Merge branch 'for-linus' of git://git.o-hand.com/linux-rpurdie-backlight
[sfrench/cifs-2.6.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48
49 #define PFX "IPMI message handler: "
50
51 #define IPMI_DRIVER_VERSION "39.2"
52
53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54 static int ipmi_init_msghandler(void);
55
56 static int initialized;
57
58 #ifdef CONFIG_PROC_FS
59 static struct proc_dir_entry *proc_ipmi_root;
60 #endif /* CONFIG_PROC_FS */
61
62 /* Remain in auto-maintenance mode for this amount of time (in ms). */
63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64
65 #define MAX_EVENTS_IN_QUEUE     25
66
67 /*
68  * Don't let a message sit in a queue forever, always time it with at lest
69  * the max message timer.  This is in milliseconds.
70  */
71 #define MAX_MSG_TIMEOUT         60000
72
73 /*
74  * The main "user" data structure.
75  */
76 struct ipmi_user {
77         struct list_head link;
78
79         /* Set to "0" when the user is destroyed. */
80         int valid;
81
82         struct kref refcount;
83
84         /* The upper layer that handles receive messages. */
85         struct ipmi_user_hndl *handler;
86         void             *handler_data;
87
88         /* The interface this user is bound to. */
89         ipmi_smi_t intf;
90
91         /* Does this interface receive IPMI events? */
92         int gets_events;
93 };
94
95 struct cmd_rcvr {
96         struct list_head link;
97
98         ipmi_user_t   user;
99         unsigned char netfn;
100         unsigned char cmd;
101         unsigned int  chans;
102
103         /*
104          * This is used to form a linked lised during mass deletion.
105          * Since this is in an RCU list, we cannot use the link above
106          * or change any data until the RCU period completes.  So we
107          * use this next variable during mass deletion so we can have
108          * a list and don't have to wait and restart the search on
109          * every individual deletion of a command.
110          */
111         struct cmd_rcvr *next;
112 };
113
114 struct seq_table {
115         unsigned int         inuse : 1;
116         unsigned int         broadcast : 1;
117
118         unsigned long        timeout;
119         unsigned long        orig_timeout;
120         unsigned int         retries_left;
121
122         /*
123          * To verify on an incoming send message response that this is
124          * the message that the response is for, we keep a sequence id
125          * and increment it every time we send a message.
126          */
127         long                 seqid;
128
129         /*
130          * This is held so we can properly respond to the message on a
131          * timeout, and it is used to hold the temporary data for
132          * retransmission, too.
133          */
134         struct ipmi_recv_msg *recv_msg;
135 };
136
137 /*
138  * Store the information in a msgid (long) to allow us to find a
139  * sequence table entry from the msgid.
140  */
141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142
143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144         do {                                                            \
145                 seq = ((msgid >> 26) & 0x3f);                           \
146                 seqid = (msgid & 0x3fffff);                             \
147         } while (0)
148
149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150
151 struct ipmi_channel {
152         unsigned char medium;
153         unsigned char protocol;
154
155         /*
156          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
157          * but may be changed by the user.
158          */
159         unsigned char address;
160
161         /*
162          * My LUN.  This should generally stay the SMS LUN, but just in
163          * case...
164          */
165         unsigned char lun;
166 };
167
168 #ifdef CONFIG_PROC_FS
169 struct ipmi_proc_entry {
170         char                   *name;
171         struct ipmi_proc_entry *next;
172 };
173 #endif
174
175 struct bmc_device {
176         struct platform_device *dev;
177         struct ipmi_device_id  id;
178         unsigned char          guid[16];
179         int                    guid_set;
180
181         struct kref            refcount;
182
183         /* bmc device attributes */
184         struct device_attribute device_id_attr;
185         struct device_attribute provides_dev_sdrs_attr;
186         struct device_attribute revision_attr;
187         struct device_attribute firmware_rev_attr;
188         struct device_attribute version_attr;
189         struct device_attribute add_dev_support_attr;
190         struct device_attribute manufacturer_id_attr;
191         struct device_attribute product_id_attr;
192         struct device_attribute guid_attr;
193         struct device_attribute aux_firmware_rev_attr;
194 };
195
196 /*
197  * Various statistics for IPMI, these index stats[] in the ipmi_smi
198  * structure.
199  */
200 enum ipmi_stat_indexes {
201         /* Commands we got from the user that were invalid. */
202         IPMI_STAT_sent_invalid_commands = 0,
203
204         /* Commands we sent to the MC. */
205         IPMI_STAT_sent_local_commands,
206
207         /* Responses from the MC that were delivered to a user. */
208         IPMI_STAT_handled_local_responses,
209
210         /* Responses from the MC that were not delivered to a user. */
211         IPMI_STAT_unhandled_local_responses,
212
213         /* Commands we sent out to the IPMB bus. */
214         IPMI_STAT_sent_ipmb_commands,
215
216         /* Commands sent on the IPMB that had errors on the SEND CMD */
217         IPMI_STAT_sent_ipmb_command_errs,
218
219         /* Each retransmit increments this count. */
220         IPMI_STAT_retransmitted_ipmb_commands,
221
222         /*
223          * When a message times out (runs out of retransmits) this is
224          * incremented.
225          */
226         IPMI_STAT_timed_out_ipmb_commands,
227
228         /*
229          * This is like above, but for broadcasts.  Broadcasts are
230          * *not* included in the above count (they are expected to
231          * time out).
232          */
233         IPMI_STAT_timed_out_ipmb_broadcasts,
234
235         /* Responses I have sent to the IPMB bus. */
236         IPMI_STAT_sent_ipmb_responses,
237
238         /* The response was delivered to the user. */
239         IPMI_STAT_handled_ipmb_responses,
240
241         /* The response had invalid data in it. */
242         IPMI_STAT_invalid_ipmb_responses,
243
244         /* The response didn't have anyone waiting for it. */
245         IPMI_STAT_unhandled_ipmb_responses,
246
247         /* Commands we sent out to the IPMB bus. */
248         IPMI_STAT_sent_lan_commands,
249
250         /* Commands sent on the IPMB that had errors on the SEND CMD */
251         IPMI_STAT_sent_lan_command_errs,
252
253         /* Each retransmit increments this count. */
254         IPMI_STAT_retransmitted_lan_commands,
255
256         /*
257          * When a message times out (runs out of retransmits) this is
258          * incremented.
259          */
260         IPMI_STAT_timed_out_lan_commands,
261
262         /* Responses I have sent to the IPMB bus. */
263         IPMI_STAT_sent_lan_responses,
264
265         /* The response was delivered to the user. */
266         IPMI_STAT_handled_lan_responses,
267
268         /* The response had invalid data in it. */
269         IPMI_STAT_invalid_lan_responses,
270
271         /* The response didn't have anyone waiting for it. */
272         IPMI_STAT_unhandled_lan_responses,
273
274         /* The command was delivered to the user. */
275         IPMI_STAT_handled_commands,
276
277         /* The command had invalid data in it. */
278         IPMI_STAT_invalid_commands,
279
280         /* The command didn't have anyone waiting for it. */
281         IPMI_STAT_unhandled_commands,
282
283         /* Invalid data in an event. */
284         IPMI_STAT_invalid_events,
285
286         /* Events that were received with the proper format. */
287         IPMI_STAT_events,
288
289         /* Retransmissions on IPMB that failed. */
290         IPMI_STAT_dropped_rexmit_ipmb_commands,
291
292         /* Retransmissions on LAN that failed. */
293         IPMI_STAT_dropped_rexmit_lan_commands,
294
295         /* This *must* remain last, add new values above this. */
296         IPMI_NUM_STATS
297 };
298
299
300 #define IPMI_IPMB_NUM_SEQ       64
301 #define IPMI_MAX_CHANNELS       16
302 struct ipmi_smi {
303         /* What interface number are we? */
304         int intf_num;
305
306         struct kref refcount;
307
308         /* Used for a list of interfaces. */
309         struct list_head link;
310
311         /*
312          * The list of upper layers that are using me.  seq_lock
313          * protects this.
314          */
315         struct list_head users;
316
317         /* Information to supply to users. */
318         unsigned char ipmi_version_major;
319         unsigned char ipmi_version_minor;
320
321         /* Used for wake ups at startup. */
322         wait_queue_head_t waitq;
323
324         struct bmc_device *bmc;
325         char *my_dev_name;
326         char *sysfs_name;
327
328         /*
329          * This is the lower-layer's sender routine.  Note that you
330          * must either be holding the ipmi_interfaces_mutex or be in
331          * an umpreemptible region to use this.  You must fetch the
332          * value into a local variable and make sure it is not NULL.
333          */
334         struct ipmi_smi_handlers *handlers;
335         void                     *send_info;
336
337 #ifdef CONFIG_PROC_FS
338         /* A list of proc entries for this interface. */
339         struct mutex           proc_entry_lock;
340         struct ipmi_proc_entry *proc_entries;
341 #endif
342
343         /* Driver-model device for the system interface. */
344         struct device          *si_dev;
345
346         /*
347          * A table of sequence numbers for this interface.  We use the
348          * sequence numbers for IPMB messages that go out of the
349          * interface to match them up with their responses.  A routine
350          * is called periodically to time the items in this list.
351          */
352         spinlock_t       seq_lock;
353         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
354         int curr_seq;
355
356         /*
357          * Messages that were delayed for some reason (out of memory,
358          * for instance), will go in here to be processed later in a
359          * periodic timer interrupt.
360          */
361         spinlock_t       waiting_msgs_lock;
362         struct list_head waiting_msgs;
363
364         /*
365          * The list of command receivers that are registered for commands
366          * on this interface.
367          */
368         struct mutex     cmd_rcvrs_mutex;
369         struct list_head cmd_rcvrs;
370
371         /*
372          * Events that were queues because no one was there to receive
373          * them.
374          */
375         spinlock_t       events_lock; /* For dealing with event stuff. */
376         struct list_head waiting_events;
377         unsigned int     waiting_events_count; /* How many events in queue? */
378         char             delivering_events;
379         char             event_msg_printed;
380
381         /*
382          * The event receiver for my BMC, only really used at panic
383          * shutdown as a place to store this.
384          */
385         unsigned char event_receiver;
386         unsigned char event_receiver_lun;
387         unsigned char local_sel_device;
388         unsigned char local_event_generator;
389
390         /* For handling of maintenance mode. */
391         int maintenance_mode;
392         int maintenance_mode_enable;
393         int auto_maintenance_timeout;
394         spinlock_t maintenance_mode_lock; /* Used in a timer... */
395
396         /*
397          * A cheap hack, if this is non-null and a message to an
398          * interface comes in with a NULL user, call this routine with
399          * it.  Note that the message will still be freed by the
400          * caller.  This only works on the system interface.
401          */
402         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
403
404         /*
405          * When we are scanning the channels for an SMI, this will
406          * tell which channel we are scanning.
407          */
408         int curr_channel;
409
410         /* Channel information */
411         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
412
413         /* Proc FS stuff. */
414         struct proc_dir_entry *proc_dir;
415         char                  proc_dir_name[10];
416
417         atomic_t stats[IPMI_NUM_STATS];
418
419         /*
420          * run_to_completion duplicate of smb_info, smi_info
421          * and ipmi_serial_info structures. Used to decrease numbers of
422          * parameters passed by "low" level IPMI code.
423          */
424         int run_to_completion;
425 };
426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
427
428 /**
429  * The driver model view of the IPMI messaging driver.
430  */
431 static struct platform_driver ipmidriver = {
432         .driver = {
433                 .name = "ipmi",
434                 .bus = &platform_bus_type
435         }
436 };
437 static DEFINE_MUTEX(ipmidriver_mutex);
438
439 static LIST_HEAD(ipmi_interfaces);
440 static DEFINE_MUTEX(ipmi_interfaces_mutex);
441
442 /*
443  * List of watchers that want to know when smi's are added and deleted.
444  */
445 static LIST_HEAD(smi_watchers);
446 static DEFINE_MUTEX(smi_watchers_mutex);
447
448
449 #define ipmi_inc_stat(intf, stat) \
450         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451 #define ipmi_get_stat(intf, stat) \
452         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453
454 static int is_lan_addr(struct ipmi_addr *addr)
455 {
456         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
457 }
458
459 static int is_ipmb_addr(struct ipmi_addr *addr)
460 {
461         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
462 }
463
464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
465 {
466         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
467 }
468
469 static void free_recv_msg_list(struct list_head *q)
470 {
471         struct ipmi_recv_msg *msg, *msg2;
472
473         list_for_each_entry_safe(msg, msg2, q, link) {
474                 list_del(&msg->link);
475                 ipmi_free_recv_msg(msg);
476         }
477 }
478
479 static void free_smi_msg_list(struct list_head *q)
480 {
481         struct ipmi_smi_msg *msg, *msg2;
482
483         list_for_each_entry_safe(msg, msg2, q, link) {
484                 list_del(&msg->link);
485                 ipmi_free_smi_msg(msg);
486         }
487 }
488
489 static void clean_up_interface_data(ipmi_smi_t intf)
490 {
491         int              i;
492         struct cmd_rcvr  *rcvr, *rcvr2;
493         struct list_head list;
494
495         free_smi_msg_list(&intf->waiting_msgs);
496         free_recv_msg_list(&intf->waiting_events);
497
498         /*
499          * Wholesale remove all the entries from the list in the
500          * interface and wait for RCU to know that none are in use.
501          */
502         mutex_lock(&intf->cmd_rcvrs_mutex);
503         INIT_LIST_HEAD(&list);
504         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
505         mutex_unlock(&intf->cmd_rcvrs_mutex);
506
507         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
508                 kfree(rcvr);
509
510         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
511                 if ((intf->seq_table[i].inuse)
512                                         && (intf->seq_table[i].recv_msg))
513                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
514         }
515 }
516
517 static void intf_free(struct kref *ref)
518 {
519         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
520
521         clean_up_interface_data(intf);
522         kfree(intf);
523 }
524
525 struct watcher_entry {
526         int              intf_num;
527         ipmi_smi_t       intf;
528         struct list_head link;
529 };
530
531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
532 {
533         ipmi_smi_t intf;
534         LIST_HEAD(to_deliver);
535         struct watcher_entry *e, *e2;
536
537         mutex_lock(&smi_watchers_mutex);
538
539         mutex_lock(&ipmi_interfaces_mutex);
540
541         /* Build a list of things to deliver. */
542         list_for_each_entry(intf, &ipmi_interfaces, link) {
543                 if (intf->intf_num == -1)
544                         continue;
545                 e = kmalloc(sizeof(*e), GFP_KERNEL);
546                 if (!e)
547                         goto out_err;
548                 kref_get(&intf->refcount);
549                 e->intf = intf;
550                 e->intf_num = intf->intf_num;
551                 list_add_tail(&e->link, &to_deliver);
552         }
553
554         /* We will succeed, so add it to the list. */
555         list_add(&watcher->link, &smi_watchers);
556
557         mutex_unlock(&ipmi_interfaces_mutex);
558
559         list_for_each_entry_safe(e, e2, &to_deliver, link) {
560                 list_del(&e->link);
561                 watcher->new_smi(e->intf_num, e->intf->si_dev);
562                 kref_put(&e->intf->refcount, intf_free);
563                 kfree(e);
564         }
565
566         mutex_unlock(&smi_watchers_mutex);
567
568         return 0;
569
570  out_err:
571         mutex_unlock(&ipmi_interfaces_mutex);
572         mutex_unlock(&smi_watchers_mutex);
573         list_for_each_entry_safe(e, e2, &to_deliver, link) {
574                 list_del(&e->link);
575                 kref_put(&e->intf->refcount, intf_free);
576                 kfree(e);
577         }
578         return -ENOMEM;
579 }
580 EXPORT_SYMBOL(ipmi_smi_watcher_register);
581
582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
583 {
584         mutex_lock(&smi_watchers_mutex);
585         list_del(&(watcher->link));
586         mutex_unlock(&smi_watchers_mutex);
587         return 0;
588 }
589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
590
591 /*
592  * Must be called with smi_watchers_mutex held.
