaging driver.
429  */
430 static struct platform_driver ipmidriver = {
431         .driver = {
432                 .name = "ipmi",
433                 .bus = &platform_bus_type
434         }
435 };
436 static DEFINE_MUTEX(ipmidriver_mutex);
437
438 static LIST_HEAD(ipmi_interfaces);
439 static DEFINE_MUTEX(ipmi_interfaces_mutex);
440
441 /*
442  * List of watchers that want to know when smi's are added and deleted.
443  */
444 static LIST_HEAD(smi_watchers);
445 static DEFINE_MUTEX(smi_watchers_mutex);
446
447
448 #define ipmi_inc_stat(intf, stat) \
449         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
450 #define ipmi_get_stat(intf, stat) \
451         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
452
453 static int is_lan_addr(struct ipmi_addr *addr)
454 {
455         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
456 }
457
458 static int is_ipmb_addr(struct ipmi_addr *addr)
459 {
460         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
461 }
462
463 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
464 {
465         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
466 }
467
468 static void free_recv_msg_list(struct list_head *q)
469 {
470         struct ipmi_recv_msg *msg, *msg2;
471
472         list_for_each_entry_safe(msg, msg2, q, link) {
473                 list_del(&msg->link);
474                 ipmi_free_recv_msg(msg);
475         }
476 }
477
478 static void free_smi_msg_list(struct list_head *q)
479 {
480         struct ipmi_smi_msg *msg, *msg2;
481
482         list_for_each_entry_safe(msg, msg2, q, link) {
483                 list_del(&msg->link);
484                 ipmi_free_smi_msg(msg);
485         }
486 }
487
488 static void clean_up_interface_data(ipmi_smi_t intf)
489 {
490         int              i;
491         struct cmd_rcvr  *rcvr, *rcvr2;
492         struct list_head list;
493
494         free_smi_msg_list(&intf->waiting_msgs);
495         free_recv_msg_list(&intf->waiting_events);
496
497         /*
498          * Wholesale remove all the entries from the list in the
499          * interface and wait for RCU to know that none are in use.
500          */
501         mutex_lock(&intf->cmd_rcvrs_mutex);
502         INIT_LIST_HEAD(&list);
503         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
504         mutex_unlock(&intf->cmd_rcvrs_mutex);
505
506         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
507                 kfree(rcvr);
508
509         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
510                 if ((intf->seq_table[i].inuse)
511                                         && (intf->seq_table[i].recv_msg))
512                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
513         }
514 }
515
516 static void intf_free(struct kref *ref)
517 {
518         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
519
520         clean_up_interface_data(intf);
521         kfree(intf);
522 }
523
524 struct watcher_entry {
525         int              intf_num;
526         ipmi_smi_t       intf;
527         struct list_head link;
528 };
529
530 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
531 {
532         ipmi_smi_t intf;
533         LIST_HEAD(to_deliver);
534         struct watcher_entry *e, *e2;
535
536         mutex_lock(&smi_watchers_mutex);
537
538         mutex_lock(&ipmi_interfaces_mutex);
539
540         /* Build a list of things to deliver. */
541         list_for_each_entry(intf, &ipmi_interfaces, link) {
542                 if (intf->intf_num == -1)
543                         continue;
544                 e = kmalloc(sizeof(*e), GFP_KERNEL);
545                 if (!e)
546                         goto out_err;
547                 kref_get(&intf->refcount);
548                 e->intf = intf;
549                 e->intf_num = intf->intf_num;
550                 list_add_tail(&e->link, &to_deliver);
551         }
552
553         /* We will succeed, so add it to the list. */
554         list_add(&watcher->link, &smi_watchers);
555
556         mutex_unlock(&ipmi_interfaces_mutex);
557
558         list_for_each_entry_safe(e, e2, &to_deliver, link) {
559                 list_del(&e->link);
560                 watcher->new_smi(e->intf_num, e->intf->si_dev);
561                 kref_put(&e->intf->refcount, intf_free);
562                 kfree(e);
563         }
564
565         mutex_unlock(&smi_watchers_mutex);
566
567         return 0;
568
569  out_err:
570         mutex_unlock(&ipmi_interfaces_mutex);
571         mutex_unlock(&smi_watchers_mutex);
572         list_for_each_entry_safe(e, e2, &to_deliver, link) {
573                 list_del(&e->link);
574                 kref_put(&e->intf->refcount, intf_free);
575                 kfree(e);
576         }
577         return -ENOMEM;
578 }
579 EXPORT_SYMBOL(ipmi_smi_watcher_register);
580
581 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
582 {
583         mutex_lock(&smi_watchers_mutex);
584         list_del(&(watcher->link));
585         mutex_unlock(&smi_watchers_mutex);
586         return 0;
587 }
588 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
589
590 /*
591  * Must be called with smi_watchers_mutex held.
592  */
593 static void
594 call_smi_watchers(int i, struct device *dev)
595 {
596         struct ipmi_smi_watcher *w;
597
598         list_for_each_entry(w, &smi_watchers, link) {
599                 if (try_module_get(w->owner)) {
600                         w->new_smi(i, dev);
601                         module_put(w->owner);
602                 }
603         }
604 }
605
606 static int
607 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
608 {
609         if (addr1->addr_type != addr2->addr_type)
610                 return 0;
611
612         if (addr1->channel != addr2->channel)
613                 return 0;
614
615         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
616                 struct ipmi_system_interface_addr *smi_addr1
617                     = (struct ipmi_system_interface_addr *) addr1;
618                 struct ipmi_system_interface_addr *smi_addr2
619                     = (struct ipmi_system_interface_addr *) addr2;
620                 return (smi_addr1->lun == smi_addr2->lun);
621         }
622
623         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
624                 struct ipmi_ipmb_addr *ipmb_addr1
625                     = (struct ipmi_ipmb_addr *) addr1;
626                 struct ipmi_ipmb_addr *ipmb_addr2
627                     = (struct ipmi_ipmb_addr *) addr2;
628
629                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
630                         && (ipmb_addr1->lun == ipmb_addr2->lun));
631         }
632
633         if (is_lan_addr(addr1)) {
634                 struct ipmi_lan_addr *lan_addr1
635                         = (struct ipmi_lan_addr *) addr1;
636                 struct ipmi_lan_addr *lan_addr2
637                     = (struct ipmi_lan_addr *) addr2;
638
639                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
640                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
641                         && (lan_addr1->session_handle
642                             == lan_addr2->session_handle)
643                         && (lan_addr1->lun == lan_addr2->lun));
644         }
645
646         return 1;
647 }
648
649 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
650 {
651         if (len < sizeof(struct ipmi_system_interface_addr))
652                 return -EINVAL;
653
654         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
655                 if (addr->channel != IPMI_BMC_CHANNEL)
656                         return -EINVAL;
657                 return 0;
658         }
659
660         if ((addr->channel == IPMI_BMC_CHANNEL)
661             || (addr->channel >= IPMI_MAX_CHANNELS)
662             || (addr->channel < 0))
663                 return -EINVAL;
664
665         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
666                 if (len < sizeof(struct ipmi_ipmb_addr))
667                         return -EINVAL;
668                 return 0;
669         }
670
671         if (is_lan_addr(addr)) {
672                 if (len < sizeof(struct ipmi_lan_addr))
673                         return -EINVAL;
674                 return 0;
675         }
676
677         return -EINVAL;
678 }
679 EXPORT_SYMBOL(ipmi_validate_addr);
680
681 unsigned int ipmi_addr_length(int addr_type)
682 {
683         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
684                 return sizeof(struct ipmi_system_interface_addr);
685
686         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
687                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
688                 return sizeof(struct ipmi_ipmb_addr);
689
690         if (addr_type == IPMI_LAN_ADDR_TYPE)
691                 return sizeof(struct ipmi_lan_addr);
692
693         return 0;
694 }
695 EXPORT_SYMBOL(ipmi_addr_length);
696
697 static void deliver_response(struct ipmi_recv_msg *msg)
698 {
699         if (!msg->user) {
700                 ipmi_smi_t    intf = msg->user_msg_data;
701
702                 /* Special handling for NULL users. */
703                 if (intf->null_user_handler) {
704                         intf->null_user_handler(intf, msg);
705                         ipmi_inc_stat(intf, handled_local_responses);
706                 } else {
707                         /* No handler, so give up. */
708                         ipmi_inc_stat(intf, unhandled_local_responses);
709                 }
710                 ipmi_free_recv_msg(msg);
711         } else {
712                 ipmi_user_t user = msg->user;
713                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
714         }
715 }
716
717 static void
718 deliver_err_response(struct ipmi_recv_msg *msg, int err)
719 {
720         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
721         msg->msg_data[0] = err;
722         msg->msg.netfn |= 1; /* Convert to a response. */
723         msg->msg.data_len = 1;
724         msg->msg.data = msg->msg_data;
725         deliver_response(msg);
726 }
727
728 /*
729  * Find the next sequence number not being used and add the given
730  * message with the given timeout to the sequence table.  This must be
731  * called with the interface's seq_lock held.
732  */
733 static int intf_next_seq(ipmi_smi_t           intf,
734                          struct ipmi_recv_msg *recv_msg,
735                          unsigned long        timeout,
736                          int                  retries,
737                          int                  broadcast,
738                          unsigned char        *seq,
739                          long                 *seqid)
740 {
741         int          rv = 0;
742         unsigned int i;
743
744         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
745                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
746                 if (!intf->seq_table[i].inuse)
747                         break;
748         }
749
750         if (!intf->seq_table[i].inuse) {
751                 intf->seq_table[i].recv_msg = recv_msg;
752
753                 /*
754                  * Start with the maximum timeout, when the send response
755                  * comes in we will start the real timer.
756                  */
757                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
758                 intf->seq_table[i].orig_timeout = timeout;
759                 intf->seq_table[i].retries_left = retries;
760                 intf->seq_table[i].broadcast = broadcast;
761                 intf->seq_table[i].inuse = 1;
762                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
763                 *seq = i;
764                 *seqid = intf->seq_table[i].seqid;
765                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
766         } else {
767                 rv = -EAGAIN;
768         }
769
770         return rv;
771 }
772
773 /*
774  * Return the receive message for the given sequence number and
775  * release the sequence number so it can be reused.  Some other data
776  * is passed in to be sure the message matches up correctly (to help
777  * guard against message coming in after their timeout and the
778  * sequence number being reused).
