2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
43 static int zram_major;
44 static const char *default_compressor = "lzo";
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
52 static size_t huge_class_size;
54 static void zram_free_page(struct zram *zram, size_t index);
55 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
56 u32 index, int offset, struct bio *bio);
59 static int zram_slot_trylock(struct zram *zram, u32 index)
61 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
64 static void zram_slot_lock(struct zram *zram, u32 index)
66 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
69 static void zram_slot_unlock(struct zram *zram, u32 index)
71 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
74 static inline bool init_done(struct zram *zram)
76 return zram->disksize;
79 static inline struct zram *dev_to_zram(struct device *dev)
81 return (struct zram *)dev_to_disk(dev)->private_data;
84 static unsigned long zram_get_handle(struct zram *zram, u32 index)
86 return zram->table[index].handle;
89 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91 zram->table[index].handle = handle;
94 /* flag operations require table entry bit_spin_lock() being held */
95 static bool zram_test_flag(struct zram *zram, u32 index,
96 enum zram_pageflags flag)
98 return zram->table[index].flags & BIT(flag);
101 static void zram_set_flag(struct zram *zram, u32 index,
102 enum zram_pageflags flag)
104 zram->table[index].flags |= BIT(flag);
107 static void zram_clear_flag(struct zram *zram, u32 index,
108 enum zram_pageflags flag)
110 zram->table[index].flags &= ~BIT(flag);
113 static inline void zram_set_element(struct zram *zram, u32 index,
114 unsigned long element)
116 zram->table[index].element = element;
119 static unsigned long zram_get_element(struct zram *zram, u32 index)
121 return zram->table[index].element;
124 static size_t zram_get_obj_size(struct zram *zram, u32 index)
126 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
129 static void zram_set_obj_size(struct zram *zram,
130 u32 index, size_t size)
132 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
137 static inline bool zram_allocated(struct zram *zram, u32 index)
139 return zram_get_obj_size(zram, index) ||
140 zram_test_flag(zram, index, ZRAM_SAME) ||
141 zram_test_flag(zram, index, ZRAM_WB);
144 #if PAGE_SIZE != 4096
145 static inline bool is_partial_io(struct bio_vec *bvec)
147 return bvec->bv_len != PAGE_SIZE;
150 static inline bool is_partial_io(struct bio_vec *bvec)
157 * Check if request is within bounds and aligned on zram logical blocks.
159 static inline bool valid_io_request(struct zram *zram,
160 sector_t start, unsigned int size)
164 /* unaligned request */
165 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
167 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
170 end = start + (size >> SECTOR_SHIFT);
171 bound = zram->disksize >> SECTOR_SHIFT;
172 /* out of range range */
173 if (unlikely(start >= bound || end > bound || start > end))
176 /* I/O request is valid */
180 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
182 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
183 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
186 static inline void update_used_max(struct zram *zram,
187 const unsigned long pages)
189 unsigned long old_max, cur_max;
191 old_max = atomic_long_read(&zram->stats.max_used_pages);
196 old_max = atomic_long_cmpxchg(
197 &zram->stats.max_used_pages, cur_max, pages);
198 } while (old_max != cur_max);
201 static inline void zram_fill_page(void *ptr, unsigned long len,
204 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
205 memset_l(ptr, value, len / sizeof(unsigned long));
208 static bool page_same_filled(void *ptr, unsigned long *element)
214 page = (unsigned long *)ptr;
217 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
218 if (val != page[pos])
227 static ssize_t initstate_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
231 struct zram *zram = dev_to_zram(dev);
233 down_read(&zram->init_lock);
234 val = init_done(zram);
235 up_read(&zram->init_lock);
237 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
240 static ssize_t disksize_show(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct zram *zram = dev_to_zram(dev);
245 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
248 static ssize_t mem_limit_store(struct device *dev,
249 struct device_attribute *attr, const char *buf, size_t len)
253 struct zram *zram = dev_to_zram(dev);
255 limit = memparse(buf, &tmp);
256 if (buf == tmp) /* no chars parsed, invalid input */
259 down_write(&zram->init_lock);
260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 up_write(&zram->init_lock);
266 static ssize_t mem_used_max_store(struct device *dev,
267 struct device_attribute *attr, const char *buf, size_t len)
271 struct zram *zram = dev_to_zram(dev);
273 err = kstrtoul(buf, 10, &val);
277 down_read(&zram->init_lock);
278 if (init_done(zram)) {
279 atomic_long_set(&zram->stats.max_used_pages,
280 zs_get_total_pages(zram->mem_pool));
282 up_read(&zram->init_lock);
287 static ssize_t idle_store(struct device *dev,
288 struct device_attribute *attr, const char *buf, size_t len)
290 struct zram *zram = dev_to_zram(dev);
291 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
296 sz = strscpy(mode_buf, buf, sizeof(mode_buf));
300 /* ignore trailing new line */
301 if (mode_buf[sz - 1] == '\n')
302 mode_buf[sz - 1] = 0x00;
304 if (strcmp(mode_buf, "all"))
307 down_read(&zram->init_lock);
308 if (!init_done(zram)) {
309 up_read(&zram->init_lock);
313 for (index = 0; index < nr_pages; index++) {
315 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
316 * See the comment in writeback_store.
