Merge tag '4.16-minor-rc-SMB3-fixes' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
40
41 #include "skd_s1120.h"
42
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
45
46 #define SKD_ASSERT(expr) \
47         do { \
48                 if (unlikely(!(expr))) { \
49                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
50                                # expr, __FILE__, __func__, __LINE__); \
51                 } \
52         } while (0)
53
54 #define DRV_NAME "skd"
55 #define PFX DRV_NAME ": "
56
57 MODULE_LICENSE("GPL");
58
59 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
60
61 #define PCI_VENDOR_ID_STEC      0x1B39
62 #define PCI_DEVICE_ID_S1120     0x0001
63
64 #define SKD_FUA_NV              (1 << 1)
65 #define SKD_MINORS_PER_DEVICE   16
66
67 #define SKD_MAX_QUEUE_DEPTH     200u
68
69 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
70
71 #define SKD_N_FITMSG_BYTES      (512u)
72 #define SKD_MAX_REQ_PER_MSG     14
73
74 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
75
76 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
77  * 128KB limit.  That allows 4096*4K = 16M xfer size
78  */
79 #define SKD_N_SG_PER_REQ_DEFAULT 256u
80
81 #define SKD_N_COMPLETION_ENTRY  256u
82 #define SKD_N_READ_CAP_BYTES    (8u)
83
84 #define SKD_N_INTERNAL_BYTES    (512u)
85
86 #define SKD_SKCOMP_SIZE                                                 \
87         ((sizeof(struct fit_completion_entry_v1) +                      \
88           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
89
90 /* 5 bits of uniqifier, 0xF800 */
91 #define SKD_ID_TABLE_MASK       (3u << 8u)
92 #define  SKD_ID_RW_REQUEST      (0u << 8u)
93 #define  SKD_ID_INTERNAL        (1u << 8u)
94 #define  SKD_ID_FIT_MSG         (3u << 8u)
95 #define SKD_ID_SLOT_MASK        0x00FFu
96 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
97
98 #define SKD_N_MAX_SECTORS 2048u
99
100 #define SKD_MAX_RETRIES 2u
101
102 #define SKD_TIMER_SECONDS(seconds) (seconds)
103 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
104
105 #define INQ_STD_NBYTES 36
106
107 enum skd_drvr_state {
108         SKD_DRVR_STATE_LOAD,
109         SKD_DRVR_STATE_IDLE,
110         SKD_DRVR_STATE_BUSY,
111         SKD_DRVR_STATE_STARTING,
112         SKD_DRVR_STATE_ONLINE,
113         SKD_DRVR_STATE_PAUSING,
114         SKD_DRVR_STATE_PAUSED,
115         SKD_DRVR_STATE_RESTARTING,
116         SKD_DRVR_STATE_RESUMING,
117         SKD_DRVR_STATE_STOPPING,
118         SKD_DRVR_STATE_FAULT,
119         SKD_DRVR_STATE_DISAPPEARED,
120         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
121         SKD_DRVR_STATE_BUSY_ERASE,
122         SKD_DRVR_STATE_BUSY_SANITIZE,
123         SKD_DRVR_STATE_BUSY_IMMINENT,
124         SKD_DRVR_STATE_WAIT_BOOT,
125         SKD_DRVR_STATE_SYNCING,
126 };
127
128 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
129 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
130 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
131 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
132 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
133 #define SKD_START_WAIT_SECONDS  90u
134
135 enum skd_req_state {
136         SKD_REQ_STATE_IDLE,
137         SKD_REQ_STATE_SETUP,
138         SKD_REQ_STATE_BUSY,
139         SKD_REQ_STATE_COMPLETED,
140         SKD_REQ_STATE_TIMEOUT,
141 };
142
143 enum skd_check_status_action {
144         SKD_CHECK_STATUS_REPORT_GOOD,
145         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
146         SKD_CHECK_STATUS_REQUEUE_REQUEST,
147         SKD_CHECK_STATUS_REPORT_ERROR,
148         SKD_CHECK_STATUS_BUSY_IMMINENT,
149 };
150
151 struct skd_msg_buf {
152         struct fit_msg_hdr      fmh;
153         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
154 };
155
156 struct skd_fitmsg_context {
157         u32 id;
158
159         u32 length;
160
161         struct skd_msg_buf *msg_buf;
162         dma_addr_t mb_dma_address;
163 };
164
165 struct skd_request_context {
166         enum skd_req_state state;
167
168         u16 id;
169         u32 fitmsg_id;
170
171         u8 flush_cmd;
172
173         enum dma_data_direction data_dir;
174         struct scatterlist *sg;
175         u32 n_sg;
176         u32 sg_byte_count;
177
178         struct fit_sg_descriptor *sksg_list;
179         dma_addr_t sksg_dma_address;
180
181         struct fit_completion_entry_v1 completion;
182
183         struct fit_comp_error_info err_info;
184
185         blk_status_t status;
186 };
187
188 struct skd_special_context {
189         struct skd_request_context req;
190
191         void *data_buf;
192         dma_addr_t db_dma_address;
193
194         struct skd_msg_buf *msg_buf;
195         dma_addr_t mb_dma_address;
196 };
197
198 typedef enum skd_irq_type {
199         SKD_IRQ_LEGACY,
200         SKD_IRQ_MSI,
201         SKD_IRQ_MSIX
202 } skd_irq_type_t;
203
204 #define SKD_MAX_BARS                    2
205
206 struct skd_device {
207         void __iomem *mem_map[SKD_MAX_BARS];
208         resource_size_t mem_phys[SKD_MAX_BARS];
209         u32 mem_size[SKD_MAX_BARS];
210
211         struct skd_msix_entry *msix_entries;
212
213         struct pci_dev *pdev;
214         int pcie_error_reporting_is_enabled;
215
216         spinlock_t lock;
217         struct gendisk *disk;
218         struct blk_mq_tag_set tag_set;
219         struct request_queue *queue;
220         struct skd_fitmsg_context *skmsg;
221         struct device *class_dev;
222         int gendisk_on;
223         int sync_done;
224
225         u32 devno;
226         u32 major;
227         char isr_name[30];
228
229         enum skd_drvr_state state;
230         u32 drive_state;
231
232         u32 cur_max_queue_depth;
233         u32 queue_low_water_mark;
234         u32 dev_max_queue_depth;
235
236         u32 num_fitmsg_context;
237         u32 num_req_context;
238
239         struct skd_fitmsg_context *skmsg_table;
240
241         struct skd_special_context internal_skspcl;
242         u32 read_cap_blocksize;
243         u32 read_cap_last_lba;
244         int read_cap_is_valid;
245         int inquiry_is_valid;
246         u8 inq_serial_num[13];  /*12 chars plus null term */
247
248         u8 skcomp_cycle;
249         u32 skcomp_ix;
250         struct kmem_cache *msgbuf_cache;
251         struct kmem_cache *sglist_cache;
252         struct kmem_cache *databuf_cache;
253         struct fit_completion_entry_v1 *skcomp_table;
254         struct fit_comp_error_info *skerr_table;
255         dma_addr_t cq_dma_address;
256
257         wait_queue_head_t waitq;
258
259         struct timer_list timer;
260         u32 timer_countdown;
261         u32 timer_substate;
262
263         int sgs_per_request;
264         u32 last_mtd;
265
266         u32 proto_ver;
267
268         int dbg_level;
269         u32 connect_time_stamp;
270         int connect_retries;
271 #define SKD_MAX_CONNECT_RETRIES 16
272         u32 drive_jiffies;
273
274         u32 timo_slot;
275
276         struct work_struct start_queue;
277         struct work_struct completion_worker;
278 };
279
280 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
281 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
282 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
283
284 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
285 {
286         u32 val = readl(skdev->mem_map[1] + offset);
287
288         if (unlikely(skdev->dbg_level >= 2))
289                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
290         return val;
291 }
292
293 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
294                                    u32 offset)
295 {
296         writel(val, skdev->mem_map[1] + offset);
297         if (unlikely(skdev->dbg_level >= 2))
298                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
299 }
300
301 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
302                                    u32 offset)
303 {
304         writeq(val, skdev->mem_map[1] + offset);
305         if (unlikely(skdev->dbg_level >= 2))
306                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
307                         val);
308 }
309
310
311 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
312 static int skd_isr_type = SKD_IRQ_DEFAULT;
313
314 module_param(skd_isr_type, int, 0444);
315 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
316                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
317
318 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
319 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
320
321 module_param(skd_max_req_per_msg, int, 0444);
322 MODULE_PARM_DESC(skd_max_req_per_msg,
323                  "Maximum SCSI requests packed in a single message."
324                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
325
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
328 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
329
330 module_param(skd_max_queue_depth, int, 0444);
331 MODULE_PARM_DESC(skd_max_queue_depth,
332                  "Maximum SCSI requests issued to s1120."
333                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
334
335 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
336 module_param(skd_sgs_per_request, int, 0444);
337 MODULE_PARM_DESC(skd_sgs_per_request,
338                  "Maximum SG elements per block request."
339                  " (1-4096, default==256)");
340
341 static int skd_max_pass_thru = 1;
342 module_param(skd_max_pass_thru, int, 0444);
343 MODULE_PARM_DESC(skd_max_pass_thru,
344                  "Maximum SCSI pass-thru at a time. IGNORED");
345
346 module_param(skd_dbg_level, int, 0444);
347 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
348
349 module_param(skd_isr_comp_limit, int, 0444);
350 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
351
352 /* Major device number dynamically assigned. */
353 static u32 skd_major;
354
355 static void skd_destruct(struct skd_device *skdev);
356 static const struct block_device_operations skd_blockdev_ops;
357 static void skd_send_fitmsg(struct skd_device *skdev,
358                             struct skd_fitmsg_context *skmsg);
359 static void skd_send_special_fitmsg(struct skd_device *skdev,
360                                     struct skd_special_context *skspcl);
361 static bool skd_preop_sg_list(struct skd_device *skdev,
362                              struct skd_request_context *skreq);
363 static void skd_postop_sg_list(struct skd_device *skdev,
364                                struct skd_request_context *skreq);
365
366 static void skd_restart_device(struct skd_device *skdev);
367 static int skd_quiesce_dev(struct skd_device *skdev);
368 static int skd_unquiesce_dev(struct skd_device *skdev);
369 static void skd_disable_interrupts(struct skd_device *skdev);
370 static void skd_isr_fwstate(struct skd_device *skdev);
371 static void skd_recover_requests(struct skd_device *skdev);
372 static void skd_soft_reset(struct skd_device *skdev);
373
374 const char *skd_drive_state_to_str(int state);
375 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
376 static void skd_log_skdev(struct skd_device *skdev, const char *event);
377 static void skd_log_skreq(struct skd_device *skdev,
378                           struct skd_request_context *skreq, const char *event);
379
380 /*
381  *****************************************************************************
382  * READ/WRITE REQUESTS
383  *****************************************************************************
384  */
385 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
386 {
387         int *count = data;
388
389         count++;
390 }
391
392 static int skd_in_flight(struct skd_device *skdev)
393 {
394         int count = 0;
395
396         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397
398         return count;
399 }
400
401 static void
402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403                 int data_dir, unsigned lba,
404                 unsigned count)
405 {
406         if (data_dir == READ)
407                 scsi_req->cdb[0] = READ_10;
408         else
409                 scsi_req->cdb[0] = WRITE_10;
410
411         scsi_req->cdb[1] = 0;
412         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415         scsi_req->cdb[5] = (lba & 0xff);
416         scsi_req->cdb[6] = 0;
417         scsi_req->cdb[7] = (count & 0xff00) >> 8;
418         scsi_req->cdb[8] = count & 0xff;
419         scsi_req->cdb[9] = 0;
420 }
421
422 static void
423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424                             struct skd_request_context *skreq)
425 {
426         skreq->flush_cmd = 1;
427
428         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429         scsi_req->cdb[1] = 0;
430         scsi_req->cdb[2] = 0;
431         scsi_req->cdb[3] = 0;
432         scsi_req->cdb[4] = 0;
433         scsi_req->cdb[5] = 0;
434         scsi_req->cdb[6] = 0;
435         scsi_req->cdb[7] = 0;
436         scsi_req->cdb[8] = 0;
437         scsi_req->cdb[9] = 0;
438 }
439
440 /*
441  * Return true if and only if all pending requests should be failed.
442  */
443 static bool skd_fail_all(struct request_queue *q)
444 {
445         struct skd_device *skdev = q->queuedata;
446
447         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448
449         skd_log_skdev(skdev, "req_not_online");
450         switch (skdev->state) {
451         case SKD_DRVR_STATE_PAUSING:
452         case SKD_DRVR_STATE_PAUSED:
453         case SKD_DRVR_STATE_STARTING:
454         case SKD_DRVR_STATE_RESTARTING:
455         case SKD_DRVR_STATE_WAIT_BOOT:
456         /* In case of starting, we haven't started the queue,
457          * so we can't get here... but requests are
458          * possibly hanging out waiting for us because we
459          * reported the dev/skd0 already.  They'll wait
460          * forever if connect doesn't complete.
461          * What to do??? delay dev/skd0 ??