779  */
780 static int intf_find_seq(ipmi_smi_t           intf,
781                          unsigned char        seq,
782                          short                channel,
783                          unsigned char        cmd,
784                          unsigned char        netfn,
785                          struct ipmi_addr     *addr,
786                          struct ipmi_recv_msg **recv_msg)
787 {
788         int           rv = -ENODEV;
789         unsigned long flags;
790
791         if (seq >= IPMI_IPMB_NUM_SEQ)
792                 return -EINVAL;
793
794         spin_lock_irqsave(&(intf->seq_lock), flags);
795         if (intf->seq_table[seq].inuse) {
796                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
797
798                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
799                                 && (msg->msg.netfn == netfn)
800                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
801                         *recv_msg = msg;
802                         intf->seq_table[seq].inuse = 0;
803                         rv = 0;
804                 }
805         }
806         spin_unlock_irqrestore(&(intf->seq_lock), flags);
807
808         return rv;
809 }
810
811
812 /* Start the timer for a specific sequence table entry. */
813 static int intf_start_seq_timer(ipmi_smi_t intf,
814                                 long       msgid)
815 {
816         int           rv = -ENODEV;
817         unsigned long flags;
818         unsigned char seq;
819         unsigned long seqid;
820
821
822         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
823
824         spin_lock_irqsave(&(intf->seq_lock), flags);
825         /*
826          * We do this verification because the user can be deleted
827          * while a message is outstanding.
828          */
829         if ((intf->seq_table[seq].inuse)
830                                 && (intf->seq_table[seq].seqid == seqid)) {
831                 struct seq_table *ent = &(intf->seq_table[seq]);
832                 ent->timeout = ent->orig_timeout;
833                 rv = 0;
834         }
835         spin_unlock_irqrestore(&(intf->seq_lock), flags);
836
837         return rv;
838 }
839
840 /* Got an error for the send message for a specific sequence number. */
841 static int intf_err_seq(ipmi_smi_t   intf,
842                         long         msgid,
843                         unsigned int err)
844 {
845         int                  rv = -ENODEV;
846         unsigned long        flags;
847         unsigned char        seq;
848         unsigned long        seqid;
849         struct ipmi_recv_msg *msg = NULL;
850
851
852         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
853
854         spin_lock_irqsave(&(intf->seq_lock), flags);
855         /*
856          * We do this verification because the user can be deleted
857          * while a message is outstanding.
858          */
859         if ((intf->seq_table[seq].inuse)
860                                 && (intf->seq_table[seq].seqid == seqid)) {
861                 struct seq_table *ent = &(intf->seq_table[seq]);
862
863                 ent->inuse = 0;
864                 msg = ent->recv_msg;
865                 rv = 0;
866         }
867         spin_unlock_irqrestore(&(intf->seq_lock), flags);
868
869         if (msg)
870                 deliver_err_response(msg, err);
871
872         return rv;
873 }
874
875
876 int ipmi_create_user(unsigned int          if_num,
877                      struct ipmi_user_hndl *handler,
878                      void                  *handler_data,
879                      ipmi_user_t           *user)
880 {
881         unsigned long flags;
882         ipmi_user_t   new_user;
883         int           rv = 0;
884         ipmi_smi_t    intf;
885
886         /*
887          * There is no module usecount here, because it's not
888          * required.  Since this can only be used by and called from
889          * other modules, they will implicitly use this module, and
890          * thus this can't be removed unless the other modules are
891          * removed.
892          */
893
894         if (handler == NULL)
895                 return -EINVAL;
896
897         /*
898          * Make sure the driver is actually initialized, this handles
899          * problems with initialization order.
900          */
901         if (!initialized) {
902                 rv = ipmi_init_msghandler();
903                 if (rv)
904                         return rv;
905
906                 /*
907                  * The init code doesn't return an error if it was turned
908                  * off, but it won't initialize.  Check that.
909                  */
910                 if (!initialized)
911                         return -ENODEV;
912         }
913
914         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
915         if (!new_user)
916                 return -ENOMEM;
917
918         mutex_lock(&ipmi_interfaces_mutex);
919         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
920                 if (intf->intf_num == if_num)
921                         goto found;
922         }
923         /* Not found, return an error */
924         rv = -EINVAL;
925         goto out_kfree;
926
927  found:
928         /* Note that each existing user holds a refcount to the interface. */
929         kref_get(&intf->refcount);
930
931         kref_init(&new_user->refcount);
932         new_user->handler = handler;
933         new_user->handler_data = handler_data;
934         new_user->intf = intf;
935         new_user->gets_events = 0;
936
937         if (!try_module_get(intf->handlers->owner)) {
938                 rv = -ENODEV;
939                 goto out_kref;
940         }
941
942         if (intf->handlers->inc_usecount) {
943                 rv = intf->handlers->inc_usecount(intf->send_info);
944                 if (rv) {
945                         module_put(intf->handlers->owner);
946                         goto out_kref;
947                 }
948         }
949
950         /*
951          * Hold the lock so intf->handlers is guaranteed to be good
952          * until now
953          */
954         mutex_unlock(&ipmi_interfaces_mutex);
955
956         new_user->valid = 1;
957         spin_lock_irqsave(&intf->seq_lock, flags);
958         list_add_rcu(&new_user->link, &intf->users);
959         spin_unlock_irqrestore(&intf->seq_lock, flags);
960         *user = new_user;
961         return 0;
962
963 out_kref:
964         kref_put(&intf->refcount, intf_free);
965 out_kfree:
966         mutex_unlock(&ipmi_interfaces_mutex);
967         kfree(new_user);
968         return rv;
969 }
970 EXPORT_SYMBOL(ipmi_create_user);
971
972 static void free_user(struct kref *ref)
973 {
974         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
975         kfree(user);
976 }
977
978 int ipmi_destroy_user(ipmi_user_t user)
979 {
980         ipmi_smi_t       intf = user->intf;
981         int              i;
982         unsigned long    flags;
983         struct cmd_rcvr  *rcvr;
984         struct cmd_rcvr  *rcvrs = NULL;
985
986         user->valid = 0;
987
988         /* Remove the user from the interface's sequence table. */
989         spin_lock_irqsave(&intf->seq_lock, flags);
990         list_del_rcu(&user->link);
991
992         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
993                 if (intf->seq_table[i].inuse
994                     && (intf->seq_table[i].recv_msg->user == user)) {
995                         intf->seq_table[i].inuse = 0;
996                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
997                 }
998         }
999         spin_unlock_irqrestore(&intf->seq_lock, flags);
1000
1001         /*
1002          * Remove the user from the command receiver's table.  First
1003          * we build a list of everything (not using the standard link,
1004          * since other things may be using it till we do
1005          * synchronize_rcu()) then free everything in that list.
1006          */
1007         mutex_lock(&intf->cmd_rcvrs_mutex);
1008         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1009                 if (rcvr->user == user) {
1010                         list_del_rcu(&rcvr->link);
1011                         rcvr->next = rcvrs;
1012                         rcvrs = rcvr;
1013                 }
1014         }
1015         mutex_unlock(&intf->cmd_rcvrs_mutex);
1016         synchronize_rcu();
1017         while (rcvrs) {
1018                 rcvr = rcvrs;
1019                 rcvrs = rcvr->next;
1020                 kfree(rcvr);
1021         }
1022
1023         mutex_lock(&ipmi_interfaces_mutex);
1024         if (intf->handlers) {
1025                 module_put(intf->handlers->owner);
1026                 if (intf->handlers->dec_usecount)
1027                         intf->handlers->dec_usecount(intf->send_info);
1028         }
1029         mutex_unlock(&ipmi_interfaces_mutex);
1030
1031         kref_put(&intf->refcount, intf_free);
1032
1033         kref_put(&user->refcount, free_user);
1034
1035         return 0;
1036 }
1037 EXPORT_SYMBOL(ipmi_destroy_user);
1038
1039 void ipmi_get_version(ipmi_user_t   user,
1040                       unsigned char *major,
1041                       unsigned char *minor)
1042 {
1043         *major = user->intf->ipmi_version_major;
1044         *minor = user->intf->ipmi_version_minor;
1045 }
1046 EXPORT_SYMBOL(ipmi_get_version);
1047
1048 int ipmi_set_my_address(ipmi_user_t   user,
1049                         unsigned int  channel,
1050                         unsigned char address)
1051 {
1052         if (channel >= IPMI_MAX_CHANNELS)
1053                 return -EINVAL;
1054         user->intf->channels[channel].address = address;
1055         return 0;
1056 }
1057 EXPORT_SYMBOL(ipmi_set_my_address);
1058
1059 int ipmi_get_my_address(ipmi_user_t   user,
1060                         unsigned int  channel,
1061                         unsigned char *address)
1062 {
1063         if (channel >= IPMI_MAX_CHANNELS)
1064                 return -EINVAL;
1065         *address = user->intf->channels[channel].address;
1066         return 0;
1067 }
1068 EXPORT_SYMBOL(ipmi_get_my_address);
1069
1070 int ipmi_set_my_LUN(ipmi_user_t   user,
1071                     unsigned int  channel,
1072                     unsigned char LUN)
1073 {
1074         if (channel >= IPMI_MAX_CHANNELS)
1075                 return -EINVAL;
1076         user->intf->channels[channel].lun = LUN & 0x3;
1077         return 0;
1078 }
1079 EXPORT_SYMBOL(ipmi_set_my_LUN);
1080
1081 int ipmi_get_my_LUN(ipmi_user_t   user,
1082                     unsigned int  channel,
1083                     unsigned char *address)
1084 {
1085         if (channel >= IPMI_MAX_CHANNELS)
1086                 return -EINVAL;
1087         *address = user->intf->channels[channel].lun;
1088         return 0;
1089 }
1090 EXPORT_SYMBOL(ipmi_get_my_LUN);
1091
1092 int ipmi_get_maintenance_mode(ipmi_user_t user)
1093 {
1094         int           mode;
1095         unsigned long flags;
1096
1097         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1098         mode = user->intf->maintenance_mode;
1099         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1100
1101         return mode;
1102 }
1103 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1104
1105 static void maintenance_mode_update(ipmi_smi_t intf)
1106 {
1107         if (intf->handlers->set_maintenance_mode)
1108                 intf->handlers->set_maintenance_mode(
1109                         intf->send_info, intf->maintenance_mode_enable);
1110 }
1111
1112 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1113 {
1114         int           rv = 0;
1115         unsigned long flags;
1116         ipmi_smi_t    intf = user->intf;
1117
1118         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1119         if (intf->maintenance_mode != mode) {
1120                 switch (mode) {
1121                 case IPMI_MAINTENANCE_MODE_AUTO:
1122                         intf->maintenance_mode = mode;
1123                         intf->maintenance_mode_enable
1124                                 = (intf->auto_maintenance_timeout > 0);
1125                         break;
1126
1127                 case IPMI_MAINTENANCE_MODE_OFF:
1128                         intf->maintenance_mode = mode;
1129                         intf->maintenance_mode_enable = 0;
1130                         break;
1131
1132                 case IPMI_MAINTENANCE_MODE_ON:
1133                         intf->maintenance_mode = mode;
1134                         intf->maintenance_mode_enable = 1;
1135                         break;
1136
1137                 default:
1138                         rv = -EINVAL;
1139                         goto out_unlock;
1140                 }
1141
1142                 maintenance_mode_update(intf);
1143         }
1144  out_unlock:
1145         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1146
1147         return rv;
1148 }
1149 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1150
1151 int ipmi_set_gets_events(ipmi_user_t user, int val)
1152 {
1153         unsigned long        flags;
1154         ipmi_smi_t           intf = user->intf;
1155         struct ipmi_recv_msg *msg, *msg2;
1156         struct list_head     msgs;
1157
1158         INIT_LIST_HEAD(&msgs);
1159
1160         spin_lock_irqsave(&intf->events_lock, flags);
1161         user->gets_events = val;
1162
1163         if (intf->delivering_events)
1164                 /*
1165                  * Another thread is delivering events for this, so
1166                  * let it handle any new events.
