header cleaning: don't include smp_lock.h when not used
[sfrench/cifs-2.6.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include <linux/umem.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_VERSION "v2.3"
71 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
72 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
73
74 static int debug;
75 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
76 #define HW_TRACE(x)
77
78 #define DEBUG_LED_ON_TRANSFER   0x01
79 #define DEBUG_BATTERY_POLLING   0x02
80
81 module_param(debug, int, 0644);
82 MODULE_PARM_DESC(debug, "Debug bitmask");
83
84 static int pci_read_cmd = 0x0C;         /* Read Multiple */
85 module_param(pci_read_cmd, int, 0);
86 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
87
88 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
89 module_param(pci_write_cmd, int, 0);
90 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
91
92 static int pci_cmds;
93
94 static int major_nr;
95
96 #include <linux/blkdev.h>
97 #include <linux/blkpg.h>
98
99 struct cardinfo {
100         int             card_number;
101         struct pci_dev  *dev;
102
103         int             irq;
104
105         unsigned long   csr_base;
106         unsigned char   __iomem *csr_remap;
107         unsigned long   csr_len;
108 #ifdef CONFIG_MM_MAP_MEMORY
109         unsigned long   mem_base;
110         unsigned char   __iomem *mem_remap;
111         unsigned long   mem_len;
112 #endif
113
114         unsigned int    win_size; /* PCI window size */
115         unsigned int    mm_size;  /* size in kbytes */
116
117         unsigned int    init_size; /* initial segment, in sectors,
118                                     * that we know to
119                                     * have been written
120                                     */
121         struct bio      *bio, *currentbio, **biotail;
122
123         request_queue_t *queue;
124
125         struct mm_page {
126                 dma_addr_t              page_dma;
127                 struct mm_dma_desc      *desc;
128                 int                     cnt, headcnt;
129                 struct bio              *bio, **biotail;
130         } mm_pages[2];
131 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
132
133         int  Active, Ready;
134
135         struct tasklet_struct   tasklet;
136         unsigned int dma_status;
137
138         struct {
139                 int             good;
140                 int             warned;
141                 unsigned long   last_change;
142         } battery[2];
143
144         spinlock_t      lock;
145         int             check_batteries;
146
147         int             flags;
148 };
149
150 static struct cardinfo cards[MM_MAXCARDS];
151 static struct block_device_operations mm_fops;
152 static struct timer_list battery_timer;
153
154 static int num_cards = 0;
155
156 static struct gendisk *mm_gendisk[MM_MAXCARDS];
157
158 static void check_batteries(struct cardinfo *card);
159
160 /*
161 -----------------------------------------------------------------------------------
162 --                           get_userbit
163 -----------------------------------------------------------------------------------
164 */
165 static int get_userbit(struct cardinfo *card, int bit)
166 {
167         unsigned char led;
168
169         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
170         return led & bit;
171 }
172 /*
173 -----------------------------------------------------------------------------------
174 --                            set_userbit
175 -----------------------------------------------------------------------------------
176 */
177 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
178 {
179         unsigned char led;
180
181         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
182         if (state)
183                 led |= bit;
184         else
185                 led &= ~bit;
186         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
187
188         return 0;
189 }
190 /*
191 -----------------------------------------------------------------------------------
192 --                             set_led
193 -----------------------------------------------------------------------------------
194 */
195 /*
196  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
197  */
198 static void set_led(struct cardinfo *card, int shift, unsigned char state)
199 {
200         unsigned char led;
201
202         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
203         if (state == LED_FLIP)
204                 led ^= (1<<shift);
205         else {
206                 led &= ~(0x03 << shift);
207                 led |= (state << shift);
208         }
209         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
210
211 }
212
213 #ifdef MM_DIAG
214 /*
215 -----------------------------------------------------------------------------------
216 --                              dump_regs
217 -----------------------------------------------------------------------------------
218 */
219 static void dump_regs(struct cardinfo *card)
220 {
221         unsigned char *p;
222         int i, i1;
223
224         p = card->csr_remap;
225         for (i = 0; i < 8; i++) {
226                 printk(KERN_DEBUG "%p   ", p);
227
228                 for (i1 = 0; i1 < 16; i1++)
229                         printk("%02x ", *p++);
230
231                 printk("\n");
232         }
233 }
234 #endif
235 /*
236 -----------------------------------------------------------------------------------