462          */
463         case SKD_DRVR_STATE_BUSY:
464         case SKD_DRVR_STATE_BUSY_IMMINENT:
465         case SKD_DRVR_STATE_BUSY_ERASE:
466                 return false;
467
468         case SKD_DRVR_STATE_BUSY_SANITIZE:
469         case SKD_DRVR_STATE_STOPPING:
470         case SKD_DRVR_STATE_SYNCING:
471         case SKD_DRVR_STATE_FAULT:
472         case SKD_DRVR_STATE_DISAPPEARED:
473         default:
474                 return true;
475         }
476 }
477
478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479                                     const struct blk_mq_queue_data *mqd)
480 {
481         struct request *const req = mqd->rq;
482         struct request_queue *const q = req->q;
483         struct skd_device *skdev = q->queuedata;
484         struct skd_fitmsg_context *skmsg;
485         struct fit_msg_hdr *fmh;
486         const u32 tag = blk_mq_unique_tag(req);
487         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488         struct skd_scsi_request *scsi_req;
489         unsigned long flags = 0;
490         const u32 lba = blk_rq_pos(req);
491         const u32 count = blk_rq_sectors(req);
492         const int data_dir = rq_data_dir(req);
493
494         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496
497         blk_mq_start_request(req);
498
499         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
500                   tag, skd_max_queue_depth, q->nr_requests);
501
502         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
503
504         dev_dbg(&skdev->pdev->dev,
505                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
506                 lba, count, count, data_dir);
507
508         skreq->id = tag + SKD_ID_RW_REQUEST;
509         skreq->flush_cmd = 0;
510         skreq->n_sg = 0;
511         skreq->sg_byte_count = 0;
512
513         skreq->fitmsg_id = 0;
514
515         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
516
517         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
518                 dev_dbg(&skdev->pdev->dev, "error Out\n");
519                 skreq->status = BLK_STS_RESOURCE;
520                 blk_mq_complete_request(req);
521                 return BLK_STS_OK;
522         }
523
524         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
525                                    skreq->n_sg *
526                                    sizeof(struct fit_sg_descriptor),
527                                    DMA_TO_DEVICE);
528
529         /* Either a FIT msg is in progress or we have to start one. */
530         if (skd_max_req_per_msg == 1) {
531                 skmsg = NULL;
532         } else {
533                 spin_lock_irqsave(&skdev->lock, flags);
534                 skmsg = skdev->skmsg;
535         }
536         if (!skmsg) {
537                 skmsg = &skdev->skmsg_table[tag];
538                 skdev->skmsg = skmsg;
539
540                 /* Initialize the FIT msg header */
541                 fmh = &skmsg->msg_buf->fmh;
542                 memset(fmh, 0, sizeof(*fmh));
543                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
544                 skmsg->length = sizeof(*fmh);
545         } else {
546                 fmh = &skmsg->msg_buf->fmh;
547         }
548
549         skreq->fitmsg_id = skmsg->id;
550
551         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
552         memset(scsi_req, 0, sizeof(*scsi_req));
553
554         scsi_req->hdr.tag = skreq->id;
555         scsi_req->hdr.sg_list_dma_address =
556                 cpu_to_be64(skreq->sksg_dma_address);
557
558         if (req_op(req) == REQ_OP_FLUSH) {
559                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
560                 SKD_ASSERT(skreq->flush_cmd == 1);
561         } else {
562                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
563         }
564
565         if (req->cmd_flags & REQ_FUA)
566                 scsi_req->cdb[1] |= SKD_FUA_NV;
567
568         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
569
570         /* Complete resource allocations. */
571         skreq->state = SKD_REQ_STATE_BUSY;
572
573         skmsg->length += sizeof(struct skd_scsi_request);
574         fmh->num_protocol_cmds_coalesced++;
575
576         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
577                 skd_in_flight(skdev));
578
579         /*
580          * If the FIT msg buffer is full send it.
581          */
582         if (skd_max_req_per_msg == 1) {
583                 skd_send_fitmsg(skdev, skmsg);
584         } else {
585                 if (mqd->last ||
586                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
587                         skd_send_fitmsg(skdev, skmsg);
588                         skdev->skmsg = NULL;
589                 }
590                 spin_unlock_irqrestore(&skdev->lock, flags);
591         }
592
593         return BLK_STS_OK;
594 }
595
596 static enum blk_eh_timer_return skd_timed_out(struct request *req,
597                                               bool reserved)
598 {
599         struct skd_device *skdev = req->q->queuedata;
600
601         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
602                 blk_mq_unique_tag(req));
603
604         return BLK_EH_RESET_TIMER;
605 }
606
607 static void skd_complete_rq(struct request *req)
608 {
609         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
610
611         blk_mq_end_request(req, skreq->status);
612 }
613
614 static bool skd_preop_sg_list(struct skd_device *skdev,
615                              struct skd_request_context *skreq)
616 {
617         struct request *req = blk_mq_rq_from_pdu(skreq);
618         struct scatterlist *sgl = &skreq->sg[0], *sg;
619         int n_sg;
620         int i;
621
622         skreq->sg_byte_count = 0;
623
624         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
625                      skreq->data_dir != DMA_FROM_DEVICE);
626
627         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
628         if (n_sg <= 0)
629                 return false;
630
631         /*
632          * Map scatterlist to PCI bus addresses.
633          * Note PCI might change the number of entries.
634          */
635         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
636         if (n_sg <= 0)
637                 return false;
638
639         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
640
641         skreq->n_sg = n_sg;
642
643         for_each_sg(sgl, sg, n_sg, i) {
644                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
645                 u32 cnt = sg_dma_len(sg);
646                 uint64_t dma_addr = sg_dma_address(sg);
647
648                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
649                 sgd->byte_count = cnt;
650                 skreq->sg_byte_count += cnt;
651                 sgd->host_side_addr = dma_addr;
652                 sgd->dev_side_addr = 0;
653         }
654
655         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
656         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
657
658         if (unlikely(skdev->dbg_level > 1)) {
659                 dev_dbg(&skdev->pdev->dev,
660                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
661                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
662                 for (i = 0; i < n_sg; i++) {
663                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
664
665                         dev_dbg(&skdev->pdev->dev,
666                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
667                                 i, sgd->byte_count, sgd->control,
668                                 sgd->host_side_addr, sgd->next_desc_ptr);
669                 }
670         }
671
672         return true;
673 }
674
675 static void skd_postop_sg_list(struct skd_device *skdev,
676                                struct skd_request_context *skreq)
677 {
678         /*
679          * restore the next ptr for next IO request so we
680          * don't have to set it every time.
681          */
682         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
683                 skreq->sksg_dma_address +
684                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
685         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
686 }
687
688 /*
689  *****************************************************************************
690  * TIMER
691  *****************************************************************************
692  */
693
694 static void skd_timer_tick_not_online(struct skd_device *skdev);
695
696 static void skd_start_queue(struct work_struct *work)
697 {
698         struct skd_device *skdev = container_of(work, typeof(*skdev),
699                                                 start_queue);
700
701         /*
702          * Although it is safe to call blk_start_queue() from interrupt
703          * context, blk_mq_start_hw_queues() must not be called from
704          * interrupt context.
705          */
706         blk_mq_start_hw_queues(skdev->queue);
707 }
708
709 static void skd_timer_tick(struct timer_list *t)
710 {
711         struct skd_device *skdev = from_timer(skdev, t, timer);
712         unsigned long reqflags;
713         u32 state;
714
715         if (skdev->state == SKD_DRVR_STATE_FAULT)
716                 /* The driver has declared fault, and we want it to
717                  * stay that way until driver is reloaded.
718                  */
719                 return;
720
721         spin_lock_irqsave(&skdev->lock, reqflags);
722
723         state = SKD_READL(skdev, FIT_STATUS);
724         state &= FIT_SR_DRIVE_STATE_MASK;
725         if (state != skdev->drive_state)
726                 skd_isr_fwstate(skdev);
727
728         if (skdev->state != SKD_DRVR_STATE_ONLINE)
729                 skd_timer_tick_not_online(skdev);
730
731         mod_timer(&skdev->timer, (jiffies + HZ));
732
733         spin_unlock_irqrestore(&skdev->lock, reqflags);
734 }
735
736 static void skd_timer_tick_not_online(struct skd_device *skdev)
737 {
738         switch (skdev->state) {
739         case SKD_DRVR_STATE_IDLE:
740         case SKD_DRVR_STATE_LOAD:
741                 break;
742         case SKD_DRVR_STATE_BUSY_SANITIZE:
743                 dev_dbg(&skdev->pdev->dev,
744                         "drive busy sanitize[%x], driver[%x]\n",
745                         skdev->drive_state, skdev->state);
746                 /* If we've been in sanitize for 3 seconds, we figure we're not
747                  * going to get anymore completions, so recover requests now
748                  */
749                 if (skdev->timer_countdown > 0) {
750                         skdev->timer_countdown--;
751                         return;
752                 }
753                 skd_recover_requests(skdev);
754                 break;
755
756         case SKD_DRVR_STATE_BUSY:
757         case SKD_DRVR_STATE_BUSY_IMMINENT:
758         case SKD_DRVR_STATE_BUSY_ERASE:
759                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
760                         skdev->state, skdev->timer_countdown);
761                 if (skdev->timer_countdown > 0) {
762                         skdev->timer_countdown--;
763                         return;
764                 }
765                 dev_dbg(&skdev->pdev->dev,
766                         "busy[%x], timedout=%d, restarting device.",
767                         skdev->state, skdev->timer_countdown);
768                 skd_restart_device(skdev);
769                 break;
770
771         case SKD_DRVR_STATE_WAIT_BOOT:
772         case SKD_DRVR_STATE_STARTING:
773                 if (skdev->timer_countdown > 0) {
774                         skdev->timer_countdown--;
775                         return;
776                 }
777                 /* For now, we fault the drive.  Could attempt resets to
778                  * revcover at some point. */
779                 skdev->state = SKD_DRVR_STATE_FAULT;
780
781                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
782                         skdev->drive_state);
783
784                 /*start the queue so we can respond with error to requests */
785                 /* wakeup anyone waiting for startup complete */
786                 schedule_work(&skdev->start_queue);
787                 skdev->gendisk_on = -1;
788                 wake_up_interruptible(&skdev->waitq);
789                 break;
790
791         case SKD_DRVR_STATE_ONLINE:
792                 /* shouldn't get here. */
793                 break;
794
795         case SKD_DRVR_STATE_PAUSING:
796         case SKD_DRVR_STATE_PAUSED:
797                 break;
798
799         case SKD_DRVR_STATE_RESTARTING:
800                 if (skdev->timer_countdown > 0) {
801                         skdev->timer_countdown--;
802                         return;
803                 }
804                 /* For now, we fault the drive. Could attempt resets to
805                  * revcover at some point. */
806                 skdev->state = SKD_DRVR_STATE_FAULT;
807                 dev_err(&skdev->pdev->dev,
808                         "DriveFault Reconnect Timeout (%x)\n",
809                         skdev->drive_state);
810
811                 /*
812                  * Recovering does two things:
813                  * 1. completes IO with error
814                  * 2. reclaims dma resources
815                  * When is it safe to recover requests?
816                  * - if the drive state is faulted
817                  * - if the state is still soft reset after out timeout
818                  * - if the drive registers are dead (state = FF)
819                  * If it is "unsafe", we still need to recover, so we will
820                  * disable pci bus mastering and disable our interrupts.
821                  */
822
823                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
824                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
825                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
826                         /* It never came out of soft reset. Try to
827                          * recover the requests and then let them
828                          * fail. This is to mitigate hung processes. */
829                         skd_recover_requests(skdev);
830                 else {
831                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
832                                 skdev->drive_state);
833                         pci_disable_device(skdev->pdev);
834                         skd_disable_interrupts(skdev);
835                         skd_recover_requests(skdev);
836                 }
837
838                 /*start the queue so we can respond with error to requests */
839                 /* wakeup anyone waiting for startup complete */
840                 schedule_work(&skdev->start_queue);
841                 skdev->gendisk_on = -1;
842                 wake_up_interruptible(&skdev->waitq);
843                 break;
844
845         case SKD_DRVR_STATE_RESUMING:
846         case SKD_DRVR_STATE_STOPPING:
847         case SKD_DRVR_STATE_SYNCING:
848         case SKD_DRVR_STATE_FAULT:
849         case SKD_DRVR_STATE_DISAPPEARED:
850         default:
851                 break;
852         }
853 }
854
855 static int skd_start_timer(struct skd_device *skdev)
856 {
857         int rc;
858
859         timer_setup(&skdev->timer, skd_timer_tick, 0);
860
861         rc = mod_timer(&skdev->timer, (jiffies + HZ));
862         if (rc)
863                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
864         return rc;
865 }
866
867 static void skd_kill_timer(struct skd_device *skdev)
868 {
869         del_timer_sync(&skdev->timer);
870 }
871
872 /*
873  *****************************************************************************
874  * INTERNAL REQUESTS -- generated by driver itself
875  *****************************************************************************
876  */
877
878 static int skd_format_internal_skspcl(struct skd_device *skdev)
879 {
880         struct skd_special_context *skspcl = &skdev->internal_skspcl;
881         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
882         struct fit_msg_hdr *fmh;
883         uint64_t dma_address;
884         struct skd_scsi_request *scsi;
885
886         fmh = &skspcl->msg_buf->fmh;
887         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
888         fmh->num_protocol_cmds_coalesced = 1;
889
890         scsi = &skspcl->msg_buf->scsi[0];
891         memset(scsi, 0, sizeof(*scsi));
892         dma_address = skspcl->req.sksg_dma_address;
893         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
894         skspcl->req.n_sg = 1;
895         sgd->control = FIT_SGD_CONTROL_LAST;
896         sgd->byte_count = 0;
897         sgd->host_side_addr = skspcl->db_dma_address;
898         sgd->dev_side_addr = 0;
899         sgd->next_desc_ptr = 0LL;
900
901         return 1;
902 }
903
904 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
905
906 static void skd_send_internal_skspcl(struct skd_device *skdev,
907                                      struct skd_special_context *skspcl,
908                                      u8 opcode)
909 {
910         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
911         struct skd_scsi_request *scsi;
912         unsigned char *buf = skspcl->data_buf;
913         int i;
914
915         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
916                 /*
917                  * A refresh is already in progress.