318 zram_slot_lock(zram, index);
319 if (!zram_allocated(zram, index) ||
320 zram_test_flag(zram, index, ZRAM_UNDER_WB))
322 zram_set_flag(zram, index, ZRAM_IDLE);
324 zram_slot_unlock(zram, index);
327 up_read(&zram->init_lock);
332 #ifdef CONFIG_ZRAM_WRITEBACK
333 static void reset_bdev(struct zram *zram)
335 struct block_device *bdev;
337 if (!zram->backing_dev)
341 if (zram->old_block_size)
342 set_blocksize(bdev, zram->old_block_size);
343 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
344 /* hope filp_close flush all of IO */
345 filp_close(zram->backing_dev, NULL);
346 zram->backing_dev = NULL;
347 zram->old_block_size = 0;
349 zram->disk->queue->backing_dev_info->capabilities |=
350 BDI_CAP_SYNCHRONOUS_IO;
351 kvfree(zram->bitmap);
355 static ssize_t backing_dev_show(struct device *dev,
356 struct device_attribute *attr, char *buf)
358 struct zram *zram = dev_to_zram(dev);
359 struct file *file = zram->backing_dev;
363 down_read(&zram->init_lock);
364 if (!zram->backing_dev) {
365 memcpy(buf, "none\n", 5);
366 up_read(&zram->init_lock);
370 p = file_path(file, buf, PAGE_SIZE - 1);
377 memmove(buf, p, ret);
380 up_read(&zram->init_lock);
384 static ssize_t backing_dev_store(struct device *dev,
385 struct device_attribute *attr, const char *buf, size_t len)
389 struct file *backing_dev = NULL;
391 struct address_space *mapping;
392 unsigned int bitmap_sz, old_block_size = 0;
393 unsigned long nr_pages, *bitmap = NULL;
394 struct block_device *bdev = NULL;
396 struct zram *zram = dev_to_zram(dev);
398 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
402 down_write(&zram->init_lock);
403 if (init_done(zram)) {
404 pr_info("Can't setup backing device for initialized device\n");
409 strlcpy(file_name, buf, PATH_MAX);
410 /* ignore trailing newline */
411 sz = strlen(file_name);
412 if (sz > 0 && file_name[sz - 1] == '\n')
413 file_name[sz - 1] = 0x00;
415 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
416 if (IS_ERR(backing_dev)) {
417 err = PTR_ERR(backing_dev);
422 mapping = backing_dev->f_mapping;
423 inode = mapping->host;
425 /* Support only block device in this moment */
426 if (!S_ISBLK(inode->i_mode)) {
431 bdev = bdgrab(I_BDEV(inode));
432 err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
438 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
439 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
440 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
446 old_block_size = block_size(bdev);
447 err = set_blocksize(bdev, PAGE_SIZE);
453 zram->old_block_size = old_block_size;
455 zram->backing_dev = backing_dev;
456 zram->bitmap = bitmap;
457 zram->nr_pages = nr_pages;
459 * With writeback feature, zram does asynchronous IO so it's no longer
460 * synchronous device so let's remove synchronous io flag. Othewise,
461 * upper layer(e.g., swap) could wait IO completion rather than
462 * (submit and return), which will cause system sluggish.
463 * Furthermore, when the IO function returns(e.g., swap_readpage),
464 * upper layer expects IO was done so it could deallocate the page
465 * freely but in fact, IO is going on so finally could cause
466 * use-after-free when the IO is really done.
468 zram->disk->queue->backing_dev_info->capabilities &=
469 ~BDI_CAP_SYNCHRONOUS_IO;
470 up_write(&zram->init_lock);
472 pr_info("setup backing device %s\n", file_name);
481 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
484 filp_close(backing_dev, NULL);
486 up_write(&zram->init_lock);
493 static unsigned long alloc_block_bdev(struct zram *zram)
495 unsigned long blk_idx = 1;
497 /* skip 0 bit to confuse zram.handle = 0 */
498 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
499 if (blk_idx == zram->nr_pages)
502 if (test_and_set_bit(blk_idx, zram->bitmap))
505 atomic64_inc(&zram->stats.bd_count);
509 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
513 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
514 WARN_ON_ONCE(!was_set);
515 atomic64_dec(&zram->stats.bd_count);
518 static void zram_page_end_io(struct bio *bio)
520 struct page *page = bio_first_page_all(bio);
522 page_endio(page, op_is_write(bio_op(bio)),
523 blk_status_to_errno(bio->bi_status));
528 * Returns 1 if the submission is successful.
530 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
531 unsigned long entry, struct bio *parent)
535 bio = bio_alloc(GFP_ATOMIC, 1);
539 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
540 bio_set_dev(bio, zram->bdev);
541 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
547 bio->bi_opf = REQ_OP_READ;
548 bio->bi_end_io = zram_page_end_io;
550 bio->bi_opf = parent->bi_opf;
551 bio_chain(bio, parent);
558 #define HUGE_WRITEBACK 0x1
559 #define IDLE_WRITEBACK 0x2
561 static ssize_t writeback_store(struct device *dev,
562 struct device_attribute *attr, const char *buf, size_t len)
564 struct zram *zram = dev_to_zram(dev);
565 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
568 struct bio_vec bio_vec;
572 unsigned long mode = -1UL;
573 unsigned long blk_idx = 0;
575 sz = strscpy(mode_buf, buf, sizeof(mode_buf));
579 /* ignore trailing newline */
580 if (mode_buf[sz - 1] == '\n')
581 mode_buf[sz - 1] = 0x00;
583 if (!strcmp(mode_buf, "idle"))
584 mode = IDLE_WRITEBACK;
585 else if (!strcmp(mode_buf, "huge"))
586 mode = HUGE_WRITEBACK;
591 down_read(&zram->init_lock);
592 if (!init_done(zram)) {
594 goto release_init_lock;
597 if (!zram->backing_dev) {
599 goto release_init_lock;
602 page = alloc_page(GFP_KERNEL);
605 goto release_init_lock;
608 for (index = 0; index < nr_pages; index++) {
612 bvec.bv_len = PAGE_SIZE;
616 blk_idx = alloc_block_bdev(zram);
623 zram_slot_lock(zram, index);
624 if (!zram_allocated(zram, index))
627 if (zram_test_flag(zram, index, ZRAM_WB) ||
628 zram_test_flag(zram, index, ZRAM_SAME) ||
629 zram_test_flag(zram, index, ZRAM_UNDER_WB))
632 if ((mode & IDLE_WRITEBACK &&
633 !zram_test_flag(zram, index, ZRAM_IDLE)) &&
634 (mode & HUGE_WRITEBACK &&
635 !zram_test_flag(zram, index, ZRAM_HUGE)))
638 * Clearing ZRAM_UNDER_WB is duty of caller.