593  */
594 static void
595 call_smi_watchers(int i, struct device *dev)
596 {
597         struct ipmi_smi_watcher *w;
598
599         list_for_each_entry(w, &smi_watchers, link) {
600                 if (try_module_get(w->owner)) {
601                         w->new_smi(i, dev);
602                         module_put(w->owner);
603                 }
604         }
605 }
606
607 static int
608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
609 {
610         if (addr1->addr_type != addr2->addr_type)
611                 return 0;
612
613         if (addr1->channel != addr2->channel)
614                 return 0;
615
616         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
617                 struct ipmi_system_interface_addr *smi_addr1
618                     = (struct ipmi_system_interface_addr *) addr1;
619                 struct ipmi_system_interface_addr *smi_addr2
620                     = (struct ipmi_system_interface_addr *) addr2;
621                 return (smi_addr1->lun == smi_addr2->lun);
622         }
623
624         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
625                 struct ipmi_ipmb_addr *ipmb_addr1
626                     = (struct ipmi_ipmb_addr *) addr1;
627                 struct ipmi_ipmb_addr *ipmb_addr2
628                     = (struct ipmi_ipmb_addr *) addr2;
629
630                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
631                         && (ipmb_addr1->lun == ipmb_addr2->lun));
632         }
633
634         if (is_lan_addr(addr1)) {
635                 struct ipmi_lan_addr *lan_addr1
636                         = (struct ipmi_lan_addr *) addr1;
637                 struct ipmi_lan_addr *lan_addr2
638                     = (struct ipmi_lan_addr *) addr2;
639
640                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
641                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
642                         && (lan_addr1->session_handle
643                             == lan_addr2->session_handle)
644                         && (lan_addr1->lun == lan_addr2->lun));
645         }
646
647         return 1;
648 }
649
650 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
651 {
652         if (len < sizeof(struct ipmi_system_interface_addr))
653                 return -EINVAL;
654
655         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
656                 if (addr->channel != IPMI_BMC_CHANNEL)
657                         return -EINVAL;
658                 return 0;
659         }
660
661         if ((addr->channel == IPMI_BMC_CHANNEL)
662             || (addr->channel >= IPMI_MAX_CHANNELS)
663             || (addr->channel < 0))
664                 return -EINVAL;
665
666         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
667                 if (len < sizeof(struct ipmi_ipmb_addr))
668                         return -EINVAL;
669                 return 0;
670         }
671
672         if (is_lan_addr(addr)) {
673                 if (len < sizeof(struct ipmi_lan_addr))
674                         return -EINVAL;
675                 return 0;
676         }
677
678         return -EINVAL;
679 }
680 EXPORT_SYMBOL(ipmi_validate_addr);
681
682 unsigned int ipmi_addr_length(int addr_type)
683 {
684         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
685                 return sizeof(struct ipmi_system_interface_addr);
686
687         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
688                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
689                 return sizeof(struct ipmi_ipmb_addr);
690
691         if (addr_type == IPMI_LAN_ADDR_TYPE)
692                 return sizeof(struct ipmi_lan_addr);
693
694         return 0;
695 }
696 EXPORT_SYMBOL(ipmi_addr_length);
697
698 static void deliver_response(struct ipmi_recv_msg *msg)
699 {
700         if (!msg->user) {
701                 ipmi_smi_t    intf = msg->user_msg_data;
702
703                 /* Special handling for NULL users. */
704                 if (intf->null_user_handler) {
705                         intf->null_user_handler(intf, msg);
706                         ipmi_inc_stat(intf, handled_local_responses);
707                 } else {
708                         /* No handler, so give up. */
709                         ipmi_inc_stat(intf, unhandled_local_responses);
710                 }
711                 ipmi_free_recv_msg(msg);
712         } else {
713                 ipmi_user_t user = msg->user;
714                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
715         }
716 }
717
718 static void
719 deliver_err_response(struct ipmi_recv_msg *msg, int err)
720 {
721         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
722         msg->msg_data[0] = err;
723         msg->msg.netfn |= 1; /* Convert to a response. */
724         msg->msg.data_len = 1;
725         msg->msg.data = msg->msg_data;
726         deliver_response(msg);
727 }
728
729 /*
730  * Find the next sequence number not being used and add the given
731  * message with the given timeout to the sequence table.  This must be
732  * called with the interface's seq_lock held.
733  */
734 static int intf_next_seq(ipmi_smi_t           intf,
735                          struct ipmi_recv_msg *recv_msg,
736                          unsigned long        timeout,
737                          int                  retries,
738                          int                  broadcast,
739                          unsigned char        *seq,
740                          long                 *seqid)
741 {
742         int          rv = 0;
743         unsigned int i;
744
745         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
746                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
747                 if (!intf->seq_table[i].inuse)
748                         break;
749         }
750
751         if (!intf->seq_table[i].inuse) {
752                 intf->seq_table[i].recv_msg = recv_msg;
753
754                 /*
755                  * Start with the maximum timeout, when the send response
756                  * comes in we will start the real timer.
757                  */
758                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
759                 intf->seq_table[i].orig_timeout = timeout;
760                 intf->seq_table[i].retries_left = retries;
761                 intf->seq_table[i].broadcast = broadcast;
762                 intf->seq_table[i].inuse = 1;
763                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764                 *seq = i;
765                 *seqid = intf->seq_table[i].seqid;
766                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
767         } else {
768                 rv = -EAGAIN;
769         }
770
771         return rv;
772 }
773
774 /*
775  * Return the receive message for the given sequence number and
776  * release the sequence number so it can be reused.  Some other data
777  * is passed in to be sure the message matches up correctly (to help
778  * guard against message coming in after their timeout and the
779  * sequence number being reused).
780  */
781 static int intf_find_seq(ipmi_smi_t           intf,
782                          unsigned char        seq,
783                          short                channel,
784                          unsigned char        cmd,
785                          unsigned char        netfn,
786                          struct ipmi_addr     *addr,
787                          struct ipmi_recv_msg **recv_msg)
788 {
789         int           rv = -ENODEV;
790         unsigned long flags;
791
792         if (seq >= IPMI_IPMB_NUM_SEQ)
793                 return -EINVAL;
794
795         spin_lock_irqsave(&(intf->seq_lock), flags);
796         if (intf->seq_table[seq].inuse) {
797                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
798
799                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
800                                 && (msg->msg.netfn == netfn)
801                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
802                         *recv_msg = msg;
803                         intf->seq_table[seq].inuse = 0;
804                         rv = 0;
805                 }
806         }
807         spin_unlock_irqrestore(&(intf->seq_lock), flags);
808
809         return rv;
810 }
811
812
813 /* Start the timer for a specific sequence table entry. */
814 static int intf_start_seq_timer(ipmi_smi_t intf,
815                                 long       msgid)
816 {
817         int           rv = -ENODEV;
818         unsigned long flags;
819         unsigned char seq;
820         unsigned long seqid;
821
822
823         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
824
825         spin_lock_irqsave(&(intf->seq_lock), flags);
826         /*
827          * We do this verification because the user can be deleted
828          * while a message is outstanding.
829          */
830         if ((intf->seq_table[seq].inuse)
831                                 && (intf->seq_table[seq].seqid == seqid)) {
832                 struct seq_table *ent = &(intf->seq_table[seq]);
833                 ent->timeout = ent->orig_timeout;
834                 rv = 0;
835         }
836         spin_unlock_irqrestore(&(intf->seq_lock), flags);
837
838         return rv;
839 }
840
841 /* Got an error for the send message for a specific sequence number. */
842 static int intf_err_seq(ipmi_smi_t   intf,
843                         long         msgid,
844                         unsigned int err)
845 {
846         int                  rv = -ENODEV;
847         unsigned long        flags;
848         unsigned char        seq;
849         unsigned long        seqid;
850         struct ipmi_recv_msg *msg = NULL;
851
852
853         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
854
855         spin_lock_irqsave(&(intf->seq_lock), flags);
856         /*
857          * We do this verification because the user can be deleted
858          * while a message is outstanding.
859          */
860         if ((intf->seq_table[seq].inuse)
861                                 && (intf->seq_table[seq].seqid == seqid)) {
862                 struct seq_table *ent = &(intf->seq_table[seq]);
863
864                 ent->inuse = 0;
865                 msg = ent->recv_msg;
866                 rv = 0;
867         }
868         spin_unlock_irqrestore(&(intf->seq_lock), flags);
869
870         if (msg)
871                 deliver_err_response(msg, err);
872
873         return rv;
874 }
875
876
877 int ipmi_create_user(unsigned int          if_num,
878                      struct ipmi_user_hndl *handler,
879                      void                  *handler_data,
880                      ipmi_user_t           *user)
881 {
882         unsigned long flags;
883         ipmi_user_t   new_user;
884         int           rv = 0;
885         ipmi_smi_t    intf;
886
887         /*
888          * There is no module usecount here, because it's not
889          * required.  Since this can only be used by and called from
890          * other modules, they will implicitly use this module, and
891          * thus this can't be removed unless the other modules are
892          * removed.
893          */
894
895         if (handler == NULL)
896                 return -EINVAL;
897
898         /*
899          * Make sure the driver is actually initialized, this handles
900          * problems with initialization order.
901          */
902         if (!initialized) {
903                 rv = ipmi_init_msghandler();
904                 if (rv)
905                         return rv;
906
907                 /*
908                  * The init code doesn't return an error if it was turned
909                  * off, but it won't initialize.  Check that.
910                  */
911                 if (!initialized)
912                         return -ENODEV;
913         }
914
915         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
916         if (!new_user)
917                 return -ENOMEM;
918
919         mutex_lock(&ipmi_interfaces_mutex);
920         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
921                 if (intf->intf_num == if_num)
922                         goto found;
923         }
924         /* Not found, return an error */
925         rv = -EINVAL;
926         goto out_kfree;
927
928  found:
929         /* Note that each existing user holds a refcount to the interface. */
930         kref_get(&intf->refcount);
931
932         kref_init(&new_user->refcount);
933         new_user->handler = handler;
934         new_user->handler_data = handler_data;
935         new_user->intf = intf;
936         new_user->gets_events = 0;
937
938         if (!try_module_get(intf->handlers->owner)) {
939                 rv = -ENODEV;
940                 goto out_kref;
941         }
942
943         if (intf->handlers->inc_usecount) {
944                 rv = intf->handlers->inc_usecount(intf->send_info);
945                 if (rv) {
946                         module_put(intf->handlers->owner);
947                         goto out_kref;
948                 }
949         }
950
951         /*
952          * Hold the lock so intf->handlers is guaranteed to be good
953          * until now
954          */
955         mutex_unlock(&ipmi_interfaces_mutex);
956
957         new_user->valid = 1;
958         spin_lock_irqsave(&intf->seq_lock, flags);
959         list_add_rcu(&new_user->link, &intf->users);
960         spin_unlock_irqrestore(&intf->seq_lock, flags);
961         *user = new_user;
962         return 0;
963
964 out_kref:
965         kref_put(&intf->refcount, intf_free);
966 out_kfree:
967         mutex_unlock(&ipmi_interfaces_mutex);
968         kfree(new_user);
969         return rv;
970 }
971 EXPORT_SYMBOL(ipmi_create_user);
972
973 static void free_user(struct kref *ref)
974 {
975         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
976         kfree(user);
977 }
978
979 int ipmi_destroy_user(ipmi_user_t user)
980 {
981         ipmi_smi_t       intf = user->intf;
982         int              i;
983         unsigned long    flags;
984         struct cmd_rcvr  *rcvr;
985         struct cmd_rcvr  *rcvrs = NULL;
986
987         user->valid = 0;
988
989         /* Remove the user from the interface's sequence table. */
990         spin_lock_irqsave(&intf->seq_lock, flags);
991         list_del_rcu(&user->link);
992
993         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
994                 if (intf->seq_table[i].inuse
995                     && (intf->seq_table[i].recv_msg->user == user)) {
996                         intf->seq_table[i].inuse = 0;
997                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
998                 }
999         }
1000         spin_unlock_irqrestore(&intf->seq_lock, flags);
1001
1002         /*
1003          * Remove the user from the command receiver's table.  First
1004          * we build a list of everything (not using the standard link,
1005          * since other things may be using it till we do
1006          * synchronize_rcu()) then free everything in that list.
1007          */
1008         mutex_lock(&intf->cmd_rcvrs_mutex);
1009         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1010                 if (rcvr->user == user) {
1011                         list_del_rcu(&rcvr->link);
1012                         rcvr->next = rcvrs;
1013                         rcvrs = rcvr;
1014                 }
1015         }
1016         mutex_unlock(&intf->cmd_rcvrs_mutex);
1017         synchronize_rcu();
1018         while (rcvrs) {
1019                 rcvr = rcvrs;
1020                 rcvrs = rcvr->next;
1021                 kfree(rcvr);
1022         }
1023
1024         mutex_lock(&ipmi_interfaces_mutex);
1025         if (intf->handlers) {
1026                 module_put(intf->handlers->owner);
1027                 if (intf->handlers->dec_usecount)
1028                         intf->handlers->dec_usecount(intf->send_info);
1029         }
1030         mutex_unlock(&ipmi_interfaces_mutex);
1031
1032         kref_put(&intf->refcount, intf_free);
1033
1034         kref_put(&user->refcount, free_user);
1035
1036         return 0;
1037 }
1038 EXPORT_SYMBOL(ipmi_destroy_user);
1039
1040 void ipmi_get_version(ipmi_user_t   user,
1041                       unsigned char *major,
1042                       unsigned char *minor)
1043 {
1044         *major = user->intf->ipmi_version_major;
1045         *minor = user->intf->ipmi_version_minor;
1046 }
1047 EXPORT_SYMBOL(ipmi_get_version);
1048
1049 int ipmi_set_my_address(ipmi_user_t   user,
1050                         unsigned int  channel,
1051                         unsigned char address)
1052 {
1053         if (channel >= IPMI_MAX_CHANNELS)
1054                 return -EINVAL;
1055         user->intf->channels[channel].address = address;
1056         return 0;
1057 }
1058 EXPORT_SYMBOL(ipmi_set_my_address);
1059
1060 int ipmi_get_my_address(ipmi_user_t   user,
1061                         unsigned int  channel,
1062                         unsigned char *address)
1063 {
1064         if (channel >= IPMI_MAX_CHANNELS)
1065                 return -EINVAL;
1066         *address = user->intf->channels[channel].address;
1067         return 0;
1068 }
1069 EXPORT_SYMBOL(ipmi_get_my_address);
1070
1071 int ipmi_set_my_LUN(ipmi_user_t   user,
1072                     unsigned int  channel,
1073                     unsigned char LUN)
1074 {
1075         if (channel >= IPMI_MAX_CHANNELS)
1076                 return -EINVAL;
1077         user->intf->channels[channel].lun = LUN & 0x3;
1078         return 0;
1079 }
1080 EXPORT_SYMBOL(ipmi_set_my_LUN);
1081
1082 int ipmi_get_my_LUN(ipmi_user_t   user,
1083                     unsigned int  channel,
1084                     unsigned char *address)
1085 {
1086         if (channel >= IPMI_MAX_CHANNELS)
1087                 return -EINVAL;
1088         *address = user->intf->channels[channel].lun;
1089         return 0;
1090 }
1091 EXPORT_SYMBOL(ipmi_get_my_LUN);
1092
1093 int ipmi_get_maintenance_mode(ipmi_user_t user)
1094 {
1095         int           mode;
1096         unsigned long flags;
1097
1098         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1099         mode = user->intf->maintenance_mode;
1100         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1101
1102         return mode;
1103 }
1104 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1105
1106 static void maintenance_mode_update(ipmi_smi_t intf)
1107 {
1108         if (intf->handlers->set_maintenance_mode)
1109                 intf->handlers->set_maintenance_mode(
1110                         intf->send_info, intf->maintenance_mode_enable);
1111 }
1112
1113 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1114 {
1115         int           rv = 0;
1116         unsigned long flags;
1117         ipmi_smi_t    intf = user->intf;
1118
1119         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1120         if (intf->maintenance_mode != mode) {
1121                 switch (mode) {
1122                 case IPMI_MAINTENANCE_MODE_AUTO:
1123                         intf->maintenance_mode = mode;
1124                         intf->maintenance_mode_enable
1125                                 = (intf->auto_maintenance_timeout > 0);
1126                         break;
1127
1128                 case IPMI_MAINTENANCE_MODE_OFF:
1129                         intf->maintenance_mode = mode;
1130                         intf->maintenance_mode_enable = 0;
1131                         break;
1132
1133                 case IPMI_MAINTENANCE_MODE_ON:
1134                         intf->maintenance_mode = mode;
1135                         intf->maintenance_mode_enable = 1;
1136                         break;
1137
1138                 default:
1139                         rv = -EINVAL;
1140                         goto out_unlock;
1141                 }
1142
1143                 maintenance_mode_update(intf);
1144         }
1145  out_unlock:
1146         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1147
1148         return rv;
1149 }
1150 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1151
1152 int ipmi_set_gets_events(ipmi_user_t user, int val)
1153 {
1154         unsigned long        flags;
1155         ipmi_smi_t           intf = user->intf;
1156         struct ipmi_recv_msg *msg, *msg2;
1157         struct list_head     msgs;
1158
1159         INIT_LIST_HEAD(&msgs);
1160
1161         spin_lock_irqsave(&intf->events_lock, flags);
1162         user->gets_events = val;
1163
1164         if (intf->delivering_events)
1165                 /*
1166                  * Another thread is delivering events for this, so
1167                  * let it handle any new events.