918                  * Just wait for it to finish.
919                  */
920                 return;
921
922         skspcl->req.state = SKD_REQ_STATE_BUSY;
923
924         scsi = &skspcl->msg_buf->scsi[0];
925         scsi->hdr.tag = skspcl->req.id;
926
927         memset(scsi->cdb, 0, sizeof(scsi->cdb));
928
929         switch (opcode) {
930         case TEST_UNIT_READY:
931                 scsi->cdb[0] = TEST_UNIT_READY;
932                 sgd->byte_count = 0;
933                 scsi->hdr.sg_list_len_bytes = 0;
934                 break;
935
936         case READ_CAPACITY:
937                 scsi->cdb[0] = READ_CAPACITY;
938                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
939                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
940                 break;
941
942         case INQUIRY:
943                 scsi->cdb[0] = INQUIRY;
944                 scsi->cdb[1] = 0x01;    /* evpd */
945                 scsi->cdb[2] = 0x80;    /* serial number page */
946                 scsi->cdb[4] = 0x10;
947                 sgd->byte_count = 16;
948                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
949                 break;
950
951         case SYNCHRONIZE_CACHE:
952                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
953                 sgd->byte_count = 0;
954                 scsi->hdr.sg_list_len_bytes = 0;
955                 break;
956
957         case WRITE_BUFFER:
958                 scsi->cdb[0] = WRITE_BUFFER;
959                 scsi->cdb[1] = 0x02;
960                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
961                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
962                 sgd->byte_count = WR_BUF_SIZE;
963                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
964                 /* fill incrementing byte pattern */
965                 for (i = 0; i < sgd->byte_count; i++)
966                         buf[i] = i & 0xFF;
967                 break;
968
969         case READ_BUFFER:
970                 scsi->cdb[0] = READ_BUFFER;
971                 scsi->cdb[1] = 0x02;
972                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
973                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
974                 sgd->byte_count = WR_BUF_SIZE;
975                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
976                 memset(skspcl->data_buf, 0, sgd->byte_count);
977                 break;
978
979         default:
980                 SKD_ASSERT("Don't know what to send");
981                 return;
982
983         }
984         skd_send_special_fitmsg(skdev, skspcl);
985 }
986
987 static void skd_refresh_device_data(struct skd_device *skdev)
988 {
989         struct skd_special_context *skspcl = &skdev->internal_skspcl;
990
991         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
992 }
993
994 static int skd_chk_read_buf(struct skd_device *skdev,
995                             struct skd_special_context *skspcl)
996 {
997         unsigned char *buf = skspcl->data_buf;
998         int i;
999
1000         /* check for incrementing byte pattern */
1001         for (i = 0; i < WR_BUF_SIZE; i++)
1002                 if (buf[i] != (i & 0xFF))
1003                         return 1;
1004
1005         return 0;
1006 }
1007
1008 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1009                                  u8 code, u8 qual, u8 fruc)
1010 {
1011         /* If the check condition is of special interest, log a message */
1012         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1013             && (code == 0x04) && (qual == 0x06)) {
1014                 dev_err(&skdev->pdev->dev,
1015                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1016                         key, code, qual, fruc);
1017         }
1018 }
1019
1020 static void skd_complete_internal(struct skd_device *skdev,
1021                                   struct fit_completion_entry_v1 *skcomp,
1022                                   struct fit_comp_error_info *skerr,
1023                                   struct skd_special_context *skspcl)
1024 {
1025         u8 *buf = skspcl->data_buf;
1026         u8 status;
1027         int i;
1028         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1029
1030         lockdep_assert_held(&skdev->lock);
1031
1032         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1033
1034         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1035
1036         dma_sync_single_for_cpu(&skdev->pdev->dev,
1037                                 skspcl->db_dma_address,
1038                                 skspcl->req.sksg_list[0].byte_count,
1039                                 DMA_BIDIRECTIONAL);
1040
1041         skspcl->req.completion = *skcomp;
1042         skspcl->req.state = SKD_REQ_STATE_IDLE;
1043
1044         status = skspcl->req.completion.status;
1045
1046         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1047                              skerr->qual, skerr->fruc);
1048
1049         switch (scsi->cdb[0]) {
1050         case TEST_UNIT_READY:
1051                 if (status == SAM_STAT_GOOD)
1052                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1053                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1054                          (skerr->key == MEDIUM_ERROR))
1055                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1056                 else {
1057                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1058                                 dev_dbg(&skdev->pdev->dev,
1059                                         "TUR failed, don't send anymore state 0x%x\n",
1060                                         skdev->state);
1061                                 return;
1062                         }
1063                         dev_dbg(&skdev->pdev->dev,
1064                                 "**** TUR failed, retry skerr\n");
1065                         skd_send_internal_skspcl(skdev, skspcl,
1066                                                  TEST_UNIT_READY);
1067                 }
1068                 break;
1069
1070         case WRITE_BUFFER:
1071                 if (status == SAM_STAT_GOOD)
1072                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1073                 else {
1074                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1075                                 dev_dbg(&skdev->pdev->dev,
1076                                         "write buffer failed, don't send anymore state 0x%x\n",
1077                                         skdev->state);
1078                                 return;
1079                         }
1080                         dev_dbg(&skdev->pdev->dev,
1081                                 "**** write buffer failed, retry skerr\n");
1082                         skd_send_internal_skspcl(skdev, skspcl,
1083                                                  TEST_UNIT_READY);
1084                 }
1085                 break;
1086
1087         case READ_BUFFER:
1088                 if (status == SAM_STAT_GOOD) {
1089                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1090                                 skd_send_internal_skspcl(skdev, skspcl,
1091                                                          READ_CAPACITY);
1092                         else {
1093                                 dev_err(&skdev->pdev->dev,
1094                                         "*** W/R Buffer mismatch %d ***\n",
1095                                         skdev->connect_retries);
1096                                 if (skdev->connect_retries <
1097                                     SKD_MAX_CONNECT_RETRIES) {
1098                                         skdev->connect_retries++;
1099                                         skd_soft_reset(skdev);
1100                                 } else {
1101                                         dev_err(&skdev->pdev->dev,
1102                                                 "W/R Buffer Connect Error\n");
1103                                         return;
1104                                 }
1105                         }
1106
1107                 } else {
1108                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1109                                 dev_dbg(&skdev->pdev->dev,
1110                                         "read buffer failed, don't send anymore state 0x%x\n",
1111                                         skdev->state);
1112                                 return;
1113                         }
1114                         dev_dbg(&skdev->pdev->dev,
1115                                 "**** read buffer failed, retry skerr\n");
1116                         skd_send_internal_skspcl(skdev, skspcl,
1117                                                  TEST_UNIT_READY);
1118                 }
1119                 break;
1120
1121         case READ_CAPACITY:
1122                 skdev->read_cap_is_valid = 0;
1123                 if (status == SAM_STAT_GOOD) {
1124                         skdev->read_cap_last_lba =
1125                                 (buf[0] << 24) | (buf[1] << 16) |
1126                                 (buf[2] << 8) | buf[3];
1127                         skdev->read_cap_blocksize =
1128                                 (buf[4] << 24) | (buf[5] << 16) |
1129                                 (buf[6] << 8) | buf[7];
1130
1131                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1132                                 skdev->read_cap_last_lba,
1133                                 skdev->read_cap_blocksize);
1134
1135                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1136
1137                         skdev->read_cap_is_valid = 1;
1138
1139                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1140                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1141                            (skerr->key == MEDIUM_ERROR)) {
1142                         skdev->read_cap_last_lba = ~0;
1143                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1144                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1145                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1146                 } else {
1147                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1148                         skd_send_internal_skspcl(skdev, skspcl,
1149                                                  TEST_UNIT_READY);
1150                 }
1151                 break;
1152
1153         case INQUIRY:
1154                 skdev->inquiry_is_valid = 0;
1155                 if (status == SAM_STAT_GOOD) {
1156                         skdev->inquiry_is_valid = 1;
1157
1158                         for (i = 0; i < 12; i++)
1159                                 skdev->inq_serial_num[i] = buf[i + 4];
1160                         skdev->inq_serial_num[12] = 0;
1161                 }
1162
1163                 if (skd_unquiesce_dev(skdev) < 0)
1164                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1165                  /* connection is complete */
1166                 skdev->connect_retries = 0;
1167                 break;
1168
1169         case SYNCHRONIZE_CACHE:
1170                 if (status == SAM_STAT_GOOD)
1171                         skdev->sync_done = 1;
1172                 else
1173                         skdev->sync_done = -1;
1174                 wake_up_interruptible(&skdev->waitq);
1175                 break;
1176
1177         default:
1178                 SKD_ASSERT("we didn't send this");
1179         }
1180 }
1181
1182 /*
1183  *****************************************************************************
1184  * FIT MESSAGES
1185  *****************************************************************************
1186  */
1187
1188 static void skd_send_fitmsg(struct skd_device *skdev,
1189                             struct skd_fitmsg_context *skmsg)
1190 {
1191         u64 qcmd;
1192
1193         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1194                 skmsg->mb_dma_address, skd_in_flight(skdev));
1195         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1196
1197         qcmd = skmsg->mb_dma_address;
1198         qcmd |= FIT_QCMD_QID_NORMAL;
1199
1200         if (unlikely(skdev->dbg_level > 1)) {
1201                 u8 *bp = (u8 *)skmsg->msg_buf;
1202                 int i;
1203                 for (i = 0; i < skmsg->length; i += 8) {
1204                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1205                                 &bp[i]);
1206                         if (i == 0)
1207                                 i = 64 - 8;
1208                 }
1209         }
1210
1211         if (skmsg->length > 256)
1212                 qcmd |= FIT_QCMD_MSGSIZE_512;
1213         else if (skmsg->length > 128)
1214                 qcmd |= FIT_QCMD_MSGSIZE_256;
1215         else if (skmsg->length > 64)
1216                 qcmd |= FIT_QCMD_MSGSIZE_128;
1217         else
1218                 /*
1219                  * This makes no sense because the FIT msg header is
1220                  * 64 bytes. If the msg is only 64 bytes long it has
1221                  * no payload.
1222                  */
1223                 qcmd |= FIT_QCMD_MSGSIZE_64;
1224
1225         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1226                                    skmsg->length, DMA_TO_DEVICE);
1227
1228         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1229         smp_wmb();
1230
1231         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1232 }
1233
1234 static void skd_send_special_fitmsg(struct skd_device *skdev,
1235                                     struct skd_special_context *skspcl)
1236 {
1237         u64 qcmd;
1238
1239         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1240
1241         if (unlikely(skdev->dbg_level > 1)) {
1242                 u8 *bp = (u8 *)skspcl->msg_buf;
1243                 int i;
1244
1245                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1246                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1247                                 &bp[i]);
1248                         if (i == 0)
1249                                 i = 64 - 8;
1250                 }
1251
1252                 dev_dbg(&skdev->pdev->dev,
1253                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1254                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1255                         skspcl->req.sksg_dma_address);
1256                 for (i = 0; i < skspcl->req.n_sg; i++) {
1257                         struct fit_sg_descriptor *sgd =
1258                                 &skspcl->req.sksg_list[i];
1259
1260                         dev_dbg(&skdev->pdev->dev,
1261                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1262                                 i, sgd->byte_count, sgd->control,
1263                                 sgd->host_side_addr, sgd->next_desc_ptr);
1264                 }
1265         }
1266
1267         /*
1268          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1269          * and one 64-byte SSDI command.
1270          */
1271         qcmd = skspcl->mb_dma_address;
1272         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1273
1274         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1275                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1276         dma_sync_single_for_device(&skdev->pdev->dev,
1277                                    skspcl->req.sksg_dma_address,
1278                                    1 * sizeof(struct fit_sg_descriptor),
1279                                    DMA_TO_DEVICE);
1280         dma_sync_single_for_device(&skdev->pdev->dev,
1281                                    skspcl->db_dma_address,
1282                                    skspcl->req.sksg_list[0].byte_count,
1283                                    DMA_BIDIRECTIONAL);
1284
1285         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1286         smp_wmb();
1287
1288         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1289 }
1290
1291 /*
1292  *****************************************************************************
1293  * COMPLETION QUEUE
1294  *****************************************************************************
1295  */
1296
1297 static void skd_complete_other(struct skd_device *skdev,
1298                                struct fit_completion_entry_v1 *skcomp,
1299                                struct fit_comp_error_info *skerr);
1300
1301 struct sns_info {
1302         u8 type;
1303         u8 stat;
1304         u8 key;
1305         u8 asc;
1306         u8 ascq;
1307         u8 mask;
1308         enum skd_check_status_action action;
1309 };
1310
1311 static struct sns_info skd_chkstat_table[] = {
1312         /* Good */
1313         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1314           SKD_CHECK_STATUS_REPORT_GOOD },
1315
1316         /* Smart alerts */
1317         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1318           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1319         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1320           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1321         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1322           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1323
1324         /* Retry (with limits) */
1325         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1326           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1327         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1328           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1329         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1330           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1331         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1332           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1333
1334         /* Busy (or about to be) */
1335         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1336           SKD_CHECK_STATUS_BUSY_IMMINENT },
1337 };
1338
1339 /*
1340  * Look up status and sense data to decide how to handle the error
1341  * from the device.
1342  * mask says which fields must match e.g., mask=0x18 means check
1343  * type and stat, ignore key, asc, ascq.
