Merge tag 'pinctrl-v4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
40
41 #include "skd_s1120.h"
42
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
45
46 #define SKD_ASSERT(expr) \
47         do { \
48                 if (unlikely(!(expr))) { \
49                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
50                                # expr, __FILE__, __func__, __LINE__); \
51                 } \
52         } while (0)
53
54 #define DRV_NAME "skd"
55 #define PFX DRV_NAME ": "
56
57 MODULE_LICENSE("GPL");
58
59 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
60
61 #define PCI_VENDOR_ID_STEC      0x1B39
62 #define PCI_DEVICE_ID_S1120     0x0001
63
64 #define SKD_FUA_NV              (1 << 1)
65 #define SKD_MINORS_PER_DEVICE   16
66
67 #define SKD_MAX_QUEUE_DEPTH     200u
68
69 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
70
71 #define SKD_N_FITMSG_BYTES      (512u)
72 #define SKD_MAX_REQ_PER_MSG     14
73
74 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
75
76 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
77  * 128KB limit.  That allows 4096*4K = 16M xfer size
78  */
79 #define SKD_N_SG_PER_REQ_DEFAULT 256u
80
81 #define SKD_N_COMPLETION_ENTRY  256u
82 #define SKD_N_READ_CAP_BYTES    (8u)
83
84 #define SKD_N_INTERNAL_BYTES    (512u)
85
86 #define SKD_SKCOMP_SIZE                                                 \
87         ((sizeof(struct fit_completion_entry_v1) +                      \
88           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
89
90 /* 5 bits of uniqifier, 0xF800 */
91 #define SKD_ID_TABLE_MASK       (3u << 8u)
92 #define  SKD_ID_RW_REQUEST      (0u << 8u)
93 #define  SKD_ID_INTERNAL        (1u << 8u)
94 #define  SKD_ID_FIT_MSG         (3u << 8u)
95 #define SKD_ID_SLOT_MASK        0x00FFu
96 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
97
98 #define SKD_N_MAX_SECTORS 2048u
99
100 #define SKD_MAX_RETRIES 2u
101
102 #define SKD_TIMER_SECONDS(seconds) (seconds)
103 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
104
105 #define INQ_STD_NBYTES 36
106
107 enum skd_drvr_state {
108         SKD_DRVR_STATE_LOAD,
109         SKD_DRVR_STATE_IDLE,
110         SKD_DRVR_STATE_BUSY,
111         SKD_DRVR_STATE_STARTING,
112         SKD_DRVR_STATE_ONLINE,
113         SKD_DRVR_STATE_PAUSING,
114         SKD_DRVR_STATE_PAUSED,
115         SKD_DRVR_STATE_RESTARTING,
116         SKD_DRVR_STATE_RESUMING,
117         SKD_DRVR_STATE_STOPPING,
118         SKD_DRVR_STATE_FAULT,
119         SKD_DRVR_STATE_DISAPPEARED,
120         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
121         SKD_DRVR_STATE_BUSY_ERASE,
122         SKD_DRVR_STATE_BUSY_SANITIZE,
123         SKD_DRVR_STATE_BUSY_IMMINENT,
124         SKD_DRVR_STATE_WAIT_BOOT,
125         SKD_DRVR_STATE_SYNCING,
126 };
127
128 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
129 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
130 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
131 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
132 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
133 #define SKD_START_WAIT_SECONDS  90u
134
135 enum skd_req_state {
136         SKD_REQ_STATE_IDLE,
137         SKD_REQ_STATE_SETUP,
138         SKD_REQ_STATE_BUSY,
139         SKD_REQ_STATE_COMPLETED,
140         SKD_REQ_STATE_TIMEOUT,
141 };
142
143 enum skd_check_status_action {
144         SKD_CHECK_STATUS_REPORT_GOOD,
145         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
146         SKD_CHECK_STATUS_REQUEUE_REQUEST,
147         SKD_CHECK_STATUS_REPORT_ERROR,
148         SKD_CHECK_STATUS_BUSY_IMMINENT,
149 };
150
151 struct skd_msg_buf {
152         struct fit_msg_hdr      fmh;
153         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
154 };
155
156 struct skd_fitmsg_context {
157         u32 id;
158
159         u32 length;
160
161         struct skd_msg_buf *msg_buf;
162         dma_addr_t mb_dma_address;
163 };
164
165 struct skd_request_context {
166         enum skd_req_state state;
167
168         u16 id;
169         u32 fitmsg_id;
170
171         u8 flush_cmd;
172
173         enum dma_data_direction data_dir;
174         struct scatterlist *sg;
175         u32 n_sg;
176         u32 sg_byte_count;
177
178         struct fit_sg_descriptor *sksg_list;
179         dma_addr_t sksg_dma_address;
180
181         struct fit_completion_entry_v1 completion;
182
183         struct fit_comp_error_info err_info;
184
185         blk_status_t status;
186 };
187
188 struct skd_special_context {
189         struct skd_request_context req;
190
191         void *data_buf;
192         dma_addr_t db_dma_address;
193
194         struct skd_msg_buf *msg_buf;
195         dma_addr_t mb_dma_address;
196 };
197
198 typedef enum skd_irq_type {
199         SKD_IRQ_LEGACY,
200         SKD_IRQ_MSI,
201         SKD_IRQ_MSIX
202 } skd_irq_type_t;
203
204 #define SKD_MAX_BARS                    2
205
206 struct skd_device {
207         void __iomem *mem_map[SKD_MAX_BARS];
208         resource_size_t mem_phys[SKD_MAX_BARS];
209         u32 mem_size[SKD_MAX_BARS];
210
211         struct skd_msix_entry *msix_entries;
212
213         struct pci_dev *pdev;
214         int pcie_error_reporting_is_enabled;
215
216         spinlock_t lock;
217         struct gendisk *disk;
218         struct blk_mq_tag_set tag_set;
219         struct request_queue *queue;
220         struct skd_fitmsg_context *skmsg;
221         struct device *class_dev;
222         int gendisk_on;
223         int sync_done;
224
225         u32 devno;
226         u32 major;
227         char isr_name[30];
228
229         enum skd_drvr_state state;
230         u32 drive_state;
231
232         u32 cur_max_queue_depth;
233         u32 queue_low_water_mark;
234         u32 dev_max_queue_depth;
235
236         u32 num_fitmsg_context;
237         u32 num_req_context;
238
239         struct skd_fitmsg_context *skmsg_table;
240
241         struct skd_special_context internal_skspcl;
242         u32 read_cap_blocksize;
243         u32 read_cap_last_lba;
244         int read_cap_is_valid;
245         int inquiry_is_valid;
246         u8 inq_serial_num[13];  /*12 chars plus null term */
247
248         u8 skcomp_cycle;
249         u32 skcomp_ix;
250         struct kmem_cache *msgbuf_cache;
251         struct kmem_cache *sglist_cache;
252         struct kmem_cache *databuf_cache;
253         struct fit_completion_entry_v1 *skcomp_table;
254         struct fit_comp_error_info *skerr_table;
255         dma_addr_t cq_dma_address;
256
257         wait_queue_head_t waitq;
258
259         struct timer_list timer;
260         u32 timer_countdown;
261         u32 timer_substate;
262
263         int sgs_per_request;
264         u32 last_mtd;
265
266         u32 proto_ver;
267
268         int dbg_level;
269         u32 connect_time_stamp;
270         int connect_retries;
271 #define SKD_MAX_CONNECT_RETRIES 16
272         u32 drive_jiffies;
273
274         u32 timo_slot;
275
276         struct work_struct start_queue;
277         struct work_struct completion_worker;
278 };
279
280 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
281 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
282 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
283
284 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
285 {
286         u32 val = readl(skdev->mem_map[1] + offset);
287
288         if (unlikely(skdev->dbg_level >= 2))
289                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
290         return val;
291 }
292
293 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
294                                    u32 offset)
295 {
296         writel(val, skdev->mem_map[1] + offset);
297         if (unlikely(skdev->dbg_level >= 2))
298                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
299 }
300
301 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
302                                    u32 offset)
303 {
304         writeq(val, skdev->mem_map[1] + offset);
305         if (unlikely(skdev->dbg_level >= 2))
306                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
307                         val);
308 }
309
310
311 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
312 static int skd_isr_type = SKD_IRQ_DEFAULT;
313
314 module_param(skd_isr_type, int, 0444);
315 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
316                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
317
318 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
319 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
320
321 module_param(skd_max_req_per_msg, int, 0444);
322 MODULE_PARM_DESC(skd_max_req_per_msg,
323                  "Maximum SCSI requests packed in a single message."
324                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
325
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
328 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
329
330 module_param(skd_max_queue_depth, int, 0444);
331 MODULE_PARM_DESC(skd_max_queue_depth,
332                  "Maximum SCSI requests issued to s1120."
333                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
334
335 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
336 module_param(skd_sgs_per_request, int, 0444);
337 MODULE_PARM_DESC(skd_sgs_per_request,
338                  "Maximum SG elements per block request."