1168                  */
1169                 goto out;
1170
1171         /* Deliver any queued events. */
1172         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1173                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1174                         list_move_tail(&msg->link, &msgs);
1175                 intf->waiting_events_count = 0;
1176                 if (intf->event_msg_printed) {
1177                         printk(KERN_WARNING PFX "Event queue no longer"
1178                                " full\n");
1179                         intf->event_msg_printed = 0;
1180                 }
1181
1182                 intf->delivering_events = 1;
1183                 spin_unlock_irqrestore(&intf->events_lock, flags);
1184
1185                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1186                         msg->user = user;
1187                         kref_get(&user->refcount);
1188                         deliver_response(msg);
1189                 }
1190
1191                 spin_lock_irqsave(&intf->events_lock, flags);
1192                 intf->delivering_events = 0;
1193         }
1194
1195  out:
1196         spin_unlock_irqrestore(&intf->events_lock, flags);
1197
1198         return 0;
1199 }
1200 EXPORT_SYMBOL(ipmi_set_gets_events);
1201
1202 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1203                                       unsigned char netfn,
1204                                       unsigned char cmd,
1205                                       unsigned char chan)
1206 {
1207         struct cmd_rcvr *rcvr;
1208
1209         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1210                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1211                                         && (rcvr->chans & (1 << chan)))
1212                         return rcvr;
1213         }
1214         return NULL;
1215 }
1216
1217 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1218                                  unsigned char netfn,
1219                                  unsigned char cmd,
1220                                  unsigned int  chans)
1221 {
1222         struct cmd_rcvr *rcvr;
1223
1224         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1225                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1226                                         && (rcvr->chans & chans))
1227                         return 0;
1228         }
1229         return 1;
1230 }
1231
1232 int ipmi_register_for_cmd(ipmi_user_t   user,
1233                           unsigned char netfn,
1234                           unsigned char cmd,
1235                           unsigned int  chans)
1236 {
1237         ipmi_smi_t      intf = user->intf;
1238         struct cmd_rcvr *rcvr;
1239         int             rv = 0;
1240
1241
1242         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1243         if (!rcvr)
1244                 return -ENOMEM;
1245         rcvr->cmd = cmd;
1246         rcvr->netfn = netfn;
1247         rcvr->chans = chans;
1248         rcvr->user = user;
1249
1250         mutex_lock(&intf->cmd_rcvrs_mutex);
1251         /* Make sure the command/netfn is not already registered. */
1252         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1253                 rv = -EBUSY;
1254                 goto out_unlock;
1255         }
1256
1257         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1258
1259  out_unlock:
1260         mutex_unlock(&intf->cmd_rcvrs_mutex);
1261         if (rv)
1262                 kfree(rcvr);
1263
1264         return rv;
1265 }
1266 EXPORT_SYMBOL(ipmi_register_for_cmd);
1267
1268 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1269                             unsigned char netfn,
1270                             unsigned char cmd,
1271                             unsigned int  chans)
1272 {
1273         ipmi_smi_t      intf = user->intf;
1274         struct cmd_rcvr *rcvr;
1275         struct cmd_rcvr *rcvrs = NULL;
1276         int i, rv = -ENOENT;
1277
1278         mutex_lock(&intf->cmd_rcvrs_mutex);
1279         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1280                 if (((1 << i) & chans) == 0)
1281                         continue;
1282                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1283                 if (rcvr == NULL)
1284                         continue;
1285                 if (rcvr->user == user) {
1286                         rv = 0;
1287                         rcvr->chans &= ~chans;
1288                         if (rcvr->chans == 0) {
1289                                 list_del_rcu(&rcvr->link);
1290                                 rcvr->next = rcvrs;
1291                                 rcvrs = rcvr;
1292                         }
1293                 }
1294         }
1295         mutex_unlock(&intf->cmd_rcvrs_mutex);
1296         synchronize_rcu();
1297         while (rcvrs) {
1298                 rcvr = rcvrs;
1299                 rcvrs = rcvr->next;
1300                 kfree(rcvr);
1301         }
1302         return rv;
1303 }
1304 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1305
1306 static unsigned char
1307 ipmb_checksum(unsigned char *data, int size)
1308 {
1309         unsigned char csum = 0;
1310
1311         for (; size > 0; size--, data++)
1312                 csum += *data;
1313
1314         return -csum;
1315 }
1316
1317 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1318                                    struct kernel_ipmi_msg *msg,
1319                                    struct ipmi_ipmb_addr *ipmb_addr,
1320                                    long                  msgid,
1321                                    unsigned char         ipmb_seq,
1322                                    int                   broadcast,
1323                                    unsigned char         source_address,
1324                                    unsigned char         source_lun)
1325 {
1326         int i = broadcast;
1327
1328         /* Format the IPMB header data. */
1329         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1330         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1331         smi_msg->data[2] = ipmb_addr->channel;
1332         if (broadcast)
1333                 smi_msg->data[3] = 0;
1334         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1335         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1336         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1337         smi_msg->data[i+6] = source_address;
1338         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1339         smi_msg->data[i+8] = msg->cmd;
1340
1341         /* Now tack on the data to the message. */
1342         if (msg->data_len > 0)
1343                 memcpy(&(smi_msg->data[i+9]), msg->data,
1344                        msg->data_len);
1345         smi_msg->data_size = msg->data_len + 9;
1346
1347         /* Now calculate the checksum and tack it on. */
1348         smi_msg->data[i+smi_msg->data_size]
1349                 = ipmb_checksum(&(smi_msg->data[i+6]),
1350                                 smi_msg->data_size-6);
1351
1352         /*
1353          * Add on the checksum size and the offset from the
1354          * broadcast.
1355          */
1356         smi_msg->data_size += 1 + i;
1357
1358         smi_msg->msgid = msgid;
1359 }
1360
1361 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1362                                   struct kernel_ipmi_msg *msg,
1363                                   struct ipmi_lan_addr  *lan_addr,
1364                                   long                  msgid,
1365                                   unsigned char         ipmb_seq,
1366                                   unsigned char         source_lun)
1367 {
1368         /* Format the IPMB header data. */
1369         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1370         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1371         smi_msg->data[2] = lan_addr->channel;
1372         smi_msg->data[3] = lan_addr->session_handle;
1373         smi_msg->data[4] = lan_addr->remote_SWID;
1374         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1375         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1376         smi_msg->data[7] = lan_addr->local_SWID;
1377         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1378         smi_msg->data[9] = msg->cmd;
1379
1380         /* Now tack on the data to the message. */
1381         if (msg->data_len > 0)
1382                 memcpy(&(smi_msg->data[10]), msg->data,
1383                        msg->data_len);
1384         smi_msg->data_size = msg->data_len + 10;
1385
1386         /* Now calculate the checksum and tack it on. */
1387         smi_msg->data[smi_msg->data_size]
1388                 = ipmb_checksum(&(smi_msg->data[7]),
1389                                 smi_msg->data_size-7);
1390
1391         /*
1392          * Add on the checksum size and the offset from the
1393          * broadcast.
1394          */
1395         smi_msg->data_size += 1;
1396
1397         smi_msg->msgid = msgid;
1398 }
1399
1400 /*
1401  * Separate from ipmi_request so that the user does not have to be
1402  * supplied in certain circumstances (mainly at panic time).  If
1403  * messages are supplied, they will be freed, even if an error
1404  * occurs.
1405  */
1406 static int i_ipmi_request(ipmi_user_t          user,
1407                           ipmi_smi_t           intf,
1408                           struct ipmi_addr     *addr,
1409                           long                 msgid,
1410                           struct kernel_ipmi_msg *msg,
1411                           void                 *user_msg_data,
1412                           void                 *supplied_smi,
1413                           struct ipmi_recv_msg *supplied_recv,
1414                           int                  priority,
1415                           unsigned char        source_address,
1416                           unsigned char        source_lun,
1417                           int                  retries,
1418                           unsigned int         retry_time_ms)
1419 {
1420         int                      rv = 0;
1421         struct ipmi_smi_msg      *smi_msg;
1422         struct ipmi_recv_msg     *recv_msg;
1423         unsigned long            flags;
1424         struct ipmi_smi_handlers *handlers;
1425
1426
1427         if (supplied_recv)
1428                 recv_msg = supplied_recv;
1429         else {
1430                 recv_msg = ipmi_alloc_recv_msg();
1431                 if (recv_msg == NULL)
1432                         return -ENOMEM;
1433         }
1434         recv_msg->user_msg_data = user_msg_data;
1435
1436         if (supplied_smi)
1437                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1438         else {
1439                 smi_msg = ipmi_alloc_smi_msg();
1440                 if (smi_msg == NULL) {
1441                         ipmi_free_recv_msg(recv_msg);
1442                         return -ENOMEM;
1443                 }
1444         }
1445
1446         rcu_read_lock();
1447         handlers = intf->handlers;
1448         if (!handlers) {
1449                 rv = -ENODEV;
1450                 goto out_err;
1451         }
1452
1453         recv_msg->user = user;
1454         if (user)
1455                 kref_get(&user->refcount);
1456         recv_msg->msgid = msgid;
1457         /*
1458          * Store the message to send in the receive message so timeout
1459          * responses can get the proper response data.
1460          */
1461         recv_msg->msg = *msg;
1462
1463         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1464                 struct ipmi_system_interface_addr *smi_addr;
1465
1466                 if (msg->netfn & 1) {
1467                         /* Responses are not allowed to the SMI. */
1468                         rv = -EINVAL;
1469                         goto out_err;
1470                 }
1471
1472                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1473                 if (smi_addr->lun > 3) {
1474                         ipmi_inc_stat(intf, sent_invalid_commands);
1475                         rv = -EINVAL;
1476                         goto out_err;
1477                 }
1478
1479                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1480
1481                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1482                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1483                         || (msg->cmd == IPMI_GET_MSG_CMD)
1484                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1485                         /*
1486                          * We don't let the user do these, since we manage
1487                          * the sequence numbers.
1488                          */
1489                         ipmi_inc_stat(intf, sent_invalid_commands);
1490                         rv = -EINVAL;
1491                         goto out_err;
1492                 }
1493
1494                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1495                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1496                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1497                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1498                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1499                         intf->auto_maintenance_timeout
1500                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1501                         if (!intf->maintenance_mode
1502                             && !intf->maintenance_mode_enable) {
1503                                 intf->maintenance_mode_enable = 1;
1504                                 maintenance_mode_update(intf);
1505                         }
1506                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1507                                                flags);
1508                 }
1509
1510                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1511                         ipmi_inc_stat(intf, sent_invalid_commands);
1512                         rv = -EMSGSIZE;
1513                         goto out_err;
1514                 }
1515
1516                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1517                 smi_msg->data[1] = msg->cmd;
1518                 smi_msg->msgid = msgid;
1519                 smi_msg->user_data = recv_msg;
1520                 if (msg->data_len > 0)
1521                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1522                 smi_msg->data_size = msg->data_len + 2;
1523                 ipmi_inc_stat(intf, sent_local_commands);
1524         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1525                 struct ipmi_ipmb_addr *ipmb_addr;
1526                 unsigned char         ipmb_seq;
1527                 long                  seqid;
1528                 int                   broadcast = 0;
1529
1530                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1531                         ipmi_inc_stat(intf, sent_invalid_commands);
1532                         rv = -EINVAL;
1533                         goto out_err;
1534                 }
1535
1536                 if (intf->channels[addr->channel].medium
1537                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1538                         ipmi_inc_stat(intf, sent_invalid_commands);
1539                         rv = -EINVAL;
1540                         goto out_err;
1541                 }
1542
1543                 if (retries < 0) {
1544                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1545                         retries = 0; /* Don't retry broadcasts. */
1546                     else
1547                         retries = 4;
1548                 }
1549                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1550                     /*
1551                      * Broadcasts add a zero at the beginning of the
1552                      * message, but otherwise is the same as an IPMB
1553                      * address.
1554                      */
1555                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1556                     broadcast = 1;
1557                 }
1558
1559
1560                 /* Default to 1 second retries. */
1561                 if (retry_time_ms == 0)
1562                     retry_time_ms = 1000;
1563
1564                 /*
1565                  * 9 for the header and 1 for the checksum, plus
1566                  * possibly one for the broadcast.
1567                  */
1568                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1569                         ipmi_inc_stat(intf, sent_invalid_commands);
1570                         rv = -EMSGSIZE;
1571                         goto out_err;
1572                 }
1573
1574                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1575                 if (ipmb_addr->lun > 3) {
1576                         ipmi_inc_stat(intf, sent_invalid_commands);
1577                         rv = -EINVAL;
1578                         goto out_err;
1579                 }
1580
1581                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1582
1583                 if (recv_msg->msg.netfn & 0x1) {
1584                         /*
1585                          * It's a response, so use the user's sequence
1586                          * from msgid.
1587                          */
1588                         ipmi_inc_stat(intf, sent_ipmb_responses);
1589                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1590                                         msgid, broadcast,
1591                                         source_address, source_lun);
1592
1593                         /*
1594                          * Save the receive message so we can use it
1595                          * to deliver the response.
1596                          */
1597                         smi_msg->user_data = recv_msg;
1598                 } else {
1599                         /* It's a command, so get a sequence for it. */
1600
1601                         spin_lock_irqsave(&(intf->seq_lock), flags);
1602
1603                         /*
1604                          * Create a sequence number with a 1 second
1605                          * timeout and 4 retries.
1606                          */
1607                         rv = intf_next_seq(intf,
1608                                            recv_msg,
1609                                            retry_time_ms,
1610                                            retries,
1611                                            broadcast,
1612                                            &ipmb_seq,
1613                                            &seqid);
1614                         if (rv) {
1615                                 /*
1616                                  * We have used up all the sequence numbers,
1617                                  * probably, so abort.
1618                                  */
1619                                 spin_unlock_irqrestore(&(intf->seq_lock),
1620                                                        flags);
1621                                 goto out_err;
1622                         }
1623
1624                         ipmi_inc_stat(intf, sent_ipmb_commands);
1625
1626                         /*
1627                          * Store the sequence number in the message,
1628                          * so that when the send message response
1629                          * comes back we can start the timer.
1630                          */
1631                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1632                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1633                                         ipmb_seq, broadcast,
1634                                         source_address, source_lun);
1635
1636                         /*
1637                          * Copy the message into the recv message data, so we
1638                          * can retransmit it later if necessary.
1639                          */
1640                         memcpy(recv_msg->msg_data, smi_msg->data,
1641                                smi_msg->data_size);
1642                         recv_msg->msg.data = recv_msg->msg_data;
1643                         recv_msg->msg.data_len = smi_msg->data_size;
1644
1645                         /*
1646                          * We don't unlock until here, because we need
1647                          * to copy the completed message into the
1648                          * recv_msg before we release the lock.
1649                          * Otherwise, race conditions may bite us.  I
1650                          * know that's pretty paranoid, but I prefer
1651                          * to be correct.
1652                          */
1653                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1654                 }
1655         } else if (is_lan_addr(addr)) {
1656                 struct ipmi_lan_addr  *lan_addr;
1657                 unsigned char         ipmb_seq;
1658                 long                  seqid;
1659
1660                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1661                         ipmi_inc_stat(intf, sent_invalid_commands);
1662                         rv = -EINVAL;
1663                         goto out_err;
1664                 }
1665
1666                 if ((intf->channels[addr->channel].medium
1667                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1668                     && (intf->channels[addr->channel].medium
1669                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1670                         ipmi_inc_stat(intf, sent_invalid_commands);
1671                         rv = -EINVAL;
1672                         goto out_err;
1673                 }
1674
1675                 retries = 4;
1676
1677                 /* Default to 1 second retries. */
1678                 if (retry_time_ms == 0)
1679                     retry_time_ms = 1000;
1680
1681                 /* 11 for the header and 1 for the checksum. */
1682                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1683                         ipmi_inc_stat(intf, sent_invalid_commands);
1684                         rv = -EMSGSIZE;
1685                         goto out_err;
1686                 }
1687
1688                 lan_addr = (struct ipmi_lan_addr *) addr;
1689                 if (lan_addr->lun > 3) {
1690                         ipmi_inc_stat(intf, sent_invalid_commands);
1691                         rv = -EINVAL;
1692                         goto out_err;
1693                 }
1694
1695                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1696
1697                 if (recv_msg->msg.netfn & 0x1) {
1698                         /*
1699                          * It's a response, so use the user's sequence
1700                          * from msgid.
1701                          */
1702                         ipmi_inc_stat(intf, sent_lan_responses);
1703                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1704                                        msgid, source_lun);
1705
1706                         /*
1707                          * Save the receive message so we can use it
1708                          * to deliver the response.
1709                          */
1710                         smi_msg->user_data = recv_msg;
1711                 } else {
1712                         /* It's a command, so get a sequence for it. */
1713
1714                         spin_lock_irqsave(&(intf->seq_lock), flags);
1715
1716                         /*
1717                          * Create a sequence number with a 1 second
1718                          * timeout and 4 retries.
1719                          */
1720                         rv = intf_next_seq(intf,
1721                                            recv_msg,
1722                                            retry_time_ms,
1723                                            retries,
1724                                            0,
1725                                            &ipmb_seq,
1726                                            &seqid);
1727                         if (rv) {
1728                                 /*
1729                                  * We have used up all the sequence numbers,
1730                                  * probably, so abort.
1731                                  */
1732                                 spin_unlock_irqrestore(&(intf->seq_lock),
1733                                                        flags);
1734                                 goto out_err;
1735                         }
1736
1737                         ipmi_inc_stat(intf, sent_lan_commands);
1738
1739                         /*
1740                          * Store the sequence number in the message,
1741                          * so that when the send message response
1742                          * comes back we can start the timer.
1743                          */
1744                         format_lan_msg(smi_msg, msg, lan_addr,
1745                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1746                                        ipmb_seq, source_lun);
1747
1748                         /*
1749                          * Copy the message into the recv message data, so we
1750                          * can retransmit it later if necessary.
1751                          */
1752                         memcpy(recv_msg->msg_data, smi_msg->data,
1753                                smi_msg->data_size);
1754                         recv_msg->msg.data = recv_msg->msg_data;
1755                         recv_msg->msg.data_len = smi_msg->data_size;
1756
1757                         /*
1758                          * We don't unlock until here, because we need
1759                          * to copy the completed message into the
1760                          * recv_msg before we release the lock.