1344  */
1345
1346 static enum skd_check_status_action
1347 skd_check_status(struct skd_device *skdev,
1348                  u8 cmp_status, struct fit_comp_error_info *skerr)
1349 {
1350         int i;
1351
1352         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1353                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1354
1355         dev_dbg(&skdev->pdev->dev,
1356                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1357                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1358                 skerr->fruc);
1359
1360         /* Does the info match an entry in the good category? */
1361         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1362                 struct sns_info *sns = &skd_chkstat_table[i];
1363
1364                 if (sns->mask & 0x10)
1365                         if (skerr->type != sns->type)
1366                                 continue;
1367
1368                 if (sns->mask & 0x08)
1369                         if (cmp_status != sns->stat)
1370                                 continue;
1371
1372                 if (sns->mask & 0x04)
1373                         if (skerr->key != sns->key)
1374                                 continue;
1375
1376                 if (sns->mask & 0x02)
1377                         if (skerr->code != sns->asc)
1378                                 continue;
1379
1380                 if (sns->mask & 0x01)
1381                         if (skerr->qual != sns->ascq)
1382                                 continue;
1383
1384                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1385                         dev_err(&skdev->pdev->dev,
1386                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1387                                 skerr->key, skerr->code, skerr->qual);
1388                 }
1389                 return sns->action;
1390         }
1391
1392         /* No other match, so nonzero status means error,
1393          * zero status means good
1394          */
1395         if (cmp_status) {
1396                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1397                 return SKD_CHECK_STATUS_REPORT_ERROR;
1398         }
1399
1400         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1401         return SKD_CHECK_STATUS_REPORT_GOOD;
1402 }
1403
1404 static void skd_resolve_req_exception(struct skd_device *skdev,
1405                                       struct skd_request_context *skreq,
1406                                       struct request *req)
1407 {
1408         u8 cmp_status = skreq->completion.status;
1409
1410         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1411         case SKD_CHECK_STATUS_REPORT_GOOD:
1412         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1413                 skreq->status = BLK_STS_OK;
1414                 blk_mq_complete_request(req);
1415                 break;
1416
1417         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1418                 skd_log_skreq(skdev, skreq, "retry(busy)");
1419                 blk_requeue_request(skdev->queue, req);
1420                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1421                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1422                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1423                 skd_quiesce_dev(skdev);
1424                 break;
1425
1426         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1427                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1428                         skd_log_skreq(skdev, skreq, "retry");
1429                         blk_requeue_request(skdev->queue, req);
1430                         break;
1431                 }
1432                 /* fall through */
1433
1434         case SKD_CHECK_STATUS_REPORT_ERROR:
1435         default:
1436                 skreq->status = BLK_STS_IOERR;
1437                 blk_mq_complete_request(req);
1438                 break;
1439         }
1440 }
1441
1442 static void skd_release_skreq(struct skd_device *skdev,
1443                               struct skd_request_context *skreq)
1444 {
1445         /*
1446          * Reclaim the skd_request_context
1447          */
1448         skreq->state = SKD_REQ_STATE_IDLE;
1449 }
1450
1451 static int skd_isr_completion_posted(struct skd_device *skdev,
1452                                         int limit, int *enqueued)
1453 {
1454         struct fit_completion_entry_v1 *skcmp;
1455         struct fit_comp_error_info *skerr;
1456         u16 req_id;
1457         u32 tag;
1458         u16 hwq = 0;
1459         struct request *rq;
1460         struct skd_request_context *skreq;
1461         u16 cmp_cntxt;
1462         u8 cmp_status;
1463         u8 cmp_cycle;
1464         u32 cmp_bytes;
1465         int rc = 0;
1466         int processed = 0;
1467
1468         lockdep_assert_held(&skdev->lock);
1469
1470         for (;; ) {
1471                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1472
1473                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1474                 cmp_cycle = skcmp->cycle;
1475                 cmp_cntxt = skcmp->tag;
1476                 cmp_status = skcmp->status;
1477                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1478
1479                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1480
1481                 dev_dbg(&skdev->pdev->dev,
1482                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1483                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1484                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1485                         cmp_bytes, skdev->proto_ver);
1486
1487                 if (cmp_cycle != skdev->skcomp_cycle) {
1488                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1489                         break;
1490                 }
1491                 /*
1492                  * Update the completion queue head index and possibly
1493                  * the completion cycle count. 8-bit wrap-around.
1494                  */
1495                 skdev->skcomp_ix++;
1496                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1497                         skdev->skcomp_ix = 0;
1498                         skdev->skcomp_cycle++;
1499                 }
1500
1501                 /*
1502                  * The command context is a unique 32-bit ID. The low order
1503                  * bits help locate the request. The request is usually a
1504                  * r/w request (see skd_start() above) or a special request.
1505                  */
1506                 req_id = cmp_cntxt;
1507                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1508
1509                 /* Is this other than a r/w request? */
1510                 if (tag >= skdev->num_req_context) {
1511                         /*
1512                          * This is not a completion for a r/w request.
1513                          */
1514                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1515                                                       tag));
1516                         skd_complete_other(skdev, skcmp, skerr);
1517                         continue;
1518                 }
1519
1520                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1521                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1522                          tag))
1523                         continue;
1524                 skreq = blk_mq_rq_to_pdu(rq);
1525
1526                 /*
1527                  * Make sure the request ID for the slot matches.
1528                  */
1529                 if (skreq->id != req_id) {
1530                         dev_err(&skdev->pdev->dev,
1531                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1532                                 req_id, skreq->id, cmp_cntxt);
1533
1534                         continue;
1535                 }
1536
1537                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1538
1539                 skreq->completion = *skcmp;
1540                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1541                         skreq->err_info = *skerr;
1542                         skd_log_check_status(skdev, cmp_status, skerr->key,
1543                                              skerr->code, skerr->qual,
1544                                              skerr->fruc);
1545                 }
1546                 /* Release DMA resources for the request. */
1547                 if (skreq->n_sg > 0)
1548                         skd_postop_sg_list(skdev, skreq);
1549
1550                 skd_release_skreq(skdev, skreq);
1551
1552                 /*
1553                  * Capture the outcome and post it back to the native request.
1554                  */
1555                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1556                         skreq->status = BLK_STS_OK;
1557                         blk_mq_complete_request(rq);
1558                 } else {
1559                         skd_resolve_req_exception(skdev, skreq, rq);
1560                 }
1561
1562                 /* skd_isr_comp_limit equal zero means no limit */
1563                 if (limit) {
1564                         if (++processed >= limit) {
1565                                 rc = 1;
1566                                 break;
1567                         }
1568                 }
1569         }
1570
1571         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1572             skd_in_flight(skdev) == 0) {
1573                 skdev->state = SKD_DRVR_STATE_PAUSED;
1574                 wake_up_interruptible(&skdev->waitq);
1575         }
1576
1577         return rc;
1578 }
1579
1580 static void skd_complete_other(struct skd_device *skdev,
1581                                struct fit_completion_entry_v1 *skcomp,
1582                                struct fit_comp_error_info *skerr)
1583 {
1584         u32 req_id = 0;
1585         u32 req_table;
1586         u32 req_slot;
1587         struct skd_special_context *skspcl;
1588
1589         lockdep_assert_held(&skdev->lock);
1590
1591         req_id = skcomp->tag;
1592         req_table = req_id & SKD_ID_TABLE_MASK;
1593         req_slot = req_id & SKD_ID_SLOT_MASK;
1594
1595         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1596                 req_id, req_slot);
1597
1598         /*
1599          * Based on the request id, determine how to dispatch this completion.
1600          * This swich/case is finding the good cases and forwarding the
1601          * completion entry. Errors are reported below the switch.
1602          */
1603         switch (req_table) {
1604         case SKD_ID_RW_REQUEST:
1605                 /*
1606                  * The caller, skd_isr_completion_posted() above,
1607                  * handles r/w requests. The only way we get here
1608                  * is if the req_slot is out of bounds.
1609                  */
1610                 break;
1611
1612         case SKD_ID_INTERNAL:
1613                 if (req_slot == 0) {
1614                         skspcl = &skdev->internal_skspcl;
1615                         if (skspcl->req.id == req_id &&
1616                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1617                                 skd_complete_internal(skdev,
1618                                                       skcomp, skerr, skspcl);
1619                                 return;
1620                         }
1621                 }
1622                 break;
1623
1624         case SKD_ID_FIT_MSG:
1625                 /*
1626                  * These id's should never appear in a completion record.
1627                  */
1628                 break;
1629
1630         default:
1631                 /*
1632                  * These id's should never appear anywhere;
1633                  */
1634                 break;
1635         }
1636
1637         /*
1638          * If we get here it is a bad or stale id.
1639          */
1640 }
1641
1642 static void skd_reset_skcomp(struct skd_device *skdev)
1643 {
1644         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1645
1646         skdev->skcomp_ix = 0;
1647         skdev->skcomp_cycle = 1;
1648 }
1649
1650 /*
1651  *****************************************************************************
1652  * INTERRUPTS
1653  *****************************************************************************
1654  */
1655 static void skd_completion_worker(struct work_struct *work)
1656 {
1657         struct skd_device *skdev =
1658                 container_of(work, struct skd_device, completion_worker);
1659         unsigned long flags;
1660         int flush_enqueued = 0;
1661
1662         spin_lock_irqsave(&skdev->lock, flags);
1663
1664         /*
1665          * pass in limit=0, which means no limit..
1666          * process everything in compq
1667          */
1668         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1669         schedule_work(&skdev->start_queue);
1670
1671         spin_unlock_irqrestore(&skdev->lock, flags);
1672 }
1673
1674 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1675
1676 static irqreturn_t
1677 skd_isr(int irq, void *ptr)
1678 {
1679         struct skd_device *skdev = ptr;
1680         u32 intstat;
1681         u32 ack;
1682         int rc = 0;
1683         int deferred = 0;
1684         int flush_enqueued = 0;
1685
1686         spin_lock(&skdev->lock);
1687
1688         for (;; ) {
1689                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1690
1691                 ack = FIT_INT_DEF_MASK;
1692                 ack &= intstat;
1693
1694                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1695                         ack);
1696
1697                 /* As long as there is an int pending on device, keep
1698                  * running loop.  When none, get out, but if we've never
1699                  * done any processing, call completion handler?
1700                  */
1701                 if (ack == 0) {
1702                         /* No interrupts on device, but run the completion
1703                          * processor anyway?
1704                          */
1705                         if (rc == 0)
1706                                 if (likely (skdev->state
1707                                         == SKD_DRVR_STATE_ONLINE))
1708                                         deferred = 1;
1709                         break;
1710                 }
1711
1712                 rc = IRQ_HANDLED;
1713
1714                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1715
1716                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1717                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1718                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1719                                 /*
1720                                  * If we have already deferred completion
1721                                  * processing, don't bother running it again
1722                                  */
1723                                 if (deferred == 0)
1724                                         deferred =
1725                                                 skd_isr_completion_posted(skdev,
1726                                                 skd_isr_comp_limit, &flush_enqueued);
1727                         }
1728
1729                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1730                                 skd_isr_fwstate(skdev);
1731                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1732                                     skdev->state ==
1733                                     SKD_DRVR_STATE_DISAPPEARED) {
1734                                         spin_unlock(&skdev->lock);
1735                                         return rc;
1736                                 }
1737                         }
1738
1739                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1740                                 skd_isr_msg_from_dev(skdev);
1741                 }
1742         }
1743
1744         if (unlikely(flush_enqueued))
1745                 schedule_work(&skdev->start_queue);
1746
1747         if (deferred)
1748                 schedule_work(&skdev->completion_worker);
1749         else if (!flush_enqueued)
1750                 schedule_work(&skdev->start_queue);
1751
1752         spin_unlock(&skdev->lock);
1753
1754         return rc;
1755 }
1756
1757 static void skd_drive_fault(struct skd_device *skdev)
1758 {
1759         skdev->state = SKD_DRVR_STATE_FAULT;
1760         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1761 }
1762
1763 static void skd_drive_disappeared(struct skd_device *skdev)
1764 {
1765         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1766         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1767 }
1768
1769 static void skd_isr_fwstate(struct skd_device *skdev)
1770 {
1771         u32 sense;
1772         u32 state;
1773         u32 mtd;
1774         int prev_driver_state = skdev->state;
1775
1776         sense = SKD_READL(skdev, FIT_STATUS);
1777         state = sense & FIT_SR_DRIVE_STATE_MASK;
1778
1779         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1780                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1781                 skd_drive_state_to_str(state), state);
1782
1783         skdev->drive_state = state;
1784
1785         switch (skdev->drive_state) {
1786         case FIT_SR_DRIVE_INIT:
1787                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1788                         skd_disable_interrupts(skdev);
1789                         break;
1790                 }
1791                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1792                         skd_recover_requests(skdev);
1793                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1794                         skdev->timer_countdown = SKD_STARTING_TIMO;
1795                         skdev->state = SKD_DRVR_STATE_STARTING;
1796                         skd_soft_reset(skdev);
1797                         break;
1798                 }
1799                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1800                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1801                 skdev->last_mtd = mtd;
1802                 break;
1803
1804         case FIT_SR_DRIVE_ONLINE:
1805                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1806                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1807                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1808
1809                 skdev->queue_low_water_mark =
1810                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1811                 if (skdev->queue_low_water_mark < 1)
1812                         skdev->queue_low_water_mark = 1;
1813                 dev_info(&skdev->pdev->dev,
1814                          "Queue depth limit=%d dev=%d lowat=%d\n",
1815                          skdev->cur_max_queue_depth,
1816                          skdev->dev_max_queue_depth,
1817                          skdev->queue_low_water_mark);
1818
1819                 skd_refresh_device_data(skdev);
1820                 break;
1821
1822         case FIT_SR_DRIVE_BUSY:
1823                 skdev->state = SKD_DRVR_STATE_BUSY;
1824                 skdev->timer_countdown = SKD_BUSY_TIMO;
1825                 skd_quiesce_dev(skdev);
1826                 break;
1827         case FIT_SR_DRIVE_BUSY_SANITIZE:
1828                 /* set timer for 3 seconds, we'll abort any unfinished
1829                  * commands after that expires
1830                  */
1831                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1832                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1833                 schedule_work(&skdev->start_queue);
1834                 break;
1835         case FIT_SR_DRIVE_BUSY_ERASE:
1836                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1837                 skdev->timer_countdown = SKD_BUSY_TIMO;
1838                 break;
1839         case FIT_SR_DRIVE_OFFLINE:
1840                 skdev->state = SKD_DRVR_STATE_IDLE;
1841                 break;
1842         case FIT_SR_DRIVE_SOFT_RESET:
1843                 switch (skdev->state) {
1844                 case SKD_DRVR_STATE_STARTING:
1845                 case SKD_DRVR_STATE_RESTARTING:
1846                         /* Expected by a caller of skd_soft_reset() */
1847                         break;
1848                 default:
1849                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1850                         break;
1851                 }
1852                 break;
1853         case FIT_SR_DRIVE_FW_BOOTING:
1854                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1855                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1856                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1857                 break;
1858
1859         case FIT_SR_DRIVE_DEGRADED:
1860         case FIT_SR_PCIE_LINK_DOWN:
1861         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1862                 break;
1863
1864         case FIT_SR_DRIVE_FAULT:
1865                 skd_drive_fault(skdev);
1866                 skd_recover_requests(skdev);
1867                 schedule_work(&skdev->start_queue);
1868                 break;
1869
1870         /* PCIe bus returned all Fs? */
1871         case 0xFF:
1872                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1873                          sense);
1874                 skd_drive_disappeared(skdev);
1875                 skd_recover_requests(skdev);
1876                 schedule_work(&skdev->start_queue);
1877                 break;
1878         default:
1879                 /*
1880                  * Uknown FW State. Wait for a state we recognize.