237 --                            dump_dmastat
238 -----------------------------------------------------------------------------------
239 */
240 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
241 {
242         printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
243         if (dmastat & DMASCR_ANY_ERR)
244                 printk("ANY_ERR ");
245         if (dmastat & DMASCR_MBE_ERR)
246                 printk("MBE_ERR ");
247         if (dmastat & DMASCR_PARITY_ERR_REP)
248                 printk("PARITY_ERR_REP ");
249         if (dmastat & DMASCR_PARITY_ERR_DET)
250                 printk("PARITY_ERR_DET ");
251         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
252                 printk("SYSTEM_ERR_SIG ");
253         if (dmastat & DMASCR_TARGET_ABT)
254                 printk("TARGET_ABT ");
255         if (dmastat & DMASCR_MASTER_ABT)
256                 printk("MASTER_ABT ");
257         if (dmastat & DMASCR_CHAIN_COMPLETE)
258                 printk("CHAIN_COMPLETE ");
259         if (dmastat & DMASCR_DMA_COMPLETE)
260                 printk("DMA_COMPLETE ");
261         printk("\n");
262 }
263
264 /*
265  * Theory of request handling
266  *
267  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
268  * We have two pages of mm_dma_desc, holding about 64 descriptors
269  * each.  These are allocated at init time.
270  * One page is "Ready" and is either full, or can have request added.
271  * The other page might be "Active", which DMA is happening on it.
272  *
273  * Whenever IO on the active page completes, the Ready page is activated
274  * and the ex-Active page is clean out and made Ready.
275  * Otherwise the Ready page is only activated when it becomes full, or
276  * when mm_unplug_device is called via the unplug_io_fn.
277  *
278  * If a request arrives while both pages a full, it is queued, and b_rdev is
279  * overloaded to record whether it was a read or a write.
280  *
281  * The interrupt handler only polls the device to clear the interrupt.
282  * The processing of the result is done in a tasklet.
283  */
284
285 static void mm_start_io(struct cardinfo *card)
286 {
287         /* we have the lock, we know there is
288          * no IO active, and we know that card->Active
289          * is set
290          */
291         struct mm_dma_desc *desc;
292         struct mm_page *page;
293         int offset;
294
295         /* make the last descriptor end the chain */
296         page = &card->mm_pages[card->Active];
297         pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
298         desc = &page->desc[page->cnt-1];
299
300         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
301         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
302         desc->sem_control_bits = desc->control_bits;
303
304                                
305         if (debug & DEBUG_LED_ON_TRANSFER)
306                 set_led(card, LED_REMOVE, LED_ON);
307
308         desc = &page->desc[page->headcnt];
309         writel(0, card->csr_remap + DMA_PCI_ADDR);
310         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
311
312         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
313         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
314
315         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
316         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
317
318         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
319         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
320
321         offset = ((char*)desc) - ((char*)page->desc);
322         writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
323                card->csr_remap + DMA_DESCRIPTOR_ADDR);
324         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
325          * and on some ports will do nothing ! */
326         writel(cpu_to_le32(((u64)page->page_dma)>>32),
327                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
328
329         /* Go, go, go */
330         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
331                card->csr_remap + DMA_STATUS_CTRL);
332 }
333
334 static int add_bio(struct cardinfo *card);
335
336 static void activate(struct cardinfo *card)
337 {
338         /* if No page is Active, and Ready is 
339          * not empty, then switch Ready page
340          * to active and start IO.
341          * Then add any bh's that are available to Ready
342          */
343
344         do {
345                 while (add_bio(card))
346                         ;
347
348                 if (card->Active == -1 &&
349                     card->mm_pages[card->Ready].cnt > 0) {
350                         card->Active = card->Ready;
351                         card->Ready = 1-card->Ready;
352                         mm_start_io(card);
353                 }
354
355         } while (card->Active == -1 && add_bio(card));
356 }
357
358 static inline void reset_page(struct mm_page *page)
359 {
360         page->cnt = 0;
361         page->headcnt = 0;
362         page->bio = NULL;
363         page->biotail = & page->bio;
364 }
365
366 static void mm_unplug_device(request_queue_t *q)
367 {
368         struct cardinfo *card = q->queuedata;
369         unsigned long flags;
370
371         spin_lock_irqsave(&card->lock, flags);
372         if (blk_remove_plug(q))
373                 activate(card);
374         spin_unlock_irqrestore(&card->lock, flags);
375 }
376
377 /* 
378  * If there is room on Ready page, take
379  * one bh off list and add it.