639 * IOW, zram_free_page never clear it.
641 zram_set_flag(zram, index, ZRAM_UNDER_WB);
642 /* Need for hugepage writeback racing */
643 zram_set_flag(zram, index, ZRAM_IDLE);
644 zram_slot_unlock(zram, index);
645 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
646 zram_slot_lock(zram, index);
647 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
648 zram_clear_flag(zram, index, ZRAM_IDLE);
649 zram_slot_unlock(zram, index);
653 bio_init(&bio, &bio_vec, 1);
654 bio_set_dev(&bio, zram->bdev);
655 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
656 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
658 bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
661 * XXX: A single page IO would be inefficient for write
662 * but it would be not bad as starter.
664 ret = submit_bio_wait(&bio);
666 zram_slot_lock(zram, index);
667 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
668 zram_clear_flag(zram, index, ZRAM_IDLE);
669 zram_slot_unlock(zram, index);
673 atomic64_inc(&zram->stats.bd_writes);
675 * We released zram_slot_lock so need to check if the slot was
676 * changed. If there is freeing for the slot, we can catch it
677 * easily by zram_allocated.
678 * A subtle case is the slot is freed/reallocated/marked as
679 * ZRAM_IDLE again. To close the race, idle_store doesn't
680 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
681 * Thus, we could close the race by checking ZRAM_IDLE bit.
683 zram_slot_lock(zram, index);
684 if (!zram_allocated(zram, index) ||
685 !zram_test_flag(zram, index, ZRAM_IDLE)) {
686 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
687 zram_clear_flag(zram, index, ZRAM_IDLE);
691 zram_free_page(zram, index);
692 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
693 zram_set_flag(zram, index, ZRAM_WB);
694 zram_set_element(zram, index, blk_idx);
696 atomic64_inc(&zram->stats.pages_stored);
698 zram_slot_unlock(zram, index);
702 free_block_bdev(zram, blk_idx);
706 up_read(&zram->init_lock);
712 struct work_struct work;
718 #if PAGE_SIZE != 4096
719 static void zram_sync_read(struct work_struct *work)
722 struct zram_work *zw = container_of(work, struct zram_work, work);
723 struct zram *zram = zw->zram;
724 unsigned long entry = zw->entry;
725 struct bio *bio = zw->bio;
727 read_from_bdev_async(zram, &bvec, entry, bio);
731 * Block layer want one ->make_request_fn to be active at a time
732 * so if we use chained IO with parent IO in same context,
733 * it's a deadlock. To avoid, it, it uses worker thread context.
735 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
736 unsigned long entry, struct bio *bio)
738 struct zram_work work;
744 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
745 queue_work(system_unbound_wq, &work.work);
746 flush_work(&work.work);
747 destroy_work_on_stack(&work.work);
752 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
753 unsigned long entry, struct bio *bio)
760 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
761 unsigned long entry, struct bio *parent, bool sync)
763 atomic64_inc(&zram->stats.bd_reads);
765 return read_from_bdev_sync(zram, bvec, entry, parent);
767 return read_from_bdev_async(zram, bvec, entry, parent);
770 static inline void reset_bdev(struct zram *zram) {};
771 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
772 unsigned long entry, struct bio *parent, bool sync)
777 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
780 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
782 static struct dentry *zram_debugfs_root;
784 static void zram_debugfs_create(void)
786 zram_debugfs_root = debugfs_create_dir("zram", NULL);
789 static void zram_debugfs_destroy(void)
791 debugfs_remove_recursive(zram_debugfs_root);
794 static void zram_accessed(struct zram *zram, u32 index)
796 zram_clear_flag(zram, index, ZRAM_IDLE);
797 zram->table[index].ac_time = ktime_get_boottime();
800 static ssize_t read_block_state(struct file *file, char __user *buf,
801 size_t count, loff_t *ppos)
804 ssize_t index, written = 0;
805 struct zram *zram = file->private_data;
806 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
807 struct timespec64 ts;
809 kbuf = kvmalloc(count, GFP_KERNEL);
813 down_read(&zram->init_lock);
814 if (!init_done(zram)) {
815 up_read(&zram->init_lock);
820 for (index = *ppos; index < nr_pages; index++) {
823 zram_slot_lock(zram, index);
824 if (!zram_allocated(zram, index))
827 ts = ktime_to_timespec64(zram->table[index].ac_time);
828 copied = snprintf(kbuf + written, count,
829 "%12zd %12lld.%06lu %c%c%c%c\n",
830 index, (s64)ts.tv_sec,
831 ts.tv_nsec / NSEC_PER_USEC,
832 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
833 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
834 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
835 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
837 if (count < copied) {
838 zram_slot_unlock(zram, index);
844 zram_slot_unlock(zram, index);
848 up_read(&zram->init_lock);
849 if (copy_to_user(buf, kbuf, written))
856 static const struct file_operations proc_zram_block_state_op = {
858 .read = read_block_state,
859 .llseek = default_llseek,
862 static void zram_debugfs_register(struct zram *zram)
864 if (!zram_debugfs_root)
867 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
869 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
870 zram, &proc_zram_block_state_op);
873 static void zram_debugfs_unregister(struct zram *zram)
875 debugfs_remove_recursive(zram->debugfs_dir);
878 static void zram_debugfs_create(void) {};
879 static void zram_debugfs_destroy(void) {};
880 static void zram_accessed(struct zram *zram, u32 index)
882 zram_clear_flag(zram, index, ZRAM_IDLE);
884 static void zram_debugfs_register(struct zram *zram) {};
885 static void zram_debugfs_unregister(struct zram *zram) {};
889 * We switched to per-cpu streams and this attr is not needed anymore.