1881                  */
1882                 break;
1883         }
1884         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1885                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1886                 skd_skdev_state_to_str(skdev->state), skdev->state);
1887 }
1888
1889 static void skd_recover_request(struct request *req, void *data, bool reserved)
1890 {
1891         struct skd_device *const skdev = data;
1892         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1893
1894         if (skreq->state != SKD_REQ_STATE_BUSY)
1895                 return;
1896
1897         skd_log_skreq(skdev, skreq, "recover");
1898
1899         /* Release DMA resources for the request. */
1900         if (skreq->n_sg > 0)
1901                 skd_postop_sg_list(skdev, skreq);
1902
1903         skreq->state = SKD_REQ_STATE_IDLE;
1904         skreq->status = BLK_STS_IOERR;
1905         blk_mq_complete_request(req);
1906 }
1907
1908 static void skd_recover_requests(struct skd_device *skdev)
1909 {
1910         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1911 }
1912
1913 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1914 {
1915         u32 mfd;
1916         u32 mtd;
1917         u32 data;
1918
1919         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1920
1921         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1922                 skdev->last_mtd);
1923
1924         /* ignore any mtd that is an ack for something we didn't send */
1925         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1926                 return;
1927
1928         switch (FIT_MXD_TYPE(mfd)) {
1929         case FIT_MTD_FITFW_INIT:
1930                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1931
1932                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1933                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1934                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1935                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1936                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1937                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1938                         skd_soft_reset(skdev);
1939                         break;
1940                 }
1941                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1942                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1943                 skdev->last_mtd = mtd;
1944                 break;
1945
1946         case FIT_MTD_GET_CMDQ_DEPTH:
1947                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1948                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1949                                    SKD_N_COMPLETION_ENTRY);
1950                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1951                 skdev->last_mtd = mtd;
1952                 break;
1953
1954         case FIT_MTD_SET_COMPQ_DEPTH:
1955                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1956                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1957                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1958                 skdev->last_mtd = mtd;
1959                 break;
1960
1961         case FIT_MTD_SET_COMPQ_ADDR:
1962                 skd_reset_skcomp(skdev);
1963                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1964                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1965                 skdev->last_mtd = mtd;
1966                 break;
1967
1968         case FIT_MTD_CMD_LOG_HOST_ID:
1969                 /* hardware interface overflows in y2106 */
1970                 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1971                 data = skdev->connect_time_stamp & 0xFFFF;
1972                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1973                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974                 skdev->last_mtd = mtd;
1975                 break;
1976
1977         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1978                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1979                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1980                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1981                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1982                 skdev->last_mtd = mtd;
1983                 break;
1984
1985         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1986                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1987                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1988                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989                 skdev->last_mtd = mtd;
1990
1991                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1992                         skdev->connect_time_stamp, skdev->drive_jiffies);
1993                 break;
1994
1995         case FIT_MTD_ARM_QUEUE:
1996                 skdev->last_mtd = 0;
1997                 /*
1998                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
1999                  */
2000                 break;
2001
2002         default:
2003                 break;
2004         }
2005 }
2006
2007 static void skd_disable_interrupts(struct skd_device *skdev)
2008 {
2009         u32 sense;
2010
2011         sense = SKD_READL(skdev, FIT_CONTROL);
2012         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2013         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2014         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2015
2016         /* Note that the 1s is written. A 1-bit means
2017          * disable, a 0 means enable.
2018          */
2019         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2020 }
2021
2022 static void skd_enable_interrupts(struct skd_device *skdev)
2023 {
2024         u32 val;
2025
2026         /* unmask interrupts first */
2027         val = FIT_ISH_FW_STATE_CHANGE +
2028               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2029
2030         /* Note that the compliment of mask is written. A 1-bit means
2031          * disable, a 0 means enable. */
2032         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2033         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2034
2035         val = SKD_READL(skdev, FIT_CONTROL);
2036         val |= FIT_CR_ENABLE_INTERRUPTS;
2037         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2038         SKD_WRITEL(skdev, val, FIT_CONTROL);
2039 }
2040
2041 /*
2042  *****************************************************************************
2043  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2044  *****************************************************************************
2045  */
2046
2047 static void skd_soft_reset(struct skd_device *skdev)
2048 {
2049         u32 val;
2050
2051         val = SKD_READL(skdev, FIT_CONTROL);
2052         val |= (FIT_CR_SOFT_RESET);
2053         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2054         SKD_WRITEL(skdev, val, FIT_CONTROL);
2055 }
2056
2057 static void skd_start_device(struct skd_device *skdev)
2058 {
2059         unsigned long flags;
2060         u32 sense;
2061         u32 state;
2062
2063         spin_lock_irqsave(&skdev->lock, flags);
2064
2065         /* ack all ghost interrupts */
2066         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2067
2068         sense = SKD_READL(skdev, FIT_STATUS);
2069
2070         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2071
2072         state = sense & FIT_SR_DRIVE_STATE_MASK;
2073         skdev->drive_state = state;
2074         skdev->last_mtd = 0;
2075
2076         skdev->state = SKD_DRVR_STATE_STARTING;
2077         skdev->timer_countdown = SKD_STARTING_TIMO;
2078
2079         skd_enable_interrupts(skdev);
2080
2081         switch (skdev->drive_state) {
2082         case FIT_SR_DRIVE_OFFLINE:
2083                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2084                 break;
2085
2086         case FIT_SR_DRIVE_FW_BOOTING:
2087                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2088                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2089                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2090                 break;
2091
2092         case FIT_SR_DRIVE_BUSY_SANITIZE:
2093                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2094                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2095                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2096                 break;
2097
2098         case FIT_SR_DRIVE_BUSY_ERASE:
2099                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2100                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2101                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2102                 break;
2103
2104         case FIT_SR_DRIVE_INIT:
2105         case FIT_SR_DRIVE_ONLINE:
2106                 skd_soft_reset(skdev);
2107                 break;
2108
2109         case FIT_SR_DRIVE_BUSY:
2110                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2111                 skdev->state = SKD_DRVR_STATE_BUSY;
2112                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2113                 break;
2114
2115         case FIT_SR_DRIVE_SOFT_RESET:
2116                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2117                 break;
2118
2119         case FIT_SR_DRIVE_FAULT:
2120                 /* Fault state is bad...soft reset won't do it...
2121                  * Hard reset, maybe, but does it work on device?
2122                  * For now, just fault so the system doesn't hang.
2123                  */
2124                 skd_drive_fault(skdev);
2125                 /*start the queue so we can respond with error to requests */
2126                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2127                 schedule_work(&skdev->start_queue);
2128                 skdev->gendisk_on = -1;
2129                 wake_up_interruptible(&skdev->waitq);
2130                 break;
2131
2132         case 0xFF:
2133                 /* Most likely the device isn't there or isn't responding
2134                  * to the BAR1 addresses. */
2135                 skd_drive_disappeared(skdev);
2136                 /*start the queue so we can respond with error to requests */
2137                 dev_dbg(&skdev->pdev->dev,
2138                         "starting queue to error-out reqs\n");
2139                 schedule_work(&skdev->start_queue);
2140                 skdev->gendisk_on = -1;
2141                 wake_up_interruptible(&skdev->waitq);
2142                 break;
2143
2144         default:
2145                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2146                         skdev->drive_state);
2147                 break;
2148         }
2149
2150         state = SKD_READL(skdev, FIT_CONTROL);
2151         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2152
2153         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2154         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2155
2156         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2157         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2158
2159         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2160         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2161
2162         state = SKD_READL(skdev, FIT_HW_VERSION);
2163         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2164
2165         spin_unlock_irqrestore(&skdev->lock, flags);
2166 }
2167
2168 static void skd_stop_device(struct skd_device *skdev)
2169 {
2170         unsigned long flags;
2171         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2172         u32 dev_state;
2173         int i;
2174
2175         spin_lock_irqsave(&skdev->lock, flags);
2176
2177         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2178                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2179                 goto stop_out;
2180         }
2181
2182         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2183                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2184                 goto stop_out;
2185         }
2186
2187         skdev->state = SKD_DRVR_STATE_SYNCING;
2188         skdev->sync_done = 0;
2189
2190         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2191
2192         spin_unlock_irqrestore(&skdev->lock, flags);
2193
2194         wait_event_interruptible_timeout(skdev->waitq,
2195                                          (skdev->sync_done), (10 * HZ));
2196
2197         spin_lock_irqsave(&skdev->lock, flags);
2198
2199         switch (skdev->sync_done) {
2200         case 0:
2201                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2202                 break;
2203         case 1:
2204                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2205                 break;
2206         default:
2207                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2208         }
2209
2210 stop_out:
2211         skdev->state = SKD_DRVR_STATE_STOPPING;
2212         spin_unlock_irqrestore(&skdev->lock, flags);
2213
2214         skd_kill_timer(skdev);
2215
2216         spin_lock_irqsave(&skdev->lock, flags);
2217         skd_disable_interrupts(skdev);
2218
2219         /* ensure all ints on device are cleared */
2220         /* soft reset the device to unload with a clean slate */
2221         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2222         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2223
2224         spin_unlock_irqrestore(&skdev->lock, flags);
2225
2226         /* poll every 100ms, 1 second timeout */
2227         for (i = 0; i < 10; i++) {
2228                 dev_state =
2229                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2230                 if (dev_state == FIT_SR_DRIVE_INIT)
2231                         break;
2232                 set_current_state(TASK_INTERRUPTIBLE);
2233                 schedule_timeout(msecs_to_jiffies(100));
2234         }
2235
2236         if (dev_state != FIT_SR_DRIVE_INIT)
2237                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2238                         dev_state);
2239 }
2240
2241 /* assume spinlock is held */
2242 static void skd_restart_device(struct skd_device *skdev)
2243 {
2244         u32 state;
2245
2246         /* ack all ghost interrupts */
2247         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2248
2249         state = SKD_READL(skdev, FIT_STATUS);
2250
2251         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2252
2253         state &= FIT_SR_DRIVE_STATE_MASK;
2254         skdev->drive_state = state;
2255         skdev->last_mtd = 0;
2256
2257         skdev->state = SKD_DRVR_STATE_RESTARTING;
2258         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2259
2260         skd_soft_reset(skdev);
2261 }
2262
2263 /* assume spinlock is held */
2264 static int skd_quiesce_dev(struct skd_device *skdev)
2265 {
2266         int rc = 0;
2267
2268         switch (skdev->state) {
2269         case SKD_DRVR_STATE_BUSY:
2270         case SKD_DRVR_STATE_BUSY_IMMINENT:
2271                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2272                 blk_mq_stop_hw_queues(skdev->queue);
2273                 break;
2274         case SKD_DRVR_STATE_ONLINE:
2275         case SKD_DRVR_STATE_STOPPING:
2276         case SKD_DRVR_STATE_SYNCING:
2277         case SKD_DRVR_STATE_PAUSING:
2278         case SKD_DRVR_STATE_PAUSED:
2279         case SKD_DRVR_STATE_STARTING:
2280         case SKD_DRVR_STATE_RESTARTING:
2281         case SKD_DRVR_STATE_RESUMING:
2282         default:
2283                 rc = -EINVAL;
2284                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2285                         skdev->state);
2286         }
2287         return rc;
2288 }
2289
2290 /* assume spinlock is held */
2291 static int skd_unquiesce_dev(struct skd_device *skdev)
2292 {
2293         int prev_driver_state = skdev->state;
2294
2295         skd_log_skdev(skdev, "unquiesce");
2296         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2297                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2298                 return 0;
2299         }
2300         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2301                 /*
2302                  * If there has been an state change to other than
2303                  * ONLINE, we will rely on controller state change
2304                  * to come back online and restart the queue.