380  * return 1 if there was room, else 0.
381  */
382 static int add_bio(struct cardinfo *card)
383 {
384         struct mm_page *p;
385         struct mm_dma_desc *desc;
386         dma_addr_t dma_handle;
387         int offset;
388         struct bio *bio;
389         int rw;
390         int len;
391
392         bio = card->currentbio;
393         if (!bio && card->bio) {
394                 card->currentbio = card->bio;
395                 card->bio = card->bio->bi_next;
396                 if (card->bio == NULL)
397                         card->biotail = &card->bio;
398                 card->currentbio->bi_next = NULL;
399                 return 1;
400         }
401         if (!bio)
402                 return 0;
403
404         rw = bio_rw(bio);
405         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
406                 return 0;
407
408         len = bio_iovec(bio)->bv_len;
409         dma_handle = pci_map_page(card->dev, 
410                                   bio_page(bio),
411                                   bio_offset(bio),
412                                   len,
413                                   (rw==READ) ?
414                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
415
416         p = &card->mm_pages[card->Ready];
417         desc = &p->desc[p->cnt];
418         p->cnt++;
419         if ((p->biotail) != &bio->bi_next) {
420                 *(p->biotail) = bio;
421                 p->biotail = &(bio->bi_next);
422                 bio->bi_next = NULL;
423         }
424
425         desc->data_dma_handle = dma_handle;
426
427         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
428         desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
429         desc->transfer_size = cpu_to_le32(len);
430         offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
431         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
432         desc->zero1 = desc->zero2 = 0;
433         offset = ( ((char*)(desc+1)) - ((char*)p->desc));
434         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
435         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
436                                          DMASCR_PARITY_INT_EN|
437                                          DMASCR_CHAIN_EN |
438                                          DMASCR_SEM_EN |
439                                          pci_cmds);
440         if (rw == WRITE)
441                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
442         desc->sem_control_bits = desc->control_bits;
443
444         bio->bi_sector += (len>>9);
445         bio->bi_size -= len;
446         bio->bi_idx++;
447         if (bio->bi_idx >= bio->bi_vcnt) 
448                 card->currentbio = NULL;
449
450         return 1;
451 }
452
453 static void process_page(unsigned long data)
454 {
455         /* check if any of the requests in the page are DMA_COMPLETE,
456          * and deal with them appropriately.
457          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
458          * dma must have hit an error on that descriptor, so use dma_status instead
459          * and assume that all following descriptors must be re-tried.
460          */
461         struct mm_page *page;
462         struct bio *return_bio=NULL;
463         struct cardinfo *card = (struct cardinfo *)data;
464         unsigned int dma_status = card->dma_status;
465
466         spin_lock_bh(&card->lock);
467         if (card->Active < 0)
468                 goto out_unlock;
469         page = &card->mm_pages[card->Active];
470         
471         while (page->headcnt < page->cnt) {
472                 struct bio *bio = page->bio;
473                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
474                 int control = le32_to_cpu(desc->sem_control_bits);
475                 int last=0;
476                 int idx;
477
478                 if (!(control & DMASCR_DMA_COMPLETE)) {
479                         control = dma_status;
480                         last=1; 
481                 }
482                 page->headcnt++;
483                 idx = bio->bi_phys_segments;
484                 bio->bi_phys_segments++;
485                 if (bio->bi_phys_segments >= bio->bi_vcnt)
486                         page->bio = bio->bi_next;
487
488                 pci_unmap_page(card->dev, desc->data_dma_handle, 
489                                bio_iovec_idx(bio,idx)->bv_len,
490                                  (control& DMASCR_TRANSFER_READ) ?