890 * However, we will keep it around for some time, because:
891 * a) we may revert per-cpu streams in the future
892 * b) it's visible to user space and we need to follow our 2 years
893 * retirement rule; but we already have a number of 'soon to be
894 * altered' attrs, so max_comp_streams need to wait for the next
897 static ssize_t max_comp_streams_show(struct device *dev,
898 struct device_attribute *attr, char *buf)
900 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
903 static ssize_t max_comp_streams_store(struct device *dev,
904 struct device_attribute *attr, const char *buf, size_t len)
909 static ssize_t comp_algorithm_show(struct device *dev,
910 struct device_attribute *attr, char *buf)
913 struct zram *zram = dev_to_zram(dev);
915 down_read(&zram->init_lock);
916 sz = zcomp_available_show(zram->compressor, buf);
917 up_read(&zram->init_lock);
922 static ssize_t comp_algorithm_store(struct device *dev,
923 struct device_attribute *attr, const char *buf, size_t len)
925 struct zram *zram = dev_to_zram(dev);
926 char compressor[ARRAY_SIZE(zram->compressor)];
929 strlcpy(compressor, buf, sizeof(compressor));
930 /* ignore trailing newline */
931 sz = strlen(compressor);
932 if (sz > 0 && compressor[sz - 1] == '\n')
933 compressor[sz - 1] = 0x00;
935 if (!zcomp_available_algorithm(compressor))
938 down_write(&zram->init_lock);
939 if (init_done(zram)) {
940 up_write(&zram->init_lock);
941 pr_info("Can't change algorithm for initialized device\n");
945 strcpy(zram->compressor, compressor);
946 up_write(&zram->init_lock);
950 static ssize_t compact_store(struct device *dev,
951 struct device_attribute *attr, const char *buf, size_t len)
953 struct zram *zram = dev_to_zram(dev);
955 down_read(&zram->init_lock);
956 if (!init_done(zram)) {
957 up_read(&zram->init_lock);
961 zs_compact(zram->mem_pool);
962 up_read(&zram->init_lock);
967 static ssize_t io_stat_show(struct device *dev,
968 struct device_attribute *attr, char *buf)
970 struct zram *zram = dev_to_zram(dev);
973 down_read(&zram->init_lock);
974 ret = scnprintf(buf, PAGE_SIZE,
975 "%8llu %8llu %8llu %8llu\n",
976 (u64)atomic64_read(&zram->stats.failed_reads),
977 (u64)atomic64_read(&zram->stats.failed_writes),
978 (u64)atomic64_read(&zram->stats.invalid_io),
979 (u64)atomic64_read(&zram->stats.notify_free));
980 up_read(&zram->init_lock);
985 static ssize_t mm_stat_show(struct device *dev,
986 struct device_attribute *attr, char *buf)
988 struct zram *zram = dev_to_zram(dev);
989 struct zs_pool_stats pool_stats;
990 u64 orig_size, mem_used = 0;
994 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
996 down_read(&zram->init_lock);
997 if (init_done(zram)) {
998 mem_used = zs_get_total_pages(zram->mem_pool);
999 zs_pool_stats(zram->mem_pool, &pool_stats);
1002 orig_size = atomic64_read(&zram->stats.pages_stored);
1003 max_used = atomic_long_read(&zram->stats.max_used_pages);
1005 ret = scnprintf(buf, PAGE_SIZE,
1006 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1007 orig_size << PAGE_SHIFT,
1008 (u64)atomic64_read(&zram->stats.compr_data_size),
1009 mem_used << PAGE_SHIFT,
1010 zram->limit_pages << PAGE_SHIFT,
1011 max_used << PAGE_SHIFT,
1012 (u64)atomic64_read(&zram->stats.same_pages),
1013 pool_stats.pages_compacted,
1014 (u64)atomic64_read(&zram->stats.huge_pages));
1015 up_read(&zram->init_lock);
1020 #ifdef CONFIG_ZRAM_WRITEBACK
1021 static ssize_t bd_stat_show(struct device *dev,
1022 struct device_attribute *attr, char *buf)
1024 struct zram *zram = dev_to_zram(dev);
1027 down_read(&zram->init_lock);
1028 ret = scnprintf(buf, PAGE_SIZE,
1029 "%8llu %8llu %8llu\n",
1030 (u64)atomic64_read(&zram->stats.bd_count) * (PAGE_SHIFT - 12),
1031 (u64)atomic64_read(&zram->stats.bd_reads) * (PAGE_SHIFT - 12),
1032 (u64)atomic64_read(&zram->stats.bd_writes) * (PAGE_SHIFT - 12));
1033 up_read(&zram->init_lock);
1039 static ssize_t debug_stat_show(struct device *dev,
1040 struct device_attribute *attr, char *buf)
1043 struct zram *zram = dev_to_zram(dev);
1046 down_read(&zram->init_lock);
1047 ret = scnprintf(buf, PAGE_SIZE,
1048 "version: %d\n%8llu %8llu\n",
1050 (u64)atomic64_read(&zram->stats.writestall),
1051 (u64)atomic64_read(&zram->stats.miss_free));
1052 up_read(&zram->init_lock);
1057 static DEVICE_ATTR_RO(io_stat);
1058 static DEVICE_ATTR_RO(mm_stat);
1059 #ifdef CONFIG_ZRAM_WRITEBACK
1060 static DEVICE_ATTR_RO(bd_stat);
1062 static DEVICE_ATTR_RO(debug_stat);
1064 static void zram_meta_free(struct zram *zram, u64 disksize)
1066 size_t num_pages = disksize >> PAGE_SHIFT;
1069 /* Free all pages that are still in this zram device */
1070 for (index = 0; index < num_pages; index++)
1071 zram_free_page(zram, index);
1073 zs_destroy_pool(zram->mem_pool);
1077 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1081 num_pages = disksize >> PAGE_SHIFT;
1082 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1086 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1087 if (!zram->mem_pool) {
1092 if (!huge_class_size)
1093 huge_class_size = zs_huge_class_size(zram->mem_pool);
1098 * To protect concurrent access to the same index entry,
1099 * caller should hold this table index entry's bit_spinlock to
1100 * indicate this index entry is accessing.