339                  " (1-4096, default==256)");
340
341 static int skd_max_pass_thru = 1;
342 module_param(skd_max_pass_thru, int, 0444);
343 MODULE_PARM_DESC(skd_max_pass_thru,
344                  "Maximum SCSI pass-thru at a time. IGNORED");
345
346 module_param(skd_dbg_level, int, 0444);
347 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
348
349 module_param(skd_isr_comp_limit, int, 0444);
350 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
351
352 /* Major device number dynamically assigned. */
353 static u32 skd_major;
354
355 static void skd_destruct(struct skd_device *skdev);
356 static const struct block_device_operations skd_blockdev_ops;
357 static void skd_send_fitmsg(struct skd_device *skdev,
358                             struct skd_fitmsg_context *skmsg);
359 static void skd_send_special_fitmsg(struct skd_device *skdev,
360                                     struct skd_special_context *skspcl);
361 static bool skd_preop_sg_list(struct skd_device *skdev,
362                              struct skd_request_context *skreq);
363 static void skd_postop_sg_list(struct skd_device *skdev,
364                                struct skd_request_context *skreq);
365
366 static void skd_restart_device(struct skd_device *skdev);
367 static int skd_quiesce_dev(struct skd_device *skdev);
368 static int skd_unquiesce_dev(struct skd_device *skdev);
369 static void skd_disable_interrupts(struct skd_device *skdev);
370 static void skd_isr_fwstate(struct skd_device *skdev);
371 static void skd_recover_requests(struct skd_device *skdev);
372 static void skd_soft_reset(struct skd_device *skdev);
373
374 const char *skd_drive_state_to_str(int state);
375 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
376 static void skd_log_skdev(struct skd_device *skdev, const char *event);
377 static void skd_log_skreq(struct skd_device *skdev,
378                           struct skd_request_context *skreq, const char *event);
379
380 /*
381  *****************************************************************************
382  * READ/WRITE REQUESTS
383  *****************************************************************************
384  */
385 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
386 {
387         int *count = data;
388
389         count++;
390 }
391
392 static int skd_in_flight(struct skd_device *skdev)
393 {
394         int count = 0;
395
396         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397
398         return count;
399 }
400
401 static void
402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403                 int data_dir, unsigned lba,
404                 unsigned count)
405 {
406         if (data_dir == READ)
407                 scsi_req->cdb[0] = READ_10;
408         else
409                 scsi_req->cdb[0] = WRITE_10;
410
411         scsi_req->cdb[1] = 0;
412         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415         scsi_req->cdb[5] = (lba & 0xff);
416         scsi_req->cdb[6] = 0;
417         scsi_req->cdb[7] = (count & 0xff00) >> 8;
418         scsi_req->cdb[8] = count & 0xff;
419         scsi_req->cdb[9] = 0;
420 }
421
422 static void
423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424                             struct skd_request_context *skreq)
425 {
426         skreq->flush_cmd = 1;
427
428         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429         scsi_req->cdb[1] = 0;
430         scsi_req->cdb[2] = 0;
431         scsi_req->cdb[3] = 0;
432         scsi_req->cdb[4] = 0;
433         scsi_req->cdb[5] = 0;
434         scsi_req->cdb[6] = 0;
435         scsi_req->cdb[7] = 0;
436         scsi_req->cdb[8] = 0;
437         scsi_req->cdb[9] = 0;
438 }
439
440 /*
441  * Return true if and only if all pending requests should be failed.
442  */
443 static bool skd_fail_all(struct request_queue *q)
444 {
445         struct skd_device *skdev = q->queuedata;
446
447         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448
449         skd_log_skdev(skdev, "req_not_online");
450         switch (skdev->state) {
451         case SKD_DRVR_STATE_PAUSING:
452         case SKD_DRVR_STATE_PAUSED:
453         case SKD_DRVR_STATE_STARTING:
454         case SKD_DRVR_STATE_RESTARTING:
455         case SKD_DRVR_STATE_WAIT_BOOT:
456         /* In case of starting, we haven't started the queue,
457          * so we can't get here... but requests are
458          * possibly hanging out waiting for us because we
459          * reported the dev/skd0 already.  They'll wait
460          * forever if connect doesn't complete.
461          * What to do??? delay dev/skd0 ??
462          */
463         case SKD_DRVR_STATE_BUSY:
464         case SKD_DRVR_STATE_BUSY_IMMINENT:
465         case SKD_DRVR_STATE_BUSY_ERASE:
466                 return false;
467
468         case SKD_DRVR_STATE_BUSY_SANITIZE:
469         case SKD_DRVR_STATE_STOPPING:
470         case SKD_DRVR_STATE_SYNCING:
471         case SKD_DRVR_STATE_FAULT:
472         case SKD_DRVR_STATE_DISAPPEARED:
473         default:
474                 return true;
475         }
476 }
477
478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479                                     const struct blk_mq_queue_data *mqd)
480 {
481         struct request *const req = mqd->rq;
482         struct request_queue *const q = req->q;
483         struct skd_device *skdev = q->queuedata;
484         struct skd_fitmsg_context *skmsg;
485         struct fit_msg_hdr *fmh;
486         const u32 tag = blk_mq_unique_tag(req);
487         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488         struct skd_scsi_request *scsi_req;
489         unsigned long flags = 0;
490         const u32 lba = blk_rq_pos(req);
491         const u32 count = blk_rq_sectors(req);
492         const int data_dir = rq_data_dir(req);
493
494         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496
497         blk_mq_start_request(req);
498
499         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
500                   tag, skd_max_queue_depth, q->nr_requests);
501
502         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
503
504         dev_dbg(&skdev->pdev->dev,
505                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
506                 lba, count, count, data_dir);
507
508         skreq->id = tag + SKD_ID_RW_REQUEST;
509         skreq->flush_cmd = 0;
510         skreq->n_sg = 0;
511         skreq->sg_byte_count = 0;
512
513         skreq->fitmsg_id = 0;
514
515         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
516
517         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
518                 dev_dbg(&skdev->pdev->dev, "error Out\n");
519                 skreq->status = BLK_STS_RESOURCE;
520                 blk_mq_complete_request(req);
521                 return BLK_STS_OK;
522         }
523
524         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
525                                    skreq->n_sg *
526                                    sizeof(struct fit_sg_descriptor),
527                                    DMA_TO_DEVICE);
528
529         /* Either a FIT msg is in progress or we have to start one. */
530         if (skd_max_req_per_msg == 1) {
531                 skmsg = NULL;
532         } else {
533                 spin_lock_irqsave(&skdev->lock, flags);
534                 skmsg = skdev->skmsg;
535         }
536         if (!skmsg) {
537                 skmsg = &skdev->skmsg_table[tag];
538                 skdev->skmsg = skmsg;
539
540                 /* Initialize the FIT msg header */
541                 fmh = &skmsg->msg_buf->fmh;
542                 memset(fmh, 0, sizeof(*fmh));
543                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
544                 skmsg->length = sizeof(*fmh);
545         } else {
546                 fmh = &skmsg->msg_buf->fmh;
547         }
548
549         skreq->fitmsg_id = skmsg->id;
550
551         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
552         memset(scsi_req, 0, sizeof(*scsi_req));
553
554         scsi_req->hdr.tag = skreq->id;
555         scsi_req->hdr.sg_list_dma_address =
556                 cpu_to_be64(skreq->sksg_dma_address);
557
558         if (req_op(req) == REQ_OP_FLUSH) {
559                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
560                 SKD_ASSERT(skreq->flush_cmd == 1);
561         } else {
562                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
563         }
564
565         if (req->cmd_flags & REQ_FUA)
566                 scsi_req->cdb[1] |= SKD_FUA_NV;
567
568         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
569
570         /* Complete resource allocations. */
571         skreq->state = SKD_REQ_STATE_BUSY;
572
573         skmsg->length += sizeof(struct skd_scsi_request);
574         fmh->num_protocol_cmds_coalesced++;
575
576         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
577                 skd_in_flight(skdev));
578
579         /*
580          * If the FIT msg buffer is full send it.
581          */
582         if (skd_max_req_per_msg == 1) {
583                 skd_send_fitmsg(skdev, skmsg);
584         } else {
585                 if (mqd->last ||
586                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
587                         skd_send_fitmsg(skdev, skmsg);
588                         skdev->skmsg = NULL;
589                 }
590                 spin_unlock_irqrestore(&skdev->lock, flags);
591         }
592
593         return BLK_STS_OK;
594 }
595
596 static enum blk_eh_timer_return skd_timed_out(struct request *req,
597                                               bool reserved)
598 {
599         struct skd_device *skdev = req->q->queuedata;
600
601         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
602                 blk_mq_unique_tag(req));
603
604         return BLK_EH_RESET_TIMER;
605 }
606
607 static void skd_complete_rq(struct request *req)
608 {
609         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
610
611         blk_mq_end_request(req, skreq->status);
612 }
613
614 static bool skd_preop_sg_list(struct skd_device *skdev,
615                              struct skd_request_context *skreq)
616 {
617         struct request *req = blk_mq_rq_from_pdu(skreq);
618         struct scatterlist *sgl = &skreq->sg[0], *sg;
619         int n_sg;
620         int i;
621
622         skreq->sg_byte_count = 0;
623
624         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
625                      skreq->data_dir != DMA_FROM_DEVICE);
626
627         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
628         if (n_sg <= 0)
629                 return false;
630
631         /*
632          * Map scatterlist to PCI bus addresses.