491                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
492                 if (control & DMASCR_HARD_ERROR) {
493                         /* error */
494                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
495                         printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
496                                card->card_number, 
497                                le32_to_cpu(desc->local_addr)>>9,
498                                le32_to_cpu(desc->transfer_size));
499                         dump_dmastat(card, control);
500                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
501                            le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
502                         card->init_size += le32_to_cpu(desc->transfer_size)>>9;
503                         if (card->init_size>>1 >= card->mm_size) {
504                                 printk(KERN_INFO "MM%d: memory now initialised\n",
505                                        card->card_number);
506                                 set_userbit(card, MEMORY_INITIALIZED, 1);
507                         }
508                 }
509                 if (bio != page->bio) {
510                         bio->bi_next = return_bio;
511                         return_bio = bio;
512                 }
513
514                 if (last) break;
515         }
516
517         if (debug & DEBUG_LED_ON_TRANSFER)
518                 set_led(card, LED_REMOVE, LED_OFF);
519
520         if (card->check_batteries) {
521                 card->check_batteries = 0;
522                 check_batteries(card);
523         }
524         if (page->headcnt >= page->cnt) {
525                 reset_page(page);
526                 card->Active = -1;
527                 activate(card);
528         } else {
529                 /* haven't finished with this one yet */
530                 pr_debug("do some more\n");
531                 mm_start_io(card);
532         }
533  out_unlock:
534         spin_unlock_bh(&card->lock);
535
536         while(return_bio) {
537                 struct bio *bio = return_bio;
538
539                 return_bio = bio->bi_next;
540                 bio->bi_next = NULL;
541                 bio_endio(bio, bio->bi_size, 0);
542         }
543 }
544
545 /*
546 -----------------------------------------------------------------------------------
547 --                              mm_make_request
548 -----------------------------------------------------------------------------------
549 */
550 static int mm_make_request(request_queue_t *q, struct bio *bio)
551 {
552         struct cardinfo *card = q->queuedata;
553         pr_debug("mm_make_request %llu %u\n",
554                  (unsigned long long)bio->bi_sector, bio->bi_size);
555
556         bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
557         spin_lock_irq(&card->lock);
558         *card->biotail = bio;
559         bio->bi_next = NULL;
560         card->biotail = &bio->bi_next;
561         blk_plug_device(q);
562         spin_unlock_irq(&card->lock);
563
564         return 0;
565 }
566
567 /*
568 -----------------------------------------------------------------------------------
569 --                              mm_interrupt
570 -----------------------------------------------------------------------------------
571 */
572 static irqreturn_t mm_interrupt(int irq, void *__card)
573 {
574         struct cardinfo *card = (struct cardinfo *) __card;
575         unsigned int dma_status;
576         unsigned short cfg_status;
577
578 HW_TRACE(0x30);
579
580         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
581
582         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
583                 /* interrupt wasn't for me ... */
584                 return IRQ_NONE;
585         }
586
587         /* clear COMPLETION interrupts */
588         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
589                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
590                        card->csr_remap+ DMA_STATUS_CTRL);
591         else
592                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
593                        card->csr_remap+ DMA_STATUS_CTRL + 2);
594         
595         /* log errors and clear interrupt status */
596         if (dma_status & DMASCR_ANY_ERR) {
597                 unsigned int    data_log1, data_log2;
598                 unsigned int    addr_log1, addr_log2;
599                 unsigned char   stat, count, syndrome, check;
600
601                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
602
603                 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
604                 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
605                 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
606                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
607
608                 count = readb(card->csr_remap + ERROR_COUNT);
609                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
610                 check = readb(card->csr_remap + ERROR_CHECK);
611
612                 dump_dmastat(card, dma_status);
613
614                 if (stat & 0x01)
615                         printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
616                                 card->card_number, count);
617                 if (stat & 0x02)
618                         printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
619                                 card->card_number);
620
621                 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
622                         card->card_number, addr_log2, addr_log1, data_log2, data_log1);
623                 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
624                         card->card_number, check, syndrome);
625
626                 writeb(0, card->csr_remap + ERROR_COUNT);
627         }
628
629         if (dma_status & DMASCR_PARITY_ERR_REP) {
630                 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
631                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
632                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
633         }
634
635         if (dma_status & DMASCR_PARITY_ERR_DET) {
636                 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); 
637                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
639         }
640
641         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
642                 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); 