1167                  */
1168                 goto out;
1169
1170         /* Deliver any queued events. */
1171         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1172                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1173                         list_move_tail(&msg->link, &msgs);
1174                 intf->waiting_events_count = 0;
1175                 if (intf->event_msg_printed) {
1176                         printk(KERN_WARNING PFX "Event queue no longer"
1177                                " full\n");
1178                         intf->event_msg_printed = 0;
1179                 }
1180
1181                 intf->delivering_events = 1;
1182                 spin_unlock_irqrestore(&intf->events_lock, flags);
1183
1184                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1185                         msg->user = user;
1186                         kref_get(&user->refcount);
1187                         deliver_response(msg);
1188                 }
1189
1190                 spin_lock_irqsave(&intf->events_lock, flags);
1191                 intf->delivering_events = 0;
1192         }
1193
1194  out:
1195         spin_unlock_irqrestore(&intf->events_lock, flags);
1196
1197         return 0;
1198 }
1199 EXPORT_SYMBOL(ipmi_set_gets_events);
1200
1201 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1202                                       unsigned char netfn,
1203                                       unsigned char cmd,
1204                                       unsigned char chan)
1205 {
1206         struct cmd_rcvr *rcvr;
1207
1208         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1209                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1210                                         && (rcvr->chans & (1 << chan)))
1211                         return rcvr;
1212         }
1213         return NULL;
1214 }
1215
1216 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1217                                  unsigned char netfn,
1218                                  unsigned char cmd,
1219                                  unsigned int  chans)
1220 {
1221         struct cmd_rcvr *rcvr;
1222
1223         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1224                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1225                                         && (rcvr->chans & chans))
1226                         return 0;
1227         }
1228         return 1;
1229 }
1230
1231 int ipmi_register_for_cmd(ipmi_user_t   user,
1232                           unsigned char netfn,
1233                           unsigned char cmd,
1234                           unsigned int  chans)
1235 {
1236         ipmi_smi_t      intf = user->intf;
1237         struct cmd_rcvr *rcvr;
1238         int             rv = 0;
1239
1240
1241         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1242         if (!rcvr)
1243                 return -ENOMEM;
1244         rcvr->cmd = cmd;
1245         rcvr->netfn = netfn;
1246         rcvr->chans = chans;
1247         rcvr->user = user;
1248
1249         mutex_lock(&intf->cmd_rcvrs_mutex);
1250         /* Make sure the command/netfn is not already registered. */
1251         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1252                 rv = -EBUSY;
1253                 goto out_unlock;
1254         }
1255
1256         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1257
1258  out_unlock:
1259         mutex_unlock(&intf->cmd_rcvrs_mutex);
1260         if (rv)
1261                 kfree(rcvr);
1262
1263         return rv;
1264 }
1265 EXPORT_SYMBOL(ipmi_register_for_cmd);
1266
1267 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1268                             unsigned char netfn,
1269                             unsigned char cmd,
1270                             unsigned int  chans)
1271 {
1272         ipmi_smi_t      intf = user->intf;
1273         struct cmd_rcvr *rcvr;
1274         struct cmd_rcvr *rcvrs = NULL;
1275         int i, rv = -ENOENT;
1276
1277         mutex_lock(&intf->cmd_rcvrs_mutex);
1278         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1279                 if (((1 << i) & chans) == 0)
1280                         continue;
1281                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1282                 if (rcvr == NULL)
1283                         continue;
1284                 if (rcvr->user == user) {
1285                         rv = 0;
1286                         rcvr->chans &= ~chans;
1287                         if (rcvr->chans == 0) {
1288                                 list_del_rcu(&rcvr->link);
1289                                 rcvr->next = rcvrs;
1290                                 rcvrs = rcvr;
1291                         }
1292                 }
1293         }
1294         mutex_unlock(&intf->cmd_rcvrs_mutex);
1295         synchronize_rcu();
1296         while (rcvrs) {
1297                 rcvr = rcvrs;
1298                 rcvrs = rcvr->next;
1299                 kfree(rcvr);
1300         }
1301         return rv;
1302 }
1303 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1304
1305 static unsigned char
1306 ipmb_checksum(unsigned char *data, int size)
1307 {
1308         unsigned char csum = 0;
1309
1310         for (; size > 0; size--, data++)
1311                 csum += *data;
1312
1313         return -csum;
1314 }
1315
1316 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1317                                    struct kernel_ipmi_msg *msg,
1318                                    struct ipmi_ipmb_addr *ipmb_addr,
1319                                    long                  msgid,
1320                                    unsigned char         ipmb_seq,
1321                                    int                   broadcast,
1322                                    unsigned char         source_address,
1323                                    unsigned char         source_lun)
1324 {
1325         int i = broadcast;
1326
1327         /* Format the IPMB header data. */
1328         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1329         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1330         smi_msg->data[2] = ipmb_addr->channel;
1331         if (broadcast)
1332                 smi_msg->data[3] = 0;
1333         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1334         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1335         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1336         smi_msg->data[i+6] = source_address;
1337         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1338         smi_msg->data[i+8] = msg->cmd;
1339
1340         /* Now tack on the data to the message. */
1341         if (msg->data_len > 0)
1342                 memcpy(&(smi_msg->data[i+9]), msg->data,
1343                        msg->data_len);
1344         smi_msg->data_size = msg->data_len + 9;
1345
1346         /* Now calculate the checksum and tack it on. */
1347         smi_msg->data[i+smi_msg->data_size]
1348                 = ipmb_checksum(&(smi_msg->data[i+6]),
1349                                 smi_msg->data_size-6);
1350
1351         /*
1352          * Add on the checksum size and the offset from the
1353          * broadcast.
1354          */
1355         smi_msg->data_size += 1 + i;
1356
1357         smi_msg->msgid = msgid;
1358 }
1359
1360 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1361                                   struct kernel_ipmi_msg *msg,
1362                                   struct ipmi_lan_addr  *lan_addr,
1363                                   long                  msgid,
1364                                   unsigned char         ipmb_seq,
1365                                   unsigned char         source_lun)
1366 {
1367         /* Format the IPMB header data. */
1368         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1369         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1370         smi_msg->data[2] = lan_addr->channel;
1371         smi_msg->data[3] = lan_addr->session_handle;
1372         smi_msg->data[4] = lan_addr->remote_SWID;
1373         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1374         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1375         smi_msg->data[7] = lan_addr->local_SWID;
1376         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1377         smi_msg->data[9] = msg->cmd;
1378
1379         /* Now tack on the data to the message. */
1380         if (msg->data_len > 0)
1381                 memcpy(&(smi_msg->data[10]), msg->data,
1382                        msg->data_len);
1383         smi_msg->data_size = msg->data_len + 10;
1384
1385         /* Now calculate the checksum and tack it on. */
1386         smi_msg->data[smi_msg->data_size]
1387                 = ipmb_checksum(&(smi_msg->data[7]),
1388                                 smi_msg->data_size-7);
1389
1390         /*
1391          * Add on the checksum size and the offset from the
1392          * broadcast.
1393          */
1394         smi_msg->data_size += 1;
1395
1396         smi_msg->msgid = msgid;
1397 }
1398
1399 /*
1400  * Separate from ipmi_request so that the user does not have to be
1401  * supplied in certain circumstances (mainly at panic time).  If
1402  * messages are supplied, they will be freed, even if an error
1403  * occurs.
1404  */
1405 static int i_ipmi_request(ipmi_user_t          user,
1406                           ipmi_smi_t           intf,
1407                           struct ipmi_addr     *addr,
1408                           long                 msgid,
1409                           struct kernel_ipmi_msg *msg,
1410                           void                 *user_msg_data,
1411                           void                 *supplied_smi,
1412                           struct ipmi_recv_msg *supplied_recv,
1413                           int                  priority,
1414                           unsigned char        source_address,
1415                           unsigned char        source_lun,
1416                           int                  retries,
1417                           unsigned int         retry_time_ms)
1418 {
1419         int                      rv = 0;
1420         struct ipmi_smi_msg      *smi_msg;
1421         struct ipmi_recv_msg     *recv_msg;
1422         unsigned long            flags;
1423         struct ipmi_smi_handlers *handlers;
1424
1425
1426         if (supplied_recv)
1427                 recv_msg = supplied_recv;
1428         else {
1429                 recv_msg = ipmi_alloc_recv_msg();
1430                 if (recv_msg == NULL)
1431                         return -ENOMEM;
1432         }
1433         recv_msg->user_msg_data = user_msg_data;
1434
1435         if (supplied_smi)
1436                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1437         else {
1438                 smi_msg = ipmi_alloc_smi_msg();
1439                 if (smi_msg == NULL) {
1440                         ipmi_free_recv_msg(recv_msg);
1441                         return -ENOMEM;
1442                 }
1443         }
1444
1445         rcu_read_lock();
1446         handlers = intf->handlers;
1447         if (!handlers) {
1448                 rv = -ENODEV;
1449                 goto out_err;
1450         }
1451
1452         recv_msg->user = user;
1453         if (user)
1454                 kref_get(&user->refcount);
1455         recv_msg->msgid = msgid;
1456         /*
1457          * Store the message to send in the receive message so timeout
1458          * responses can get the proper response data.