633          * Note PCI might change the number of entries.
634          */
635         n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
636         if (n_sg <= 0)
637                 return false;
638
639         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
640
641         skreq->n_sg = n_sg;
642
643         for_each_sg(sgl, sg, n_sg, i) {
644                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
645                 u32 cnt = sg_dma_len(sg);
646                 uint64_t dma_addr = sg_dma_address(sg);
647
648                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
649                 sgd->byte_count = cnt;
650                 skreq->sg_byte_count += cnt;
651                 sgd->host_side_addr = dma_addr;
652                 sgd->dev_side_addr = 0;
653         }
654
655         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
656         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
657
658         if (unlikely(skdev->dbg_level > 1)) {
659                 dev_dbg(&skdev->pdev->dev,
660                         "skreq=%x sksg_list=%p sksg_dma=%pad\n",
661                         skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
662                 for (i = 0; i < n_sg; i++) {
663                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
664
665                         dev_dbg(&skdev->pdev->dev,
666                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
667                                 i, sgd->byte_count, sgd->control,
668                                 sgd->host_side_addr, sgd->next_desc_ptr);
669                 }
670         }
671
672         return true;
673 }
674
675 static void skd_postop_sg_list(struct skd_device *skdev,
676                                struct skd_request_context *skreq)
677 {
678         /*
679          * restore the next ptr for next IO request so we
680          * don't have to set it every time.
681          */
682         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
683                 skreq->sksg_dma_address +
684                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
685         dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
686                      skreq->data_dir);
687 }
688
689 /*
690  *****************************************************************************
691  * TIMER
692  *****************************************************************************
693  */
694
695 static void skd_timer_tick_not_online(struct skd_device *skdev);
696
697 static void skd_start_queue(struct work_struct *work)
698 {
699         struct skd_device *skdev = container_of(work, typeof(*skdev),
700                                                 start_queue);
701
702         /*
703          * Although it is safe to call blk_start_queue() from interrupt
704          * context, blk_mq_start_hw_queues() must not be called from
705          * interrupt context.
706          */
707         blk_mq_start_hw_queues(skdev->queue);
708 }
709
710 static void skd_timer_tick(struct timer_list *t)
711 {
712         struct skd_device *skdev = from_timer(skdev, t, timer);
713         unsigned long reqflags;
714         u32 state;
715
716         if (skdev->state == SKD_DRVR_STATE_FAULT)
717                 /* The driver has declared fault, and we want it to
718                  * stay that way until driver is reloaded.
719                  */
720                 return;
721
722         spin_lock_irqsave(&skdev->lock, reqflags);
723
724         state = SKD_READL(skdev, FIT_STATUS);
725         state &= FIT_SR_DRIVE_STATE_MASK;
726         if (state != skdev->drive_state)
727                 skd_isr_fwstate(skdev);
728
729         if (skdev->state != SKD_DRVR_STATE_ONLINE)
730                 skd_timer_tick_not_online(skdev);
731
732         mod_timer(&skdev->timer, (jiffies + HZ));
733
734         spin_unlock_irqrestore(&skdev->lock, reqflags);
735 }
736
737 static void skd_timer_tick_not_online(struct skd_device *skdev)
738 {
739         switch (skdev->state) {
740         case SKD_DRVR_STATE_IDLE:
741         case SKD_DRVR_STATE_LOAD:
742                 break;
743         case SKD_DRVR_STATE_BUSY_SANITIZE:
744                 dev_dbg(&skdev->pdev->dev,
745                         "drive busy sanitize[%x], driver[%x]\n",
746                         skdev->drive_state, skdev->state);
747                 /* If we've been in sanitize for 3 seconds, we figure we're not
748                  * going to get anymore completions, so recover requests now
749                  */
750                 if (skdev->timer_countdown > 0) {
751                         skdev->timer_countdown--;
752                         return;
753                 }
754                 skd_recover_requests(skdev);
755                 break;
756
757         case SKD_DRVR_STATE_BUSY:
758         case SKD_DRVR_STATE_BUSY_IMMINENT:
759         case SKD_DRVR_STATE_BUSY_ERASE:
760                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
761                         skdev->state, skdev->timer_countdown);
762                 if (skdev->timer_countdown > 0) {
763                         skdev->timer_countdown--;
764                         return;
765                 }
766                 dev_dbg(&skdev->pdev->dev,
767                         "busy[%x], timedout=%d, restarting device.",
768                         skdev->state, skdev->timer_countdown);
769                 skd_restart_device(skdev);
770                 break;
771
772         case SKD_DRVR_STATE_WAIT_BOOT:
773         case SKD_DRVR_STATE_STARTING:
774                 if (skdev->timer_countdown > 0) {
775                         skdev->timer_countdown--;
776                         return;
777                 }
778                 /* For now, we fault the drive.  Could attempt resets to
779                  * revcover at some point. */
780                 skdev->state = SKD_DRVR_STATE_FAULT;
781
782                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
783                         skdev->drive_state);
784
785                 /*start the queue so we can respond with error to requests */
786                 /* wakeup anyone waiting for startup complete */
787                 schedule_work(&skdev->start_queue);
788                 skdev->gendisk_on = -1;
789                 wake_up_interruptible(&skdev->waitq);
790                 break;
791
792         case SKD_DRVR_STATE_ONLINE:
793                 /* shouldn't get here. */
794                 break;
795
796         case SKD_DRVR_STATE_PAUSING:
797         case SKD_DRVR_STATE_PAUSED:
798                 break;
799
800         case SKD_DRVR_STATE_RESTARTING:
801                 if (skdev->timer_countdown > 0) {
802                         skdev->timer_countdown--;
803                         return;
804                 }
805                 /* For now, we fault the drive. Could attempt resets to
806                  * revcover at some point. */
807                 skdev->state = SKD_DRVR_STATE_FAULT;
808                 dev_err(&skdev->pdev->dev,
809                         "DriveFault Reconnect Timeout (%x)\n",
810                         skdev->drive_state);
811
812                 /*
813                  * Recovering does two things:
814                  * 1. completes IO with error
815                  * 2. reclaims dma resources
816                  * When is it safe to recover requests?
817                  * - if the drive state is faulted
818                  * - if the state is still soft reset after out timeout
819                  * - if the drive registers are dead (state = FF)
820                  * If it is "unsafe", we still need to recover, so we will
821                  * disable pci bus mastering and disable our interrupts.
822                  */
823
824                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
825                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
826                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
827                         /* It never came out of soft reset. Try to
828                          * recover the requests and then let them
829                          * fail. This is to mitigate hung processes. */
830                         skd_recover_requests(skdev);
831                 else {
832                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
833                                 skdev->drive_state);
834                         pci_disable_device(skdev->pdev);
835                         skd_disable_interrupts(skdev);
836                         skd_recover_requests(skdev);
837                 }
838
839                 /*start the queue so we can respond with error to requests */
840                 /* wakeup anyone waiting for startup complete */
841                 schedule_work(&skdev->start_queue);
842                 skdev->gendisk_on = -1;
843                 wake_up_interruptible(&skdev->waitq);
844                 break;
845
846         case SKD_DRVR_STATE_RESUMING:
847         case SKD_DRVR_STATE_STOPPING:
848         case SKD_DRVR_STATE_SYNCING:
849         case SKD_DRVR_STATE_FAULT:
850         case SKD_DRVR_STATE_DISAPPEARED:
851         default:
852                 break;
853         }
854 }
855
856 static int skd_start_timer(struct skd_device *skdev)
857 {
858         int rc;
859
860         timer_setup(&skdev->timer, skd_timer_tick, 0);
861
862         rc = mod_timer(&skdev->timer, (jiffies + HZ));
863         if (rc)
864                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
865         return rc;
866 }
867
868 static void skd_kill_timer(struct skd_device *skdev)
869 {
870         del_timer_sync(&skdev->timer);
871 }
872
873 /*
874  *****************************************************************************
875  * INTERNAL REQUESTS -- generated by driver itself
876  *****************************************************************************
877  */
878
879 static int skd_format_internal_skspcl(struct skd_device *skdev)
880 {
881         struct skd_special_context *skspcl = &skdev->internal_skspcl;
882         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
883         struct fit_msg_hdr *fmh;
884         uint64_t dma_address;
885         struct skd_scsi_request *scsi;
886
887         fmh = &skspcl->msg_buf->fmh;
888         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
889         fmh->num_protocol_cmds_coalesced = 1;
890
891         scsi = &skspcl->msg_buf->scsi[0];
892         memset(scsi, 0, sizeof(*scsi));
893         dma_address = skspcl->req.sksg_dma_address;
894         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
895         skspcl->req.n_sg = 1;
896         sgd->control = FIT_SGD_CONTROL_LAST;
897         sgd->byte_count = 0;
898         sgd->host_side_addr = skspcl->db_dma_address;
899         sgd->dev_side_addr = 0;
900         sgd->next_desc_ptr = 0LL;
901
902         return 1;
903 }
904
905 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
906
907 static void skd_send_internal_skspcl(struct skd_device *skdev,
908                                      struct skd_special_context *skspcl,
909                                      u8 opcode)
910 {
911         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
912         struct skd_scsi_request *scsi;
913         unsigned char *buf = skspcl->data_buf;
914         int i;
915
916         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
917                 /*
918                  * A refresh is already in progress.