643                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
644                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
645         }
646
647         if (dma_status & DMASCR_TARGET_ABT) {
648                 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); 
649                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
650                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
651         }
652
653         if (dma_status & DMASCR_MASTER_ABT) {
654                 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); 
655                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
656                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
657         }
658
659         /* and process the DMA descriptors */
660         card->dma_status = dma_status;
661         tasklet_schedule(&card->tasklet);
662
663 HW_TRACE(0x36);
664
665         return IRQ_HANDLED; 
666 }
667 /*
668 -----------------------------------------------------------------------------------
669 --                         set_fault_to_battery_status
670 -----------------------------------------------------------------------------------
671 */
672 /*
673  * If both batteries are good, no LED
674  * If either battery has been warned, solid LED
675  * If both batteries are bad, flash the LED quickly
676  * If either battery is bad, flash the LED semi quickly
677  */
678 static void set_fault_to_battery_status(struct cardinfo *card)
679 {
680         if (card->battery[0].good && card->battery[1].good)
681                 set_led(card, LED_FAULT, LED_OFF);
682         else if (card->battery[0].warned || card->battery[1].warned)
683                 set_led(card, LED_FAULT, LED_ON);
684         else if (!card->battery[0].good && !card->battery[1].good)
685                 set_led(card, LED_FAULT, LED_FLASH_7_0);
686         else
687                 set_led(card, LED_FAULT, LED_FLASH_3_5);
688 }
689
690 static void init_battery_timer(void);
691
692
693 /*
694 -----------------------------------------------------------------------------------
695 --                            check_battery
696 -----------------------------------------------------------------------------------
697 */
698 static int check_battery(struct cardinfo *card, int battery, int status)
699 {
700         if (status != card->battery[battery].good) {
701                 card->battery[battery].good = !card->battery[battery].good;
702                 card->battery[battery].last_change = jiffies;
703
704                 if (card->battery[battery].good) {
705                         printk(KERN_ERR "MM%d: Battery %d now good\n",
706                                 card->card_number, battery + 1);
707                         card->battery[battery].warned = 0;
708                 } else
709                         printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
710                                 card->card_number, battery + 1);
711
712                 return 1;
713         } else if (!card->battery[battery].good &&
714                    !card->battery[battery].warned &&
715                    time_after_eq(jiffies, card->battery[battery].last_change +
716                                  (HZ * 60 * 60 * 5))) {
717                 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
718                         card->card_number, battery + 1);
719                 card->battery[battery].warned = 1;
720
721                 return 1;
722         }
723
724         return 0;
725 }
726 /*
727 -----------------------------------------------------------------------------------
728 --                              check_batteries
729 -----------------------------------------------------------------------------------
730 */
731 static void check_batteries(struct cardinfo *card)
732 {
733         /* NOTE: this must *never* be called while the card
734          * is doing (bus-to-card) DMA, or you will need the
735          * reset switch
736          */
737         unsigned char status;
738         int ret1, ret2;
739
740         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
741         if (debug & DEBUG_BATTERY_POLLING)
742                 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
743                        card->card_number,
744                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
745                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
746
747         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
748         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
749
750         if (ret1 || ret2)
751                 set_fault_to_battery_status(card);
752 }
753
754 static void check_all_batteries(unsigned long ptr)
755 {
756         int i;
757
758         for (i = 0; i < num_cards; i++) 
759                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
760                         struct cardinfo *card = &cards[i];
761                         spin_lock_bh(&card->lock);
762                         if (card->Active >= 0)
763                                 card->check_batteries = 1;
764                         else
765                                 check_batteries(card);
766                         spin_unlock_bh(&card->lock);
767                 }
768
769         init_battery_timer();
770 }
771 /*
772 -----------------------------------------------------------------------------------
773 --                            init_battery_timer
774 -----------------------------------------------------------------------------------
775 */
776 static void init_battery_timer(void)
777 {
778         init_timer(&battery_timer);
779         battery_timer.function = check_all_batteries;
780         battery_timer.expires = jiffies + (HZ * 60);
781         add_timer(&battery_timer);
782 }
783 /*
784 -----------------------------------------------------------------------------------
785 --                              del_battery_timer
786 -----------------------------------------------------------------------------------
787 */
788 static void del_battery_timer(void)
789 {
790         del_timer(&battery_timer);
791 }
792 /*
793 -----------------------------------------------------------------------------------
794 --                                mm_revalidate
795 -----------------------------------------------------------------------------------
796 */
797 /*
798  * Note no locks taken out here.  In a worst case scenario, we could drop
799  * a chunk of system memory.  But that should never happen, since validation
800  * happens at open or mount time, when locks are held.