1459          */
1460         recv_msg->msg = *msg;
1461
1462         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1463                 struct ipmi_system_interface_addr *smi_addr;
1464
1465                 if (msg->netfn & 1) {
1466                         /* Responses are not allowed to the SMI. */
1467                         rv = -EINVAL;
1468                         goto out_err;
1469                 }
1470
1471                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1472                 if (smi_addr->lun > 3) {
1473                         ipmi_inc_stat(intf, sent_invalid_commands);
1474                         rv = -EINVAL;
1475                         goto out_err;
1476                 }
1477
1478                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1479
1480                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1481                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1482                         || (msg->cmd == IPMI_GET_MSG_CMD)
1483                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1484                         /*
1485                          * We don't let the user do these, since we manage
1486                          * the sequence numbers.
1487                          */
1488                         ipmi_inc_stat(intf, sent_invalid_commands);
1489                         rv = -EINVAL;
1490                         goto out_err;
1491                 }
1492
1493                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1494                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1495                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1496                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1497                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1498                         intf->auto_maintenance_timeout
1499                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1500                         if (!intf->maintenance_mode
1501                             && !intf->maintenance_mode_enable) {
1502                                 intf->maintenance_mode_enable = 1;
1503                                 maintenance_mode_update(intf);
1504                         }
1505                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1506                                                flags);
1507                 }
1508
1509                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1510                         ipmi_inc_stat(intf, sent_invalid_commands);
1511                         rv = -EMSGSIZE;
1512                         goto out_err;
1513                 }
1514
1515                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1516                 smi_msg->data[1] = msg->cmd;
1517                 smi_msg->msgid = msgid;
1518                 smi_msg->user_data = recv_msg;
1519                 if (msg->data_len > 0)
1520                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1521                 smi_msg->data_size = msg->data_len + 2;
1522                 ipmi_inc_stat(intf, sent_local_commands);
1523         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1524                 struct ipmi_ipmb_addr *ipmb_addr;
1525                 unsigned char         ipmb_seq;
1526                 long                  seqid;
1527                 int                   broadcast = 0;
1528
1529                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1530                         ipmi_inc_stat(intf, sent_invalid_commands);
1531                         rv = -EINVAL;
1532                         goto out_err;
1533                 }
1534
1535                 if (intf->channels[addr->channel].medium
1536                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1537                         ipmi_inc_stat(intf, sent_invalid_commands);
1538                         rv = -EINVAL;
1539                         goto out_err;
1540                 }
1541
1542                 if (retries < 0) {
1543                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1544                         retries = 0; /* Don't retry broadcasts. */
1545                     else
1546                         retries = 4;
1547                 }
1548                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1549                     /*
1550                      * Broadcasts add a zero at the beginning of the
1551                      * message, but otherwise is the same as an IPMB
1552                      * address.
1553                      */
1554                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1555                     broadcast = 1;
1556                 }
1557
1558
1559                 /* Default to 1 second retries. */
1560                 if (retry_time_ms == 0)
1561                     retry_time_ms = 1000;
1562
1563                 /*
1564                  * 9 for the header and 1 for the checksum, plus
1565                  * possibly one for the broadcast.
1566                  */
1567                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1568                         ipmi_inc_stat(intf, sent_invalid_commands);
1569                         rv = -EMSGSIZE;
1570                         goto out_err;
1571                 }
1572
1573                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1574                 if (ipmb_addr->lun > 3) {
1575                         ipmi_inc_stat(intf, sent_invalid_commands);
1576                         rv = -EINVAL;
1577                         goto out_err;
1578                 }
1579
1580                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1581
1582                 if (recv_msg->msg.netfn & 0x1) {
1583                         /*
1584                          * It's a response, so use the user's sequence
1585                          * from msgid.
1586                          */
1587                         ipmi_inc_stat(intf, sent_ipmb_responses);
1588                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1589                                         msgid, broadcast,
1590                                         source_address, source_lun);
1591
1592                         /*
1593                          * Save the receive message so we can use it
1594                          * to deliver the response.
1595                          */
1596                         smi_msg->user_data = recv_msg;
1597                 } else {
1598                         /* It's a command, so get a sequence for it. */
1599
1600                         spin_lock_irqsave(&(intf->seq_lock), flags);
1601
1602                         /*
1603                          * Create a sequence number with a 1 second
1604                          * timeout and 4 retries.
1605                          */
1606                         rv = intf_next_seq(intf,
1607                                            recv_msg,
1608                                            retry_time_ms,
1609                                            retries,
1610                                            broadcast,
1611                                            &ipmb_seq,
1612                                            &seqid);
1613                         if (rv) {
1614                                 /*
1615                                  * We have used up all the sequence numbers,
1616                                  * probably, so abort.
1617                                  */
1618                                 spin_unlock_irqrestore(&(intf->seq_lock),
1619                                                        flags);
1620                                 goto out_err;
1621                         }
1622
1623                         ipmi_inc_stat(intf, sent_ipmb_commands);
1624
1625                         /*
1626                          * Store the sequence number in the message,
1627                          * so that when the send message response
1628                          * comes back we can start the timer.
1629                          */
1630                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1631                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1632                                         ipmb_seq, broadcast,
1633                                         source_address, source_lun);
1634
1635                         /*
1636                          * Copy the message into the recv message data, so we
1637                          * can retransmit it later if necessary.
1638                          */
1639                         memcpy(recv_msg->msg_data, smi_msg->data,
1640                                smi_msg->data_size);
1641                         recv_msg->msg.data = recv_msg->msg_data;
1642                         recv_msg->msg.data_len = smi_msg->data_size;
1643
1644                         /*
1645                          * We don't unlock until here, because we need
1646                          * to copy the completed message into the
1647                          * recv_msg before we release the lock.
1648                          * Otherwise, race conditions may bite us.  I
1649                          * know that's pretty paranoid, but I prefer
1650                          * to be correct.
1651                          */
1652                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1653                 }
1654         } else if (is_lan_addr(addr)) {
1655                 struct ipmi_lan_addr  *lan_addr;
1656                 unsigned char         ipmb_seq;
1657                 long                  seqid;
1658
1659                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1660                         ipmi_inc_stat(intf, sent_invalid_commands);
1661                         rv = -EINVAL;
1662                         goto out_err;
1663                 }
1664
1665                 if ((intf->channels[addr->channel].medium
1666                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1667                     && (intf->channels[addr->channel].medium
1668                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1669                         ipmi_inc_stat(intf, sent_invalid_commands);
1670                         rv = -EINVAL;
1671                         goto out_err;
1672                 }
1673
1674                 retries = 4;
1675
1676                 /* Default to 1 second retries. */
1677                 if (retry_time_ms == 0)
1678                     retry_time_ms = 1000;
1679
1680                 /* 11 for the header and 1 for the checksum. */
1681                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1682                         ipmi_inc_stat(intf, sent_invalid_commands);
1683                         rv = -EMSGSIZE;
1684                         goto out_err;
1685                 }
1686
1687                 lan_addr = (struct ipmi_lan_addr *) addr;
1688                 if (lan_addr->lun > 3) {
1689                         ipmi_inc_stat(intf, sent_invalid_commands);
1690                         rv = -EINVAL;
1691                         goto out_err;
1692                 }
1693
1694                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1695
1696                 if (recv_msg->msg.netfn & 0x1) {
1697                         /*
1698                          * It's a response, so use the user's sequence
1699                          * from msgid.
1700                          */
1701                         ipmi_inc_stat(intf, sent_lan_responses);
1702                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1703                                        msgid, source_lun);
1704
1705                         /*
1706                          * Save the receive message so we can use it
1707                          * to deliver the response.
1708                          */
1709                         smi_msg->user_data = recv_msg;
1710                 } else {
1711                         /* It's a command, so get a sequence for it. */
1712
1713                         spin_lock_irqsave(&(intf->seq_lock), flags);
1714
1715                         /*
1716                          * Create a sequence number with a 1 second
1717                          * timeout and 4 retries.
1718                          */
1719                         rv = intf_next_seq(intf,
1720                                            recv_msg,
1721                                            retry_time_ms,
1722                                            retries,
1723                                            0,
1724                                            &ipmb_seq,
1725                                            &seqid);
1726                         if (rv) {
1727                                 /*
1728                                  * We have used up all the sequence numbers,
1729                                  * probably, so abort.
1730                                  */
1731                                 spin_unlock_irqrestore(&(intf->seq_lock),
1732                                                        flags);
1733                                 goto out_err;
1734                         }
1735
1736                         ipmi_inc_stat(intf, sent_lan_commands);
1737
1738                         /*
1739                          * Store the sequence number in the message,
1740                          * so that when the send message response
1741                          * comes back we can start the timer.
1742                          */
1743                         format_lan_msg(smi_msg, msg, lan_addr,
1744                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1745                                        ipmb_seq, source_lun);
1746
1747                         /*
1748                          * Copy the message into the recv message data, so we
1749                          * can retransmit it later if necessary.
1750                          */
1751                         memcpy(recv_msg->msg_data, smi_msg->data,
1752                                smi_msg->data_size);
1753                         recv_msg->msg.data = recv_msg->msg_data;
1754                         recv_msg->msg.data_len = smi_msg->data_size;
1755
1756                         /*
1757                          * We don't unlock until here, because we need
1758                          * to copy the completed message into the
1759                          * recv_msg before we release the lock.
1760                          * Otherwise, race conditions may bite us.  I
1761                          * know that's pretty paranoid, but I prefer
1762                          * to be correct.