1761                          * Otherwise, race conditions may bite us.  I
1762                          * know that's pretty paranoid, but I prefer
1763                          * to be correct.
1764                          */
1765                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1766                 }
1767         } else {
1768             /* Unknown address type. */
1769                 ipmi_inc_stat(intf, sent_invalid_commands);
1770                 rv = -EINVAL;
1771                 goto out_err;
1772         }
1773
1774 #ifdef DEBUG_MSGING
1775         {
1776                 int m;
1777                 for (m = 0; m < smi_msg->data_size; m++)
1778                         printk(" %2.2x", smi_msg->data[m]);
1779                 printk("\n");
1780         }
1781 #endif
1782
1783         handlers->sender(intf->send_info, smi_msg, priority);
1784         rcu_read_unlock();
1785
1786         return 0;
1787
1788  out_err:
1789         rcu_read_unlock();
1790         ipmi_free_smi_msg(smi_msg);
1791         ipmi_free_recv_msg(recv_msg);
1792         return rv;
1793 }
1794
1795 static int check_addr(ipmi_smi_t       intf,
1796                       struct ipmi_addr *addr,
1797                       unsigned char    *saddr,
1798                       unsigned char    *lun)
1799 {
1800         if (addr->channel >= IPMI_MAX_CHANNELS)
1801                 return -EINVAL;
1802         *lun = intf->channels[addr->channel].lun;
1803         *saddr = intf->channels[addr->channel].address;
1804         return 0;
1805 }
1806
1807 int ipmi_request_settime(ipmi_user_t      user,
1808                          struct ipmi_addr *addr,
1809                          long             msgid,
1810                          struct kernel_ipmi_msg  *msg,
1811                          void             *user_msg_data,
1812                          int              priority,
1813                          int              retries,
1814                          unsigned int     retry_time_ms)
1815 {
1816         unsigned char saddr, lun;
1817         int           rv;
1818
1819         if (!user)
1820                 return -EINVAL;
1821         rv = check_addr(user->intf, addr, &saddr, &lun);
1822         if (rv)
1823                 return rv;
1824         return i_ipmi_request(user,
1825                               user->intf,
1826                               addr,
1827                               msgid,
1828                               msg,
1829                               user_msg_data,
1830                               NULL, NULL,
1831                               priority,
1832                               saddr,
1833                               lun,
1834                               retries,
1835                               retry_time_ms);
1836 }
1837 EXPORT_SYMBOL(ipmi_request_settime);
1838
1839 int ipmi_request_supply_msgs(ipmi_user_t          user,
1840                              struct ipmi_addr     *addr,
1841                              long                 msgid,
1842                              struct kernel_ipmi_msg *msg,
1843                              void                 *user_msg_data,
1844                              void                 *supplied_smi,
1845                              struct ipmi_recv_msg *supplied_recv,
1846                              int                  priority)
1847 {
1848         unsigned char saddr, lun;
1849         int           rv;
1850
1851         if (!user)
1852                 return -EINVAL;
1853         rv = check_addr(user->intf, addr, &saddr, &lun);
1854         if (rv)
1855                 return rv;
1856         return i_ipmi_request(user,
1857                               user->intf,
1858                               addr,
1859                               msgid,
1860                               msg,
1861                               user_msg_data,
1862                               supplied_smi,
1863                               supplied_recv,
1864                               priority,
1865                               saddr,
1866                               lun,
1867                               -1, 0);
1868 }
1869 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1870
1871 #ifdef CONFIG_PROC_FS
1872 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1873                                int count, int *eof, void *data)
1874 {
1875         char       *out = (char *) page;
1876         ipmi_smi_t intf = data;
1877         int        i;
1878         int        rv = 0;
1879
1880         for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1881                 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1882         out[rv-1] = '\n'; /* Replace the final space with a newline */
1883         out[rv] = '\0';
1884         rv++;
1885         return rv;
1886 }
1887
1888 static int version_file_read_proc(char *page, char **start, off_t off,
1889                                   int count, int *eof, void *data)
1890 {
1891         char       *out = (char *) page;
1892         ipmi_smi_t intf = data;
1893
1894         return sprintf(out, "%u.%u\n",
1895                        ipmi_version_major(&intf->bmc->id),
1896                        ipmi_version_minor(&intf->bmc->id));
1897 }
1898
1899 static int stat_file_read_proc(char *page, char **start, off_t off,
1900                                int count, int *eof, void *data)
1901 {
1902         char       *out = (char *) page;
1903         ipmi_smi_t intf = data;
1904
1905         out += sprintf(out, "sent_invalid_commands:       %u\n",
1906                        ipmi_get_stat(intf, sent_invalid_commands));
1907         out += sprintf(out, "sent_local_commands:         %u\n",
1908                        ipmi_get_stat(intf, sent_local_commands));
1909         out += sprintf(out, "handled_local_responses:     %u\n",
1910                        ipmi_get_stat(intf, handled_local_responses));
1911         out += sprintf(out, "unhandled_local_responses:   %u\n",
1912                        ipmi_get_stat(intf, unhandled_local_responses));
1913         out += sprintf(out, "sent_ipmb_commands:          %u\n",
1914                        ipmi_get_stat(intf, sent_ipmb_commands));
1915         out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1916                        ipmi_get_stat(intf, sent_ipmb_command_errs));
1917         out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1918                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
1919         out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1920                        ipmi_get_stat(intf, timed_out_ipmb_commands));
1921         out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1922                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1923         out += sprintf(out, "sent_ipmb_responses:         %u\n",
1924                        ipmi_get_stat(intf, sent_ipmb_responses));
1925         out += sprintf(out, "handled_ipmb_responses:      %u\n",
1926                        ipmi_get_stat(intf, handled_ipmb_responses));
1927         out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1928                        ipmi_get_stat(intf, invalid_ipmb_responses));
1929         out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1930                        ipmi_get_stat(intf, unhandled_ipmb_responses));
1931         out += sprintf(out, "sent_lan_commands:           %u\n",
1932                        ipmi_get_stat(intf, sent_lan_commands));
1933         out += sprintf(out, "sent_lan_command_errs:       %u\n",
1934                        ipmi_get_stat(intf, sent_lan_command_errs));
1935         out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1936                        ipmi_get_stat(intf, retransmitted_lan_commands));
1937         out += sprintf(out, "timed_out_lan_commands:      %u\n",
1938                        ipmi_get_stat(intf, timed_out_lan_commands));
1939         out += sprintf(out, "sent_lan_responses:          %u\n",
1940                        ipmi_get_stat(intf, sent_lan_responses));
1941         out += sprintf(out, "handled_lan_responses:       %u\n",
1942                        ipmi_get_stat(intf, handled_lan_responses));
1943         out += sprintf(out, "invalid_lan_responses:       %u\n",
1944                        ipmi_get_stat(intf, invalid_lan_responses));
1945         out += sprintf(out, "unhandled_lan_responses:     %u\n",
1946                        ipmi_get_stat(intf, unhandled_lan_responses));
1947         out += sprintf(out, "handled_commands:            %u\n",
1948                        ipmi_get_stat(intf, handled_commands));
1949         out += sprintf(out, "invalid_commands:            %u\n",
1950                        ipmi_get_stat(intf, invalid_commands));
1951         out += sprintf(out, "unhandled_commands:          %u\n",
1952                        ipmi_get_stat(intf, unhandled_commands));
1953         out += sprintf(out, "invalid_events:              %u\n",
1954                        ipmi_get_stat(intf, invalid_events));
1955         out += sprintf(out, "events:                      %u\n",
1956                        ipmi_get_stat(intf, events));
1957         out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1958                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1959         out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1960                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1961
1962         return (out - ((char *) page));
1963 }
1964 #endif /* CONFIG_PROC_FS */
1965
1966 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1967                             read_proc_t *read_proc,
1968                             void *data)
1969 {
1970         int                    rv = 0;
1971 #ifdef CONFIG_PROC_FS
1972         struct proc_dir_entry  *file;
1973         struct ipmi_proc_entry *entry;
1974
1975         /* Create a list element. */
1976         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1977         if (!entry)
1978                 return -ENOMEM;
1979         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1980         if (!entry->name) {
1981                 kfree(entry);
1982                 return -ENOMEM;
1983         }
1984         strcpy(entry->name, name);
1985
1986         file = create_proc_entry(name, 0, smi->proc_dir);
1987         if (!file) {
1988                 kfree(entry->name);
1989                 kfree(entry);
1990                 rv = -ENOMEM;
1991         } else {
1992                 file->data = data;
1993                 file->read_proc = read_proc;
1994
1995                 mutex_lock(&smi->proc_entry_lock);
1996                 /* Stick it on the list. */
1997                 entry->next = smi->proc_entries;
1998                 smi->proc_entries = entry;
1999                 mutex_unlock(&smi->proc_entry_lock);
2000         }
2001 #endif /* CONFIG_PROC_FS */
2002
2003         return rv;
2004 }
2005 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2006
2007 static int add_proc_entries(ipmi_smi_t smi, int num)
2008 {
2009         int rv = 0;
2010
2011 #ifdef CONFIG_PROC_FS
2012         sprintf(smi->proc_dir_name, "%d", num);
2013         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2014         if (!smi->proc_dir)
2015                 rv = -ENOMEM;
2016
2017         if (rv == 0)
2018                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2019                                              stat_file_read_proc,
2020                                              smi);
2021
2022         if (rv == 0)
2023                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2024                                              ipmb_file_read_proc,
2025                                              smi);
2026
2027         if (rv == 0)
2028                 rv = ipmi_smi_add_proc_entry(smi, "version",
2029                                              version_file_read_proc,
2030                                              smi);
2031 #endif /* CONFIG_PROC_FS */
2032
2033         return rv;
2034 }
2035
2036 static void remove_proc_entries(ipmi_smi_t smi)
2037 {
2038 #ifdef CONFIG_PROC_FS
2039         struct ipmi_proc_entry *entry;
2040
2041         mutex_lock(&smi->proc_entry_lock);
2042         while (smi->proc_entries) {
2043                 entry = smi->proc_entries;
2044                 smi->proc_entries = entry->next;
2045
2046                 remove_proc_entry(entry->name, smi->proc_dir);
2047                 kfree(entry->name);
2048                 kfree(entry);
2049         }
2050         mutex_unlock(&smi->proc_entry_lock);
2051         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2052 #endif /* CONFIG_PROC_FS */
2053 }
2054
2055 static int __find_bmc_guid(struct device *dev, void *data)
2056 {
2057         unsigned char *id = data;
2058         struct bmc_device *bmc = dev_get_drvdata(dev);
2059         return memcmp(bmc->guid, id, 16) == 0;
2060 }
2061
2062 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2063                                              unsigned char *guid)
2064 {
2065         struct device *dev;
2066
2067         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2068         if (dev)
2069                 return dev_get_drvdata(dev);
2070         else
2071                 return NULL;
2072 }
2073
2074 struct prod_dev_id {
2075         unsigned int  product_id;
2076         unsigned char device_id;
2077 };
2078
2079 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2080 {
2081         struct prod_dev_id *id = data;
2082         struct bmc_device *bmc = dev_get_drvdata(dev);
2083
2084         return (bmc->id.product_id == id->product_id
2085                 && bmc->id.device_id == id->device_id);
2086 }
2087
2088 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2089         struct device_driver *drv,
2090         unsigned int product_id, unsigned char device_id)
2091 {
2092         struct prod_dev_id id = {
2093                 .product_id = product_id,
2094                 .device_id = device_id,
2095         };
2096         struct device *dev;
2097
2098         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2099         if (dev)
2100                 return dev_get_drvdata(dev);
2101         else
2102                 return NULL;
2103 }
2104
2105 static ssize_t device_id_show(struct device *dev,
2106                               struct device_attribute *attr,
2107                               char *buf)
2108 {
2109         struct bmc_device *bmc = dev_get_drvdata(dev);
2110
2111         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2112 }
2113
2114 static ssize_t provides_dev_sdrs_show(struct device *dev,
2115                                       struct device_attribute *attr,
2116                                       char *buf)
2117 {
2118         struct bmc_device *bmc = dev_get_drvdata(dev);
2119
2120         return snprintf(buf, 10, "%u\n",
2121                         (bmc->id.device_revision & 0x80) >> 7);
2122 }
2123
2124 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2125                              char *buf)
2126 {
2127         struct bmc_device *bmc = dev_get_drvdata(dev);
2128
2129         return snprintf(buf, 20, "%u\n",
2130                         bmc->id.device_revision & 0x0F);
2131 }
2132
2133 static ssize_t firmware_rev_show(struct device *dev,
2134                                  struct device_attribute *attr,
2135                                  char *buf)
2136 {
2137         struct bmc_device *bmc = dev_get_drvdata(dev);
2138
2139         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2140                         bmc->id.firmware_revision_2);
2141 }
2142
2143 static ssize_t ipmi_version_show(struct device *dev,
2144                                  struct device_attribute *attr,
2145                                  char *buf)
2146 {
2147         struct bmc_device *bmc = dev_get_drvdata(dev);
2148
2149         return snprintf(buf, 20, "%u.%u\n",
2150                         ipmi_version_major(&bmc->id),
2151                         ipmi_version_minor(&bmc->id));
2152 }
2153
2154 static ssize_t add_dev_support_show(struct device *dev,
2155                                     struct device_attribute *attr,
2156                                     char *buf)
2157 {
2158         struct bmc_device *bmc = dev_get_drvdata(dev);
2159
2160         return snprintf(buf, 10, "0x%02x\n",
2161                         bmc->id.additional_device_support);
2162 }
2163
2164 static ssize_t manufacturer_id_show(struct device *dev,
2165                                     struct device_attribute *attr,
2166                                     char *buf)
2167 {
2168         struct bmc_device *bmc = dev_get_drvdata(dev);
2169
2170         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2171 }
2172
2173 static ssize_t product_id_show(struct device *dev,
2174                                struct device_attribute *attr,
2175                                char *buf)
2176 {
2177         struct bmc_device *bmc = dev_get_drvdata(dev);
2178
2179         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2180 }
2181
2182 static ssize_t aux_firmware_rev_show(struct device *dev,
2183                                      struct device_attribute *attr,
2184                                      char *buf)
2185 {
2186         struct bmc_device *bmc = dev_get_drvdata(dev);
2187
2188         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2189                         bmc->id.aux_firmware_revision[3],
2190                         bmc->id.aux_firmware_revision[2],
2191                         bmc->id.aux_firmware_revision[1],
2192                         bmc->id.aux_firmware_revision[0]);
2193 }
2194
2195 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2196                          char *buf)
2197 {
2198         struct bmc_device *bmc = dev_get_drvdata(dev);
2199
2200         return snprintf(buf, 100, "%Lx%Lx\n",
2201                         (long long) bmc->guid[0],
2202                         (long long) bmc->guid[8]);
2203 }
2204
2205 static void remove_files(struct bmc_device *bmc)
2206 {
2207         if (!bmc->dev)
2208                 return;
2209
2210         device_remove_file(&bmc->dev->dev,
2211                            &bmc->device_id_attr);
2212         device_remove_file(&bmc->dev->dev,
2213                            &bmc->provides_dev_sdrs_attr);
2214         device_remove_file(&bmc->dev->dev,
2215                            &bmc->revision_attr);
2216         device_remove_file(&bmc->dev->dev,
2217                            &bmc->firmware_rev_attr);
2218         device_remove_file(&bmc->dev->dev,
2219                            &bmc->version_attr);
2220         device_remove_file(&bmc->dev->dev,
2221                            &bmc->add_dev_support_attr);
2222         device_remove_file(&bmc->dev->dev,
2223                            &bmc->manufacturer_id_attr);
2224         device_remove_file(&bmc->dev->dev,
2225                            &bmc->product_id_attr);
2226
2227         if (bmc->id.aux_firmware_revision_set)
2228                 device_remove_file(&bmc->dev->dev,
2229                                    &bmc->aux_firmware_rev_attr);
2230         if (bmc->guid_set)
2231                 device_remove_file(&bmc->dev->dev,
2232                                    &bmc->guid_attr);
2233 }
2234
2235 static void
2236 cleanup_bmc_device(struct kref *ref)
2237 {
2238         struct bmc_device *bmc;
2239
2240         bmc = container_of(ref, struct bmc_device, refcount);
2241
2242         remove_files(bmc);
2243         platform_device_unregister(bmc->dev);
2244         kfree(bmc);
2245 }
2246
2247 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2248 {
2249         struct bmc_device *bmc = intf->bmc;
2250
2251         if (intf->sysfs_name) {
2252                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2253                 kfree(intf->sysfs_name);
2254                 intf->sysfs_name = NULL;
2255         }
2256         if (intf->my_dev_name) {
2257                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2258                 kfree(intf->my_dev_name);
2259                 intf->my_dev_name = NULL;
2260         }
2261
2262         mutex_lock(&ipmidriver_mutex);
2263         kref_put(&bmc->refcount, cleanup_bmc_device);
2264         intf->bmc = NULL;
2265         mutex_unlock(&ipmidriver_mutex);
2266 }
2267
2268 static int create_files(struct bmc_device *bmc)
2269 {
2270         int err;
2271
2272         bmc->device_id_attr.attr.name = "device_id";
2273         bmc->device_id_attr.attr.mode = S_IRUGO;
2274         bmc->device_id_attr.show = device_id_show;
2275         sysfs_attr_init(&bmc->device_id_attr.attr);
2276
2277         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2278         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2279         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2280         sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2281
2282         bmc->revision_attr.attr.name = "revision";
2283         bmc->revision_attr.attr.mode = S_IRUGO;
2284         bmc->revision_attr.show = revision_show;
2285         sysfs_attr_init(&bmc->revision_attr.attr);
2286
2287         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2288         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2289         bmc->firmware_rev_attr.show = firmware_rev_show;
2290         sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2291
2292         bmc->version_attr.attr.name = "ipmi_version";
2293         bmc->version_attr.attr.mode = S_IRUGO;
2294         bmc->version_attr.show = ipmi_version_show;
2295         sysfs_attr_init(&bmc->version_attr.attr);
2296
2297         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2298         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2299         bmc->add_dev_support_attr.show = add_dev_support_show;
2300         sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2301
2302         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2303         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2304         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2305         sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2306
2307         bmc->product_id_attr.attr.name = "product_id";