2305                  * The BUSY state means that driver is ready to
2306                  * continue normal processing but waiting for controller
2307                  * to become available.
2308                  */
2309                 skdev->state = SKD_DRVR_STATE_BUSY;
2310                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2311                 return 0;
2312         }
2313
2314         /*
2315          * Drive has just come online, driver is either in startup,
2316          * paused performing a task, or bust waiting for hardware.
2317          */
2318         switch (skdev->state) {
2319         case SKD_DRVR_STATE_PAUSED:
2320         case SKD_DRVR_STATE_BUSY:
2321         case SKD_DRVR_STATE_BUSY_IMMINENT:
2322         case SKD_DRVR_STATE_BUSY_ERASE:
2323         case SKD_DRVR_STATE_STARTING:
2324         case SKD_DRVR_STATE_RESTARTING:
2325         case SKD_DRVR_STATE_FAULT:
2326         case SKD_DRVR_STATE_IDLE:
2327         case SKD_DRVR_STATE_LOAD:
2328                 skdev->state = SKD_DRVR_STATE_ONLINE;
2329                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2330                         skd_skdev_state_to_str(prev_driver_state),
2331                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2332                         skdev->state);
2333                 dev_dbg(&skdev->pdev->dev,
2334                         "**** device ONLINE...starting block queue\n");
2335                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2336                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2337                 schedule_work(&skdev->start_queue);
2338                 skdev->gendisk_on = 1;
2339                 wake_up_interruptible(&skdev->waitq);
2340                 break;
2341
2342         case SKD_DRVR_STATE_DISAPPEARED:
2343         default:
2344                 dev_dbg(&skdev->pdev->dev,
2345                         "**** driver state %d, not implemented\n",
2346                         skdev->state);
2347                 return -EBUSY;
2348         }
2349         return 0;
2350 }
2351
2352 /*
2353  *****************************************************************************
2354  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2355  *****************************************************************************
2356  */
2357
2358 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2359 {
2360         struct skd_device *skdev = skd_host_data;
2361         unsigned long flags;
2362
2363         spin_lock_irqsave(&skdev->lock, flags);
2364         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2365                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2366         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2367                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2368         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2369         spin_unlock_irqrestore(&skdev->lock, flags);
2370         return IRQ_HANDLED;
2371 }
2372
2373 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2374 {
2375         struct skd_device *skdev = skd_host_data;
2376         unsigned long flags;
2377
2378         spin_lock_irqsave(&skdev->lock, flags);
2379         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2380                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2381         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2382         skd_isr_fwstate(skdev);
2383         spin_unlock_irqrestore(&skdev->lock, flags);
2384         return IRQ_HANDLED;
2385 }
2386
2387 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2388 {
2389         struct skd_device *skdev = skd_host_data;
2390         unsigned long flags;
2391         int flush_enqueued = 0;
2392         int deferred;
2393
2394         spin_lock_irqsave(&skdev->lock, flags);
2395         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2396                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2397         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2398         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2399                                                 &flush_enqueued);
2400         if (flush_enqueued)
2401                 schedule_work(&skdev->start_queue);
2402
2403         if (deferred)
2404                 schedule_work(&skdev->completion_worker);
2405         else if (!flush_enqueued)
2406                 schedule_work(&skdev->start_queue);
2407
2408         spin_unlock_irqrestore(&skdev->lock, flags);
2409
2410         return IRQ_HANDLED;
2411 }
2412
2413 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2414 {
2415         struct skd_device *skdev = skd_host_data;
2416         unsigned long flags;
2417
2418         spin_lock_irqsave(&skdev->lock, flags);
2419         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2422         skd_isr_msg_from_dev(skdev);
2423         spin_unlock_irqrestore(&skdev->lock, flags);
2424         return IRQ_HANDLED;
2425 }
2426
2427 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2428 {
2429         struct skd_device *skdev = skd_host_data;
2430         unsigned long flags;
2431
2432         spin_lock_irqsave(&skdev->lock, flags);
2433         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2434                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2435         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2436         spin_unlock_irqrestore(&skdev->lock, flags);
2437         return IRQ_HANDLED;
2438 }
2439
2440 /*
2441  *****************************************************************************
2442  * PCIe MSI/MSI-X SETUP
2443  *****************************************************************************
2444  */
2445
2446 struct skd_msix_entry {
2447         char isr_name[30];
2448 };
2449
2450 struct skd_init_msix_entry {
2451         const char *name;
2452         irq_handler_t handler;
2453 };
2454
2455 #define SKD_MAX_MSIX_COUNT              13
2456 #define SKD_MIN_MSIX_COUNT              7
2457 #define SKD_BASE_MSIX_IRQ               4
2458
2459 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2460         { "(DMA 0)",        skd_reserved_isr },
2461         { "(DMA 1)",        skd_reserved_isr },
2462         { "(DMA 2)",        skd_reserved_isr },
2463         { "(DMA 3)",        skd_reserved_isr },
2464         { "(State Change)", skd_statec_isr   },
2465         { "(COMPL_Q)",      skd_comp_q       },
2466         { "(MSG)",          skd_msg_isr      },
2467         { "(Reserved)",     skd_reserved_isr },
2468         { "(Reserved)",     skd_reserved_isr },
2469         { "(Queue Full 0)", skd_qfull_isr    },
2470         { "(Queue Full 1)", skd_qfull_isr    },
2471         { "(Queue Full 2)", skd_qfull_isr    },
2472         { "(Queue Full 3)", skd_qfull_isr    },
2473 };
2474
2475 static int skd_acquire_msix(struct skd_device *skdev)
2476 {
2477         int i, rc;
2478         struct pci_dev *pdev = skdev->pdev;
2479
2480         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2481                         PCI_IRQ_MSIX);
2482         if (rc < 0) {
2483                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2484                 goto out;
2485         }
2486
2487         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2488                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2489         if (!skdev->msix_entries) {
2490                 rc = -ENOMEM;
2491                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2492                 goto out;
2493         }
2494
2495         /* Enable MSI-X vectors for the base queue */
2496         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2497                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2498
2499                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2500                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2501                          msix_entries[i].name);
2502
2503                 rc = devm_request_irq(&skdev->pdev->dev,
2504                                 pci_irq_vector(skdev->pdev, i),
2505                                 msix_entries[i].handler, 0,
2506                                 qentry->isr_name, skdev);
2507                 if (rc) {
2508                         dev_err(&skdev->pdev->dev,
2509                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2510                                 rc, i, qentry->isr_name);
2511                         goto msix_out;
2512                 }
2513         }
2514
2515         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2516                 SKD_MAX_MSIX_COUNT);
2517         return 0;
2518
2519 msix_out:
2520         while (--i >= 0)
2521                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2522 out:
2523         kfree(skdev->msix_entries);
2524         skdev->msix_entries = NULL;
2525         return rc;
2526 }
2527
2528 static int skd_acquire_irq(struct skd_device *skdev)
2529 {
2530         struct pci_dev *pdev = skdev->pdev;
2531         unsigned int irq_flag = PCI_IRQ_LEGACY;
2532         int rc;
2533
2534         if (skd_isr_type == SKD_IRQ_MSIX) {
2535                 rc = skd_acquire_msix(skdev);
2536                 if (!rc)
2537                         return 0;
2538
2539                 dev_err(&skdev->pdev->dev,
2540                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2541         }
2542
2543         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2544                         skdev->devno);
2545
2546         if (skd_isr_type != SKD_IRQ_LEGACY)
2547                 irq_flag |= PCI_IRQ_MSI;
2548         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2549         if (rc < 0) {
2550                 dev_err(&skdev->pdev->dev,
2551                         "failed to allocate the MSI interrupt %d\n", rc);
2552                 return rc;
2553         }
2554
2555         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2556                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2557                         skdev->isr_name, skdev);
2558         if (rc) {
2559                 pci_free_irq_vectors(pdev);
2560                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2561                         rc);
2562                 return rc;
2563         }
2564
2565         return 0;
2566 }
2567
2568 static void skd_release_irq(struct skd_device *skdev)
2569 {
2570         struct pci_dev *pdev = skdev->pdev;
2571
2572         if (skdev->msix_entries) {
2573                 int i;
2574
2575                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2576                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2577                                         skdev);
2578                 }
2579
2580                 kfree(skdev->msix_entries);
2581                 skdev->msix_entries = NULL;
2582         } else {
2583                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2584         }
2585
2586         pci_free_irq_vectors(pdev);
2587 }
2588
2589 /*
2590  *****************************************************************************
2591  * CONSTRUCT
2592  *****************************************************************************
2593  */
2594
2595 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2596                            dma_addr_t *dma_handle, gfp_t gfp,
2597                            enum dma_data_direction dir)
2598 {
2599         struct device *dev = &skdev->pdev->dev;
2600         void *buf;
2601
2602         buf = kmem_cache_alloc(s, gfp);
2603         if (!buf)
2604                 return NULL;
2605         *dma_handle = dma_map_single(dev, buf,
2606                                      kmem_cache_size(s), dir);
2607         if (dma_mapping_error(dev, *dma_handle)) {
2608                 kmem_cache_free(s, buf);
2609                 buf = NULL;
2610         }
2611         return buf;
2612 }
2613
2614 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2615                          void *vaddr, dma_addr_t dma_handle,
2616                          enum dma_data_direction dir)
2617 {
2618         if (!vaddr)
2619                 return;
2620
2621         dma_unmap_single(&skdev->pdev->dev, dma_handle,
2622                          kmem_cache_size(s), dir);
2623         kmem_cache_free(s, vaddr);
2624 }
2625
2626 static int skd_cons_skcomp(struct skd_device *skdev)
2627 {
2628         int rc = 0;
2629         struct fit_completion_entry_v1 *skcomp;
2630
2631         dev_dbg(&skdev->pdev->dev,
2632                 "comp pci_alloc, total bytes %zd entries %d\n",
2633                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2634
2635         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2636                                        &skdev->cq_dma_address);
2637
2638         if (skcomp == NULL) {
2639                 rc = -ENOMEM;
2640                 goto err_out;
2641         }
2642
2643         skdev->skcomp_table = skcomp;
2644         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2645                                                            sizeof(*skcomp) *
2646                                                            SKD_N_COMPLETION_ENTRY);
2647
2648 err_out:
2649         return rc;
2650 }
2651
2652 static int skd_cons_skmsg(struct skd_device *skdev)
2653 {
2654         int rc = 0;
2655         u32 i;
2656
2657         dev_dbg(&skdev->pdev->dev,
2658                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2659                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2660                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2661
2662         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2663                                      sizeof(struct skd_fitmsg_context),
2664                                      GFP_KERNEL);
2665         if (skdev->skmsg_table == NULL) {
2666                 rc = -ENOMEM;
2667                 goto err_out;
2668         }
2669
2670         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2671                 struct skd_fitmsg_context *skmsg;
2672
2673                 skmsg = &skdev->skmsg_table[i];
2674
2675                 skmsg->id = i + SKD_ID_FIT_MSG;
2676
2677                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2678                                                       SKD_N_FITMSG_BYTES,
2679                                                       &skmsg->mb_dma_address);
2680
2681                 if (skmsg->msg_buf == NULL) {
2682                         rc = -ENOMEM;
2683                         goto err_out;
2684                 }
2685
2686                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2687                      (FIT_QCMD_ALIGN - 1),
2688                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2689                      skmsg->msg_buf, skmsg->mb_dma_address);
2690                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2691         }
2692
2693 err_out:
2694         return rc;
2695 }
2696
2697 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2698                                                   u32 n_sg,
2699                                                   dma_addr_t *ret_dma_addr)
2700 {
2701         struct fit_sg_descriptor *sg_list;
2702
2703         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2704                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2705
2706         if (sg_list != NULL) {
2707                 uint64_t dma_address = *ret_dma_addr;
2708                 u32 i;
2709
2710                 for (i = 0; i < n_sg - 1; i++) {
2711                         uint64_t ndp_off;
2712                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2713
2714                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2715                 }
2716                 sg_list[i].next_desc_ptr = 0LL;
2717         }
2718
2719         return sg_list;
2720 }
2721
2722 static void skd_free_sg_list(struct skd_device *skdev,
2723                              struct fit_sg_descriptor *sg_list,
2724                              dma_addr_t dma_addr)
2725 {
2726         if (WARN_ON_ONCE(!sg_list))
2727                 return;
2728
2729         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2730                      DMA_TO_DEVICE);
2731 }
2732
2733 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2734                             unsigned int hctx_idx, unsigned int numa_node)
2735 {
2736         struct skd_device *skdev = set->driver_data;
2737         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2738
2739         skreq->state = SKD_REQ_STATE_IDLE;
2740         skreq->sg = (void *)(skreq + 1);
2741         sg_init_table(skreq->sg, skd_sgs_per_request);
2742         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2743                                             &skreq->sksg_dma_address);
2744