1763                          */
1764                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1765                 }
1766         } else {
1767             /* Unknown address type. */
1768                 ipmi_inc_stat(intf, sent_invalid_commands);
1769                 rv = -EINVAL;
1770                 goto out_err;
1771         }
1772
1773 #ifdef DEBUG_MSGING
1774         {
1775                 int m;
1776                 for (m = 0; m < smi_msg->data_size; m++)
1777                         printk(" %2.2x", smi_msg->data[m]);
1778                 printk("\n");
1779         }
1780 #endif
1781
1782         handlers->sender(intf->send_info, smi_msg, priority);
1783         rcu_read_unlock();
1784
1785         return 0;
1786
1787  out_err:
1788         rcu_read_unlock();
1789         ipmi_free_smi_msg(smi_msg);
1790         ipmi_free_recv_msg(recv_msg);
1791         return rv;
1792 }
1793
1794 static int check_addr(ipmi_smi_t       intf,
1795                       struct ipmi_addr *addr,
1796                       unsigned char    *saddr,
1797                       unsigned char    *lun)
1798 {
1799         if (addr->channel >= IPMI_MAX_CHANNELS)
1800                 return -EINVAL;
1801         *lun = intf->channels[addr->channel].lun;
1802         *saddr = intf->channels[addr->channel].address;
1803         return 0;
1804 }
1805
1806 int ipmi_request_settime(ipmi_user_t      user,
1807                          struct ipmi_addr *addr,
1808                          long             msgid,
1809                          struct kernel_ipmi_msg  *msg,
1810                          void             *user_msg_data,
1811                          int              priority,
1812                          int              retries,
1813                          unsigned int     retry_time_ms)
1814 {
1815         unsigned char saddr, lun;
1816         int           rv;
1817
1818         if (!user)
1819                 return -EINVAL;
1820         rv = check_addr(user->intf, addr, &saddr, &lun);
1821         if (rv)
1822                 return rv;
1823         return i_ipmi_request(user,
1824                               user->intf,
1825                               addr,
1826                               msgid,
1827                               msg,
1828                               user_msg_data,
1829                               NULL, NULL,
1830                               priority,
1831                               saddr,
1832                               lun,
1833                               retries,
1834                               retry_time_ms);
1835 }
1836 EXPORT_SYMBOL(ipmi_request_settime);
1837
1838 int ipmi_request_supply_msgs(ipmi_user_t          user,
1839                              struct ipmi_addr     *addr,
1840                              long                 msgid,
1841                              struct kernel_ipmi_msg *msg,
1842                              void                 *user_msg_data,
1843                              void                 *supplied_smi,
1844                              struct ipmi_recv_msg *supplied_recv,
1845                              int                  priority)
1846 {
1847         unsigned char saddr, lun;
1848         int           rv;
1849
1850         if (!user)
1851                 return -EINVAL;
1852         rv = check_addr(user->intf, addr, &saddr, &lun);
1853         if (rv)
1854                 return rv;
1855         return i_ipmi_request(user,
1856                               user->intf,
1857                               addr,
1858                               msgid,
1859                               msg,
1860                               user_msg_data,
1861                               supplied_smi,
1862                               supplied_recv,
1863                               priority,
1864                               saddr,
1865                               lun,
1866                               -1, 0);
1867 }
1868 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1869
1870 #ifdef CONFIG_PROC_FS
1871 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1872                                int count, int *eof, void *data)
1873 {
1874         char       *out = (char *) page;
1875         ipmi_smi_t intf = data;
1876         int        i;
1877         int        rv = 0;
1878
1879         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1880                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1881         out[rv-1] = '\n'; /* Replace the final space with a newline */
1882         out[rv] = '\0';
1883         rv++;
1884         return rv;
1885 }
1886
1887 static int version_file_read_proc(char *page, char **start, off_t off,
1888                                   int count, int *eof, void *data)
1889 {
1890         char       *out = (char *) page;
1891         ipmi_smi_t intf = data;
1892
1893         return sprintf(out, "%u.%u\n",
1894                        ipmi_version_major(&intf->bmc->id),
1895                        ipmi_version_minor(&intf->bmc->id));
1896 }
1897
1898 static int stat_file_read_proc(char *page, char **start, off_t off,
1899                                int count, int *eof, void *data)
1900 {
1901         char       *out = (char *) page;
1902         ipmi_smi_t intf = data;
1903
1904         out += sprintf(out, "sent_invalid_commands:       %u\n",
1905                        ipmi_get_stat(intf, sent_invalid_commands));
1906         out += sprintf(out, "sent_local_commands:         %u\n",
1907                        ipmi_get_stat(intf, sent_local_commands));
1908         out += sprintf(out, "handled_local_responses:     %u\n",
1909                        ipmi_get_stat(intf, handled_local_responses));
1910         out += sprintf(out, "unhandled_local_responses:   %u\n",
1911                        ipmi_get_stat(intf, unhandled_local_responses));
1912         out += sprintf(out, "sent_ipmb_commands:          %u\n",
1913                        ipmi_get_stat(intf, sent_ipmb_commands));
1914         out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1915                        ipmi_get_stat(intf, sent_ipmb_command_errs));
1916         out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1917                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
1918         out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1919                        ipmi_get_stat(intf, timed_out_ipmb_commands));
1920         out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1921                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1922         out += sprintf(out, "sent_ipmb_responses:         %u\n",
1923                        ipmi_get_stat(intf, sent_ipmb_responses));
1924         out += sprintf(out, "handled_ipmb_responses:      %u\n",
1925                        ipmi_get_stat(intf, handled_ipmb_responses));
1926         out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1927                        ipmi_get_stat(intf, invalid_ipmb_responses));
1928         out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1929                        ipmi_get_stat(intf, unhandled_ipmb_responses));
1930         out += sprintf(out, "sent_lan_commands:           %u\n",
1931                        ipmi_get_stat(intf, sent_lan_commands));
1932         out += sprintf(out, "sent_lan_command_errs:       %u\n",
1933                        ipmi_get_stat(intf, sent_lan_command_errs));
1934         out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1935                        ipmi_get_stat(intf, retransmitted_lan_commands));
1936         out += sprintf(out, "timed_out_lan_commands:      %u\n",
1937                        ipmi_get_stat(intf, timed_out_lan_commands));
1938         out += sprintf(out, "sent_lan_responses:          %u\n",
1939                        ipmi_get_stat(intf, sent_lan_responses));
1940         out += sprintf(out, "handled_lan_responses:       %u\n",
1941                        ipmi_get_stat(intf, handled_lan_responses));
1942         out += sprintf(out, "invalid_lan_responses:       %u\n",
1943                        ipmi_get_stat(intf, invalid_lan_responses));
1944         out += sprintf(out, "unhandled_lan_responses:     %u\n",
1945                        ipmi_get_stat(intf, unhandled_lan_responses));
1946         out += sprintf(out, "handled_commands:            %u\n",
1947                        ipmi_get_stat(intf, handled_commands));
1948         out += sprintf(out, "invalid_commands:            %u\n",
1949                        ipmi_get_stat(intf, invalid_commands));
1950         out += sprintf(out, "unhandled_commands:          %u\n",
1951                        ipmi_get_stat(intf, unhandled_commands));
1952         out += sprintf(out, "invalid_events:              %u\n",
1953                        ipmi_get_stat(intf, invalid_events));
1954         out += sprintf(out, "events:                      %u\n",
1955                        ipmi_get_stat(intf, events));
1956         out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1957                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1958         out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1959                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1960
1961         return (out - ((char *) page));
1962 }
1963 #endif /* CONFIG_PROC_FS */
1964
1965 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1966                             read_proc_t *read_proc,
1967                             void *data)
1968 {
1969         int                    rv = 0;
1970 #ifdef CONFIG_PROC_FS
1971         struct proc_dir_entry  *file;
1972         struct ipmi_proc_entry *entry;
1973
1974         /* Create a list element. */
1975         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1976         if (!entry)
1977                 return -ENOMEM;
1978         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1979         if (!entry->name) {
1980                 kfree(entry);
1981                 return -ENOMEM;
1982         }
1983         strcpy(entry->name, name);
1984
1985         file = create_proc_entry(name, 0, smi->proc_dir);
1986         if (!file) {
1987                 kfree(entry->name);
1988                 kfree(entry);
1989                 rv = -ENOMEM;
1990         } else {
1991                 file->data = data;
1992                 file->read_proc = read_proc;
1993
1994                 mutex_lock(&smi->proc_entry_lock);
1995                 /* Stick it on the list. */
1996                 entry->next = smi->proc_entries;
1997                 smi->proc_entries = entry;
1998                 mutex_unlock(&smi->proc_entry_lock);
1999         }
2000 #endif /* CONFIG_PROC_FS */
2001
2002         return rv;
2003 }
2004 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2005
2006 static int add_proc_entries(ipmi_smi_t smi, int num)
2007 {
2008         int rv = 0;
2009
2010 #ifdef CONFIG_PROC_FS
2011         sprintf(smi->proc_dir_name, "%d", num);
2012         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2013         if (!smi->proc_dir)
2014                 rv = -ENOMEM;
2015
2016         if (rv == 0)
2017                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2018                                              stat_file_read_proc,
2019                                              smi);
2020
2021         if (rv == 0)
2022                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2023                                              ipmb_file_read_proc,
2024                                              smi);
2025
2026         if (rv == 0)
2027                 rv = ipmi_smi_add_proc_entry(smi, "version",
2028                                              version_file_read_proc,
2029                                              smi);
2030 #endif /* CONFIG_PROC_FS */
2031
2032         return rv;
2033 }
2034
2035 static void remove_proc_entries(ipmi_smi_t smi)
2036 {
2037 #ifdef CONFIG_PROC_FS
2038         struct ipmi_proc_entry *entry;
2039
2040         mutex_lock(&smi->proc_entry_lock);
2041         while (smi->proc_entries) {
2042                 entry = smi->proc_entries;
2043                 smi->proc_entries = entry->next;
2044
2045                 remove_proc_entry(entry->name, smi->proc_dir);
2046                 kfree(entry->name);
2047                 kfree(entry);
2048         }
2049         mutex_unlock(&smi->proc_entry_lock);
2050         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2051 #endif /* CONFIG_PROC_FS */
2052 }
2053
2054 static int __find_bmc_guid(struct device *dev, void *data)
2055 {
2056         unsigned char *id = data;
2057         struct bmc_device *bmc = dev_get_drvdata(dev);
2058         return memcmp(bmc->guid, id, 16) == 0;
2059 }
2060
2061 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2062                                              unsigned char *guid)
2063 {
2064         struct device *dev;
2065
2066         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2067         if (dev)
2068                 return dev_get_drvdata(dev);
2069         else
2070                 return NULL;
2071 }
2072
2073 struct prod_dev_id {
2074         unsigned int  product_id;
2075         unsigned char device_id;
2076 };
2077
2078 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2079 {
2080         struct prod_dev_id *id = data;
2081         struct bmc_device *bmc = dev_get_drvdata(dev);
2082
2083         return (bmc->id.product_id == id->product_id
2084                 && bmc->id.device_id == id->device_id);
2085 }
2086
2087 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2088         struct device_driver *drv,
2089         unsigned int product_id, unsigned char device_id)
2090 {
2091         struct prod_dev_id id = {
2092                 .product_id = product_id,
2093                 .device_id = device_id,
2094         };
2095         struct device *dev;
2096
2097         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2098         if (dev)