801  *
802  *      That's crap, since doing that while some partitions are opened
803  * or mounted will give you really nasty results.
804  */
805 static int mm_revalidate(struct gendisk *disk)
806 {
807         struct cardinfo *card = disk->private_data;
808         set_capacity(disk, card->mm_size << 1);
809         return 0;
810 }
811
812 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
813 {
814         struct cardinfo *card = bdev->bd_disk->private_data;
815         int size = card->mm_size * (1024 / MM_HARDSECT);
816
817         /*
818          * get geometry: we have to fake one...  trim the size to a
819          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
820          * whatever cylinders.
821          */
822         geo->heads     = 64;
823         geo->sectors   = 32;
824         geo->cylinders = size / (geo->heads * geo->sectors);
825         return 0;
826 }
827
828 /*
829 -----------------------------------------------------------------------------------
830 --                                mm_check_change
831 -----------------------------------------------------------------------------------
832   Future support for removable devices
833 */
834 static int mm_check_change(struct gendisk *disk)
835 {
836 /*  struct cardinfo *dev = disk->private_data; */
837         return 0;
838 }
839 /*
840 -----------------------------------------------------------------------------------
841 --                             mm_fops
842 -----------------------------------------------------------------------------------
843 */
844 static struct block_device_operations mm_fops = {
845         .owner          = THIS_MODULE,
846         .getgeo         = mm_getgeo,
847         .revalidate_disk= mm_revalidate,
848         .media_changed  = mm_check_change,
849 };
850 /*
851 -----------------------------------------------------------------------------------
852 --                                mm_pci_probe
853 -----------------------------------------------------------------------------------
854 */
855 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
856 {
857         int ret = -ENODEV;
858         struct cardinfo *card = &cards[num_cards];
859         unsigned char   mem_present;
860         unsigned char   batt_status;
861         unsigned int    saved_bar, data;
862         int             magic_number;
863
864         if (pci_enable_device(dev) < 0)
865                 return -ENODEV;
866
867         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
868         pci_set_master(dev);
869
870         card->dev         = dev;
871         card->card_number = num_cards;
872
873         card->csr_base = pci_resource_start(dev, 0);
874         card->csr_len  = pci_resource_len(dev, 0);
875 #ifdef CONFIG_MM_MAP_MEMORY
876         card->mem_base = pci_resource_start(dev, 1);
877         card->mem_len  = pci_resource_len(dev, 1);
878 #endif
879
880         printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
881                card->card_number, dev->bus->number, dev->devfn);
882
883         if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
884             pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
885                 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
886                 return  -ENOMEM;
887         }
888         if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
889                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
890                 ret = -ENOMEM;
891
892                 goto failed_req_csr;
893         }
894
895         card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
896         if (!card->csr_remap) {
897                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
898                 ret = -ENOMEM;
899
900                 goto failed_remap_csr;
901         }
902
903         printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
904                card->csr_base, card->csr_remap, card->csr_len);
905
906 #ifdef CONFIG_MM_MAP_MEMORY
907         if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
908                 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
909                 ret = -ENOMEM;
910
911                 goto failed_req_mem;
912         }
913
914         if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
915                 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
916                 ret = -ENOMEM;
917
918                 goto failed_remap_mem;
919         }
920
921         printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
922                card->mem_base, card->mem_remap, card->mem_len);
923 #else
924         printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
925                card->card_number);
926 #endif
927         switch(card->dev->device) {
928         case 0x5415:
929                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
930                 magic_number = 0x59;
931                 break;
932
933         case 0x5425:
934                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
935                 magic_number = 0x5C;
936                 break;
937
938         case 0x6155:
939                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
940                 magic_number = 0x99;
941                 break;
942
943         default:
944                 magic_number = 0x100;
945                 break;
946         }
947
948         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
949                 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
950                 ret = -ENOMEM;
951                 goto failed_magic;
952         }
953