2308         bmc->product_id_attr.attr.mode = S_IRUGO;
2309         bmc->product_id_attr.show = product_id_show;
2310         sysfs_attr_init(&bmc->product_id_attr.attr);
2311
2312         bmc->guid_attr.attr.name = "guid";
2313         bmc->guid_attr.attr.mode = S_IRUGO;
2314         bmc->guid_attr.show = guid_show;
2315         sysfs_attr_init(&bmc->guid_attr.attr);
2316
2317         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2318         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2319         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2320         sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2321
2322         err = device_create_file(&bmc->dev->dev,
2323                            &bmc->device_id_attr);
2324         if (err)
2325                 goto out;
2326         err = device_create_file(&bmc->dev->dev,
2327                            &bmc->provides_dev_sdrs_attr);
2328         if (err)
2329                 goto out_devid;
2330         err = device_create_file(&bmc->dev->dev,
2331                            &bmc->revision_attr);
2332         if (err)
2333                 goto out_sdrs;
2334         err = device_create_file(&bmc->dev->dev,
2335                            &bmc->firmware_rev_attr);
2336         if (err)
2337                 goto out_rev;
2338         err = device_create_file(&bmc->dev->dev,
2339                            &bmc->version_attr);
2340         if (err)
2341                 goto out_firm;
2342         err = device_create_file(&bmc->dev->dev,
2343                            &bmc->add_dev_support_attr);
2344         if (err)
2345                 goto out_version;
2346         err = device_create_file(&bmc->dev->dev,
2347                            &bmc->manufacturer_id_attr);
2348         if (err)
2349                 goto out_add_dev;
2350         err = device_create_file(&bmc->dev->dev,
2351                            &bmc->product_id_attr);
2352         if (err)
2353                 goto out_manu;
2354         if (bmc->id.aux_firmware_revision_set) {
2355                 err = device_create_file(&bmc->dev->dev,
2356                                    &bmc->aux_firmware_rev_attr);
2357                 if (err)
2358                         goto out_prod_id;
2359         }
2360         if (bmc->guid_set) {
2361                 err = device_create_file(&bmc->dev->dev,
2362                                    &bmc->guid_attr);
2363                 if (err)
2364                         goto out_aux_firm;
2365         }
2366
2367         return 0;
2368
2369 out_aux_firm:
2370         if (bmc->id.aux_firmware_revision_set)
2371                 device_remove_file(&bmc->dev->dev,
2372                                    &bmc->aux_firmware_rev_attr);
2373 out_prod_id:
2374         device_remove_file(&bmc->dev->dev,
2375                            &bmc->product_id_attr);
2376 out_manu:
2377         device_remove_file(&bmc->dev->dev,
2378                            &bmc->manufacturer_id_attr);
2379 out_add_dev:
2380         device_remove_file(&bmc->dev->dev,
2381                            &bmc->add_dev_support_attr);
2382 out_version:
2383         device_remove_file(&bmc->dev->dev,
2384                            &bmc->version_attr);
2385 out_firm:
2386         device_remove_file(&bmc->dev->dev,
2387                            &bmc->firmware_rev_attr);
2388 out_rev:
2389         device_remove_file(&bmc->dev->dev,
2390                            &bmc->revision_attr);
2391 out_sdrs:
2392         device_remove_file(&bmc->dev->dev,
2393                            &bmc->provides_dev_sdrs_attr);
2394 out_devid:
2395         device_remove_file(&bmc->dev->dev,
2396                            &bmc->device_id_attr);
2397 out:
2398         return err;
2399 }
2400
2401 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2402                              const char *sysfs_name)
2403 {
2404         int               rv;
2405         struct bmc_device *bmc = intf->bmc;
2406         struct bmc_device *old_bmc;
2407         int               size;
2408         char              dummy[1];
2409
2410         mutex_lock(&ipmidriver_mutex);
2411
2412         /*
2413          * Try to find if there is an bmc_device struct
2414          * representing the interfaced BMC already
2415          */
2416         if (bmc->guid_set)
2417                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2418         else
2419                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2420                                                     bmc->id.product_id,
2421                                                     bmc->id.device_id);
2422
2423         /*
2424          * If there is already an bmc_device, free the new one,
2425          * otherwise register the new BMC device
2426          */
2427         if (old_bmc) {
2428                 kfree(bmc);
2429                 intf->bmc = old_bmc;
2430                 bmc = old_bmc;
2431
2432                 kref_get(&bmc->refcount);
2433                 mutex_unlock(&ipmidriver_mutex);
2434
2435                 printk(KERN_INFO
2436                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2437                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2438                        bmc->id.manufacturer_id,
2439                        bmc->id.product_id,
2440                        bmc->id.device_id);
2441         } else {
2442                 char name[14];
2443                 unsigned char orig_dev_id = bmc->id.device_id;
2444                 int warn_printed = 0;
2445
2446                 snprintf(name, sizeof(name),
2447                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2448
2449                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2450                                                  bmc->id.product_id,
2451                                                  bmc->id.device_id)) {
2452                         if (!warn_printed) {
2453                                 printk(KERN_WARNING PFX
2454                                        "This machine has two different BMCs"
2455                                        " with the same product id and device"
2456                                        " id.  This is an error in the"
2457                                        " firmware, but incrementing the"
2458                                        " device id to work around the problem."
2459                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2460                                        bmc->id.product_id, bmc->id.device_id);
2461                                 warn_printed = 1;
2462                         }
2463                         bmc->id.device_id++; /* Wraps at 255 */
2464                         if (bmc->id.device_id == orig_dev_id) {
2465                                 printk(KERN_ERR PFX
2466                                        "Out of device ids!\n");
2467                                 break;
2468                         }
2469                 }
2470
2471                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2472                 if (!bmc->dev) {
2473                         mutex_unlock(&ipmidriver_mutex);
2474                         printk(KERN_ERR
2475                                "ipmi_msghandler:"
2476                                " Unable to allocate platform device\n");
2477                         return -ENOMEM;
2478                 }
2479                 bmc->dev->dev.driver = &ipmidriver.driver;
2480                 dev_set_drvdata(&bmc->dev->dev, bmc);
2481                 kref_init(&bmc->refcount);
2482
2483                 rv = platform_device_add(bmc->dev);
2484                 mutex_unlock(&ipmidriver_mutex);
2485                 if (rv) {
2486                         platform_device_put(bmc->dev);
2487                         bmc->dev = NULL;
2488                         printk(KERN_ERR
2489                                "ipmi_msghandler:"
2490                                " Unable to register bmc device: %d\n",
2491                                rv);
2492                         /*
2493                          * Don't go to out_err, you can only do that if
2494                          * the device is registered already.
2495                          */
2496                         return rv;
2497                 }
2498
2499                 rv = create_files(bmc);
2500                 if (rv) {
2501                         mutex_lock(&ipmidriver_mutex);
2502                         platform_device_unregister(bmc->dev);
2503                         mutex_unlock(&ipmidriver_mutex);
2504
2505                         return rv;
2506                 }
2507
2508                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2509                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2510                          bmc->id.manufacturer_id,
2511                          bmc->id.product_id,
2512                          bmc->id.device_id);
2513         }
2514
2515         /*
2516          * create symlink from system interface device to bmc device
2517          * and back.
2518          */
2519         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2520         if (!intf->sysfs_name) {
2521                 rv = -ENOMEM;
2522                 printk(KERN_ERR
2523                        "ipmi_msghandler: allocate link to BMC: %d\n",
2524                        rv);
2525                 goto out_err;
2526         }
2527
2528         rv = sysfs_create_link(&intf->si_dev->kobj,
2529                                &bmc->dev->dev.kobj, intf->sysfs_name);
2530         if (rv) {
2531                 kfree(intf->sysfs_name);
2532                 intf->sysfs_name = NULL;
2533                 printk(KERN_ERR
2534                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2535                        rv);
2536                 goto out_err;
2537         }
2538
2539         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2540         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2541         if (!intf->my_dev_name) {
2542                 kfree(intf->sysfs_name);
2543                 intf->sysfs_name = NULL;
2544                 rv = -ENOMEM;
2545                 printk(KERN_ERR
2546                        "ipmi_msghandler: allocate link from BMC: %d\n",
2547                        rv);
2548                 goto out_err;
2549         }
2550         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2551
2552         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2553                                intf->my_dev_name);
2554         if (rv) {
2555                 kfree(intf->sysfs_name);
2556                 intf->sysfs_name = NULL;
2557                 kfree(intf->my_dev_name);
2558                 intf->my_dev_name = NULL;
2559                 printk(KERN_ERR
2560                        "ipmi_msghandler:"
2561                        " Unable to create symlink to bmc: %d\n",
2562                        rv);
2563                 goto out_err;
2564         }
2565
2566         return 0;
2567
2568 out_err:
2569         ipmi_bmc_unregister(intf);
2570         return rv;
2571 }
2572
2573 static int
2574 send_guid_cmd(ipmi_smi_t intf, int chan)
2575 {
2576         struct kernel_ipmi_msg            msg;
2577         struct ipmi_system_interface_addr si;
2578
2579         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2580         si.channel = IPMI_BMC_CHANNEL;
2581         si.lun = 0;
2582
2583         msg.netfn = IPMI_NETFN_APP_REQUEST;
2584         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2585         msg.data = NULL;
2586         msg.data_len = 0;
2587         return i_ipmi_request(NULL,
2588                               intf,
2589                               (struct ipmi_addr *) &si,
2590                               0,
2591                               &msg,
2592                               intf,
2593                               NULL,
2594                               NULL,
2595                               0,
2596                               intf->channels[0].address,
2597                               intf->channels[0].lun,
2598                               -1, 0);
2599 }
2600
2601 static void
2602 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2603 {
2604         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2605             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2606             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2607                 /* Not for me */
2608                 return;
2609
2610         if (msg->msg.data[0] != 0) {
2611                 /* Error from getting the GUID, the BMC doesn't have one. */
2612                 intf->bmc->guid_set = 0;
2613                 goto out;
2614         }
2615
2616         if (msg->msg.data_len < 17) {
2617                 intf->bmc->guid_set = 0;
2618                 printk(KERN_WARNING PFX
2619                        "guid_handler: The GUID response from the BMC was too"
2620                        " short, it was %d but should have been 17.  Assuming"
2621                        " GUID is not available.\n",
2622                        msg->msg.data_len);
2623                 goto out;
2624         }
2625
2626         memcpy(intf->bmc->guid, msg->msg.data, 16);
2627         intf->bmc->guid_set = 1;
2628  out:
2629         wake_up(&intf->waitq);
2630 }
2631
2632 static void
2633 get_guid(ipmi_smi_t intf)
2634 {
2635         int rv;
2636
2637         intf->bmc->guid_set = 0x2;
2638         intf->null_user_handler = guid_handler;
2639         rv = send_guid_cmd(intf, 0);
2640         if (rv)
2641                 /* Send failed, no GUID available. */
2642                 intf->bmc->guid_set = 0;
2643         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2644         intf->null_user_handler = NULL;
2645 }
2646
2647 static int
2648 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2649 {
2650         struct kernel_ipmi_msg            msg;
2651         unsigned char                     data[1];
2652         struct ipmi_system_interface_addr si;
2653
2654         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2655         si.channel = IPMI_BMC_CHANNEL;
2656         si.lun = 0;
2657
2658         msg.netfn = IPMI_NETFN_APP_REQUEST;
2659         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2660         msg.data = data;
2661         msg.data_len = 1;
2662         data[0] = chan;
2663         return i_ipmi_request(NULL,
2664                               intf,
2665                               (struct ipmi_addr *) &si,
2666                               0,
2667                               &msg,
2668                               intf,
2669                               NULL,
2670                               NULL,
2671                               0,
2672                               intf->channels[0].address,
2673                               intf->channels[0].lun,
2674                               -1, 0);
2675 }
2676
2677 static void
2678 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2679 {
2680         int rv = 0;
2681         int chan;
2682
2683         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2684             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2685             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2686                 /* It's the one we want */
2687                 if (msg->msg.data[0] != 0) {
2688                         /* Got an error from the channel, just go on. */
2689
2690                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2691                                 /*
2692                                  * If the MC does not support this
2693                                  * command, that is legal.  We just
2694                                  * assume it has one IPMB at channel
2695                                  * zero.
2696                                  */
2697                                 intf->channels[0].medium
2698                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2699                                 intf->channels[0].protocol
2700                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2701                                 rv = -ENOSYS;
2702
2703                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2704                                 wake_up(&intf->waitq);
2705                                 goto out;
2706                         }
2707                         goto next_channel;
2708                 }
2709                 if (msg->msg.data_len < 4) {
2710                         /* Message not big enough, just go on. */
2711                         goto next_channel;
2712                 }
2713                 chan = intf->curr_channel;
2714                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2715                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2716
2717  next_channel:
2718                 intf->curr_channel++;
2719                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2720                         wake_up(&intf->waitq);
2721                 else
2722                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2723
2724                 if (rv) {
2725                         /* Got an error somehow, just give up. */
2726                         intf->curr_channel = IPMI_MAX_CHANNELS;
2727                         wake_up(&intf->waitq);
2728
2729                         printk(KERN_WARNING PFX
2730                                "Error sending channel information: %d\n",
2731                                rv);
2732                 }
2733         }
2734  out:
2735         return;
2736 }
2737
2738 void ipmi_poll_interface(ipmi_user_t user)
2739 {
2740         ipmi_smi_t intf = user->intf;
2741
2742         if (intf->handlers->poll)
2743                 intf->handlers->poll(intf->send_info);
2744 }
2745 EXPORT_SYMBOL(ipmi_poll_interface);
2746
2747 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2748                       void                     *send_info,
2749                       struct ipmi_device_id    *device_id,
2750                       struct device            *si_dev,
2751                       const char               *sysfs_name,
2752                       unsigned char            slave_addr)
2753 {
2754         int              i, j;
2755         int              rv;
2756         ipmi_smi_t       intf;
2757         ipmi_smi_t       tintf;
2758         struct list_head *link;
2759
2760         /*
2761          * Make sure the driver is actually initialized, this handles
2762          * problems with initialization order.
2763          */
2764         if (!initialized) {
2765                 rv = ipmi_init_msghandler();
2766                 if (rv)
2767                         return rv;
2768                 /*
2769                  * The init code doesn't return an error if it was turned
2770                  * off, but it won't initialize.  Check that.
2771                  */
2772                 if (!initialized)
2773                         return -ENODEV;
2774         }
2775
2776         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2777         if (!intf)
2778                 return -ENOMEM;
2779
2780         intf->ipmi_version_major = ipmi_version_major(device_id);
2781         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2782
2783         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2784         if (!intf->bmc) {
2785                 kfree(intf);
2786                 return -ENOMEM;
2787         }
2788         intf->intf_num = -1; /* Mark it invalid for now. */
2789         kref_init(&intf->refcount);
2790         intf->bmc->id = *device_id;
2791         intf->si_dev = si_dev;
2792         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2793                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2794                 intf->channels[j].lun = 2;
2795         }
2796         if (slave_addr != 0)
2797                 intf->channels[0].address = slave_addr;
2798         INIT_LIST_HEAD(&intf->users);
2799         intf->handlers = handlers;
2800         intf->send_info = send_info;
2801         spin_lock_init(&intf->seq_lock);
2802         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2803                 intf->seq_table[j].inuse = 0;
2804                 intf->seq_table[j].seqid = 0;
2805         }
2806         intf->curr_seq = 0;
2807 #ifdef CONFIG_PROC_FS
2808         mutex_init(&intf->proc_entry_lock);
2809 #endif
2810         spin_lock_init(&intf->waiting_msgs_lock);
2811         INIT_LIST_HEAD(&intf->waiting_msgs);
2812         spin_lock_init(&intf->events_lock);
2813         INIT_LIST_HEAD(&intf->waiting_events);
2814         intf->waiting_events_count = 0;
2815         mutex_init(&intf->cmd_rcvrs_mutex);
2816         spin_lock_init(&intf->maintenance_mode_lock);
2817         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2818         init_waitqueue_head(&intf->waitq);
2819         for (i = 0; i < IPMI_NUM_STATS; i++)
2820                 atomic_set(&intf->stats[i], 0);
2821
2822         intf->proc_dir = NULL;
2823
2824         mutex_lock(&smi_watchers_mutex);
2825         mutex_lock(&ipmi_interfaces_mutex);
2826         /* Look for a hole in the numbers. */
2827         i = 0;
2828         link = &ipmi_interfaces;
2829         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2830                 if (tintf->intf_num != i) {
2831                         link = &tintf->link;
2832                         break;
2833                 }
2834                 i++;
2835         }
2836         /* Add the new interface in numeric order. */
2837         if (i == 0)
2838                 list_add_rcu(&intf->link, &ipmi_interfaces);
2839         else
2840                 list_add_tail_rcu(&intf->link, link);
2841
2842         rv = handlers->start_processing(send_info, intf);
2843         if (rv)
2844                 goto out;
2845
2846         get_guid(intf);
2847
2848         if ((intf->ipmi_version_major > 1)
2849                         || ((intf->ipmi_version_major == 1)
2850                             && (intf->ipmi_version_minor >= 5))) {
2851                 /*
2852                  * Start scanning the channels to see what is
2853                  * available.