2099                 return dev_get_drvdata(dev);
2100         else
2101                 return NULL;
2102 }
2103
2104 static ssize_t device_id_show(struct device *dev,
2105                               struct device_attribute *attr,
2106                               char *buf)
2107 {
2108         struct bmc_device *bmc = dev_get_drvdata(dev);
2109
2110         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2111 }
2112
2113 static ssize_t provides_dev_sdrs_show(struct device *dev,
2114                                       struct device_attribute *attr,
2115                                       char *buf)
2116 {
2117         struct bmc_device *bmc = dev_get_drvdata(dev);
2118
2119         return snprintf(buf, 10, "%u\n",
2120                         (bmc->id.device_revision & 0x80) >> 7);
2121 }
2122
2123 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2124                              char *buf)
2125 {
2126         struct bmc_device *bmc = dev_get_drvdata(dev);
2127
2128         return snprintf(buf, 20, "%u\n",
2129                         bmc->id.device_revision & 0x0F);
2130 }
2131
2132 static ssize_t firmware_rev_show(struct device *dev,
2133                                  struct device_attribute *attr,
2134                                  char *buf)
2135 {
2136         struct bmc_device *bmc = dev_get_drvdata(dev);
2137
2138         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2139                         bmc->id.firmware_revision_2);
2140 }
2141
2142 static ssize_t ipmi_version_show(struct device *dev,
2143                                  struct device_attribute *attr,
2144                                  char *buf)
2145 {
2146         struct bmc_device *bmc = dev_get_drvdata(dev);
2147
2148         return snprintf(buf, 20, "%u.%u\n",
2149                         ipmi_version_major(&bmc->id),
2150                         ipmi_version_minor(&bmc->id));
2151 }
2152
2153 static ssize_t add_dev_support_show(struct device *dev,
2154                                     struct device_attribute *attr,
2155                                     char *buf)
2156 {
2157         struct bmc_device *bmc = dev_get_drvdata(dev);
2158
2159         return snprintf(buf, 10, "0x%02x\n",
2160                         bmc->id.additional_device_support);
2161 }
2162
2163 static ssize_t manufacturer_id_show(struct device *dev,
2164                                     struct device_attribute *attr,
2165                                     char *buf)
2166 {
2167         struct bmc_device *bmc = dev_get_drvdata(dev);
2168
2169         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2170 }
2171
2172 static ssize_t product_id_show(struct device *dev,
2173                                struct device_attribute *attr,
2174                                char *buf)
2175 {
2176         struct bmc_device *bmc = dev_get_drvdata(dev);
2177
2178         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2179 }
2180
2181 static ssize_t aux_firmware_rev_show(struct device *dev,
2182                                      struct device_attribute *attr,
2183                                      char *buf)
2184 {
2185         struct bmc_device *bmc = dev_get_drvdata(dev);
2186
2187         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2188                         bmc->id.aux_firmware_revision[3],
2189                         bmc->id.aux_firmware_revision[2],
2190                         bmc->id.aux_firmware_revision[1],
2191                         bmc->id.aux_firmware_revision[0]);
2192 }
2193
2194 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2195                          char *buf)
2196 {
2197         struct bmc_device *bmc = dev_get_drvdata(dev);
2198
2199         return snprintf(buf, 100, "%Lx%Lx\n",
2200                         (long long) bmc->guid[0],
2201                         (long long) bmc->guid[8]);
2202 }
2203
2204 static void remove_files(struct bmc_device *bmc)
2205 {
2206         if (!bmc->dev)
2207                 return;
2208
2209         device_remove_file(&bmc->dev->dev,
2210                            &bmc->device_id_attr);
2211         device_remove_file(&bmc->dev->dev,
2212                            &bmc->provides_dev_sdrs_attr);
2213         device_remove_file(&bmc->dev->dev,
2214                            &bmc->revision_attr);
2215         device_remove_file(&bmc->dev->dev,
2216                            &bmc->firmware_rev_attr);
2217         device_remove_file(&bmc->dev->dev,
2218                            &bmc->version_attr);
2219         device_remove_file(&bmc->dev->dev,
2220                            &bmc->add_dev_support_attr);
2221         device_remove_file(&bmc->dev->dev,
2222                            &bmc->manufacturer_id_attr);
2223         device_remove_file(&bmc->dev->dev,
2224                            &bmc->product_id_attr);
2225
2226         if (bmc->id.aux_firmware_revision_set)
2227                 device_remove_file(&bmc->dev->dev,
2228                                    &bmc->aux_firmware_rev_attr);
2229         if (bmc->guid_set)
2230                 device_remove_file(&bmc->dev->dev,
2231                                    &bmc->guid_attr);
2232 }
2233
2234 static void
2235 cleanup_bmc_device(struct kref *ref)
2236 {
2237         struct bmc_device *bmc;
2238
2239         bmc = container_of(ref, struct bmc_device, refcount);
2240
2241         remove_files(bmc);
2242         platform_device_unregister(bmc->dev);
2243         kfree(bmc);
2244 }
2245
2246 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2247 {
2248         struct bmc_device *bmc = intf->bmc;
2249
2250         if (intf->sysfs_name) {
2251                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2252                 kfree(intf->sysfs_name);
2253                 intf->sysfs_name = NULL;
2254         }
2255         if (intf->my_dev_name) {
2256                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2257                 kfree(intf->my_dev_name);
2258                 intf->my_dev_name = NULL;
2259         }
2260
2261         mutex_lock(&ipmidriver_mutex);
2262         kref_put(&bmc->refcount, cleanup_bmc_device);
2263         intf->bmc = NULL;
2264         mutex_unlock(&ipmidriver_mutex);
2265 }
2266
2267 static int create_files(struct bmc_device *bmc)
2268 {
2269         int err;
2270
2271         bmc->device_id_attr.attr.name = "device_id";
2272         bmc->device_id_attr.attr.mode = S_IRUGO;
2273         bmc->device_id_attr.show = device_id_show;
2274
2275         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2276         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2277         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2278
2279         bmc->revision_attr.attr.name = "revision";
2280         bmc->revision_attr.attr.mode = S_IRUGO;
2281         bmc->revision_attr.show = revision_show;
2282
2283         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2284         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2285         bmc->firmware_rev_attr.show = firmware_rev_show;
2286
2287         bmc->version_attr.attr.name = "ipmi_version";
2288         bmc->version_attr.attr.mode = S_IRUGO;
2289         bmc->version_attr.show = ipmi_version_show;
2290
2291         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2292         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2293         bmc->add_dev_support_attr.show = add_dev_support_show;
2294
2295         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2296         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2297         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2298
2299         bmc->product_id_attr.attr.name = "product_id";
2300         bmc->product_id_attr.attr.mode = S_IRUGO;
2301         bmc->product_id_attr.show = product_id_show;
2302
2303         bmc->guid_attr.attr.name = "guid";
2304         bmc->guid_attr.attr.mode = S_IRUGO;
2305         bmc->guid_attr.show = guid_show;
2306
2307         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2308         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2309         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2310
2311         err = device_create_file(&bmc->dev->dev,
2312                            &bmc->device_id_attr);
2313         if (err)
2314                 goto out;
2315         err = device_create_file(&bmc->dev->dev,
2316                            &bmc->provides_dev_sdrs_attr);
2317         if (err)
2318                 goto out_devid;
2319         err = device_create_file(&bmc->dev->dev,
2320                            &bmc->revision_attr);
2321         if (err)
2322                 goto out_sdrs;
2323         err = device_create_file(&bmc->dev->dev,
2324                            &bmc->firmware_rev_attr);
2325         if (err)
2326                 goto out_rev;
2327         err = device_create_file(&bmc->dev->dev,
2328                            &bmc->version_attr);
2329         if (err)
2330                 goto out_firm;
2331         err = device_create_file(&bmc->dev->dev,
2332                            &bmc->add_dev_support_attr);
2333         if (err)
2334                 goto out_version;
2335         err = device_create_file(&bmc->dev->dev,
2336                            &bmc->manufacturer_id_attr);
2337         if (err)
2338                 goto out_add_dev;
2339         err = device_create_file(&bmc->dev->dev,
2340                            &bmc->product_id_attr);
2341         if (err)
2342                 goto out_manu;
2343         if (bmc->id.aux_firmware_revision_set) {
2344                 err = device_create_file(&bmc->dev->dev,
2345                                    &bmc->aux_firmware_rev_attr);
2346                 if (err)
2347                         goto out_prod_id;
2348         }
2349         if (bmc->guid_set) {
2350                 err = device_create_file(&bmc->dev->dev,
2351                                    &bmc->guid_attr);
2352                 if (err)
2353                         goto out_aux_firm;
2354         }
2355
2356         return 0;
2357
2358 out_aux_firm:
2359         if (bmc->id.aux_firmware_revision_set)
2360                 device_remove_file(&bmc->dev->dev,
2361                                    &bmc->aux_firmware_rev_attr);
2362 out_prod_id:
2363         device_remove_file(&bmc->dev->dev,
2364                            &bmc->product_id_attr);
2365 out_manu:
2366         device_remove_file(&bmc->dev->dev,
2367                            &bmc->manufacturer_id_attr);
2368 out_add_dev:
2369         device_remove_file(&bmc->dev->dev,
2370                            &bmc->add_dev_support_attr);
2371 out_version:
2372         device_remove_file(&bmc->dev->dev,
2373                            &bmc->version_attr);
2374 out_firm:
2375         device_remove_file(&bmc->dev->dev,
2376                            &bmc->firmware_rev_attr);
2377 out_rev:
2378         device_remove_file(&bmc->dev->dev,
2379                            &bmc->revision_attr);
2380 out_sdrs:
2381         device_remove_file(&bmc->dev->dev,
2382                            &bmc->provides_dev_sdrs_attr);
2383 out_devid:
2384         device_remove_file(&bmc->dev->dev,
2385                            &bmc->device_id_attr);
2386 out:
2387         return err;
2388 }
2389
2390 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2391                              const char *sysfs_name)
2392 {
2393         int               rv;
2394         struct bmc_device *bmc = intf->bmc;
2395         struct bmc_device *old_bmc;
2396         int               size;
2397         char              dummy[1];
2398
2399         mutex_lock(&ipmidriver_mutex);
2400
2401         /*
2402          * Try to find if there is an bmc_device struct
2403          * representing the interfaced BMC already
2404          */
2405         if (bmc->guid_set)
2406                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2407         else
2408                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2409                                                     bmc->id.product_id,
2410                                                     bmc->id.device_id);
2411
2412         /*
2413          * If there is already an bmc_device, free the new one,
2414          * otherwise register the new BMC device
2415          */
2416         if (old_bmc) {
2417                 kfree(bmc);
2418                 intf->bmc = old_bmc;
2419                 bmc = old_bmc;
2420
2421                 kref_get(&bmc->refcount);
2422                 mutex_unlock(&ipmidriver_mutex);
2423
2424                 printk(KERN_INFO
2425                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2426                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2427                        bmc->id.manufacturer_id,
2428                        bmc->id.product_id,
2429                        bmc->id.device_id);
2430         } else {
2431                 char name[14];
2432                 unsigned char orig_dev_id = bmc->id.device_id;
2433                 int warn_printed = 0;
2434
2435                 snprintf(name, sizeof(name),
2436                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2437
2438                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2439                                                  bmc->id.product_id,
2440                                                  bmc->id.device_id)) {
2441                         if (!warn_printed) {
2442                                 printk(KERN_WARNING PFX
2443                                        "This machine has two different BMCs"
2444                                        " with the same product id and device"
2445                                        " id.  This is an error in the"
2446                                        " firmware, but incrementing the"
2447                                        " device id to work around the problem."