919                  * Just wait for it to finish.
920                  */
921                 return;
922
923         skspcl->req.state = SKD_REQ_STATE_BUSY;
924
925         scsi = &skspcl->msg_buf->scsi[0];
926         scsi->hdr.tag = skspcl->req.id;
927
928         memset(scsi->cdb, 0, sizeof(scsi->cdb));
929
930         switch (opcode) {
931         case TEST_UNIT_READY:
932                 scsi->cdb[0] = TEST_UNIT_READY;
933                 sgd->byte_count = 0;
934                 scsi->hdr.sg_list_len_bytes = 0;
935                 break;
936
937         case READ_CAPACITY:
938                 scsi->cdb[0] = READ_CAPACITY;
939                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
940                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
941                 break;
942
943         case INQUIRY:
944                 scsi->cdb[0] = INQUIRY;
945                 scsi->cdb[1] = 0x01;    /* evpd */
946                 scsi->cdb[2] = 0x80;    /* serial number page */
947                 scsi->cdb[4] = 0x10;
948                 sgd->byte_count = 16;
949                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
950                 break;
951
952         case SYNCHRONIZE_CACHE:
953                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
954                 sgd->byte_count = 0;
955                 scsi->hdr.sg_list_len_bytes = 0;
956                 break;
957
958         case WRITE_BUFFER:
959                 scsi->cdb[0] = WRITE_BUFFER;
960                 scsi->cdb[1] = 0x02;
961                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
962                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
963                 sgd->byte_count = WR_BUF_SIZE;
964                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
965                 /* fill incrementing byte pattern */
966                 for (i = 0; i < sgd->byte_count; i++)
967                         buf[i] = i & 0xFF;
968                 break;
969
970         case READ_BUFFER:
971                 scsi->cdb[0] = READ_BUFFER;
972                 scsi->cdb[1] = 0x02;
973                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
974                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
975                 sgd->byte_count = WR_BUF_SIZE;
976                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977                 memset(skspcl->data_buf, 0, sgd->byte_count);
978                 break;
979
980         default:
981                 SKD_ASSERT("Don't know what to send");
982                 return;
983
984         }
985         skd_send_special_fitmsg(skdev, skspcl);
986 }
987
988 static void skd_refresh_device_data(struct skd_device *skdev)
989 {
990         struct skd_special_context *skspcl = &skdev->internal_skspcl;
991
992         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
993 }
994
995 static int skd_chk_read_buf(struct skd_device *skdev,
996                             struct skd_special_context *skspcl)
997 {
998         unsigned char *buf = skspcl->data_buf;
999         int i;
1000
1001         /* check for incrementing byte pattern */
1002         for (i = 0; i < WR_BUF_SIZE; i++)
1003                 if (buf[i] != (i & 0xFF))
1004                         return 1;
1005
1006         return 0;
1007 }
1008
1009 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1010                                  u8 code, u8 qual, u8 fruc)
1011 {
1012         /* If the check condition is of special interest, log a message */
1013         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1014             && (code == 0x04) && (qual == 0x06)) {
1015                 dev_err(&skdev->pdev->dev,
1016                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1017                         key, code, qual, fruc);
1018         }
1019 }
1020
1021 static void skd_complete_internal(struct skd_device *skdev,
1022                                   struct fit_completion_entry_v1 *skcomp,
1023                                   struct fit_comp_error_info *skerr,
1024                                   struct skd_special_context *skspcl)
1025 {
1026         u8 *buf = skspcl->data_buf;
1027         u8 status;
1028         int i;
1029         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1030
1031         lockdep_assert_held(&skdev->lock);
1032
1033         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1034
1035         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1036
1037         dma_sync_single_for_cpu(&skdev->pdev->dev,
1038                                 skspcl->db_dma_address,
1039                                 skspcl->req.sksg_list[0].byte_count,
1040                                 DMA_BIDIRECTIONAL);
1041
1042         skspcl->req.completion = *skcomp;
1043         skspcl->req.state = SKD_REQ_STATE_IDLE;
1044
1045         status = skspcl->req.completion.status;
1046
1047         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1048                              skerr->qual, skerr->fruc);
1049
1050         switch (scsi->cdb[0]) {
1051         case TEST_UNIT_READY:
1052                 if (status == SAM_STAT_GOOD)
1053                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1054                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1055                          (skerr->key == MEDIUM_ERROR))
1056                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1057                 else {
1058                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1059                                 dev_dbg(&skdev->pdev->dev,
1060                                         "TUR failed, don't send anymore state 0x%x\n",
1061                                         skdev->state);
1062                                 return;
1063                         }
1064                         dev_dbg(&skdev->pdev->dev,
1065                                 "**** TUR failed, retry skerr\n");
1066                         skd_send_internal_skspcl(skdev, skspcl,
1067                                                  TEST_UNIT_READY);
1068                 }
1069                 break;
1070
1071         case WRITE_BUFFER:
1072                 if (status == SAM_STAT_GOOD)
1073                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1074                 else {
1075                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1076                                 dev_dbg(&skdev->pdev->dev,
1077                                         "write buffer failed, don't send anymore state 0x%x\n",
1078                                         skdev->state);
1079                                 return;
1080                         }
1081                         dev_dbg(&skdev->pdev->dev,
1082                                 "**** write buffer failed, retry skerr\n");
1083                         skd_send_internal_skspcl(skdev, skspcl,
1084                                                  TEST_UNIT_READY);
1085                 }
1086                 break;
1087
1088         case READ_BUFFER:
1089                 if (status == SAM_STAT_GOOD) {
1090                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1091                                 skd_send_internal_skspcl(skdev, skspcl,
1092                                                          READ_CAPACITY);
1093                         else {
1094                                 dev_err(&skdev->pdev->dev,
1095                                         "*** W/R Buffer mismatch %d ***\n",
1096                                         skdev->connect_retries);
1097                                 if (skdev->connect_retries <
1098                                     SKD_MAX_CONNECT_RETRIES) {
1099                                         skdev->connect_retries++;
1100                                         skd_soft_reset(skdev);
1101                                 } else {
1102                                         dev_err(&skdev->pdev->dev,
1103                                                 "W/R Buffer Connect Error\n");
1104                                         return;
1105                                 }
1106                         }
1107
1108                 } else {
1109                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1110                                 dev_dbg(&skdev->pdev->dev,
1111                                         "read buffer failed, don't send anymore state 0x%x\n",
1112                                         skdev->state);
1113                                 return;
1114                         }
1115                         dev_dbg(&skdev->pdev->dev,
1116                                 "**** read buffer failed, retry skerr\n");
1117                         skd_send_internal_skspcl(skdev, skspcl,
1118                                                  TEST_UNIT_READY);
1119                 }
1120                 break;
1121
1122         case READ_CAPACITY:
1123                 skdev->read_cap_is_valid = 0;
1124                 if (status == SAM_STAT_GOOD) {
1125                         skdev->read_cap_last_lba =
1126                                 (buf[0] << 24) | (buf[1] << 16) |
1127                                 (buf[2] << 8) | buf[3];
1128                         skdev->read_cap_blocksize =
1129                                 (buf[4] << 24) | (buf[5] << 16) |
1130                                 (buf[6] << 8) | buf[7];
1131
1132                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1133                                 skdev->read_cap_last_lba,
1134                                 skdev->read_cap_blocksize);
1135
1136                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1137
1138                         skdev->read_cap_is_valid = 1;
1139
1140                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1141                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1142                            (skerr->key == MEDIUM_ERROR)) {
1143                         skdev->read_cap_last_lba = ~0;
1144                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1145                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1146                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1147                 } else {
1148                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1149                         skd_send_internal_skspcl(skdev, skspcl,
1150                                                  TEST_UNIT_READY);
1151                 }
1152                 break;
1153
1154         case INQUIRY:
1155                 skdev->inquiry_is_valid = 0;
1156                 if (status == SAM_STAT_GOOD) {
1157                         skdev->inquiry_is_valid = 1;
1158
1159                         for (i = 0; i < 12; i++)
1160                                 skdev->inq_serial_num[i] = buf[i + 4];
1161                         skdev->inq_serial_num[12] = 0;
1162                 }
1163
1164                 if (skd_unquiesce_dev(skdev) < 0)
1165                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1166                  /* connection is complete */
1167                 skdev->connect_retries = 0;
1168                 break;
1169
1170         case SYNCHRONIZE_CACHE:
1171                 if (status == SAM_STAT_GOOD)
1172                         skdev->sync_done = 1;
1173                 else
1174                         skdev->sync_done = -1;
1175                 wake_up_interruptible(&skdev->waitq);
1176                 break;
1177
1178         default:
1179                 SKD_ASSERT("we didn't send this");
1180         }
1181 }
1182
1183 /*
1184  *****************************************************************************
1185  * FIT MESSAGES
1186  *****************************************************************************
1187  */
1188
1189 static void skd_send_fitmsg(struct skd_device *skdev,
1190                             struct skd_fitmsg_context *skmsg)
1191 {
1192         u64 qcmd;
1193
1194         dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1195                 &skmsg->mb_dma_address, skd_in_flight(skdev));
1196         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1197
1198         qcmd = skmsg->mb_dma_address;
1199         qcmd |= FIT_QCMD_QID_NORMAL;
1200
1201         if (unlikely(skdev->dbg_level > 1)) {
1202                 u8 *bp = (u8 *)skmsg->msg_buf;
1203                 int i;
1204                 for (i = 0; i < skmsg->length; i += 8) {
1205                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1206                                 &bp[i]);
1207                         if (i == 0)
1208                                 i = 64 - 8;
1209                 }
1210         }
1211
1212         if (skmsg->length > 256)
1213                 qcmd |= FIT_QCMD_MSGSIZE_512;
1214         else if (skmsg->length > 128)
1215                 qcmd |= FIT_QCMD_MSGSIZE_256;
1216         else if (skmsg->length > 64)
1217                 qcmd |= FIT_QCMD_MSGSIZE_128;
1218         else
1219                 /*
1220                  * This makes no sense because the FIT msg header is
1221                  * 64 bytes. If the msg is only 64 bytes long it has
1222                  * no payload.