1102 static void zram_free_page(struct zram *zram, size_t index)
1104 unsigned long handle;
1106 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1107 zram->table[index].ac_time = 0;
1109 if (zram_test_flag(zram, index, ZRAM_IDLE))
1110 zram_clear_flag(zram, index, ZRAM_IDLE);
1112 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1113 zram_clear_flag(zram, index, ZRAM_HUGE);
1114 atomic64_dec(&zram->stats.huge_pages);
1117 if (zram_test_flag(zram, index, ZRAM_WB)) {
1118 zram_clear_flag(zram, index, ZRAM_WB);
1119 free_block_bdev(zram, zram_get_element(zram, index));
1124 * No memory is allocated for same element filled pages.
1125 * Simply clear same page flag.
1127 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1128 zram_clear_flag(zram, index, ZRAM_SAME);
1129 atomic64_dec(&zram->stats.same_pages);
1133 handle = zram_get_handle(zram, index);
1137 zs_free(zram->mem_pool, handle);
1139 atomic64_sub(zram_get_obj_size(zram, index),
1140 &zram->stats.compr_data_size);
1142 atomic64_dec(&zram->stats.pages_stored);
1143 zram_set_handle(zram, index, 0);
1144 zram_set_obj_size(zram, index, 0);
1145 WARN_ON_ONCE(zram->table[index].flags &
1146 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1149 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1150 struct bio *bio, bool partial_io)
1153 unsigned long handle;
1157 zram_slot_lock(zram, index);
1158 if (zram_test_flag(zram, index, ZRAM_WB)) {
1159 struct bio_vec bvec;
1161 zram_slot_unlock(zram, index);
1163 bvec.bv_page = page;
1164 bvec.bv_len = PAGE_SIZE;
1166 return read_from_bdev(zram, &bvec,
1167 zram_get_element(zram, index),
1171 handle = zram_get_handle(zram, index);
1172 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1173 unsigned long value;
1176 value = handle ? zram_get_element(zram, index) : 0;
1177 mem = kmap_atomic(page);
1178 zram_fill_page(mem, PAGE_SIZE, value);
1180 zram_slot_unlock(zram, index);
1184 size = zram_get_obj_size(zram, index);
1186 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1187 if (size == PAGE_SIZE) {
1188 dst = kmap_atomic(page);
1189 memcpy(dst, src, PAGE_SIZE);
1193 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1195 dst = kmap_atomic(page);
1196 ret = zcomp_decompress(zstrm, src, size, dst);
1198 zcomp_stream_put(zram->comp);
1200 zs_unmap_object(zram->mem_pool, handle);
1201 zram_slot_unlock(zram, index);
1203 /* Should NEVER happen. Return bio error if it does. */
1205 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1210 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1211 u32 index, int offset, struct bio *bio)
1216 page = bvec->bv_page;
1217 if (is_partial_io(bvec)) {
1218 /* Use a temporary buffer to decompress the page */
1219 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1224 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1228 if (is_partial_io(bvec)) {
1229 void *dst = kmap_atomic(bvec->bv_page);
1230 void *src = kmap_atomic(page);
1232 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1237 if (is_partial_io(bvec))
1243 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1244 u32 index, struct bio *bio)
1247 unsigned long alloced_pages;
1248 unsigned long handle = 0;
1249 unsigned int comp_len = 0;
1250 void *src, *dst, *mem;
1251 struct zcomp_strm *zstrm;
1252 struct page *page = bvec->bv_page;
1253 unsigned long element = 0;
1254 enum zram_pageflags flags = 0;
1256 mem = kmap_atomic(page);
1257 if (page_same_filled(mem, &element)) {
1259 /* Free memory associated with this sector now. */
1261 atomic64_inc(&zram->stats.same_pages);
1267 zstrm = zcomp_stream_get(zram->comp);
1268 src = kmap_atomic(page);
1269 ret = zcomp_compress(zstrm, src, &comp_len);
1272 if (unlikely(ret)) {
1273 zcomp_stream_put(zram->comp);
1274 pr_err("Compression failed! err=%d\n", ret);
1275 zs_free(zram->mem_pool, handle);
1279 if (comp_len >= huge_class_size)
1280 comp_len = PAGE_SIZE;
1282 * handle allocation has 2 paths:
1283 * a) fast path is executed with preemption disabled (for
1284 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1285 * since we can't sleep;
1286 * b) slow path enables preemption and attempts to allocate
1287 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1288 * put per-cpu compression stream and, thus, to re-do
1289 * the compression once handle is allocated.
1291 * if we have a 'non-null' handle here then we are coming
1292 * from the slow path and handle has already been allocated.