2745         return skreq->sksg_list ? 0 : -ENOMEM;
2746 }
2747
2748 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2749                              unsigned int hctx_idx)
2750 {
2751         struct skd_device *skdev = set->driver_data;
2752         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2753
2754         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2755 }
2756
2757 static int skd_cons_sksb(struct skd_device *skdev)
2758 {
2759         int rc = 0;
2760         struct skd_special_context *skspcl;
2761
2762         skspcl = &skdev->internal_skspcl;
2763
2764         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2765         skspcl->req.state = SKD_REQ_STATE_IDLE;
2766
2767         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2768                                          &skspcl->db_dma_address,
2769                                          GFP_DMA | __GFP_ZERO,
2770                                          DMA_BIDIRECTIONAL);
2771         if (skspcl->data_buf == NULL) {
2772                 rc = -ENOMEM;
2773                 goto err_out;
2774         }
2775
2776         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2777                                         &skspcl->mb_dma_address,
2778                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2779         if (skspcl->msg_buf == NULL) {
2780                 rc = -ENOMEM;
2781                 goto err_out;
2782         }
2783
2784         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2785                                                  &skspcl->req.sksg_dma_address);
2786         if (skspcl->req.sksg_list == NULL) {
2787                 rc = -ENOMEM;
2788                 goto err_out;
2789         }
2790
2791         if (!skd_format_internal_skspcl(skdev)) {
2792                 rc = -EINVAL;
2793                 goto err_out;
2794         }
2795
2796 err_out:
2797         return rc;
2798 }
2799
2800 static const struct blk_mq_ops skd_mq_ops = {
2801         .queue_rq       = skd_mq_queue_rq,
2802         .complete       = skd_complete_rq,
2803         .timeout        = skd_timed_out,
2804         .init_request   = skd_init_request,
2805         .exit_request   = skd_exit_request,
2806 };
2807
2808 static int skd_cons_disk(struct skd_device *skdev)
2809 {
2810         int rc = 0;
2811         struct gendisk *disk;
2812         struct request_queue *q;
2813         unsigned long flags;
2814
2815         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2816         if (!disk) {
2817                 rc = -ENOMEM;
2818                 goto err_out;
2819         }
2820
2821         skdev->disk = disk;
2822         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2823
2824         disk->major = skdev->major;
2825         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2826         disk->fops = &skd_blockdev_ops;
2827         disk->private_data = skdev;
2828
2829         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2830         skdev->tag_set.ops = &skd_mq_ops;
2831         skdev->tag_set.nr_hw_queues = 1;
2832         skdev->tag_set.queue_depth = skd_max_queue_depth;
2833         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2834                 skdev->sgs_per_request * sizeof(struct scatterlist);
2835         skdev->tag_set.numa_node = NUMA_NO_NODE;
2836         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2837                 BLK_MQ_F_SG_MERGE |
2838                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2839         skdev->tag_set.driver_data = skdev;
2840         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2841         if (rc)
2842                 goto err_out;
2843         q = blk_mq_init_queue(&skdev->tag_set);
2844         if (IS_ERR(q)) {
2845                 blk_mq_free_tag_set(&skdev->tag_set);
2846                 rc = PTR_ERR(q);
2847                 goto err_out;
2848         }
2849         q->queuedata = skdev;
2850
2851         skdev->queue = q;
2852         disk->queue = q;
2853
2854         blk_queue_write_cache(q, true, true);
2855         blk_queue_max_segments(q, skdev->sgs_per_request);
2856         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2857
2858         /* set optimal I/O size to 8KB */
2859         blk_queue_io_opt(q, 8192);
2860
2861         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2862         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2863
2864         blk_queue_rq_timeout(q, 8 * HZ);
2865
2866         spin_lock_irqsave(&skdev->lock, flags);
2867         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2868         blk_mq_stop_hw_queues(skdev->queue);
2869         spin_unlock_irqrestore(&skdev->lock, flags);
2870
2871 err_out:
2872         return rc;
2873 }
2874
2875 #define SKD_N_DEV_TABLE         16u
2876 static u32 skd_next_devno;
2877
2878 static struct skd_device *skd_construct(struct pci_dev *pdev)
2879 {
2880         struct skd_device *skdev;
2881         int blk_major = skd_major;
2882         size_t size;
2883         int rc;
2884
2885         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2886
2887         if (!skdev) {
2888                 dev_err(&pdev->dev, "memory alloc failure\n");
2889                 return NULL;
2890         }
2891
2892         skdev->state = SKD_DRVR_STATE_LOAD;
2893         skdev->pdev = pdev;
2894         skdev->devno = skd_next_devno++;
2895         skdev->major = blk_major;
2896         skdev->dev_max_queue_depth = 0;
2897
2898         skdev->num_req_context = skd_max_queue_depth;
2899         skdev->num_fitmsg_context = skd_max_queue_depth;
2900         skdev->cur_max_queue_depth = 1;
2901         skdev->queue_low_water_mark = 1;
2902         skdev->proto_ver = 99;
2903         skdev->sgs_per_request = skd_sgs_per_request;
2904         skdev->dbg_level = skd_dbg_level;
2905
2906         spin_lock_init(&skdev->lock);
2907
2908         INIT_WORK(&skdev->start_queue, skd_start_queue);
2909         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2910
2911         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2912         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2913                                                 SLAB_HWCACHE_ALIGN, NULL);
2914         if (!skdev->msgbuf_cache)
2915                 goto err_out;
2916         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2917                   "skd-msgbuf: %d < %zd\n",
2918                   kmem_cache_size(skdev->msgbuf_cache), size);
2919         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2920         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2921                                                 SLAB_HWCACHE_ALIGN, NULL);
2922         if (!skdev->sglist_cache)
2923                 goto err_out;
2924         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2925                   "skd-sglist: %d < %zd\n",
2926                   kmem_cache_size(skdev->sglist_cache), size);
2927         size = SKD_N_INTERNAL_BYTES;
2928         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2929                                                  SLAB_HWCACHE_ALIGN, NULL);
2930         if (!skdev->databuf_cache)
2931                 goto err_out;
2932         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2933                   "skd-databuf: %d < %zd\n",
2934                   kmem_cache_size(skdev->databuf_cache), size);
2935
2936         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2937         rc = skd_cons_skcomp(skdev);
2938         if (rc < 0)
2939                 goto err_out;
2940
2941         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2942         rc = skd_cons_skmsg(skdev);
2943         if (rc < 0)
2944                 goto err_out;
2945
2946         dev_dbg(&skdev->pdev->dev, "sksb\n");
2947         rc = skd_cons_sksb(skdev);
2948         if (rc < 0)
2949                 goto err_out;
2950
2951         dev_dbg(&skdev->pdev->dev, "disk\n");
2952         rc = skd_cons_disk(skdev);
2953         if (rc < 0)
2954                 goto err_out;
2955
2956         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2957         return skdev;
2958
2959 err_out:
2960         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2961         skd_destruct(skdev);
2962         return NULL;
2963 }
2964
2965 /*
2966  *****************************************************************************
2967  * DESTRUCT (FREE)
2968  *****************************************************************************
2969  */
2970
2971 static void skd_free_skcomp(struct skd_device *skdev)
2972 {
2973         if (skdev->skcomp_table)
2974                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2975                                     skdev->skcomp_table, skdev->cq_dma_address);
2976
2977         skdev->skcomp_table = NULL;
2978         skdev->cq_dma_address = 0;
2979 }
2980
2981 static void skd_free_skmsg(struct skd_device *skdev)
2982 {
2983         u32 i;
2984
2985         if (skdev->skmsg_table == NULL)
2986                 return;
2987
2988         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2989                 struct skd_fitmsg_context *skmsg;
2990
2991                 skmsg = &skdev->skmsg_table[i];
2992
2993                 if (skmsg->msg_buf != NULL) {
2994                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2995                                             skmsg->msg_buf,
2996                                             skmsg->mb_dma_address);
2997                 }
2998                 skmsg->msg_buf = NULL;
2999                 skmsg->mb_dma_address = 0;
3000         }
3001
3002         kfree(skdev->skmsg_table);
3003         skdev->skmsg_table = NULL;
3004 }
3005
3006 static void skd_free_sksb(struct skd_device *skdev)
3007 {
3008         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3009
3010         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3011                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3012
3013         skspcl->data_buf = NULL;
3014         skspcl->db_dma_address = 0;
3015
3016         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3017                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3018
3019         skspcl->msg_buf = NULL;
3020         skspcl->mb_dma_address = 0;
3021
3022         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3023                          skspcl->req.sksg_dma_address);
3024
3025         skspcl->req.sksg_list = NULL;
3026         skspcl->req.sksg_dma_address = 0;
3027 }
3028
3029 static void skd_free_disk(struct skd_device *skdev)
3030 {
3031         struct gendisk *disk = skdev->disk;
3032
3033         if (disk && (disk->flags & GENHD_FL_UP))
3034                 del_gendisk(disk);
3035
3036         if (skdev->queue) {
3037                 blk_cleanup_queue(skdev->queue);
3038                 skdev->queue = NULL;
3039                 if (disk)
3040                         disk->queue = NULL;
3041         }
3042
3043         if (skdev->tag_set.tags)
3044                 blk_mq_free_tag_set(&skdev->tag_set);
3045
3046         put_disk(disk);
3047         skdev->disk = NULL;
3048 }
3049
3050 static void skd_destruct(struct skd_device *skdev)
3051 {
3052         if (skdev == NULL)
3053                 return;
3054
3055         cancel_work_sync(&skdev->start_queue);
3056
3057         dev_dbg(&skdev->pdev->dev, "disk\n");
3058         skd_free_disk(skdev);
3059
3060         dev_dbg(&skdev->pdev->dev, "sksb\n");
3061         skd_free_sksb(skdev);
3062
3063         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3064         skd_free_skmsg(skdev);
3065
3066         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3067         skd_free_skcomp(skdev);
3068
3069         kmem_cache_destroy(skdev->databuf_cache);
3070         kmem_cache_destroy(skdev->sglist_cache);
3071         kmem_cache_destroy(skdev->msgbuf_cache);
3072
3073         dev_dbg(&skdev->pdev->dev, "skdev\n");
3074         kfree(skdev);
3075 }
3076
3077 /*
3078  *****************************************************************************
3079  * BLOCK DEVICE (BDEV) GLUE
3080  *****************************************************************************
3081  */
3082
3083 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3084 {
3085         struct skd_device *skdev;
3086         u64 capacity;
3087
3088         skdev = bdev->bd_disk->private_data;
3089
3090         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3091                 bdev->bd_disk->disk_name, current->comm);
3092
3093         if (skdev->read_cap_is_valid) {
3094                 capacity = get_capacity(skdev->disk);
3095                 geo->heads = 64;
3096                 geo->sectors = 255;
3097                 geo->cylinders = (capacity) / (255 * 64);
3098
3099                 return 0;
3100         }
3101         return -EIO;
3102 }
3103
3104 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3105 {
3106         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3107         device_add_disk(parent, skdev->disk);
3108         return 0;
3109 }
3110
3111 static const struct block_device_operations skd_blockdev_ops = {
3112         .owner          = THIS_MODULE,
3113         .getgeo         = skd_bdev_getgeo,
3114 };
3115
3116 /*
3117  *****************************************************************************
3118  * PCIe DRIVER GLUE
3119  *****************************************************************************
3120  */
3121
3122 static const struct pci_device_id skd_pci_tbl[] = {
3123         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3124           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3125         { 0 }                     /* terminate list */
3126 };
3127
3128 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3129
3130 static char *skd_pci_info(struct skd_device *skdev, char *str)
3131 {
3132         int pcie_reg;
3133
3134         strcpy(str, "PCIe (");
3135         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3136
3137         if (pcie_reg) {
3138
3139                 char lwstr[6];
3140                 uint16_t pcie_lstat, lspeed, lwidth;
3141
3142                 pcie_reg += 0x12;
3143                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3144                 lspeed = pcie_lstat & (0xF);
3145                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3146
3147                 if (lspeed == 1)
3148                         strcat(str, "2.5GT/s ");
3149                 else if (lspeed == 2)
3150                         strcat(str, "5.0GT/s ");
3151                 else
3152                         strcat(str, "<unknown> ");
3153                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3154                 strcat(str, lwstr);
3155         }
3156         return str;
3157 }
3158
3159 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3160 {
3161         int i;
3162         int rc = 0;
3163         char pci_str[32];
3164         struct skd_device *skdev;
3165
3166         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3167                 pdev->device);
3168
3169         rc = pci_enable_device(pdev);
3170         if (rc)
3171                 return rc;
3172         rc = pci_request_regions(pdev, DRV_NAME);
3173         if (rc)
3174                 goto err_out;
3175         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3176         if (!rc) {
3177                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3178                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3179                                 rc);
3180                 }
3181         } else {
3182                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3183                 if (rc) {
3184                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3185                         goto err_out_regions;
3186                 }
3187         }
3188
3189         if (!skd_major) {
3190                 rc = register_blkdev(0, DRV_NAME);
3191                 if (rc < 0)
3192                         goto err_out_regions;
3193                 BUG_ON(!rc);
3194                 skd_major = rc;
3195         }
3196
3197         skdev = skd_construct(pdev);
3198         if (skdev == NULL) {
3199                 rc = -ENOMEM;
3200                 goto err_out_regions;
3201         }
3202
3203         skd_pci_info(skdev, pci_str);
3204         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3205
3206         pci_set_master(pdev);
3207         rc = pci_enable_pcie_error_reporting(pdev);
3208         if (rc) {
3209                 dev_err(&pdev->dev,
3210                         "bad enable of PCIe error reporting rc=%d\n", rc);
3211                 skdev->pcie_error_reporting_is_enabled = 0;
3212         } else
3213                 skdev->pcie_error_reporting_is_enabled = 1;
3214
3215         pci_set_drvdata(pdev, skdev);
3216
3217         for (i = 0; i < SKD_MAX_BARS; i++) {