2854                  */
2855                 intf->null_user_handler = channel_handler;
2856                 intf->curr_channel = 0;
2857                 rv = send_channel_info_cmd(intf, 0);
2858                 if (rv)
2859                         goto out;
2860
2861                 /* Wait for the channel info to be read. */
2862                 wait_event(intf->waitq,
2863                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2864                 intf->null_user_handler = NULL;
2865         } else {
2866                 /* Assume a single IPMB channel at zero. */
2867                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2868                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2869                 intf->curr_channel = IPMI_MAX_CHANNELS;
2870         }
2871
2872         if (rv == 0)
2873                 rv = add_proc_entries(intf, i);
2874
2875         rv = ipmi_bmc_register(intf, i, sysfs_name);
2876
2877  out:
2878         if (rv) {
2879                 if (intf->proc_dir)
2880                         remove_proc_entries(intf);
2881                 intf->handlers = NULL;
2882                 list_del_rcu(&intf->link);
2883                 mutex_unlock(&ipmi_interfaces_mutex);
2884                 mutex_unlock(&smi_watchers_mutex);
2885                 synchronize_rcu();
2886                 kref_put(&intf->refcount, intf_free);
2887         } else {
2888                 /*
2889                  * Keep memory order straight for RCU readers.  Make
2890                  * sure everything else is committed to memory before
2891                  * setting intf_num to mark the interface valid.
2892                  */
2893                 smp_wmb();
2894                 intf->intf_num = i;
2895                 mutex_unlock(&ipmi_interfaces_mutex);
2896                 /* After this point the interface is legal to use. */
2897                 call_smi_watchers(i, intf->si_dev);
2898                 mutex_unlock(&smi_watchers_mutex);
2899         }
2900
2901         return rv;
2902 }
2903 EXPORT_SYMBOL(ipmi_register_smi);
2904
2905 static void cleanup_smi_msgs(ipmi_smi_t intf)
2906 {
2907         int              i;
2908         struct seq_table *ent;
2909
2910         /* No need for locks, the interface is down. */
2911         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2912                 ent = &(intf->seq_table[i]);
2913                 if (!ent->inuse)
2914                         continue;
2915                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2916         }
2917 }
2918
2919 int ipmi_unregister_smi(ipmi_smi_t intf)
2920 {
2921         struct ipmi_smi_watcher *w;
2922         int    intf_num = intf->intf_num;
2923
2924         ipmi_bmc_unregister(intf);
2925
2926         mutex_lock(&smi_watchers_mutex);
2927         mutex_lock(&ipmi_interfaces_mutex);
2928         intf->intf_num = -1;
2929         intf->handlers = NULL;
2930         list_del_rcu(&intf->link);
2931         mutex_unlock(&ipmi_interfaces_mutex);
2932         synchronize_rcu();
2933
2934         cleanup_smi_msgs(intf);
2935
2936         remove_proc_entries(intf);
2937
2938         /*
2939          * Call all the watcher interfaces to tell them that
2940          * an interface is gone.
2941          */
2942         list_for_each_entry(w, &smi_watchers, link)
2943                 w->smi_gone(intf_num);
2944         mutex_unlock(&smi_watchers_mutex);
2945
2946         kref_put(&intf->refcount, intf_free);
2947         return 0;
2948 }
2949 EXPORT_SYMBOL(ipmi_unregister_smi);
2950
2951 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2952                                    struct ipmi_smi_msg *msg)
2953 {
2954         struct ipmi_ipmb_addr ipmb_addr;
2955         struct ipmi_recv_msg  *recv_msg;
2956
2957         /*
2958          * This is 11, not 10, because the response must contain a
2959          * completion code.
2960          */
2961         if (msg->rsp_size < 11) {
2962                 /* Message not big enough, just ignore it. */
2963                 ipmi_inc_stat(intf, invalid_ipmb_responses);
2964                 return 0;
2965         }
2966
2967         if (msg->rsp[2] != 0) {
2968                 /* An error getting the response, just ignore it. */
2969                 return 0;
2970         }
2971
2972         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2973         ipmb_addr.slave_addr = msg->rsp[6];
2974         ipmb_addr.channel = msg->rsp[3] & 0x0f;
2975         ipmb_addr.lun = msg->rsp[7] & 3;
2976
2977         /*
2978          * It's a response from a remote entity.  Look up the sequence
2979          * number and handle the response.
2980          */
2981         if (intf_find_seq(intf,
2982                           msg->rsp[7] >> 2,
2983                           msg->rsp[3] & 0x0f,
2984                           msg->rsp[8],
2985                           (msg->rsp[4] >> 2) & (~1),
2986                           (struct ipmi_addr *) &(ipmb_addr),
2987                           &recv_msg)) {
2988                 /*
2989                  * We were unable to find the sequence number,
2990                  * so just nuke the message.
2991                  */
2992                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2993                 return 0;
2994         }
2995
2996         memcpy(recv_msg->msg_data,
2997                &(msg->rsp[9]),
2998                msg->rsp_size - 9);
2999         /*
3000          * The other fields matched, so no need to set them, except
3001          * for netfn, which needs to be the response that was
3002          * returned, not the request value.
3003          */
3004         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3005         recv_msg->msg.data = recv_msg->msg_data;
3006         recv_msg->msg.data_len = msg->rsp_size - 10;
3007         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3008         ipmi_inc_stat(intf, handled_ipmb_responses);
3009         deliver_response(recv_msg);
3010
3011         return 0;
3012 }
3013
3014 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3015                                    struct ipmi_smi_msg *msg)
3016 {
3017         struct cmd_rcvr          *rcvr;
3018         int                      rv = 0;
3019         unsigned char            netfn;
3020         unsigned char            cmd;
3021         unsigned char            chan;
3022         ipmi_user_t              user = NULL;
3023         struct ipmi_ipmb_addr    *ipmb_addr;
3024         struct ipmi_recv_msg     *recv_msg;
3025         struct ipmi_smi_handlers *handlers;
3026
3027         if (msg->rsp_size < 10) {
3028                 /* Message not big enough, just ignore it. */
3029                 ipmi_inc_stat(intf, invalid_commands);
3030                 return 0;
3031         }
3032
3033         if (msg->rsp[2] != 0) {
3034                 /* An error getting the response, just ignore it. */
3035                 return 0;
3036         }
3037
3038         netfn = msg->rsp[4] >> 2;
3039         cmd = msg->rsp[8];
3040         chan = msg->rsp[3] & 0xf;
3041
3042         rcu_read_lock();
3043         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3044         if (rcvr) {
3045                 user = rcvr->user;
3046                 kref_get(&user->refcount);
3047         } else
3048                 user = NULL;
3049         rcu_read_unlock();
3050
3051         if (user == NULL) {
3052                 /* We didn't find a user, deliver an error response. */
3053                 ipmi_inc_stat(intf, unhandled_commands);
3054
3055                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3056                 msg->data[1] = IPMI_SEND_MSG_CMD;
3057                 msg->data[2] = msg->rsp[3];
3058                 msg->data[3] = msg->rsp[6];
3059                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3060                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3061                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3062                 /* rqseq/lun */
3063                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3064                 msg->data[8] = msg->rsp[8]; /* cmd */
3065                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3066                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3067                 msg->data_size = 11;
3068
3069 #ifdef DEBUG_MSGING
3070         {
3071                 int m;
3072                 printk("Invalid command:");
3073                 for (m = 0; m < msg->data_size; m++)
3074                         printk(" %2.2x", msg->data[m]);
3075                 printk("\n");
3076         }
3077 #endif
3078                 rcu_read_lock();
3079                 handlers = intf->handlers;
3080                 if (handlers) {
3081                         handlers->sender(intf->send_info, msg, 0);
3082                         /*
3083                          * We used the message, so return the value
3084                          * that causes it to not be freed or
3085                          * queued.
3086                          */
3087                         rv = -1;
3088                 }
3089                 rcu_read_unlock();
3090         } else {
3091                 /* Deliver the message to the user. */
3092                 ipmi_inc_stat(intf, handled_commands);
3093
3094                 recv_msg = ipmi_alloc_recv_msg();
3095                 if (!recv_msg) {
3096                         /*
3097                          * We couldn't allocate memory for the
3098                          * message, so requeue it for handling
3099                          * later.
3100                          */
3101                         rv = 1;
3102                         kref_put(&user->refcount, free_user);
3103                 } else {
3104                         /* Extract the source address from the data. */
3105                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3106                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3107                         ipmb_addr->slave_addr = msg->rsp[6];
3108                         ipmb_addr->lun = msg->rsp[7] & 3;
3109                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3110
3111                         /*
3112                          * Extract the rest of the message information
3113                          * from the IPMB header.
3114                          */
3115                         recv_msg->user = user;
3116                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3117                         recv_msg->msgid = msg->rsp[7] >> 2;
3118                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3119                         recv_msg->msg.cmd = msg->rsp[8];
3120                         recv_msg->msg.data = recv_msg->msg_data;
3121
3122                         /*
3123                          * We chop off 10, not 9 bytes because the checksum
3124                          * at the end also needs to be removed.
3125                          */
3126                         recv_msg->msg.data_len = msg->rsp_size - 10;
3127                         memcpy(recv_msg->msg_data,
3128                                &(msg->rsp[9]),
3129                                msg->rsp_size - 10);
3130                         deliver_response(recv_msg);
3131                 }
3132         }
3133
3134         return rv;
3135 }
3136
3137 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3138                                   struct ipmi_smi_msg *msg)
3139 {
3140         struct ipmi_lan_addr  lan_addr;
3141         struct ipmi_recv_msg  *recv_msg;
3142
3143
3144         /*
3145          * This is 13, not 12, because the response must contain a
3146          * completion code.
3147          */
3148         if (msg->rsp_size < 13) {
3149                 /* Message not big enough, just ignore it. */
3150                 ipmi_inc_stat(intf, invalid_lan_responses);
3151                 return 0;
3152         }
3153
3154         if (msg->rsp[2] != 0) {
3155                 /* An error getting the response, just ignore it. */
3156                 return 0;
3157         }
3158
3159         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3160         lan_addr.session_handle = msg->rsp[4];
3161         lan_addr.remote_SWID = msg->rsp[8];
3162         lan_addr.local_SWID = msg->rsp[5];
3163         lan_addr.channel = msg->rsp[3] & 0x0f;
3164         lan_addr.privilege = msg->rsp[3] >> 4;
3165         lan_addr.lun = msg->rsp[9] & 3;
3166
3167         /*
3168          * It's a response from a remote entity.  Look up the sequence
3169          * number and handle the response.
3170          */
3171         if (intf_find_seq(intf,
3172                           msg->rsp[9] >> 2,
3173                           msg->rsp[3] & 0x0f,
3174                           msg->rsp[10],
3175                           (msg->rsp[6] >> 2) & (~1),
3176                           (struct ipmi_addr *) &(lan_addr),
3177                           &recv_msg)) {
3178                 /*
3179                  * We were unable to find the sequence number,
3180                  * so just nuke the message.
3181                  */
3182                 ipmi_inc_stat(intf, unhandled_lan_responses);
3183                 return 0;
3184         }
3185
3186         memcpy(recv_msg->msg_data,
3187                &(msg->rsp[11]),
3188                msg->rsp_size - 11);
3189         /*
3190          * The other fields matched, so no need to set them, except
3191          * for netfn, which needs to be the response that was
3192          * returned, not the request value.
3193          */
3194         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3195         recv_msg->msg.data = recv_msg->msg_data;
3196         recv_msg->msg.data_len = msg->rsp_size - 12;
3197         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3198         ipmi_inc_stat(intf, handled_lan_responses);
3199         deliver_response(recv_msg);
3200
3201         return 0;
3202 }
3203
3204 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3205                                   struct ipmi_smi_msg *msg)
3206 {
3207         struct cmd_rcvr          *rcvr;
3208         int                      rv = 0;
3209         unsigned char            netfn;
3210         unsigned char            cmd;
3211         unsigned char            chan;
3212         ipmi_user_t              user = NULL;
3213         struct ipmi_lan_addr     *lan_addr;
3214         struct ipmi_recv_msg     *recv_msg;
3215
3216         if (msg->rsp_size < 12) {
3217                 /* Message not big enough, just ignore it. */
3218                 ipmi_inc_stat(intf, invalid_commands);
3219                 return 0;
3220         }
3221
3222         if (msg->rsp[2] != 0) {
3223                 /* An error getting the response, just ignore it. */
3224                 return 0;
3225         }
3226
3227         netfn = msg->rsp[6] >> 2;
3228         cmd = msg->rsp[10];
3229         chan = msg->rsp[3] & 0xf;
3230
3231         rcu_read_lock();
3232         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3233         if (rcvr) {
3234                 user = rcvr->user;
3235                 kref_get(&user->refcount);
3236         } else
3237                 user = NULL;
3238         rcu_read_unlock();
3239
3240         if (user == NULL) {
3241                 /* We didn't find a user, just give up. */
3242                 ipmi_inc_stat(intf, unhandled_commands);
3243
3244                 /*
3245                  * Don't do anything with these messages, just allow
3246                  * them to be freed.
3247                  */
3248                 rv = 0;
3249         } else {
3250                 /* Deliver the message to the user. */
3251                 ipmi_inc_stat(intf, handled_commands);
3252
3253                 recv_msg = ipmi_alloc_recv_msg();
3254                 if (!recv_msg) {
3255                         /*
3256                          * We couldn't allocate memory for the
3257                          * message, so requeue it for handling later.
3258                          */
3259                         rv = 1;
3260                         kref_put(&user->refcount, free_user);
3261                 } else {
3262                         /* Extract the source address from the data. */
3263                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3264                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3265                         lan_addr->session_handle = msg->rsp[4];
3266                         lan_addr->remote_SWID = msg->rsp[8];
3267                         lan_addr->local_SWID = msg->rsp[5];
3268                         lan_addr->lun = msg->rsp[9] & 3;
3269                         lan_addr->channel = msg->rsp[3] & 0xf;
3270                         lan_addr->privilege = msg->rsp[3] >> 4;
3271
3272                         /*
3273                          * Extract the rest of the message information
3274                          * from the IPMB header.
3275                          */
3276                         recv_msg->user = user;
3277                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3278                         recv_msg->msgid = msg->rsp[9] >> 2;
3279                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3280                         recv_msg->msg.cmd = msg->rsp[10];
3281                         recv_msg->msg.data = recv_msg->msg_data;
3282
3283                         /*
3284                          * We chop off 12, not 11 bytes because the checksum
3285                          * at the end also needs to be removed.
3286                          */
3287                         recv_msg->msg.data_len = msg->rsp_size - 12;
3288                         memcpy(recv_msg->msg_data,
3289                                &(msg->rsp[11]),
3290                                msg->rsp_size - 12);
3291                         deliver_response(recv_msg);
3292                 }
3293         }
3294
3295         return rv;
3296 }
3297
3298 /*
3299  * This routine will handle "Get Message" command responses with
3300  * channels that use an OEM Medium. The message format belongs to
3301  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3302  * Chapter 22, sections 22.6 and 22.24 for more details.
3303  */
3304 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3305                                   struct ipmi_smi_msg *msg)
3306 {
3307         struct cmd_rcvr       *rcvr;
3308         int                   rv = 0;
3309         unsigned char         netfn;
3310         unsigned char         cmd;
3311         unsigned char         chan;
3312         ipmi_user_t           user = NULL;
3313         struct ipmi_system_interface_addr *smi_addr;
3314         struct ipmi_recv_msg  *recv_msg;
3315
3316         /*
3317          * We expect the OEM SW to perform error checking
3318          * so we just do some basic sanity checks
3319          */
3320         if (msg->rsp_size < 4) {
3321                 /* Message not big enough, just ignore it. */
3322                 ipmi_inc_stat(intf, invalid_commands);
3323                 return 0;
3324         }
3325
3326         if (msg->rsp[2] != 0) {
3327                 /* An error getting the response, just ignore it. */
3328                 return 0;
3329         }
3330
3331         /*
3332          * This is an OEM Message so the OEM needs to know how
3333          * handle the message. We do no interpretation.