1223                  */
1224                 qcmd |= FIT_QCMD_MSGSIZE_64;
1225
1226         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1227                                    skmsg->length, DMA_TO_DEVICE);
1228
1229         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1230         smp_wmb();
1231
1232         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1233 }
1234
1235 static void skd_send_special_fitmsg(struct skd_device *skdev,
1236                                     struct skd_special_context *skspcl)
1237 {
1238         u64 qcmd;
1239
1240         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1241
1242         if (unlikely(skdev->dbg_level > 1)) {
1243                 u8 *bp = (u8 *)skspcl->msg_buf;
1244                 int i;
1245
1246                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1247                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1248                                 &bp[i]);
1249                         if (i == 0)
1250                                 i = 64 - 8;
1251                 }
1252
1253                 dev_dbg(&skdev->pdev->dev,
1254                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1255                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1256                         &skspcl->req.sksg_dma_address);
1257                 for (i = 0; i < skspcl->req.n_sg; i++) {
1258                         struct fit_sg_descriptor *sgd =
1259                                 &skspcl->req.sksg_list[i];
1260
1261                         dev_dbg(&skdev->pdev->dev,
1262                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1263                                 i, sgd->byte_count, sgd->control,
1264                                 sgd->host_side_addr, sgd->next_desc_ptr);
1265                 }
1266         }
1267
1268         /*
1269          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1270          * and one 64-byte SSDI command.
1271          */
1272         qcmd = skspcl->mb_dma_address;
1273         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1274
1275         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1276                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1277         dma_sync_single_for_device(&skdev->pdev->dev,
1278                                    skspcl->req.sksg_dma_address,
1279                                    1 * sizeof(struct fit_sg_descriptor),
1280                                    DMA_TO_DEVICE);
1281         dma_sync_single_for_device(&skdev->pdev->dev,
1282                                    skspcl->db_dma_address,
1283                                    skspcl->req.sksg_list[0].byte_count,
1284                                    DMA_BIDIRECTIONAL);
1285
1286         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1287         smp_wmb();
1288
1289         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1290 }
1291
1292 /*
1293  *****************************************************************************
1294  * COMPLETION QUEUE
1295  *****************************************************************************
1296  */
1297
1298 static void skd_complete_other(struct skd_device *skdev,
1299                                struct fit_completion_entry_v1 *skcomp,
1300                                struct fit_comp_error_info *skerr);
1301
1302 struct sns_info {
1303         u8 type;
1304         u8 stat;
1305         u8 key;
1306         u8 asc;
1307         u8 ascq;
1308         u8 mask;
1309         enum skd_check_status_action action;
1310 };
1311
1312 static struct sns_info skd_chkstat_table[] = {
1313         /* Good */
1314         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1315           SKD_CHECK_STATUS_REPORT_GOOD },
1316
1317         /* Smart alerts */
1318         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1319           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1320         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1321           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1322         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1323           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324
1325         /* Retry (with limits) */
1326         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1327           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1328         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1329           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1330         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1331           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1333           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334
1335         /* Busy (or about to be) */
1336         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1337           SKD_CHECK_STATUS_BUSY_IMMINENT },
1338 };
1339
1340 /*
1341  * Look up status and sense data to decide how to handle the error
1342  * from the device.
1343  * mask says which fields must match e.g., mask=0x18 means check
1344  * type and stat, ignore key, asc, ascq.
1345  */
1346
1347 static enum skd_check_status_action
1348 skd_check_status(struct skd_device *skdev,
1349                  u8 cmp_status, struct fit_comp_error_info *skerr)
1350 {
1351         int i;
1352
1353         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1354                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1355
1356         dev_dbg(&skdev->pdev->dev,
1357                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1358                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1359                 skerr->fruc);
1360
1361         /* Does the info match an entry in the good category? */
1362         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1363                 struct sns_info *sns = &skd_chkstat_table[i];
1364
1365                 if (sns->mask & 0x10)
1366                         if (skerr->type != sns->type)
1367                                 continue;
1368
1369                 if (sns->mask & 0x08)
1370                         if (cmp_status != sns->stat)
1371                                 continue;
1372
1373                 if (sns->mask & 0x04)
1374                         if (skerr->key != sns->key)
1375                                 continue;
1376
1377                 if (sns->mask & 0x02)
1378                         if (skerr->code != sns->asc)
1379                                 continue;
1380
1381                 if (sns->mask & 0x01)
1382                         if (skerr->qual != sns->ascq)
1383                                 continue;
1384
1385                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1386                         dev_err(&skdev->pdev->dev,
1387                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1388                                 skerr->key, skerr->code, skerr->qual);
1389                 }
1390                 return sns->action;
1391         }
1392
1393         /* No other match, so nonzero status means error,
1394          * zero status means good
1395          */
1396         if (cmp_status) {
1397                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1398                 return SKD_CHECK_STATUS_REPORT_ERROR;
1399         }
1400
1401         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1402         return SKD_CHECK_STATUS_REPORT_GOOD;
1403 }
1404
1405 static void skd_resolve_req_exception(struct skd_device *skdev,
1406                                       struct skd_request_context *skreq,
1407                                       struct request *req)
1408 {
1409         u8 cmp_status = skreq->completion.status;
1410
1411         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1412         case SKD_CHECK_STATUS_REPORT_GOOD:
1413         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1414                 skreq->status = BLK_STS_OK;
1415                 blk_mq_complete_request(req);
1416                 break;
1417
1418         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1419                 skd_log_skreq(skdev, skreq, "retry(busy)");
1420                 blk_mq_requeue_request(req, true);
1421                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1422                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1423                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1424                 skd_quiesce_dev(skdev);
1425                 break;
1426
1427         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1428                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1429                         skd_log_skreq(skdev, skreq, "retry");
1430                         blk_mq_requeue_request(req, true);
1431                         break;
1432                 }
1433                 /* fall through */
1434
1435         case SKD_CHECK_STATUS_REPORT_ERROR:
1436         default:
1437                 skreq->status = BLK_STS_IOERR;
1438                 blk_mq_complete_request(req);
1439                 break;
1440         }
1441 }
1442
1443 static void skd_release_skreq(struct skd_device *skdev,
1444                               struct skd_request_context *skreq)
1445 {
1446         /*
1447          * Reclaim the skd_request_context
1448          */
1449         skreq->state = SKD_REQ_STATE_IDLE;
1450 }
1451
1452 static int skd_isr_completion_posted(struct skd_device *skdev,
1453                                         int limit, int *enqueued)
1454 {
1455         struct fit_completion_entry_v1 *skcmp;
1456         struct fit_comp_error_info *skerr;
1457         u16 req_id;
1458         u32 tag;
1459         u16 hwq = 0;
1460         struct request *rq;
1461         struct skd_request_context *skreq;
1462         u16 cmp_cntxt;
1463         u8 cmp_status;
1464         u8 cmp_cycle;
1465         u32 cmp_bytes;
1466         int rc = 0;
1467         int processed = 0;
1468
1469         lockdep_assert_held(&skdev->lock);
1470
1471         for (;; ) {
1472                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1473
1474                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1475                 cmp_cycle = skcmp->cycle;
1476                 cmp_cntxt = skcmp->tag;
1477                 cmp_status = skcmp->status;
1478                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1479
1480                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1481
1482                 dev_dbg(&skdev->pdev->dev,
1483                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1484                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1485                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1486                         cmp_bytes, skdev->proto_ver);
1487
1488                 if (cmp_cycle != skdev->skcomp_cycle) {
1489                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1490                         break;
1491                 }
1492                 /*
1493                  * Update the completion queue head index and possibly
1494                  * the completion cycle count. 8-bit wrap-around.