2448                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2449                                        bmc->id.product_id, bmc->id.device_id);
2450                                 warn_printed = 1;
2451                         }
2452                         bmc->id.device_id++; /* Wraps at 255 */
2453                         if (bmc->id.device_id == orig_dev_id) {
2454                                 printk(KERN_ERR PFX
2455                                        "Out of device ids!\n");
2456                                 break;
2457                         }
2458                 }
2459
2460                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2461                 if (!bmc->dev) {
2462                         mutex_unlock(&ipmidriver_mutex);
2463                         printk(KERN_ERR
2464                                "ipmi_msghandler:"
2465                                " Unable to allocate platform device\n");
2466                         return -ENOMEM;
2467                 }
2468                 bmc->dev->dev.driver = &ipmidriver.driver;
2469                 dev_set_drvdata(&bmc->dev->dev, bmc);
2470                 kref_init(&bmc->refcount);
2471
2472                 rv = platform_device_add(bmc->dev);
2473                 mutex_unlock(&ipmidriver_mutex);
2474                 if (rv) {
2475                         platform_device_put(bmc->dev);
2476                         bmc->dev = NULL;
2477                         printk(KERN_ERR
2478                                "ipmi_msghandler:"
2479                                " Unable to register bmc device: %d\n",
2480                                rv);
2481                         /*
2482                          * Don't go to out_err, you can only do that if
2483                          * the device is registered already.
2484                          */
2485                         return rv;
2486                 }
2487
2488                 rv = create_files(bmc);
2489                 if (rv) {
2490                         mutex_lock(&ipmidriver_mutex);
2491                         platform_device_unregister(bmc->dev);
2492                         mutex_unlock(&ipmidriver_mutex);
2493
2494                         return rv;
2495                 }
2496
2497                 printk(KERN_INFO
2498                        "ipmi: Found new BMC (man_id: 0x%6.6x, "
2499                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2500                        bmc->id.manufacturer_id,
2501                        bmc->id.product_id,
2502                        bmc->id.device_id);
2503         }
2504
2505         /*
2506          * create symlink from system interface device to bmc device
2507          * and back.
2508          */
2509         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2510         if (!intf->sysfs_name) {
2511                 rv = -ENOMEM;
2512                 printk(KERN_ERR
2513                        "ipmi_msghandler: allocate link to BMC: %d\n",
2514                        rv);
2515                 goto out_err;
2516         }
2517
2518         rv = sysfs_create_link(&intf->si_dev->kobj,
2519                                &bmc->dev->dev.kobj, intf->sysfs_name);
2520         if (rv) {
2521                 kfree(intf->sysfs_name);
2522                 intf->sysfs_name = NULL;
2523                 printk(KERN_ERR
2524                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2525                        rv);
2526                 goto out_err;
2527         }
2528
2529         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2530         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2531         if (!intf->my_dev_name) {
2532                 kfree(intf->sysfs_name);
2533                 intf->sysfs_name = NULL;
2534                 rv = -ENOMEM;
2535                 printk(KERN_ERR
2536                        "ipmi_msghandler: allocate link from BMC: %d\n",
2537                        rv);
2538                 goto out_err;
2539         }
2540         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2541
2542         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2543                                intf->my_dev_name);
2544         if (rv) {
2545                 kfree(intf->sysfs_name);
2546                 intf->sysfs_name = NULL;
2547                 kfree(intf->my_dev_name);
2548                 intf->my_dev_name = NULL;
2549                 printk(KERN_ERR
2550                        "ipmi_msghandler:"
2551                        " Unable to create symlink to bmc: %d\n",
2552                        rv);
2553                 goto out_err;
2554         }
2555
2556         return 0;
2557
2558 out_err:
2559         ipmi_bmc_unregister(intf);
2560         return rv;
2561 }
2562
2563 static int
2564 send_guid_cmd(ipmi_smi_t intf, int chan)
2565 {
2566         struct kernel_ipmi_msg            msg;
2567         struct ipmi_system_interface_addr si;
2568
2569         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2570         si.channel = IPMI_BMC_CHANNEL;
2571         si.lun = 0;
2572
2573         msg.netfn = IPMI_NETFN_APP_REQUEST;
2574         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2575         msg.data = NULL;
2576         msg.data_len = 0;
2577         return i_ipmi_request(NULL,
2578                               intf,
2579                               (struct ipmi_addr *) &si,
2580                               0,
2581                               &msg,
2582                               intf,
2583                               NULL,
2584                               NULL,
2585                               0,
2586                               intf->channels[0].address,
2587                               intf->channels[0].lun,
2588                               -1, 0);
2589 }
2590
2591 static void
2592 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2593 {
2594         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2595             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2596             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2597                 /* Not for me */
2598                 return;
2599
2600         if (msg->msg.data[0] != 0) {
2601                 /* Error from getting the GUID, the BMC doesn't have one. */
2602                 intf->bmc->guid_set = 0;
2603                 goto out;
2604         }
2605
2606         if (msg->msg.data_len < 17) {
2607                 intf->bmc->guid_set = 0;
2608                 printk(KERN_WARNING PFX
2609                        "guid_handler: The GUID response from the BMC was too"
2610                        " short, it was %d but should have been 17.  Assuming"
2611                        " GUID is not available.\n",
2612                        msg->msg.data_len);
2613                 goto out;
2614         }
2615
2616         memcpy(intf->bmc->guid, msg->msg.data, 16);
2617         intf->bmc->guid_set = 1;
2618  out:
2619         wake_up(&intf->waitq);
2620 }
2621
2622 static void
2623 get_guid(ipmi_smi_t intf)
2624 {
2625         int rv;
2626
2627         intf->bmc->guid_set = 0x2;
2628         intf->null_user_handler = guid_handler;
2629         rv = send_guid_cmd(intf, 0);
2630         if (rv)
2631                 /* Send failed, no GUID available. */
2632                 intf->bmc->guid_set = 0;
2633         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2634         intf->null_user_handler = NULL;
2635 }
2636
2637 static int
2638 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2639 {
2640         struct kernel_ipmi_msg            msg;
2641         unsigned char                     data[1];
2642         struct ipmi_system_interface_addr si;
2643
2644         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2645         si.channel = IPMI_BMC_CHANNEL;
2646         si.lun = 0;
2647
2648         msg.netfn = IPMI_NETFN_APP_REQUEST;
2649         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2650         msg.data = data;
2651         msg.data_len = 1;
2652         data[0] = chan;
2653         return i_ipmi_request(NULL,
2654                               intf,
2655                               (struct ipmi_addr *) &si,
2656                               0,
2657                               &msg,
2658                               intf,
2659                               NULL,
2660                               NULL,
2661                               0,
2662                               intf->channels[0].address,
2663                               intf->channels[0].lun,
2664                               -1, 0);
2665 }
2666
2667 static void
2668 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2669 {
2670         int rv = 0;
2671         int chan;
2672
2673         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2674             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2675             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2676                 /* It's the one we want */
2677                 if (msg->msg.data[0] != 0) {
2678                         /* Got an error from the channel, just go on. */
2679
2680                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2681                                 /*
2682                                  * If the MC does not support this
2683                                  * command, that is legal.  We just
2684                                  * assume it has one IPMB at channel
2685                                  * zero.
2686                                  */
2687                                 intf->channels[0].medium
2688                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2689                                 intf->channels[0].protocol
2690                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2691                                 rv = -ENOSYS;
2692
2693                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2694                                 wake_up(&intf->waitq);
2695                                 goto out;
2696                         }
2697                         goto next_channel;
2698                 }
2699                 if (msg->msg.data_len < 4) {
2700                         /* Message not big enough, just go on. */
2701                         goto next_channel;
2702                 }
2703                 chan = intf->curr_channel;
2704                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2705                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2706
2707  next_channel:
2708                 intf->curr_channel++;
2709                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2710                         wake_up(&intf->waitq);
2711                 else
2712                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2713
2714                 if (rv) {
2715                         /* Got an error somehow, just give up. */
2716                         intf->curr_channel = IPMI_MAX_CHANNELS;
2717                         wake_up(&intf->waitq);
2718
2719                         printk(KERN_WARNING PFX
2720                                "Error sending channel information: %d\n",
2721                                rv);
2722                 }
2723         }
2724  out:
2725         return;
2726 }
2727
2728 void ipmi_poll_interface(ipmi_user_t user)
2729 {
2730         ipmi_smi_t intf = user->intf;
2731
2732         if (intf->handlers->poll)
2733                 intf->handlers->poll(intf->send_info);
2734 }
2735 EXPORT_SYMBOL(ipmi_poll_interface);
2736
2737 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2738                       void                     *send_info,
2739                       struct ipmi_device_id    *device_id,
2740                       struct device            *si_dev,
2741                       const char               *sysfs_name,
2742                       unsigned char            slave_addr)
2743 {
2744         int              i, j;
2745         int              rv;
2746         ipmi_smi_t       intf;
2747         ipmi_smi_t       tintf;
2748         struct list_head *link;
2749
2750         /*
2751          * Make sure the driver is actually initialized, this handles
2752          * problems with initialization order.