3334          */
3335         netfn = msg->rsp[0] >> 2;
3336         cmd = msg->rsp[1];
3337         chan = msg->rsp[3] & 0xf;
3338
3339         rcu_read_lock();
3340         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3341         if (rcvr) {
3342                 user = rcvr->user;
3343                 kref_get(&user->refcount);
3344         } else
3345                 user = NULL;
3346         rcu_read_unlock();
3347
3348         if (user == NULL) {
3349                 /* We didn't find a user, just give up. */
3350                 ipmi_inc_stat(intf, unhandled_commands);
3351
3352                 /*
3353                  * Don't do anything with these messages, just allow
3354                  * them to be freed.
3355                  */
3356
3357                 rv = 0;
3358         } else {
3359                 /* Deliver the message to the user. */
3360                 ipmi_inc_stat(intf, handled_commands);
3361
3362                 recv_msg = ipmi_alloc_recv_msg();
3363                 if (!recv_msg) {
3364                         /*
3365                          * We couldn't allocate memory for the
3366                          * message, so requeue it for handling
3367                          * later.
3368                          */
3369                         rv = 1;
3370                         kref_put(&user->refcount, free_user);
3371                 } else {
3372                         /*
3373                          * OEM Messages are expected to be delivered via
3374                          * the system interface to SMS software.  We might
3375                          * need to visit this again depending on OEM
3376                          * requirements
3377                          */
3378                         smi_addr = ((struct ipmi_system_interface_addr *)
3379                                     &(recv_msg->addr));
3380                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3381                         smi_addr->channel = IPMI_BMC_CHANNEL;
3382                         smi_addr->lun = msg->rsp[0] & 3;
3383
3384                         recv_msg->user = user;
3385                         recv_msg->user_msg_data = NULL;
3386                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3387                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3388                         recv_msg->msg.cmd = msg->rsp[1];
3389                         recv_msg->msg.data = recv_msg->msg_data;
3390
3391                         /*
3392                          * The message starts at byte 4 which follows the
3393                          * the Channel Byte in the "GET MESSAGE" command
3394                          */
3395                         recv_msg->msg.data_len = msg->rsp_size - 4;
3396                         memcpy(recv_msg->msg_data,
3397                                &(msg->rsp[4]),
3398                                msg->rsp_size - 4);
3399                         deliver_response(recv_msg);
3400                 }
3401         }
3402
3403         return rv;
3404 }
3405
3406 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3407                                      struct ipmi_smi_msg  *msg)
3408 {
3409         struct ipmi_system_interface_addr *smi_addr;
3410
3411         recv_msg->msgid = 0;
3412         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3413         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3414         smi_addr->channel = IPMI_BMC_CHANNEL;
3415         smi_addr->lun = msg->rsp[0] & 3;
3416         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3417         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3418         recv_msg->msg.cmd = msg->rsp[1];
3419         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3420         recv_msg->msg.data = recv_msg->msg_data;
3421         recv_msg->msg.data_len = msg->rsp_size - 3;
3422 }
3423
3424 static int handle_read_event_rsp(ipmi_smi_t          intf,
3425                                  struct ipmi_smi_msg *msg)
3426 {
3427         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3428         struct list_head     msgs;
3429         ipmi_user_t          user;
3430         int                  rv = 0;
3431         int                  deliver_count = 0;
3432         unsigned long        flags;
3433
3434         if (msg->rsp_size < 19) {
3435                 /* Message is too small to be an IPMB event. */
3436                 ipmi_inc_stat(intf, invalid_events);
3437                 return 0;
3438         }
3439
3440         if (msg->rsp[2] != 0) {
3441                 /* An error getting the event, just ignore it. */
3442                 return 0;
3443         }
3444
3445         INIT_LIST_HEAD(&msgs);
3446
3447         spin_lock_irqsave(&intf->events_lock, flags);
3448
3449         ipmi_inc_stat(intf, events);
3450
3451         /*
3452          * Allocate and fill in one message for every user that is
3453          * getting events.
3454          */
3455         rcu_read_lock();
3456         list_for_each_entry_rcu(user, &intf->users, link) {
3457                 if (!user->gets_events)
3458                         continue;
3459
3460                 recv_msg = ipmi_alloc_recv_msg();
3461                 if (!recv_msg) {
3462                         rcu_read_unlock();
3463                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3464                                                  link) {
3465                                 list_del(&recv_msg->link);
3466                                 ipmi_free_recv_msg(recv_msg);
3467                         }
3468                         /*
3469                          * We couldn't allocate memory for the
3470                          * message, so requeue it for handling
3471                          * later.
3472                          */
3473                         rv = 1;
3474                         goto out;
3475                 }
3476
3477                 deliver_count++;
3478
3479                 copy_event_into_recv_msg(recv_msg, msg);
3480                 recv_msg->user = user;
3481                 kref_get(&user->refcount);
3482                 list_add_tail(&(recv_msg->link), &msgs);
3483         }
3484         rcu_read_unlock();
3485
3486         if (deliver_count) {
3487                 /* Now deliver all the messages. */
3488                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3489                         list_del(&recv_msg->link);
3490                         deliver_response(recv_msg);
3491                 }
3492         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3493                 /*
3494                  * No one to receive the message, put it in queue if there's
3495                  * not already too many things in the queue.
3496                  */
3497                 recv_msg = ipmi_alloc_recv_msg();
3498                 if (!recv_msg) {
3499                         /*
3500                          * We couldn't allocate memory for the
3501                          * message, so requeue it for handling
3502                          * later.
3503                          */
3504                         rv = 1;
3505                         goto out;
3506                 }
3507
3508                 copy_event_into_recv_msg(recv_msg, msg);
3509                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3510                 intf->waiting_events_count++;
3511         } else if (!intf->event_msg_printed) {
3512                 /*
3513                  * There's too many things in the queue, discard this
3514                  * message.
3515                  */
3516                 printk(KERN_WARNING PFX "Event queue full, discarding"
3517                        " incoming events\n");
3518                 intf->event_msg_printed = 1;
3519         }
3520
3521  out:
3522         spin_unlock_irqrestore(&(intf->events_lock), flags);
3523
3524         return rv;
3525 }
3526
3527 static int handle_bmc_rsp(ipmi_smi_t          intf,
3528                           struct ipmi_smi_msg *msg)
3529 {
3530         struct ipmi_recv_msg *recv_msg;
3531         struct ipmi_user     *user;
3532
3533         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3534         if (recv_msg == NULL) {
3535                 printk(KERN_WARNING
3536                        "IPMI message received with no owner. This\n"
3537                        "could be because of a malformed message, or\n"
3538                        "because of a hardware error.  Contact your\n"
3539                        "hardware vender for assistance\n");
3540                 return 0;
3541         }
3542
3543         user = recv_msg->user;
3544         /* Make sure the user still exists. */
3545         if (user && !user->valid) {
3546                 /* The user for the message went away, so give up. */
3547                 ipmi_inc_stat(intf, unhandled_local_responses);
3548                 ipmi_free_recv_msg(recv_msg);
3549         } else {
3550                 struct ipmi_system_interface_addr *smi_addr;
3551
3552                 ipmi_inc_stat(intf, handled_local_responses);
3553                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3554                 recv_msg->msgid = msg->msgid;
3555                 smi_addr = ((struct ipmi_system_interface_addr *)
3556                             &(recv_msg->addr));
3557                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3558                 smi_addr->channel = IPMI_BMC_CHANNEL;
3559                 smi_addr->lun = msg->rsp[0] & 3;
3560                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3561                 recv_msg->msg.cmd = msg->rsp[1];
3562                 memcpy(recv_msg->msg_data,
3563                        &(msg->rsp[2]),
3564                        msg->rsp_size - 2);
3565                 recv_msg->msg.data = recv_msg->msg_data;
3566                 recv_msg->msg.data_len = msg->rsp_size - 2;
3567                 deliver_response(recv_msg);
3568         }
3569
3570         return 0;
3571 }
3572
3573 /*
3574  * Handle a new message.  Return 1 if the message should be requeued,
3575  * 0 if the message should be freed, or -1 if the message should not
3576  * be freed or requeued.
3577  */
3578 static int handle_new_recv_msg(ipmi_smi_t          intf,
3579                                struct ipmi_smi_msg *msg)
3580 {
3581         int requeue;
3582         int chan;
3583
3584 #ifdef DEBUG_MSGING
3585         int m;
3586         printk("Recv:");
3587         for (m = 0; m < msg->rsp_size; m++)
3588                 printk(" %2.2x", msg->rsp[m]);
3589         printk("\n");
3590 #endif
3591         if (msg->rsp_size < 2) {
3592                 /* Message is too small to be correct. */
3593                 printk(KERN_WARNING PFX "BMC returned to small a message"
3594                        " for netfn %x cmd %x, got %d bytes\n",
3595                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3596
3597                 /* Generate an error response for the message. */
3598                 msg->rsp[0] = msg->data[0] | (1 << 2);
3599                 msg->rsp[1] = msg->data[1];
3600                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3601                 msg->rsp_size = 3;
3602         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3603                    || (msg->rsp[1] != msg->data[1])) {
3604                 /*
3605                  * The NetFN and Command in the response is not even
3606                  * marginally correct.
3607                  */
3608                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3609                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3610                        (msg->data[0] >> 2) | 1, msg->data[1],
3611                        msg->rsp[0] >> 2, msg->rsp[1]);
3612
3613                 /* Generate an error response for the message. */
3614                 msg->rsp[0] = msg->data[0] | (1 << 2);
3615                 msg->rsp[1] = msg->data[1];
3616                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3617                 msg->rsp_size = 3;
3618         }
3619
3620         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3621             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3622             && (msg->user_data != NULL)) {
3623                 /*
3624                  * It's a response to a response we sent.  For this we
3625                  * deliver a send message response to the user.
3626                  */
3627                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3628
3629                 requeue = 0;
3630                 if (msg->rsp_size < 2)
3631                         /* Message is too small to be correct. */
3632                         goto out;
3633
3634                 chan = msg->data[2] & 0x0f;
3635                 if (chan >= IPMI_MAX_CHANNELS)
3636                         /* Invalid channel number */
3637                         goto out;
3638
3639                 if (!recv_msg)
3640                         goto out;
3641
3642                 /* Make sure the user still exists. */
3643                 if (!recv_msg->user || !recv_msg->user->valid)
3644                         goto out;
3645
3646                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3647                 recv_msg->msg.data = recv_msg->msg_data;
3648                 recv_msg->msg.data_len = 1;
3649                 recv_msg->msg_data[0] = msg->rsp[2];
3650                 deliver_response(recv_msg);
3651         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3652                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3653                 /* It's from the receive queue. */
3654                 chan = msg->rsp[3] & 0xf;
3655                 if (chan >= IPMI_MAX_CHANNELS) {
3656                         /* Invalid channel number */
3657                         requeue = 0;
3658                         goto out;
3659                 }
3660
3661                 /*
3662                  * We need to make sure the channels have been initialized.
3663                  * The channel_handler routine will set the "curr_channel"
3664                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3665                  * channels for this interface have been initialized.
3666                  */
3667                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3668                         requeue = 0; /* Throw the message away */
3669                         goto out;
3670                 }
3671
3672                 switch (intf->channels[chan].medium) {
3673                 case IPMI_CHANNEL_MEDIUM_IPMB:
3674                         if (msg->rsp[4] & 0x04) {
3675                                 /*
3676                                  * It's a response, so find the
3677                                  * requesting message and send it up.
3678                                  */
3679                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3680                         } else {
3681                                 /*
3682                                  * It's a command to the SMS from some other
3683                                  * entity.  Handle that.
3684                                  */
3685                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3686                         }
3687                         break;
3688
3689                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3690                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3691                         if (msg->rsp[6] & 0x04) {
3692                                 /*
3693                                  * It's a response, so find the
3694                                  * requesting message and send it up.
3695                                  */
3696                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3697                         } else {
3698                                 /*
3699                                  * It's a command to the SMS from some other
3700                                  * entity.  Handle that.
3701                                  */
3702                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3703                         }
3704                         break;
3705
3706                 default:
3707                         /* Check for OEM Channels.  Clients had better
3708                            register for these commands. */
3709                         if ((intf->channels[chan].medium
3710                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3711                             && (intf->channels[chan].medium
3712                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3713                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3714                         } else {
3715                                 /*
3716                                  * We don't handle the channel type, so just
3717                                  * free the message.
3718                                  */
3719                                 requeue = 0;
3720                         }
3721                 }
3722
3723         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3724                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3725                 /* It's an asyncronous event. */
3726                 requeue = handle_read_event_rsp(intf, msg);
3727         } else {
3728                 /* It's a response from the local BMC. */
3729                 requeue = handle_bmc_rsp(intf, msg);
3730         }
3731
3732  out:
3733         return requeue;
3734 }
3735
3736 /* Handle a new message from the lower layer. */
3737 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3738                            struct ipmi_smi_msg *msg)
3739 {
3740         unsigned long flags = 0; /* keep us warning-free. */
3741         int           rv;
3742         int           run_to_completion;
3743
3744
3745         if ((msg->data_size >= 2)
3746             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3747             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3748             && (msg->user_data == NULL)) {
3749                 /*
3750                  * This is the local response to a command send, start
3751                  * the timer for these.  The user_data will not be
3752                  * NULL if this is a response send, and we will let
3753                  * response sends just go through.
3754                  */
3755
3756                 /*
3757                  * Check for errors, if we get certain errors (ones
3758                  * that mean basically we can try again later), we
3759                  * ignore them and start the timer.  Otherwise we
3760                  * report the error immediately.
3761                  */
3762                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3763                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3764                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3765                     && (msg->rsp[2] != IPMI_BUS_ERR)
3766                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3767                         int chan = msg->rsp[3] & 0xf;
3768
3769                         /* Got an error sending the message, handle it. */
3770                         if (chan >= IPMI_MAX_CHANNELS)
3771                                 ; /* This shouldn't happen */
3772                         else if ((intf->channels[chan].medium
3773                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3774                                  || (intf->channels[chan].medium
3775                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3776                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3777                         else
3778                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3779                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3780                 } else
3781                         /* The message was sent, start the timer. */
3782                         intf_start_seq_timer(intf, msg->msgid);
3783
3784                 ipmi_free_smi_msg(msg);
3785                 goto out;
3786         }
3787
3788         /*
3789          * To preserve message order, if the list is not empty, we
3790          * tack this message onto the end of the list.
3791          */
3792         run_to_completion = intf->run_to_completion;
3793         if (!run_to_completion)
3794                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3795         if (!list_empty(&intf->waiting_msgs)) {
3796                 list_add_tail(&msg->link, &intf->waiting_msgs);
3797                 if (!run_to_completion)
3798                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3799                 goto out;
3800         }
3801         if (!run_to_completion)
3802                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3803
3804         rv = handle_new_recv_msg(intf, msg);
3805         if (rv > 0) {
3806                 /*
3807                  * Could not handle the message now, just add it to a
3808                  * list to handle later.
3809                  */
3810                 run_to_completion = intf->run_to_completion;
3811                 if (!run_to_completion)
3812                         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3813                 list_add_tail(&msg->link, &intf->waiting_msgs);
3814                 if (!run_to_completion)
3815                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3816         } else if (rv == 0) {
3817                 ipmi_free_smi_msg(msg);
3818         }
3819
3820  out:
3821         return;
3822 }
3823 EXPORT_SYMBOL(ipmi_smi_msg_received);
3824
3825 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3826 {
3827         ipmi_user_t user;
3828
3829         rcu_read_lock();
3830         list_for_each_entry_rcu(user, &intf->users, link) {
3831                 if (!user->handler->ipmi_watchdog_pretimeout)
3832                         continue;
3833
3834                 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3835         }
3836         rcu_read_unlock();
3837 }
3838 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3839
3840 static struct ipmi_smi_msg *
3841 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3842                   unsigned char seq, long seqid)
3843 {
3844         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3845         if (!smi_msg)
3846                 /*
3847                  * If we can't allocate the message, then just return, we
3848                  * get 4 retries, so this should be ok.
3849                  */
3850                 return NULL;
3851
3852         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3853         smi_msg->data_size = recv_msg->msg.data_len;
3854         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3855
3856 #ifdef DEBUG_MSGING
3857         {
3858                 int m;
3859                 printk("Resend: ");
3860                 for (m = 0; m < smi_msg->data_size; m++)
3861                         printk(" %2.2x", smi_msg->data[m]);
3862                 printk("\n");
3863         }
3864 #endif
3865         return smi_msg;
3866 }
3867
3868 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3869                               struct list_head *timeouts, long timeout_period,
3870                               int slot, unsigned long *flags)
3871 {
3872         struct ipmi_recv_msg     *msg;
3873         struct ipmi_smi_handlers *handlers;
3874
3875         if (intf->intf_num == -1)
3876                 return;
3877
3878         if (!ent->inuse)
3879                 return;
3880
3881         ent->timeout -= timeout_period;
3882         if (ent->timeout > 0)
3883                 return;
3884
3885         if (ent->retries_left == 0) {
3886                 /* The message has used all its retries. */
3887                 ent->inuse = 0;
3888                 msg = ent->recv_msg;
3889                 list_add_tail(&msg->link, timeouts);
3890                 if (ent->broadcast)
3891                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3892                 else if (is_lan_addr(&ent->recv_msg->addr))
3893                         ipmi_inc_stat(intf, timed_out_lan_commands);
3894                 else
3895                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
3896         } else {
3897                 struct ipmi_smi_msg *smi_msg;
3898                 /* More retries, send again. */
3899
3900                 /*
3901                  * Start with the max timer, set to normal timer after
3902                  * the message is sent.