1295 handle = zs_malloc(zram->mem_pool, comp_len,
1296 __GFP_KSWAPD_RECLAIM |
1301 zcomp_stream_put(zram->comp);
1302 atomic64_inc(&zram->stats.writestall);
1303 handle = zs_malloc(zram->mem_pool, comp_len,
1304 GFP_NOIO | __GFP_HIGHMEM |
1307 goto compress_again;
1311 alloced_pages = zs_get_total_pages(zram->mem_pool);
1312 update_used_max(zram, alloced_pages);
1314 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1315 zcomp_stream_put(zram->comp);
1316 zs_free(zram->mem_pool, handle);
1320 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1322 src = zstrm->buffer;
1323 if (comp_len == PAGE_SIZE)
1324 src = kmap_atomic(page);
1325 memcpy(dst, src, comp_len);
1326 if (comp_len == PAGE_SIZE)
1329 zcomp_stream_put(zram->comp);
1330 zs_unmap_object(zram->mem_pool, handle);
1331 atomic64_add(comp_len, &zram->stats.compr_data_size);
1334 * Free memory associated with this sector
1335 * before overwriting unused sectors.
1337 zram_slot_lock(zram, index);
1338 zram_free_page(zram, index);
1340 if (comp_len == PAGE_SIZE) {
1341 zram_set_flag(zram, index, ZRAM_HUGE);
1342 atomic64_inc(&zram->stats.huge_pages);
1346 zram_set_flag(zram, index, flags);
1347 zram_set_element(zram, index, element);
1349 zram_set_handle(zram, index, handle);
1350 zram_set_obj_size(zram, index, comp_len);
1352 zram_slot_unlock(zram, index);
1355 atomic64_inc(&zram->stats.pages_stored);
1359 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1360 u32 index, int offset, struct bio *bio)
1363 struct page *page = NULL;
1368 if (is_partial_io(bvec)) {
1371 * This is a partial IO. We need to read the full page
1372 * before to write the changes.
1374 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1378 ret = __zram_bvec_read(zram, page, index, bio, true);
1382 src = kmap_atomic(bvec->bv_page);
1383 dst = kmap_atomic(page);
1384 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1389 vec.bv_len = PAGE_SIZE;
1393 ret = __zram_bvec_write(zram, &vec, index, bio);
1395 if (is_partial_io(bvec))
1401 * zram_bio_discard - handler on discard request
1402 * @index: physical block index in PAGE_SIZE units
1403 * @offset: byte offset within physical block
1405 static void zram_bio_discard(struct zram *zram, u32 index,
1406 int offset, struct bio *bio)
1408 size_t n = bio->bi_iter.bi_size;
1411 * zram manages data in physical block size units. Because logical block
1412 * size isn't identical with physical block size on some arch, we
1413 * could get a discard request pointing to a specific offset within a
1414 * certain physical block. Although we can handle this request by
1415 * reading that physiclal block and decompressing and partially zeroing
1416 * and re-compressing and then re-storing it, this isn't reasonable
1417 * because our intent with a discard request is to save memory. So
1418 * skipping this logical block is appropriate here.
1421 if (n <= (PAGE_SIZE - offset))
1424 n -= (PAGE_SIZE - offset);
1428 while (n >= PAGE_SIZE) {
1429 zram_slot_lock(zram, index);
1430 zram_free_page(zram, index);
1431 zram_slot_unlock(zram, index);
1432 atomic64_inc(&zram->stats.notify_free);
1439 * Returns errno if it has some problem. Otherwise return 0 or 1.
1440 * Returns 0 if IO request was done synchronously
1441 * Returns 1 if IO request was successfully submitted.
1443 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1444 int offset, unsigned int op, struct bio *bio)
1446 unsigned long start_time = jiffies;
1447 struct request_queue *q = zram->disk->queue;
1450 generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1451 &zram->disk->part0);
1453 if (!op_is_write(op)) {
1454 atomic64_inc(&zram->stats.num_reads);
1455 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1456 flush_dcache_page(bvec->bv_page);
1458 atomic64_inc(&zram->stats.num_writes);
1459 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1462 generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1464 zram_slot_lock(zram, index);
1465 zram_accessed(zram, index);
1466 zram_slot_unlock(zram, index);
1468 if (unlikely(ret < 0)) {
1469 if (!op_is_write(op))
1470 atomic64_inc(&zram->stats.failed_reads);
1472 atomic64_inc(&zram->stats.failed_writes);
1478 static void __zram_make_request(struct zram *zram, struct bio *bio)
1482 struct bio_vec bvec;
1483 struct bvec_iter iter;
1485 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1486 offset = (bio->bi_iter.bi_sector &
1487 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1489 switch (bio_op(bio)) {
1490 case REQ_OP_DISCARD:
1491 case REQ_OP_WRITE_ZEROES:
1492 zram_bio_discard(zram, index, offset, bio);
1499 bio_for_each_segment(bvec, bio, iter) {
1500 struct bio_vec bv = bvec;
1501 unsigned int unwritten = bvec.bv_len;
1504 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1506 if (zram_bvec_rw(zram, &bv, index, offset,
1507 bio_op(bio), bio) < 0)
1510 bv.bv_offset += bv.bv_len;
1511 unwritten -= bv.bv_len;
1513 update_position(&index, &offset, &bv);
1514 } while (unwritten);
1525 * Handler function for all zram I/O requests.