2753          */
2754         if (!initialized) {
2755                 rv = ipmi_init_msghandler();
2756                 if (rv)
2757                         return rv;
2758                 /*
2759                  * The init code doesn't return an error if it was turned
2760                  * off, but it won't initialize.  Check that.
2761                  */
2762                 if (!initialized)
2763                         return -ENODEV;
2764         }
2765
2766         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2767         if (!intf)
2768                 return -ENOMEM;
2769
2770         intf->ipmi_version_major = ipmi_version_major(device_id);
2771         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2772
2773         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2774         if (!intf->bmc) {
2775                 kfree(intf);
2776                 return -ENOMEM;
2777         }
2778         intf->intf_num = -1; /* Mark it invalid for now. */
2779         kref_init(&intf->refcount);
2780         intf->bmc->id = *device_id;
2781         intf->si_dev = si_dev;
2782         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2783                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2784                 intf->channels[j].lun = 2;
2785         }
2786         if (slave_addr != 0)
2787                 intf->channels[0].address = slave_addr;
2788         INIT_LIST_HEAD(&intf->users);
2789         intf->handlers = handlers;
2790         intf->send_info = send_info;
2791         spin_lock_init(&intf->seq_lock);
2792         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2793                 intf->seq_table[j].inuse = 0;
2794                 intf->seq_table[j].seqid = 0;
2795         }
2796         intf->curr_seq = 0;
2797 #ifdef CONFIG_PROC_FS
2798         mutex_init(&intf->proc_entry_lock);
2799 #endif
2800         spin_lock_init(&intf->waiting_msgs_lock);
2801         INIT_LIST_HEAD(&intf->waiting_msgs);
2802         spin_lock_init(&intf->events_lock);
2803         INIT_LIST_HEAD(&intf->waiting_events);
2804         intf->waiting_events_count = 0;
2805         mutex_init(&intf->cmd_rcvrs_mutex);
2806         spin_lock_init(&intf->maintenance_mode_lock);
2807         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2808         init_waitqueue_head(&intf->waitq);
2809         for (i = 0; i < IPMI_NUM_STATS; i++)
2810                 atomic_set(&intf->stats[i], 0);
2811
2812         intf->proc_dir = NULL;
2813
2814         mutex_lock(&smi_watchers_mutex);
2815         mutex_lock(&ipmi_interfaces_mutex);
2816         /* Look for a hole in the numbers. */
2817         i = 0;
2818         link = &ipmi_interfaces;
2819         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2820                 if (tintf->intf_num != i) {
2821                         link = &tintf->link;
2822                         break;
2823                 }
2824                 i++;
2825         }
2826         /* Add the new interface in numeric order. */
2827         if (i == 0)
2828                 list_add_rcu(&intf->link, &ipmi_interfaces);
2829         else
2830                 list_add_tail_rcu(&intf->link, link);
2831
2832         rv = handlers->start_processing(send_info, intf);
2833         if (rv)
2834                 goto out;
2835
2836         get_guid(intf);
2837
2838         if ((intf->ipmi_version_major > 1)
2839                         || ((intf->ipmi_version_major == 1)
2840                             && (intf->ipmi_version_minor >= 5))) {
2841                 /*
2842                  * Start scanning the channels to see what is
2843                  * available.
2844                  */
2845                 intf->null_user_handler = channel_handler;
2846                 intf->curr_channel = 0;
2847                 rv = send_channel_info_cmd(intf, 0);
2848                 if (rv)
2849                         goto out;
2850
2851                 /* Wait for the channel info to be read. */
2852                 wait_event(intf->waitq,
2853                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2854                 intf->null_user_handler = NULL;
2855         } else {
2856                 /* Assume a single IPMB channel at zero. */
2857                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2858                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2859         }
2860
2861         if (rv == 0)
2862                 rv = add_proc_entries(intf, i);
2863
2864         rv = ipmi_bmc_register(intf, i, sysfs_name);
2865
2866  out:
2867         if (rv) {
2868                 if (intf->proc_dir)
2869                         remove_proc_entries(intf);
2870                 intf->handlers = NULL;
2871                 list_del_rcu(&intf->link);
2872                 mutex_unlock(&ipmi_interfaces_mutex);
2873                 mutex_unlock(&smi_watchers_mutex);
2874                 synchronize_rcu();
2875                 kref_put(&intf->refcount, intf_free);
2876         } else {
2877                 /*
2878                  * Keep memory order straight for RCU readers.  Make
2879                  * sure everything else is committed to memory before
2880                  * setting intf_num to mark the interface valid.
2881                  */
2882                 smp_wmb();
2883                 intf->intf_num = i;
2884                 mutex_unlock(&ipmi_interfaces_mutex);
2885                 /* After this point the interface is legal to use. */
2886                 call_smi_watchers(i, intf->si_dev);
2887                 mutex_unlock(&smi_watchers_mutex);
2888         }
2889
2890         return rv;
2891 }
2892 EXPORT_SYMBOL(ipmi_register_smi);
2893
2894 static void cleanup_smi_msgs(ipmi_smi_t intf)
2895 {
2896         int              i;
2897         struct seq_table *ent;
2898
2899         /* No need for locks, the interface is down. */
2900         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2901                 ent = &(intf->seq_table[i]);
2902                 if (!ent->inuse)
2903                         continue;
2904                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2905         }
2906 }
2907
2908 int ipmi_unregister_smi(ipmi_smi_t intf)
2909 {
2910         struct ipmi_smi_watcher *w;
2911         int    intf_num = intf->intf_num;
2912
2913         ipmi_bmc_unregister(intf);
2914
2915         mutex_lock(&smi_watchers_mutex);
2916         mutex_lock(&ipmi_interfaces_mutex);
2917         intf->intf_num = -1;
2918         intf->handlers = NULL;
2919         list_del_rcu(&intf->link);
2920         mutex_unlock(&ipmi_interfaces_mutex);
2921         synchronize_rcu();
2922
2923         cleanup_smi_msgs(intf);
2924
2925         remove_proc_entries(intf);
2926
2927         /*
2928          * Call all the watcher interfaces to tell them that
2929          * an interface is gone.
2930          */
2931         list_for_each_entry(w, &smi_watchers, link)
2932                 w->smi_gone(intf_num);
2933         mutex_unlock(&smi_watchers_mutex);
2934
2935         kref_put(&intf->refcount, intf_free);
2936         return 0;
2937 }
2938 EXPORT_SYMBOL(ipmi_unregister_smi);
2939
2940 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2941                                    struct ipmi_smi_msg *msg)
2942 {
2943         struct ipmi_ipmb_addr ipmb_addr;
2944         struct ipmi_recv_msg  *recv_msg;
2945
2946         /*
2947          * This is 11, not 10, because the response must contain a
2948          * completion code.
2949          */
2950         if (msg->rsp_size < 11) {
2951                 /* Message not big enough, just ignore it. */
2952                 ipmi_inc_stat(intf, invalid_ipmb_responses);
2953                 return 0;
2954         }
2955
2956         if (msg->rsp[2] != 0) {
2957                 /* An error getting the response, just ignore it. */
2958                 return 0;
2959         }
2960
2961         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2962         ipmb_addr.slave_addr = msg->rsp[6];
2963         ipmb_addr.channel = msg->rsp[3] & 0x0f;
2964         ipmb_addr.lun = msg->rsp[7] & 3;
2965
2966         /*
2967          * It's a response from a remote entity.  Look up the sequence
2968          * number and handle the response.
2969          */
2970         if (intf_find_seq(intf,
2971                           msg->rsp[7] >> 2,
2972                           msg->rsp[3] & 0x0f,
2973                           msg->rsp[8],
2974                           (msg->rsp[4] >> 2) & (~1),
2975                           (struct ipmi_addr *) &(ipmb_addr),
2976                           &recv_msg)) {
2977                 /*
2978                  * We were unable to find the sequence number,
2979                  * so just nuke the message.
2980                  */
2981                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2982                 return 0;
2983         }
2984
2985         memcpy(recv_msg->msg_data,
2986                &(msg->rsp[9]),
2987                msg->rsp_size - 9);
2988         /*
2989          * The other fields matched, so no need to set them, except
2990          * for netfn, which needs to be the response that was
2991          * returned, not the request value.
2992          */
2993         recv_msg->msg.netfn = msg->rsp[4] >> 2;
2994         recv_msg->msg.data = recv_msg->msg_data;
2995         recv_msg->msg.data_len = msg->rsp_size - 10;
2996         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2997         ipmi_inc_stat(intf, handled_ipmb_responses);
2998         deliver_response(recv_msg);
2999
3000         return 0;
3001 }
3002
3003 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3004                                    struct ipmi_smi_msg *msg)
3005 {
3006         struct cmd_rcvr          *rcvr;
3007         int                      rv = 0;
3008         unsigned char            netfn;
3009         unsigned char            cmd;
3010         unsigned char            chan;
3011         ipmi_user_t              user = NULL;
3012         struct ipmi_ipmb_addr    *ipmb_addr;
3013         struct ipmi_recv_msg     *recv_msg;
3014         struct ipmi_smi_handlers *handlers;
3015
3016         if (msg->rsp_size < 10) {
3017                 /* Message not big enough, just ignore it. */
3018                 ipmi_inc_stat(intf, invalid_commands);
3019                 return 0;
3020         }
3021
3022         if (msg->rsp[2] != 0) {
3023                 /* An error getting the response, just ignore it. */
3024                 return 0;
3025         }
3026
3027         netfn = msg->rsp[4] >> 2;
3028         cmd = msg->rsp[8];
3029         chan = msg->rsp[3] & 0xf;
3030
3031         rcu_read_lock();
3032         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3033         if (rcvr) {