1495                  */
1496                 skdev->skcomp_ix++;
1497                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1498                         skdev->skcomp_ix = 0;
1499                         skdev->skcomp_cycle++;
1500                 }
1501
1502                 /*
1503                  * The command context is a unique 32-bit ID. The low order
1504                  * bits help locate the request. The request is usually a
1505                  * r/w request (see skd_start() above) or a special request.
1506                  */
1507                 req_id = cmp_cntxt;
1508                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1509
1510                 /* Is this other than a r/w request? */
1511                 if (tag >= skdev->num_req_context) {
1512                         /*
1513                          * This is not a completion for a r/w request.
1514                          */
1515                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1516                                                       tag));
1517                         skd_complete_other(skdev, skcmp, skerr);
1518                         continue;
1519                 }
1520
1521                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1522                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1523                          tag))
1524                         continue;
1525                 skreq = blk_mq_rq_to_pdu(rq);
1526
1527                 /*
1528                  * Make sure the request ID for the slot matches.
1529                  */
1530                 if (skreq->id != req_id) {
1531                         dev_err(&skdev->pdev->dev,
1532                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1533                                 req_id, skreq->id, cmp_cntxt);
1534
1535                         continue;
1536                 }
1537
1538                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1539
1540                 skreq->completion = *skcmp;
1541                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1542                         skreq->err_info = *skerr;
1543                         skd_log_check_status(skdev, cmp_status, skerr->key,
1544                                              skerr->code, skerr->qual,
1545                                              skerr->fruc);
1546                 }
1547                 /* Release DMA resources for the request. */
1548                 if (skreq->n_sg > 0)
1549                         skd_postop_sg_list(skdev, skreq);
1550
1551                 skd_release_skreq(skdev, skreq);
1552
1553                 /*
1554                  * Capture the outcome and post it back to the native request.
1555                  */
1556                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1557                         skreq->status = BLK_STS_OK;
1558                         blk_mq_complete_request(rq);
1559                 } else {
1560                         skd_resolve_req_exception(skdev, skreq, rq);
1561                 }
1562
1563                 /* skd_isr_comp_limit equal zero means no limit */
1564                 if (limit) {
1565                         if (++processed >= limit) {
1566                                 rc = 1;
1567                                 break;
1568                         }
1569                 }
1570         }
1571
1572         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1573             skd_in_flight(skdev) == 0) {
1574                 skdev->state = SKD_DRVR_STATE_PAUSED;
1575                 wake_up_interruptible(&skdev->waitq);
1576         }
1577
1578         return rc;
1579 }
1580
1581 static void skd_complete_other(struct skd_device *skdev,
1582                                struct fit_completion_entry_v1 *skcomp,
1583                                struct fit_comp_error_info *skerr)
1584 {
1585         u32 req_id = 0;
1586         u32 req_table;
1587         u32 req_slot;
1588         struct skd_special_context *skspcl;
1589
1590         lockdep_assert_held(&skdev->lock);
1591
1592         req_id = skcomp->tag;
1593         req_table = req_id & SKD_ID_TABLE_MASK;
1594         req_slot = req_id & SKD_ID_SLOT_MASK;
1595
1596         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1597                 req_id, req_slot);
1598
1599         /*
1600          * Based on the request id, determine how to dispatch this completion.
1601          * This swich/case is finding the good cases and forwarding the
1602          * completion entry. Errors are reported below the switch.
1603          */
1604         switch (req_table) {
1605         case SKD_ID_RW_REQUEST:
1606                 /*
1607                  * The caller, skd_isr_completion_posted() above,
1608                  * handles r/w requests. The only way we get here
1609                  * is if the req_slot is out of bounds.
1610                  */
1611                 break;
1612
1613         case SKD_ID_INTERNAL:
1614                 if (req_slot == 0) {
1615                         skspcl = &skdev->internal_skspcl;
1616                         if (skspcl->req.id == req_id &&
1617                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1618                                 skd_complete_internal(skdev,
1619                                                       skcomp, skerr, skspcl);
1620                                 return;
1621                         }
1622                 }
1623                 break;
1624
1625         case SKD_ID_FIT_MSG:
1626                 /*
1627                  * These id's should never appear in a completion record.
1628                  */
1629                 break;
1630
1631         default:
1632                 /*
1633                  * These id's should never appear anywhere;
1634                  */
1635                 break;
1636         }
1637
1638         /*
1639          * If we get here it is a bad or stale id.
1640          */
1641 }
1642
1643 static void skd_reset_skcomp(struct skd_device *skdev)
1644 {
1645         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1646
1647         skdev->skcomp_ix = 0;
1648         skdev->skcomp_cycle = 1;
1649 }
1650
1651 /*
1652  *****************************************************************************
1653  * INTERRUPTS
1654  *****************************************************************************
1655  */
1656 static void skd_completion_worker(struct work_struct *work)
1657 {
1658         struct skd_device *skdev =
1659                 container_of(work, struct skd_device, completion_worker);
1660         unsigned long flags;
1661         int flush_enqueued = 0;
1662
1663         spin_lock_irqsave(&skdev->lock, flags);
1664
1665         /*
1666          * pass in limit=0, which means no limit..
1667          * process everything in compq
1668          */
1669         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1670         schedule_work(&skdev->start_queue);
1671
1672         spin_unlock_irqrestore(&skdev->lock, flags);
1673 }
1674
1675 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1676
1677 static irqreturn_t
1678 skd_isr(int irq, void *ptr)
1679 {
1680         struct skd_device *skdev = ptr;
1681         u32 intstat;
1682         u32 ack;
1683         int rc = 0;
1684         int deferred = 0;
1685         int flush_enqueued = 0;
1686
1687         spin_lock(&skdev->lock);
1688
1689         for (;; ) {
1690                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1691
1692                 ack = FIT_INT_DEF_MASK;
1693                 ack &= intstat;
1694
1695                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1696                         ack);
1697
1698                 /* As long as there is an int pending on device, keep
1699                  * running loop.  When none, get out, but if we've never
1700                  * done any processing, call completion handler?
1701                  */
1702                 if (ack == 0) {
1703                         /* No interrupts on device, but run the completion
1704                          * processor anyway?