954         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
955                                                       PAGE_SIZE*2,
956                                                       &card->mm_pages[0].page_dma);
957         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
958                                                       PAGE_SIZE*2,
959                                                       &card->mm_pages[1].page_dma);
960         if (card->mm_pages[0].desc == NULL ||
961             card->mm_pages[1].desc == NULL) {
962                 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
963                 goto failed_alloc;
964         }
965         reset_page(&card->mm_pages[0]);
966         reset_page(&card->mm_pages[1]);
967         card->Ready = 0;        /* page 0 is ready */
968         card->Active = -1;      /* no page is active */
969         card->bio = NULL;
970         card->biotail = &card->bio;
971
972         card->queue = blk_alloc_queue(GFP_KERNEL);
973         if (!card->queue)
974                 goto failed_alloc;
975
976         blk_queue_make_request(card->queue, mm_make_request);
977         card->queue->queuedata = card;
978         card->queue->unplug_fn = mm_unplug_device;
979
980         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
981
982         card->check_batteries = 0;
983         
984         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
985         switch (mem_present) {
986         case MEM_128_MB:
987                 card->mm_size = 1024 * 128;
988                 break;
989         case MEM_256_MB:
990                 card->mm_size = 1024 * 256;
991                 break;
992         case MEM_512_MB:
993                 card->mm_size = 1024 * 512;
994                 break;
995         case MEM_1_GB:
996                 card->mm_size = 1024 * 1024;
997                 break;
998         case MEM_2_GB:
999                 card->mm_size = 1024 * 2048;
1000                 break;
1001         default:
1002                 card->mm_size = 0;
1003                 break;
1004         }
1005
1006         /* Clear the LED's we control */
1007         set_led(card, LED_REMOVE, LED_OFF);
1008         set_led(card, LED_FAULT, LED_OFF);
1009
1010         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1011
1012         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1013         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1014         card->battery[0].last_change = card->battery[1].last_change = jiffies;
1015
1016         if (card->flags & UM_FLAG_NO_BATT) 
1017                 printk(KERN_INFO "MM%d: Size %d KB\n",
1018                        card->card_number, card->mm_size);
1019         else {
1020                 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1021                        card->card_number, card->mm_size,
1022                        (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1023                        card->battery[0].good ? "OK" : "FAILURE",
1024                        (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1025                        card->battery[1].good ? "OK" : "FAILURE");
1026
1027                 set_fault_to_battery_status(card);
1028         }
1029
1030         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1031         data = 0xffffffff;
1032         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1033         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1034         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1035         data &= 0xfffffff0;
1036         data = ~data;
1037         data += 1;
1038
1039         card->win_size = data;
1040
1041
1042         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1043                 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1044                 ret = -ENODEV;
1045
1046                 goto failed_req_irq;
1047         }
1048
1049         card->irq = dev->irq;
1050         printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1051                card->win_size, card->irq);
1052
1053         spin_lock_init(&card->lock);
1054
1055         pci_set_drvdata(dev, card);
1056
1057         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
1058                 pci_write_cmd = 0x07;   /* then Memory Write command */
1059
1060         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1061                 unsigned short cfg_command;
1062                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1063                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1064                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1065         }
1066         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1067
1068         num_cards++;
1069
1070         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1071                 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1072                 card->init_size = 0;
1073         } else {
1074                 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1075                 card->init_size = card->mm_size;
1076         }
1077
1078         /* Enable ECC */
1079         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1080
1081         return 0;
1082
1083  failed_req_irq:
1084  failed_alloc:
1085         if (card->mm_pages[0].desc)
1086                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1087                                     card->mm_pages[0].desc,
1088                                     card->mm_pages[0].page_dma);
1089         if (card->mm_pages[1].desc)
1090                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1091                                     card->mm_pages[1].desc,