1527 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1529 struct zram *zram = queue->queuedata;
1531 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1532 bio->bi_iter.bi_size)) {
1533 atomic64_inc(&zram->stats.invalid_io);
1537 __zram_make_request(zram, bio);
1538 return BLK_QC_T_NONE;
1542 return BLK_QC_T_NONE;
1545 static void zram_slot_free_notify(struct block_device *bdev,
1546 unsigned long index)
1550 zram = bdev->bd_disk->private_data;
1552 atomic64_inc(&zram->stats.notify_free);
1553 if (!zram_slot_trylock(zram, index)) {
1554 atomic64_inc(&zram->stats.miss_free);
1558 zram_free_page(zram, index);
1559 zram_slot_unlock(zram, index);
1562 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1563 struct page *page, unsigned int op)
1570 if (PageTransHuge(page))
1572 zram = bdev->bd_disk->private_data;
1574 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1575 atomic64_inc(&zram->stats.invalid_io);
1580 index = sector >> SECTORS_PER_PAGE_SHIFT;
1581 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1584 bv.bv_len = PAGE_SIZE;
1587 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1590 * If I/O fails, just return error(ie, non-zero) without
1591 * calling page_endio.
1592 * It causes resubmit the I/O with bio request by upper functions
1593 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1594 * bio->bi_end_io does things to handle the error
1595 * (e.g., SetPageError, set_page_dirty and extra works).
1597 if (unlikely(ret < 0))
1602 page_endio(page, op_is_write(op), 0);
1613 static void zram_reset_device(struct zram *zram)
1618 down_write(&zram->init_lock);
1620 zram->limit_pages = 0;
1622 if (!init_done(zram)) {
1623 up_write(&zram->init_lock);
1628 disksize = zram->disksize;
1631 set_capacity(zram->disk, 0);
1632 part_stat_set_all(&zram->disk->part0, 0);
1634 up_write(&zram->init_lock);
1635 /* I/O operation under all of CPU are done so let's free */
1636 zram_meta_free(zram, disksize);
1637 memset(&zram->stats, 0, sizeof(zram->stats));
1638 zcomp_destroy(comp);
1642 static ssize_t disksize_store(struct device *dev,
1643 struct device_attribute *attr, const char *buf, size_t len)
1647 struct zram *zram = dev_to_zram(dev);
1650 disksize = memparse(buf, NULL);
1654 down_write(&zram->init_lock);
1655 if (init_done(zram)) {
1656 pr_info("Cannot change disksize for initialized device\n");
1661 disksize = PAGE_ALIGN(disksize);
1662 if (!zram_meta_alloc(zram, disksize)) {
1667 comp = zcomp_create(zram->compressor);
1669 pr_err("Cannot initialise %s compressing backend\n",
1671 err = PTR_ERR(comp);
1676 zram->disksize = disksize;
1677 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1679 revalidate_disk(zram->disk);
1680 up_write(&zram->init_lock);
1685 zram_meta_free(zram, disksize);
1687 up_write(&zram->init_lock);
1691 static ssize_t reset_store(struct device *dev,
1692 struct device_attribute *attr, const char *buf, size_t len)
1695 unsigned short do_reset;
1697 struct block_device *bdev;
1699 ret = kstrtou16(buf, 10, &do_reset);
1706 zram = dev_to_zram(dev);
1707 bdev = bdget_disk(zram->disk, 0);
1711 mutex_lock(&bdev->bd_mutex);
1712 /* Do not reset an active device or claimed device */
1713 if (bdev->bd_openers || zram->claim) {
1714 mutex_unlock(&bdev->bd_mutex);
1719 /* From now on, anyone can't open /dev/zram[0-9] */
1721 mutex_unlock(&bdev->bd_mutex);
1723 /* Make sure all the pending I/O are finished */
1725 zram_reset_device(zram);
1726 revalidate_disk(zram->disk);
1729 mutex_lock(&bdev->bd_mutex);
1730 zram->claim = false;
1731 mutex_unlock(&bdev->bd_mutex);
1736 static int zram_open(struct block_device *bdev, fmode_t mode)
1741 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1743 zram = bdev->bd_disk->private_data;
1744 /* zram was claimed to reset so open request fails */
1751 static const struct block_device_operations zram_devops = {
1753 .swap_slot_free_notify = zram_slot_free_notify,
1754 .rw_page = zram_rw_page,
1755 .owner = THIS_MODULE
1758 static DEVICE_ATTR_WO(compact);
1759 static DEVICE_ATTR_RW(disksize);
1760 static DEVICE_ATTR_RO(initstate);
1761 static DEVICE_ATTR_WO(reset);
1762 static DEVICE_ATTR_WO(mem_limit);
1763 static DEVICE_ATTR_WO(mem_used_max);
1764 static DEVICE_ATTR_WO(idle);
1765 static DEVICE_ATTR_RW(max_comp_streams);
1766 static DEVICE_ATTR_RW(comp_algorithm);
1767 #ifdef CONFIG_ZRAM_WRITEBACK
1768 static DEVICE_ATTR_RW(backing_dev);
1769 static DEVICE_ATTR_WO(writeback);
1772 static struct attribute *zram_disk_attrs[] = {
1773 &dev_attr_disksize.attr,
1774 &dev_attr_initstate.attr,
1775 &dev_attr_reset.attr,
1776 &dev_attr_compact.attr,
1777 &dev_attr_mem_limit.attr,
1778 &dev_attr_mem_used_max.attr,
1779 &dev_attr_idle.attr,
1780 &dev_attr_max_comp_streams.attr,
1781 &dev_attr_comp_algorithm.attr,
1782 #ifdef CONFIG_ZRAM_WRITEBACK
1783 &dev_attr_backing_dev.attr,
1784 &dev_attr_writeback.attr,
1786 &dev_attr_io_stat.attr,
1787 &dev_attr_mm_stat.attr,
1788 #ifdef CONFIG_ZRAM_WRITEBACK
1789 &dev_attr_bd_stat.attr,
1791 &dev_attr_debug_stat.attr,
1795 static const struct attribute_group zram_disk_attr_group = {
1796 .attrs = zram_disk_attrs,
1799 static const struct attribute_group *zram_disk_attr_groups[] = {
1800 &zram_disk_attr_group,
1805 * Allocate and initialize new zram device. the function returns
1806 * '>= 0' device_id upon success, and negative value otherwise.