3218                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3219                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3220                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3221                                             skdev->mem_size[i]);
3222                 if (!skdev->mem_map[i]) {
3223                         dev_err(&pdev->dev,
3224                                 "Unable to map adapter memory!\n");
3225                         rc = -ENODEV;
3226                         goto err_out_iounmap;
3227                 }
3228                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3229                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3230                         skdev->mem_size[i]);
3231         }
3232
3233         rc = skd_acquire_irq(skdev);
3234         if (rc) {
3235                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3236                 goto err_out_iounmap;
3237         }
3238
3239         rc = skd_start_timer(skdev);
3240         if (rc)
3241                 goto err_out_timer;
3242
3243         init_waitqueue_head(&skdev->waitq);
3244
3245         skd_start_device(skdev);
3246
3247         rc = wait_event_interruptible_timeout(skdev->waitq,
3248                                               (skdev->gendisk_on),
3249                                               (SKD_START_WAIT_SECONDS * HZ));
3250         if (skdev->gendisk_on > 0) {
3251                 /* device came on-line after reset */
3252                 skd_bdev_attach(&pdev->dev, skdev);
3253                 rc = 0;
3254         } else {
3255                 /* we timed out, something is wrong with the device,
3256                    don't add the disk structure */
3257                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3258                         rc);
3259                 /* in case of no error; we timeout with ENXIO */
3260                 if (!rc)
3261                         rc = -ENXIO;
3262                 goto err_out_timer;
3263         }
3264
3265         return rc;
3266
3267 err_out_timer:
3268         skd_stop_device(skdev);
3269         skd_release_irq(skdev);
3270
3271 err_out_iounmap:
3272         for (i = 0; i < SKD_MAX_BARS; i++)
3273                 if (skdev->mem_map[i])
3274                         iounmap(skdev->mem_map[i]);
3275
3276         if (skdev->pcie_error_reporting_is_enabled)
3277                 pci_disable_pcie_error_reporting(pdev);
3278
3279         skd_destruct(skdev);
3280
3281 err_out_regions:
3282         pci_release_regions(pdev);
3283
3284 err_out:
3285         pci_disable_device(pdev);
3286         pci_set_drvdata(pdev, NULL);
3287         return rc;
3288 }
3289
3290 static void skd_pci_remove(struct pci_dev *pdev)
3291 {
3292         int i;
3293         struct skd_device *skdev;
3294
3295         skdev = pci_get_drvdata(pdev);
3296         if (!skdev) {
3297                 dev_err(&pdev->dev, "no device data for PCI\n");
3298                 return;
3299         }
3300         skd_stop_device(skdev);
3301         skd_release_irq(skdev);
3302
3303         for (i = 0; i < SKD_MAX_BARS; i++)
3304                 if (skdev->mem_map[i])
3305                         iounmap(skdev->mem_map[i]);
3306
3307         if (skdev->pcie_error_reporting_is_enabled)
3308                 pci_disable_pcie_error_reporting(pdev);
3309
3310         skd_destruct(skdev);
3311
3312         pci_release_regions(pdev);
3313         pci_disable_device(pdev);
3314         pci_set_drvdata(pdev, NULL);
3315
3316         return;
3317 }
3318
3319 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3320 {
3321         int i;
3322         struct skd_device *skdev;
3323
3324         skdev = pci_get_drvdata(pdev);
3325         if (!skdev) {
3326                 dev_err(&pdev->dev, "no device data for PCI\n");
3327                 return -EIO;
3328         }
3329
3330         skd_stop_device(skdev);
3331
3332         skd_release_irq(skdev);
3333
3334         for (i = 0; i < SKD_MAX_BARS; i++)
3335                 if (skdev->mem_map[i])
3336                         iounmap(skdev->mem_map[i]);
3337
3338         if (skdev->pcie_error_reporting_is_enabled)
3339                 pci_disable_pcie_error_reporting(pdev);
3340
3341         pci_release_regions(pdev);
3342         pci_save_state(pdev);
3343         pci_disable_device(pdev);
3344         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3345         return 0;
3346 }
3347
3348 static int skd_pci_resume(struct pci_dev *pdev)
3349 {
3350         int i;
3351         int rc = 0;
3352         struct skd_device *skdev;
3353
3354         skdev = pci_get_drvdata(pdev);
3355         if (!skdev) {
3356                 dev_err(&pdev->dev, "no device data for PCI\n");
3357                 return -1;
3358         }
3359
3360         pci_set_power_state(pdev, PCI_D0);
3361         pci_enable_wake(pdev, PCI_D0, 0);
3362         pci_restore_state(pdev);
3363
3364         rc = pci_enable_device(pdev);
3365         if (rc)
3366                 return rc;
3367         rc = pci_request_regions(pdev, DRV_NAME);
3368         if (rc)
3369                 goto err_out;
3370         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3371         if (!rc) {
3372                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3373
3374                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3375                                 rc);
3376                 }
3377         } else {
3378                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3379                 if (rc) {
3380
3381                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3382                         goto err_out_regions;
3383                 }
3384         }
3385
3386         pci_set_master(pdev);
3387         rc = pci_enable_pcie_error_reporting(pdev);
3388         if (rc) {
3389                 dev_err(&pdev->dev,
3390                         "bad enable of PCIe error reporting rc=%d\n", rc);
3391                 skdev->pcie_error_reporting_is_enabled = 0;
3392         } else
3393                 skdev->pcie_error_reporting_is_enabled = 1;
3394
3395         for (i = 0; i < SKD_MAX_BARS; i++) {
3396
3397                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3398                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3399                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3400                                             skdev->mem_size[i]);
3401                 if (!skdev->mem_map[i]) {
3402                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3403                         rc = -ENODEV;
3404                         goto err_out_iounmap;
3405                 }
3406                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3407                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3408                         skdev->mem_size[i]);
3409         }
3410         rc = skd_acquire_irq(skdev);
3411         if (rc) {
3412                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3413                 goto err_out_iounmap;
3414         }
3415
3416         rc = skd_start_timer(skdev);
3417         if (rc)
3418                 goto err_out_timer;
3419
3420         init_waitqueue_head(&skdev->waitq);
3421
3422         skd_start_device(skdev);
3423
3424         return rc;
3425
3426 err_out_timer:
3427         skd_stop_device(skdev);
3428         skd_release_irq(skdev);
3429
3430 err_out_iounmap:
3431         for (i = 0; i < SKD_MAX_BARS; i++)
3432                 if (skdev->mem_map[i])
3433                         iounmap(skdev->mem_map[i]);
3434
3435         if (skdev->pcie_error_reporting_is_enabled)
3436                 pci_disable_pcie_error_reporting(pdev);
3437
3438 err_out_regions:
3439         pci_release_regions(pdev);
3440
3441 err_out:
3442         pci_disable_device(pdev);
3443         return rc;
3444 }
3445
3446 static void skd_pci_shutdown(struct pci_dev *pdev)
3447 {
3448         struct skd_device *skdev;
3449
3450         dev_err(&pdev->dev, "%s called\n", __func__);
3451
3452         skdev = pci_get_drvdata(pdev);
3453         if (!skdev) {
3454                 dev_err(&pdev->dev, "no device data for PCI\n");
3455                 return;
3456         }
3457
3458         dev_err(&pdev->dev, "calling stop\n");
3459         skd_stop_device(skdev);
3460 }
3461
3462 static struct pci_driver skd_driver = {
3463         .name           = DRV_NAME,
3464         .id_table       = skd_pci_tbl,
3465         .probe          = skd_pci_probe,
3466         .remove         = skd_pci_remove,
3467         .suspend        = skd_pci_suspend,
3468         .resume         = skd_pci_resume,
3469         .shutdown       = skd_pci_shutdown,
3470 };
3471
3472 /*
3473  *****************************************************************************
3474  * LOGGING SUPPORT
3475  *****************************************************************************
3476  */
3477
3478 const char *skd_drive_state_to_str(int state)
3479 {
3480         switch (state) {
3481         case FIT_SR_DRIVE_OFFLINE:
3482                 return "OFFLINE";
3483         case FIT_SR_DRIVE_INIT:
3484                 return "INIT";
3485         case FIT_SR_DRIVE_ONLINE:
3486                 return "ONLINE";
3487         case FIT_SR_DRIVE_BUSY:
3488                 return "BUSY";
3489         case FIT_SR_DRIVE_FAULT:
3490                 return "FAULT";
3491         case FIT_SR_DRIVE_DEGRADED:
3492                 return "DEGRADED";
3493         case FIT_SR_PCIE_LINK_DOWN:
3494                 return "INK_DOWN";
3495         case FIT_SR_DRIVE_SOFT_RESET:
3496                 return "SOFT_RESET";
3497         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3498                 return "NEED_FW";
3499         case FIT_SR_DRIVE_INIT_FAULT:
3500                 return "INIT_FAULT";
3501         case FIT_SR_DRIVE_BUSY_SANITIZE:
3502                 return "BUSY_SANITIZE";
3503         case FIT_SR_DRIVE_BUSY_ERASE:
3504                 return "BUSY_ERASE";
3505         case FIT_SR_DRIVE_FW_BOOTING:
3506                 return "FW_BOOTING";
3507         default:
3508                 return "???";
3509         }
3510 }
3511
3512 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3513 {
3514         switch (state) {
3515         case SKD_DRVR_STATE_LOAD:
3516                 return "LOAD";
3517         case SKD_DRVR_STATE_IDLE:
3518                 return "IDLE";
3519         case SKD_DRVR_STATE_BUSY:
3520                 return "BUSY";
3521         case SKD_DRVR_STATE_STARTING:
3522                 return "STARTING";
3523         case SKD_DRVR_STATE_ONLINE:
3524                 return "ONLINE";
3525         case SKD_DRVR_STATE_PAUSING:
3526                 return "PAUSING";
3527         case SKD_DRVR_STATE_PAUSED:
3528                 return "PAUSED";
3529         case SKD_DRVR_STATE_RESTARTING:
3530                 return "RESTARTING";
3531         case SKD_DRVR_STATE_RESUMING:
3532                 return "RESUMING";
3533         case SKD_DRVR_STATE_STOPPING:
3534                 return "STOPPING";
3535         case SKD_DRVR_STATE_SYNCING:
3536                 return "SYNCING";
3537         case SKD_DRVR_STATE_FAULT:
3538                 return "FAULT";
3539         case SKD_DRVR_STATE_DISAPPEARED:
3540                 return "DISAPPEARED";
3541         case SKD_DRVR_STATE_BUSY_ERASE:
3542                 return "BUSY_ERASE";
3543         case SKD_DRVR_STATE_BUSY_SANITIZE:
3544                 return "BUSY_SANITIZE";
3545         case SKD_DRVR_STATE_BUSY_IMMINENT:
3546                 return "BUSY_IMMINENT";
3547         case SKD_DRVR_STATE_WAIT_BOOT:
3548                 return "WAIT_BOOT";
3549
3550         default:
3551                 return "???";
3552         }
3553 }
3554
3555 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3556 {
3557         switch (state) {
3558         case SKD_REQ_STATE_IDLE:
3559                 return "IDLE";
3560         case SKD_REQ_STATE_SETUP:
3561                 return "SETUP";
3562         case SKD_REQ_STATE_BUSY:
3563                 return "BUSY";
3564         case SKD_REQ_STATE_COMPLETED:
3565                 return "COMPLETED";
3566         case SKD_REQ_STATE_TIMEOUT:
3567                 return "TIMEOUT";
3568         default:
3569                 return "???";
3570         }
3571 }
3572
3573 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3574 {
3575         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3576         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3577                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3578                 skd_skdev_state_to_str(skdev->state), skdev->state);
3579         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3580                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3581                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3582         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3583                 skdev->skcomp_cycle, skdev->skcomp_ix);
3584 }
3585
3586 static void skd_log_skreq(struct skd_device *skdev,
3587                           struct skd_request_context *skreq, const char *event)
3588 {
3589         struct request *req = blk_mq_rq_from_pdu(skreq);
3590         u32 lba = blk_rq_pos(req);
3591         u32 count = blk_rq_sectors(req);
3592
3593         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3594         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3595                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3596                 skreq->fitmsg_id);
3597         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3598                 skreq->data_dir, skreq->n_sg);
3599
3600         dev_dbg(&skdev->pdev->dev,
3601                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3602                 count, count, (int)rq_data_dir(req));
3603 }
3604
3605 /*
3606  *****************************************************************************
3607  * MODULE GLUE
3608  *****************************************************************************
3609  */
3610
3611 static int __init skd_init(void)
3612 {
3613         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3614         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3615         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3616         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3617         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3618         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3619         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3620         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3621
3622         switch (skd_isr_type) {
3623         case SKD_IRQ_LEGACY:
3624         case SKD_IRQ_MSI:
3625         case SKD_IRQ_MSIX:
3626                 break;
3627         default:
3628                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3629                        skd_isr_type, SKD_IRQ_DEFAULT);
3630                 skd_isr_type = SKD_IRQ_DEFAULT;
3631         }
3632
3633         if (skd_max_queue_depth < 1 ||
3634             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3635                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3636                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3637                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3638         }
3639
3640         if (skd_max_req_per_msg < 1 ||
3641             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3642                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3643                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3644                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3645         }
3646
3647         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3648                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3649                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3650                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3651         }
3652
3653         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3654                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3655                        skd_dbg_level, 0);
3656                 skd_dbg_level = 0;
3657         }
3658
3659         if (skd_isr_comp_limit < 0) {
3660                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3661                        skd_isr_comp_limit, 0);
3662                 skd_isr_comp_limit = 0;
3663         }
3664
3665         return pci_register_driver(&skd_driver);
3666 }
3667
3668 static void __exit skd_exit(void)
3669 {
3670         pci_unregister_driver(&skd_driver);
3671
3672         if (skd_major)
3673                 unregister_blkdev(skd_major, DRV_NAME);
3674 }
3675
3676 module_init(skd_init);
3677 module_exit(skd_exit);