1705                          */
1706                         if (rc == 0)
1707                                 if (likely (skdev->state
1708                                         == SKD_DRVR_STATE_ONLINE))
1709                                         deferred = 1;
1710                         break;
1711                 }
1712
1713                 rc = IRQ_HANDLED;
1714
1715                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1716
1717                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1718                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1719                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1720                                 /*
1721                                  * If we have already deferred completion
1722                                  * processing, don't bother running it again
1723                                  */
1724                                 if (deferred == 0)
1725                                         deferred =
1726                                                 skd_isr_completion_posted(skdev,
1727                                                 skd_isr_comp_limit, &flush_enqueued);
1728                         }
1729
1730                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1731                                 skd_isr_fwstate(skdev);
1732                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1733                                     skdev->state ==
1734                                     SKD_DRVR_STATE_DISAPPEARED) {
1735                                         spin_unlock(&skdev->lock);
1736                                         return rc;
1737                                 }
1738                         }
1739
1740                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1741                                 skd_isr_msg_from_dev(skdev);
1742                 }
1743         }
1744
1745         if (unlikely(flush_enqueued))
1746                 schedule_work(&skdev->start_queue);
1747
1748         if (deferred)
1749                 schedule_work(&skdev->completion_worker);
1750         else if (!flush_enqueued)
1751                 schedule_work(&skdev->start_queue);
1752
1753         spin_unlock(&skdev->lock);
1754
1755         return rc;
1756 }
1757
1758 static void skd_drive_fault(struct skd_device *skdev)
1759 {
1760         skdev->state = SKD_DRVR_STATE_FAULT;
1761         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1762 }
1763
1764 static void skd_drive_disappeared(struct skd_device *skdev)
1765 {
1766         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1767         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1768 }
1769
1770 static void skd_isr_fwstate(struct skd_device *skdev)
1771 {
1772         u32 sense;
1773         u32 state;
1774         u32 mtd;
1775         int prev_driver_state = skdev->state;
1776
1777         sense = SKD_READL(skdev, FIT_STATUS);
1778         state = sense & FIT_SR_DRIVE_STATE_MASK;
1779
1780         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1781                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1782                 skd_drive_state_to_str(state), state);
1783
1784         skdev->drive_state = state;
1785
1786         switch (skdev->drive_state) {
1787         case FIT_SR_DRIVE_INIT:
1788                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1789                         skd_disable_interrupts(skdev);
1790                         break;
1791                 }
1792                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1793                         skd_recover_requests(skdev);
1794                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1795                         skdev->timer_countdown = SKD_STARTING_TIMO;
1796                         skdev->state = SKD_DRVR_STATE_STARTING;
1797                         skd_soft_reset(skdev);
1798                         break;
1799                 }
1800                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1801                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1802                 skdev->last_mtd = mtd;
1803                 break;
1804
1805         case FIT_SR_DRIVE_ONLINE:
1806                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1807                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1808                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1809
1810                 skdev->queue_low_water_mark =
1811                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1812                 if (skdev->queue_low_water_mark < 1)
1813                         skdev->queue_low_water_mark = 1;
1814                 dev_info(&skdev->pdev->dev,
1815                          "Queue depth limit=%d dev=%d lowat=%d\n",
1816                          skdev->cur_max_queue_depth,
1817                          skdev->dev_max_queue_depth,
1818                          skdev->queue_low_water_mark);
1819
1820                 skd_refresh_device_data(skdev);
1821                 break;
1822
1823         case FIT_SR_DRIVE_BUSY:
1824                 skdev->state = SKD_DRVR_STATE_BUSY;
1825                 skdev->timer_countdown = SKD_BUSY_TIMO;
1826                 skd_quiesce_dev(skdev);
1827                 break;
1828         case FIT_SR_DRIVE_BUSY_SANITIZE:
1829                 /* set timer for 3 seconds, we'll abort any unfinished
1830                  * commands after that expires
1831                  */
1832                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1833                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1834                 schedule_work(&skdev->start_queue);
1835                 break;
1836         case FIT_SR_DRIVE_BUSY_ERASE:
1837                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1838                 skdev->timer_countdown = SKD_BUSY_TIMO;
1839                 break;
1840         case FIT_SR_DRIVE_OFFLINE:
1841                 skdev->state = SKD_DRVR_STATE_IDLE;
1842                 break;
1843         case FIT_SR_DRIVE_SOFT_RESET:
1844                 switch (skdev->state) {
1845                 case SKD_DRVR_STATE_STARTING:
1846                 case SKD_DRVR_STATE_RESTARTING:
1847                         /* Expected by a caller of skd_soft_reset() */
1848                         break;
1849                 default:
1850                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1851                         break;
1852                 }
1853                 break;
1854         case FIT_SR_DRIVE_FW_BOOTING:
1855                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1856                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1857                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1858                 break;
1859
1860         case FIT_SR_DRIVE_DEGRADED:
1861         case FIT_SR_PCIE_LINK_DOWN:
1862         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1863                 break;
1864
1865         case FIT_SR_DRIVE_FAULT:
1866                 skd_drive_fault(skdev);
1867                 skd_recover_requests(skdev);
1868                 schedule_work(&skdev->start_queue);
1869                 break;
1870
1871         /* PCIe bus returned all Fs? */
1872         case 0xFF:
1873                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1874                          sense);
1875                 skd_drive_disappeared(skdev);
1876                 skd_recover_requests(skdev);
1877                 schedule_work(&skdev->start_queue);
1878                 break;
1879         default:
1880                 /*
1881                  * Uknown FW State. Wait for a state we recognize.
1882                  */
1883                 break;
1884         }
1885         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1886                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1887                 skd_skdev_state_to_str(skdev->state), skdev->state);
1888 }
1889
1890 static void skd_recover_request(struct request *req, void *data, bool reserved)
1891 {
1892         struct skd_device *const skdev = data;
1893         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1894
1895         if (skreq->state != SKD_REQ_STATE_BUSY)
1896                 return;
1897
1898         skd_log_skreq(skdev, skreq, "recover");
1899
1900         /* Release DMA resources for the request. */
1901         if (skreq->n_sg > 0)
1902                 skd_postop_sg_list(skdev, skreq);
1903
1904         skreq->state = SKD_REQ_STATE_IDLE;
1905         skreq->status = BLK_STS_IOERR;
1906         blk_mq_complete_request(req);
1907 }
1908
1909 static void skd_recover_requests(struct skd_device *skdev)
1910 {
1911         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1912 }
1913
1914 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1915 {
1916         u32 mfd;
1917         u32 mtd;
1918         u32 data;
1919
1920         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1921
1922         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1923                 skdev->last_mtd);
1924
1925         /* ignore any mtd that is an ack for something we didn't send */
1926         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1927                 return;
1928
1929         switch (FIT_MXD_TYPE(mfd)) {
1930         case FIT_MTD_FITFW_INIT:
1931                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1932
1933                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1934                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1935                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1936                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1937                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1938                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1939                         skd_soft_reset(skdev);
1940                         break;
1941                 }
1942                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1943                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1944                 skdev->last_mtd = mtd;
1945                 break;
1946
1947         case FIT_MTD_GET_CMDQ_DEPTH:
1948                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1949                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1950                                    SKD_N_COMPLETION_ENTRY);
1951                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952                 skdev->last_mtd = mtd;
1953                 break;
1954
1955         case FIT_MTD_SET_COMPQ_DEPTH:
1956                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1957                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1958                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1959                 skdev->last_mtd = mtd;
1960                 break;
1961
1962         case FIT_MTD_SET_COMPQ_ADDR:
1963                 skd_reset_skcomp(skdev);
1964                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1965                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1966                 skdev->last_mtd = mtd;
1967                 break;
1968
1969         case FIT_MTD_CMD_LOG_HOST_ID:
1970                 /* hardware interface overflows in y2106 */
1971                 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1972                 data = skdev->connect_time_stamp & 0xFFFF;
1973                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1974                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1975                 skdev->last_mtd = mtd;
1976                 break;
1977
1978         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1979                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1980                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1981                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1982                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983                 skdev->last_mtd = mtd;
1984                 break;
1985
1986         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1987                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1988                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1989                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1990                 skdev->last_mtd = mtd;
1991
1992                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1993                         skdev->connect_time_stamp, skdev->drive_jiffies);
1994                 break;
1995
1996         case FIT_MTD_ARM_QUEUE:
1997                 skdev->last_mtd = 0;
1998                 /*
1999                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2000                  */
2001                 break;
2002
2003         default:
2004                 break;
2005         }
2006 }
2007
2008 static void skd_disable_interrupts(struct skd_device *skdev)
2009 {
2010         u32 sense;
2011
2012         sense = SKD_READL(skdev, FIT_CONTROL);
2013         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2014         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2015         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2016
2017         /* Note that the 1s is written. A 1-bit means
2018          * disable, a 0 means enable.
2019          */
2020         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2021 }
2022
2023 static void skd_enable_interrupts(struct skd_device *skdev)
2024 {
2025         u32 val;
2026
2027         /* unmask interrupts first */
2028         val = FIT_ISH_FW_STATE_CHANGE +
2029               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2030
2031         /* Note that the compliment of mask is written. A 1-bit means
2032          * disable, a 0 means enable. */
2033         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2034         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2035
2036         val = SKD_READL(skdev, FIT_CONTROL);
2037         val |= FIT_CR_ENABLE_INTERRUPTS;
2038         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2039         SKD_WRITEL(skdev, val, FIT_CONTROL);
2040 }
2041
2042 /*
2043  *****************************************************************************
2044  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2045  *****************************************************************************
2046  */
2047
2048 static void skd_soft_reset(struct skd_device *skdev)
2049 {
2050         u32 val;
2051
2052         val = SKD_READL(skdev, FIT_CONTROL);
2053         val |= (FIT_CR_SOFT_RESET);
2054         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2055         SKD_WRITEL(skdev, val, FIT_CONTROL);
2056 }
2057
2058 static void skd_start_device(struct skd_device *skdev)
2059 {
2060         unsigned long flags;
2061         u32 sense;
2062         u32 state;
2063
2064         spin_lock_irqsave(&skdev->lock, flags);
2065
2066         /* ack all ghost interrupts */
2067         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2068
2069         sense = SKD_READL(skdev, FIT_STATUS);
2070
2071         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2072
2073         state = sense & FIT_SR_DRIVE_STATE_MASK;
2074         skdev->drive_state = state;
2075         skdev->last_mtd = 0;
2076
2077         skdev->state = SKD_DRVR_STATE_STARTING;
2078         skdev->timer_countdown = SKD_STARTING_TIMO;
2079
2080         skd_enable_interrupts(skdev);
2081
2082         switch (skdev->drive_state) {
2083         case FIT_SR_DRIVE_OFFLINE:
2084                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2085                 break;
2086
2087         case FIT_SR_DRIVE_FW_BOOTING:
2088                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2089                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2090                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2091                 break;
2092
2093         case FIT_SR_DRIVE_BUSY_SANITIZE:
2094                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2095                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2096                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2097                 break;
2098
2099         case FIT_SR_DRIVE_BUSY_ERASE:
2100                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2101                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2102                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2103                 break;
2104
2105         case FIT_SR_DRIVE_INIT:
2106         case FIT_SR_DRIVE_ONLINE:
2107                 skd_soft_reset(skdev);
2108                 break;
2109
2110         case FIT_SR_DRIVE_BUSY:
2111                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2112                 skdev->state = SKD_DRVR_STATE_BUSY;
2113                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2114                 break;
2115
2116         case FIT_SR_DRIVE_SOFT_RESET:
2117                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2118                 break;
2119
2120         case FIT_SR_DRIVE_FAULT:
2121                 /* Fault state is bad...soft reset won't do it...