1808 static int zram_add(void)
1811 struct request_queue *queue;
1814 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1818 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1823 init_rwsem(&zram->init_lock);
1825 queue = blk_alloc_queue(GFP_KERNEL);
1827 pr_err("Error allocating disk queue for device %d\n",
1833 blk_queue_make_request(queue, zram_make_request);
1835 /* gendisk structure */
1836 zram->disk = alloc_disk(1);
1838 pr_err("Error allocating disk structure for device %d\n",
1841 goto out_free_queue;
1844 zram->disk->major = zram_major;
1845 zram->disk->first_minor = device_id;
1846 zram->disk->fops = &zram_devops;
1847 zram->disk->queue = queue;
1848 zram->disk->queue->queuedata = zram;
1849 zram->disk->private_data = zram;
1850 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1852 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1853 set_capacity(zram->disk, 0);
1854 /* zram devices sort of resembles non-rotational disks */
1855 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1856 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1859 * To ensure that we always get PAGE_SIZE aligned
1860 * and n*PAGE_SIZED sized I/O requests.
1862 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1863 blk_queue_logical_block_size(zram->disk->queue,
1864 ZRAM_LOGICAL_BLOCK_SIZE);
1865 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1866 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1867 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1868 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1869 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1872 * zram_bio_discard() will clear all logical blocks if logical block
1873 * size is identical with physical block size(PAGE_SIZE). But if it is
1874 * different, we will skip discarding some parts of logical blocks in
1875 * the part of the request range which isn't aligned to physical block
1876 * size. So we can't ensure that all discarded logical blocks are
1879 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1880 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1882 zram->disk->queue->backing_dev_info->capabilities |=
1883 (BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1884 device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1886 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1888 zram_debugfs_register(zram);
1889 pr_info("Added device: %s\n", zram->disk->disk_name);
1893 blk_cleanup_queue(queue);
1895 idr_remove(&zram_index_idr, device_id);
1901 static int zram_remove(struct zram *zram)
1903 struct block_device *bdev;
1905 bdev = bdget_disk(zram->disk, 0);
1909 mutex_lock(&bdev->bd_mutex);
1910 if (bdev->bd_openers || zram->claim) {
1911 mutex_unlock(&bdev->bd_mutex);
1917 mutex_unlock(&bdev->bd_mutex);
1919 zram_debugfs_unregister(zram);
1921 /* Make sure all the pending I/O are finished */
1923 zram_reset_device(zram);
1926 pr_info("Removed device: %s\n", zram->disk->disk_name);
1928 del_gendisk(zram->disk);
1929 blk_cleanup_queue(zram->disk->queue);
1930 put_disk(zram->disk);
1935 /* zram-control sysfs attributes */
1938 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1939 * sense that reading from this file does alter the state of your system -- it
1940 * creates a new un-initialized zram device and returns back this device's
1941 * device_id (or an error code if it fails to create a new device).
1943 static ssize_t hot_add_show(struct class *class,
1944 struct class_attribute *attr,
1949 mutex_lock(&zram_index_mutex);
1951 mutex_unlock(&zram_index_mutex);
1955 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1957 static CLASS_ATTR_RO(hot_add);
1959 static ssize_t hot_remove_store(struct class *class,
1960 struct class_attribute *attr,
1967 /* dev_id is gendisk->first_minor, which is `int' */
1968 ret = kstrtoint(buf, 10, &dev_id);
1974 mutex_lock(&zram_index_mutex);
1976 zram = idr_find(&zram_index_idr, dev_id);
1978 ret = zram_remove(zram);
1980 idr_remove(&zram_index_idr, dev_id);
1985 mutex_unlock(&zram_index_mutex);
1986 return ret ? ret : count;
1988 static CLASS_ATTR_WO(hot_remove);
1990 static struct attribute *zram_control_class_attrs[] = {
1991 &class_attr_hot_add.attr,
1992 &class_attr_hot_remove.attr,
1995 ATTRIBUTE_GROUPS(zram_control_class);
1997 static struct class zram_control_class = {
1998 .name = "zram-control",
1999 .owner = THIS_MODULE,
2000 .class_groups = zram_control_class_groups,
2003 static int zram_remove_cb(int id, void *ptr, void *data)
2009 static void destroy_devices(void)
2011 class_unregister(&zram_control_class);
2012 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2013 zram_debugfs_destroy();
2014 idr_destroy(&zram_index_idr);
2015 unregister_blkdev(zram_major, "zram");
2016 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2019 static int __init zram_init(void)
2023 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2024 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2028 ret = class_register(&zram_control_class);
2030 pr_err("Unable to register zram-control class\n");
2031 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2035 zram_debugfs_create();
2036 zram_major = register_blkdev(0, "zram");
2037 if (zram_major <= 0) {
2038 pr_err("Unable to get major number\n");
2039 class_unregister(&zram_control_class);
2040 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2044 while (num_devices != 0) {
2045 mutex_lock(&zram_index_mutex);
2047 mutex_unlock(&zram_index_mutex);
2060 static void __exit zram_exit(void)
2065 module_init(zram_init);
2066 module_exit(zram_exit);
2068 module_param(num_devices, uint, 0);
2069 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2071 MODULE_LICENSE("Dual BSD/GPL");
2072 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2073 MODULE_DESCRIPTION("Compressed RAM Block Device");