1092                                     card->mm_pages[1].page_dma);
1093  failed_magic:
1094 #ifdef CONFIG_MM_MAP_MEMORY
1095         iounmap(card->mem_remap);
1096  failed_remap_mem:
1097         release_mem_region(card->mem_base, card->mem_len);
1098  failed_req_mem:
1099 #endif
1100         iounmap(card->csr_remap);
1101  failed_remap_csr:
1102         release_mem_region(card->csr_base, card->csr_len);
1103  failed_req_csr:
1104
1105         return ret;
1106 }
1107 /*
1108 -----------------------------------------------------------------------------------
1109 --                              mm_pci_remove
1110 -----------------------------------------------------------------------------------
1111 */
1112 static void mm_pci_remove(struct pci_dev *dev)
1113 {
1114         struct cardinfo *card = pci_get_drvdata(dev);
1115
1116         tasklet_kill(&card->tasklet);
1117         iounmap(card->csr_remap);
1118         release_mem_region(card->csr_base, card->csr_len);
1119 #ifdef CONFIG_MM_MAP_MEMORY
1120         iounmap(card->mem_remap);
1121         release_mem_region(card->mem_base, card->mem_len);
1122 #endif
1123         free_irq(card->irq, card);
1124
1125         if (card->mm_pages[0].desc)
1126                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1127                                     card->mm_pages[0].desc,
1128                                     card->mm_pages[0].page_dma);
1129         if (card->mm_pages[1].desc)
1130                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1131                                     card->mm_pages[1].desc,
1132                                     card->mm_pages[1].page_dma);
1133         blk_cleanup_queue(card->queue);
1134 }
1135
1136 static const struct pci_device_id mm_pci_ids[] = { {
1137         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1138         .device =       PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1139         }, {
1140         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1141         .device =       PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1142         }, {
1143         .vendor =       PCI_VENDOR_ID_MICRO_MEMORY,
1144         .device =       PCI_DEVICE_ID_MICRO_MEMORY_6155,
1145         }, {
1146         .vendor =       0x8086,
1147         .device =       0xB555,
1148         .subvendor=     0x1332,
1149         .subdevice=     0x5460,
1150         .class  =       0x050000,
1151         .class_mask=    0,
1152         }, { /* end: all zeroes */ }
1153 };
1154
1155 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1156
1157 static struct pci_driver mm_pci_driver = {
1158         .name =         "umem",
1159         .id_table =     mm_pci_ids,
1160         .probe =        mm_pci_probe,
1161         .remove =       mm_pci_remove,
1162 };
1163 /*
1164 -----------------------------------------------------------------------------------
1165 --                               mm_init
1166 -----------------------------------------------------------------------------------
1167 */
1168
1169 static int __init mm_init(void)
1170 {
1171         int retval, i;
1172         int err;
1173
1174         printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1175
1176         retval = pci_register_driver(&mm_pci_driver);
1177         if (retval)
1178                 return -ENOMEM;
1179
1180         err = major_nr = register_blkdev(0, "umem");
1181         if (err < 0) {
1182                 pci_unregister_driver(&mm_pci_driver);
1183                 return -EIO;
1184         }
1185
1186         for (i = 0; i < num_cards; i++) {
1187                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1188                 if (!mm_gendisk[i])
1189                         goto out;
1190         }
1191
1192         for (i = 0; i < num_cards; i++) {
1193                 struct gendisk *disk = mm_gendisk[i];
1194                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1195                 spin_lock_init(&cards[i].lock);
1196                 disk->major = major_nr;
1197                 disk->first_minor  = i << MM_SHIFT;
1198                 disk->fops = &mm_fops;
1199                 disk->private_data = &cards[i];
1200                 disk->queue = cards[i].queue;
1201                 set_capacity(disk, cards[i].mm_size << 1);
1202                 add_disk(disk);
1203         }
1204
1205         init_battery_timer();
1206         printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1207 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1208         return 0;
1209
1210 out:
1211         pci_unregister_driver(&mm_pci_driver);
1212         unregister_blkdev(major_nr, "umem");
1213         while (i--)
1214                 put_disk(mm_gendisk[i]);
1215         return -ENOMEM;
1216 }
1217 /*
1218 -----------------------------------------------------------------------------------
1219 --                             mm_cleanup
1220 -----------------------------------------------------------------------------------
1221 */
1222 static void __exit mm_cleanup(void)
1223 {
1224         int i;
1225
1226         del_battery_timer();
1227
1228         for (i=0; i < num_cards ; i++) {
1229                 del_gendisk(mm_gendisk[i]);
1230                 put_disk(mm_gendisk[i]);
1231         }
1232
1233         pci_unregister_driver(&mm_pci_driver);
1234
1235         unregister_blkdev(major_nr, "umem");
1236 }
1237
1238 module_init(mm_init);
1239 module_exit(mm_cleanup);
1240
1241 MODULE_AUTHOR(DRIVER_AUTHOR);
1242 MODULE_DESCRIPTION(DRIVER_DESC);
1243 MODULE_LICENSE("GPL");