3903                  */
3904                 ent->timeout = MAX_MSG_TIMEOUT;
3905                 ent->retries_left--;
3906                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3907                                             ent->seqid);
3908                 if (!smi_msg) {
3909                         if (is_lan_addr(&ent->recv_msg->addr))
3910                                 ipmi_inc_stat(intf,
3911                                               dropped_rexmit_lan_commands);
3912                         else
3913                                 ipmi_inc_stat(intf,
3914                                               dropped_rexmit_ipmb_commands);
3915                         return;
3916                 }
3917
3918                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3919
3920                 /*
3921                  * Send the new message.  We send with a zero
3922                  * priority.  It timed out, I doubt time is that
3923                  * critical now, and high priority messages are really
3924                  * only for messages to the local MC, which don't get
3925                  * resent.
3926                  */
3927                 handlers = intf->handlers;
3928                 if (handlers) {
3929                         if (is_lan_addr(&ent->recv_msg->addr))
3930                                 ipmi_inc_stat(intf,
3931                                               retransmitted_lan_commands);
3932                         else
3933                                 ipmi_inc_stat(intf,
3934                                               retransmitted_ipmb_commands);
3935
3936                         intf->handlers->sender(intf->send_info,
3937                                                smi_msg, 0);
3938                 } else
3939                         ipmi_free_smi_msg(smi_msg);
3940
3941                 spin_lock_irqsave(&intf->seq_lock, *flags);
3942         }
3943 }
3944
3945 static void ipmi_timeout_handler(long timeout_period)
3946 {
3947         ipmi_smi_t           intf;
3948         struct list_head     timeouts;
3949         struct ipmi_recv_msg *msg, *msg2;
3950         struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3951         unsigned long        flags;
3952         int                  i;
3953
3954         rcu_read_lock();
3955         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3956                 /* See if any waiting messages need to be processed. */
3957                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3958                 list_for_each_entry_safe(smi_msg, smi_msg2,
3959                                          &intf->waiting_msgs, link) {
3960                         if (!handle_new_recv_msg(intf, smi_msg)) {
3961                                 list_del(&smi_msg->link);
3962                                 ipmi_free_smi_msg(smi_msg);
3963                         } else {
3964                                 /*
3965                                  * To preserve message order, quit if we
3966                                  * can't handle a message.
3967                                  */
3968                                 break;
3969                         }
3970                 }
3971                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3972
3973                 /*
3974                  * Go through the seq table and find any messages that
3975                  * have timed out, putting them in the timeouts
3976                  * list.
3977                  */
3978                 INIT_LIST_HEAD(&timeouts);
3979                 spin_lock_irqsave(&intf->seq_lock, flags);
3980                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3981                         check_msg_timeout(intf, &(intf->seq_table[i]),
3982                                           &timeouts, timeout_period, i,
3983                                           &flags);
3984                 spin_unlock_irqrestore(&intf->seq_lock, flags);
3985
3986                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3987                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3988
3989                 /*
3990                  * Maintenance mode handling.  Check the timeout
3991                  * optimistically before we claim the lock.  It may
3992                  * mean a timeout gets missed occasionally, but that
3993                  * only means the timeout gets extended by one period
3994                  * in that case.  No big deal, and it avoids the lock
3995                  * most of the time.
3996                  */
3997                 if (intf->auto_maintenance_timeout > 0) {
3998                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3999                         if (intf->auto_maintenance_timeout > 0) {
4000                                 intf->auto_maintenance_timeout
4001                                         -= timeout_period;
4002                                 if (!intf->maintenance_mode
4003                                     && (intf->auto_maintenance_timeout <= 0)) {
4004                                         intf->maintenance_mode_enable = 0;
4005                                         maintenance_mode_update(intf);
4006                                 }
4007                         }
4008                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4009                                                flags);
4010                 }
4011         }
4012         rcu_read_unlock();
4013 }
4014
4015 static void ipmi_request_event(void)
4016 {
4017         ipmi_smi_t               intf;
4018         struct ipmi_smi_handlers *handlers;
4019
4020         rcu_read_lock();
4021         /*
4022          * Called from the timer, no need to check if handlers is
4023          * valid.
4024          */
4025         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4026                 /* No event requests when in maintenance mode. */
4027                 if (intf->maintenance_mode_enable)
4028                         continue;
4029
4030                 handlers = intf->handlers;
4031                 if (handlers)
4032                         handlers->request_events(intf->send_info);
4033         }
4034         rcu_read_unlock();
4035 }
4036
4037 static struct timer_list ipmi_timer;
4038
4039 /* Call every ~1000 ms. */
4040 #define IPMI_TIMEOUT_TIME       1000
4041
4042 /* How many jiffies does it take to get to the timeout time. */
4043 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4044
4045 /*
4046  * Request events from the queue every second (this is the number of
4047  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4048  * future, IPMI will add a way to know immediately if an event is in
4049  * the queue and this silliness can go away.
4050  */
4051 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
4052
4053 static atomic_t stop_operation;
4054 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4055
4056 static void ipmi_timeout(unsigned long data)
4057 {
4058         if (atomic_read(&stop_operation))
4059                 return;
4060
4061         ticks_to_req_ev--;
4062         if (ticks_to_req_ev == 0) {
4063                 ipmi_request_event();
4064                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4065         }
4066
4067         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4068
4069         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4070 }
4071
4072
4073 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4074 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4075
4076 /* FIXME - convert these to slabs. */
4077 static void free_smi_msg(struct ipmi_smi_msg *msg)
4078 {
4079         atomic_dec(&smi_msg_inuse_count);
4080         kfree(msg);
4081 }
4082
4083 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4084 {
4085         struct ipmi_smi_msg *rv;
4086         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4087         if (rv) {
4088                 rv->done = free_smi_msg;
4089                 rv->user_data = NULL;
4090                 atomic_inc(&smi_msg_inuse_count);
4091         }
4092         return rv;
4093 }
4094 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4095
4096 static void free_recv_msg(struct ipmi_recv_msg *msg)
4097 {
4098         atomic_dec(&recv_msg_inuse_count);
4099         kfree(msg);
4100 }
4101
4102 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4103 {
4104         struct ipmi_recv_msg *rv;
4105
4106         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4107         if (rv) {
4108                 rv->user = NULL;
4109                 rv->done = free_recv_msg;
4110                 atomic_inc(&recv_msg_inuse_count);
4111         }
4112         return rv;
4113 }
4114
4115 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4116 {
4117         if (msg->user)
4118                 kref_put(&msg->user->refcount, free_user);
4119         msg->done(msg);
4120 }
4121 EXPORT_SYMBOL(ipmi_free_recv_msg);
4122
4123 #ifdef CONFIG_IPMI_PANIC_EVENT
4124
4125 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4126 {
4127 }
4128
4129 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4130 {
4131 }
4132
4133 #ifdef CONFIG_IPMI_PANIC_STRING
4134 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4135 {
4136         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4137             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4138             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4139             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4140                 /* A get event receiver command, save it. */
4141                 intf->event_receiver = msg->msg.data[1];
4142                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4143         }
4144 }
4145
4146 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4147 {
4148         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4149             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4150             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4151             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4152                 /*
4153                  * A get device id command, save if we are an event
4154                  * receiver or generator.
4155                  */
4156                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4157                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4158         }
4159 }
4160 #endif
4161
4162 static void send_panic_events(char *str)
4163 {
4164         struct kernel_ipmi_msg            msg;
4165         ipmi_smi_t                        intf;
4166         unsigned char                     data[16];
4167         struct ipmi_system_interface_addr *si;
4168         struct ipmi_addr                  addr;
4169         struct ipmi_smi_msg               smi_msg;
4170         struct ipmi_recv_msg              recv_msg;
4171
4172         si = (struct ipmi_system_interface_addr *) &addr;
4173         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4174         si->channel = IPMI_BMC_CHANNEL;
4175         si->lun = 0;
4176
4177         /* Fill in an event telling that we have failed. */
4178         msg.netfn = 0x04; /* Sensor or Event. */
4179         msg.cmd = 2; /* Platform event command. */
4180         msg.data = data;
4181         msg.data_len = 8;
4182         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4183         data[1] = 0x03; /* This is for IPMI 1.0. */
4184         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4185         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4186         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4187
4188         /*
4189          * Put a few breadcrumbs in.  Hopefully later we can add more things
4190          * to make the panic events more useful.
4191          */
4192         if (str) {
4193                 data[3] = str[0];
4194                 data[6] = str[1];
4195                 data[7] = str[2];
4196         }
4197
4198         smi_msg.done = dummy_smi_done_handler;
4199         recv_msg.done = dummy_recv_done_handler;
4200
4201         /* For every registered interface, send the event. */
4202         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4203                 if (!intf->handlers)
4204                         /* Interface is not ready. */
4205                         continue;
4206
4207                 intf->run_to_completion = 1;
4208                 /* Send the event announcing the panic. */
4209                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4210                 i_ipmi_request(NULL,
4211                                intf,
4212                                &addr,
4213                                0,
4214                                &msg,
4215                                intf,
4216                                &smi_msg,
4217                                &recv_msg,
4218                                0,
4219                                intf->channels[0].address,
4220                                intf->channels[0].lun,
4221                                0, 1); /* Don't retry, and don't wait. */
4222         }
4223
4224 #ifdef CONFIG_IPMI_PANIC_STRING
4225         /*
4226          * On every interface, dump a bunch of OEM event holding the
4227          * string.
4228          */
4229         if (!str)
4230                 return;
4231
4232         /* For every registered interface, send the event. */
4233         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4234                 char                  *p = str;
4235                 struct ipmi_ipmb_addr *ipmb;
4236                 int                   j;
4237
4238                 if (intf->intf_num == -1)
4239                         /* Interface was not ready yet. */
4240                         continue;
4241
4242                 /*
4243                  * intf_num is used as an marker to tell if the
4244                  * interface is valid.  Thus we need a read barrier to
4245                  * make sure data fetched before checking intf_num
4246                  * won't be used.
4247                  */
4248                 smp_rmb();
4249
4250                 /*
4251                  * First job here is to figure out where to send the
4252                  * OEM events.  There's no way in IPMI to send OEM
4253                  * events using an event send command, so we have to
4254                  * find the SEL to put them in and stick them in
4255                  * there.
4256                  */
4257
4258                 /* Get capabilities from the get device id. */
4259                 intf->local_sel_device = 0;
4260                 intf->local_event_generator = 0;
4261                 intf->event_receiver = 0;
4262
4263                 /* Request the device info from the local MC. */
4264                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4265                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4266                 msg.data = NULL;
4267                 msg.data_len = 0;
4268                 intf->null_user_handler = device_id_fetcher;
4269                 i_ipmi_request(NULL,
4270                                intf,
4271                                &addr,
4272                                0,
4273                                &msg,
4274                                intf,
4275                                &smi_msg,
4276                                &recv_msg,
4277                                0,
4278                                intf->channels[0].address,
4279                                intf->channels[0].lun,
4280                                0, 1); /* Don't retry, and don't wait. */
4281
4282                 if (intf->local_event_generator) {
4283                         /* Request the event receiver from the local MC. */
4284                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4285                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4286                         msg.data = NULL;
4287                         msg.data_len = 0;
4288                         intf->null_user_handler = event_receiver_fetcher;
4289                         i_ipmi_request(NULL,
4290                                        intf,
4291                                        &addr,
4292                                        0,
4293                                        &msg,
4294                                        intf,
4295                                        &smi_msg,
4296                                        &recv_msg,
4297                                        0,
4298                                        intf->channels[0].address,
4299                                        intf->channels[0].lun,
4300                                        0, 1); /* no retry, and no wait. */
4301                 }
4302                 intf->null_user_handler = NULL;
4303
4304                 /*
4305                  * Validate the event receiver.  The low bit must not
4306                  * be 1 (it must be a valid IPMB address), it cannot
4307                  * be zero, and it must not be my address.
4308                  */
4309                 if (((intf->event_receiver & 1) == 0)
4310                     && (intf->event_receiver != 0)
4311                     && (intf->event_receiver != intf->channels[0].address)) {
4312                         /*
4313                          * The event receiver is valid, send an IPMB
4314                          * message.
4315                          */
4316                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4317                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4318                         ipmb->channel = 0; /* FIXME - is this right? */
4319                         ipmb->lun = intf->event_receiver_lun;
4320                         ipmb->slave_addr = intf->event_receiver;
4321                 } else if (intf->local_sel_device) {
4322                         /*
4323                          * The event receiver was not valid (or was
4324                          * me), but I am an SEL device, just dump it
4325                          * in my SEL.
4326                          */
4327                         si = (struct ipmi_system_interface_addr *) &addr;
4328                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4329                         si->channel = IPMI_BMC_CHANNEL;
4330                         si->lun = 0;
4331                 } else
4332                         continue; /* No where to send the event. */
4333
4334                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4335                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4336                 msg.data = data;
4337                 msg.data_len = 16;
4338
4339                 j = 0;
4340                 while (*p) {
4341                         int size = strlen(p);
4342
4343                         if (size > 11)
4344                                 size = 11;
4345                         data[0] = 0;
4346                         data[1] = 0;
4347                         data[2] = 0xf0; /* OEM event without timestamp. */
4348                         data[3] = intf->channels[0].address;
4349                         data[4] = j++; /* sequence # */
4350                         /*
4351                          * Always give 11 bytes, so strncpy will fill
4352                          * it with zeroes for me.
4353                          */
4354                         strncpy(data+5, p, 11);
4355                         p += size;
4356
4357                         i_ipmi_request(NULL,
4358                                        intf,
4359                                        &addr,
4360                                        0,
4361                                        &msg,
4362                                        intf,
4363                                        &smi_msg,
4364                                        &recv_msg,
4365                                        0,
4366                                        intf->channels[0].address,
4367                                        intf->channels[0].lun,
4368                                        0, 1); /* no retry, and no wait. */
4369                 }
4370         }
4371 #endif /* CONFIG_IPMI_PANIC_STRING */
4372 }
4373 #endif /* CONFIG_IPMI_PANIC_EVENT */
4374
4375 static int has_panicked;
4376
4377 static int panic_event(struct notifier_block *this,
4378                        unsigned long         event,
4379                        void                  *ptr)
4380 {
4381         ipmi_smi_t intf;
4382
4383         if (has_panicked)
4384                 return NOTIFY_DONE;
4385         has_panicked = 1;
4386
4387         /* For every registered interface, set it to run to completion. */
4388         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4389                 if (!intf->handlers)
4390                         /* Interface is not ready. */
4391                         continue;
4392
4393                 intf->run_to_completion = 1;
4394                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4395         }
4396
4397 #ifdef CONFIG_IPMI_PANIC_EVENT
4398         send_panic_events(ptr);
4399 #endif
4400
4401         return NOTIFY_DONE;
4402 }
4403
4404 static struct notifier_block panic_block = {
4405         .notifier_call  = panic_event,
4406         .next           = NULL,
4407         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4408 };
4409
4410 static int ipmi_init_msghandler(void)
4411 {
4412         int rv;
4413
4414         if (initialized)
4415                 return 0;
4416
4417         rv = driver_register(&ipmidriver.driver);
4418         if (rv) {
4419                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4420                 return rv;
4421         }
4422
4423         printk(KERN_INFO "ipmi message handler version "
4424                IPMI_DRIVER_VERSION "\n");
4425
4426 #ifdef CONFIG_PROC_FS
4427         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4428         if (!proc_ipmi_root) {
4429             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4430             return -ENOMEM;
4431         }
4432
4433 #endif /* CONFIG_PROC_FS */
4434
4435         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4436         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4437
4438         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4439
4440         initialized = 1;
4441
4442         return 0;
4443 }
4444
4445 static __init int ipmi_init_msghandler_mod(void)
4446 {
4447         ipmi_init_msghandler();
4448         return 0;
4449 }
4450
4451 static __exit void cleanup_ipmi(void)
4452 {
4453         int count;
4454
4455         if (!initialized)
4456                 return;
4457
4458         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4459
4460         /*
4461          * This can't be called if any interfaces exist, so no worry
4462          * about shutting down the interfaces.
4463          */
4464
4465         /*
4466          * Tell the timer to stop, then wait for it to stop.  This
4467          * avoids problems with race conditions removing the timer
4468          * here.
4469          */
4470         atomic_inc(&stop_operation);
4471         del_timer_sync(&ipmi_timer);
4472
4473 #ifdef CONFIG_PROC_FS
4474         remove_proc_entry(proc_ipmi_root->name, NULL);
4475 #endif /* CONFIG_PROC_FS */
4476
4477         driver_unregister(&ipmidriver.driver);
4478
4479         initialized = 0;
4480
4481         /* Check for buffer leaks. */
4482         count = atomic_read(&smi_msg_inuse_count);
4483         if (count != 0)
4484                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4485                        count);
4486         count = atomic_read(&recv_msg_inuse_count);
4487         if (count != 0)
4488                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4489                        count);
4490 }
4491 module_exit(cleanup_ipmi);
4492
4493 module_init(ipmi_init_msghandler_mod);
4494 MODULE_LICENSE("GPL");
4495 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4496 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4497                    " interface.");
4498 MODULE_VERSION(IPMI_DRIVER_VERSION);