2122                  * Hard reset, maybe, but does it work on device?
2123                  * For now, just fault so the system doesn't hang.
2124                  */
2125                 skd_drive_fault(skdev);
2126                 /*start the queue so we can respond with error to requests */
2127                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2128                 schedule_work(&skdev->start_queue);
2129                 skdev->gendisk_on = -1;
2130                 wake_up_interruptible(&skdev->waitq);
2131                 break;
2132
2133         case 0xFF:
2134                 /* Most likely the device isn't there or isn't responding
2135                  * to the BAR1 addresses. */
2136                 skd_drive_disappeared(skdev);
2137                 /*start the queue so we can respond with error to requests */
2138                 dev_dbg(&skdev->pdev->dev,
2139                         "starting queue to error-out reqs\n");
2140                 schedule_work(&skdev->start_queue);
2141                 skdev->gendisk_on = -1;
2142                 wake_up_interruptible(&skdev->waitq);
2143                 break;
2144
2145         default:
2146                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2147                         skdev->drive_state);
2148                 break;
2149         }
2150
2151         state = SKD_READL(skdev, FIT_CONTROL);
2152         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2153
2154         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2155         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2156
2157         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2158         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2159
2160         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2161         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2162
2163         state = SKD_READL(skdev, FIT_HW_VERSION);
2164         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2165
2166         spin_unlock_irqrestore(&skdev->lock, flags);
2167 }
2168
2169 static void skd_stop_device(struct skd_device *skdev)
2170 {
2171         unsigned long flags;
2172         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2173         u32 dev_state;
2174         int i;
2175
2176         spin_lock_irqsave(&skdev->lock, flags);
2177
2178         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2179                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2180                 goto stop_out;
2181         }
2182
2183         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2184                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2185                 goto stop_out;
2186         }
2187
2188         skdev->state = SKD_DRVR_STATE_SYNCING;
2189         skdev->sync_done = 0;
2190
2191         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2192
2193         spin_unlock_irqrestore(&skdev->lock, flags);
2194
2195         wait_event_interruptible_timeout(skdev->waitq,
2196                                          (skdev->sync_done), (10 * HZ));
2197
2198         spin_lock_irqsave(&skdev->lock, flags);
2199
2200         switch (skdev->sync_done) {
2201         case 0:
2202                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2203                 break;
2204         case 1:
2205                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2206                 break;
2207         default:
2208                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2209         }
2210
2211 stop_out:
2212         skdev->state = SKD_DRVR_STATE_STOPPING;
2213         spin_unlock_irqrestore(&skdev->lock, flags);
2214
2215         skd_kill_timer(skdev);
2216
2217         spin_lock_irqsave(&skdev->lock, flags);
2218         skd_disable_interrupts(skdev);
2219
2220         /* ensure all ints on device are cleared */
2221         /* soft reset the device to unload with a clean slate */
2222         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2223         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2224
2225         spin_unlock_irqrestore(&skdev->lock, flags);
2226
2227         /* poll every 100ms, 1 second timeout */
2228         for (i = 0; i < 10; i++) {
2229                 dev_state =
2230                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2231                 if (dev_state == FIT_SR_DRIVE_INIT)
2232                         break;
2233                 set_current_state(TASK_INTERRUPTIBLE);
2234                 schedule_timeout(msecs_to_jiffies(100));
2235         }
2236
2237         if (dev_state != FIT_SR_DRIVE_INIT)
2238                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2239                         dev_state);
2240 }
2241
2242 /* assume spinlock is held */
2243 static void skd_restart_device(struct skd_device *skdev)
2244 {
2245         u32 state;
2246
2247         /* ack all ghost interrupts */
2248         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2249
2250         state = SKD_READL(skdev, FIT_STATUS);
2251
2252         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2253
2254         state &= FIT_SR_DRIVE_STATE_MASK;
2255         skdev->drive_state = state;
2256         skdev->last_mtd = 0;
2257
2258         skdev->state = SKD_DRVR_STATE_RESTARTING;
2259         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2260
2261         skd_soft_reset(skdev);
2262 }
2263
2264 /* assume spinlock is held */
2265 static int skd_quiesce_dev(struct skd_device *skdev)
2266 {
2267         int rc = 0;
2268
2269         switch (skdev->state) {
2270         case SKD_DRVR_STATE_BUSY:
2271         case SKD_DRVR_STATE_BUSY_IMMINENT:
2272                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2273                 blk_mq_stop_hw_queues(skdev->queue);
2274                 break;
2275         case SKD_DRVR_STATE_ONLINE:
2276         case SKD_DRVR_STATE_STOPPING:
2277         case SKD_DRVR_STATE_SYNCING:
2278         case SKD_DRVR_STATE_PAUSING:
2279         case SKD_DRVR_STATE_PAUSED:
2280         case SKD_DRVR_STATE_STARTING:
2281         case SKD_DRVR_STATE_RESTARTING:
2282         case SKD_DRVR_STATE_RESUMING:
2283         default:
2284                 rc = -EINVAL;
2285                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2286                         skdev->state);
2287         }
2288         return rc;
2289 }
2290
2291 /* assume spinlock is held */
2292 static int skd_unquiesce_dev(struct skd_device *skdev)
2293 {
2294         int prev_driver_state = skdev->state;
2295
2296         skd_log_skdev(skdev, "unquiesce");
2297         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2298                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2299                 return 0;
2300         }
2301         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2302                 /*
2303                  * If there has been an state change to other than
2304                  * ONLINE, we will rely on controller state change
2305                  * to come back online and restart the queue.
2306                  * The BUSY state means that driver is ready to
2307                  * continue normal processing but waiting for controller
2308                  * to become available.
2309                  */
2310                 skdev->state = SKD_DRVR_STATE_BUSY;
2311                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2312                 return 0;
2313         }
2314
2315         /*
2316          * Drive has just come online, driver is either in startup,
2317          * paused performing a task, or bust waiting for hardware.
2318          */
2319         switch (skdev->state) {
2320         case SKD_DRVR_STATE_PAUSED:
2321         case SKD_DRVR_STATE_BUSY:
2322         case SKD_DRVR_STATE_BUSY_IMMINENT:
2323         case SKD_DRVR_STATE_BUSY_ERASE:
2324         case SKD_DRVR_STATE_STARTING:
2325         case SKD_DRVR_STATE_RESTARTING:
2326         case SKD_DRVR_STATE_FAULT:
2327         case SKD_DRVR_STATE_IDLE:
2328         case SKD_DRVR_STATE_LOAD:
2329                 skdev->state = SKD_DRVR_STATE_ONLINE;
2330                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2331                         skd_skdev_state_to_str(prev_driver_state),
2332                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2333                         skdev->state);
2334                 dev_dbg(&skdev->pdev->dev,
2335                         "**** device ONLINE...starting block queue\n");
2336                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2337                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2338                 schedule_work(&skdev->start_queue);
2339                 skdev->gendisk_on = 1;
2340                 wake_up_interruptible(&skdev->waitq);
2341                 break;
2342
2343         case SKD_DRVR_STATE_DISAPPEARED:
2344         default:
2345                 dev_dbg(&skdev->pdev->dev,
2346                         "**** driver state %d, not implemented\n",
2347                         skdev->state);
2348                 return -EBUSY;
2349         }
2350         return 0;
2351 }
2352
2353 /*
2354  *****************************************************************************
2355  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2356  *****************************************************************************
2357  */
2358
2359 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2360 {
2361         struct skd_device *skdev = skd_host_data;
2362         unsigned long flags;
2363
2364         spin_lock_irqsave(&skdev->lock, flags);
2365         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2366                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2367         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2368                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2369         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2370         spin_unlock_irqrestore(&skdev->lock, flags);
2371         return IRQ_HANDLED;
2372 }
2373
2374 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2375 {
2376         struct skd_device *skdev = skd_host_data;
2377         unsigned long flags;
2378
2379         spin_lock_irqsave(&skdev->lock, flags);
2380         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2381                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2382         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2383         skd_isr_fwstate(skdev);
2384         spin_unlock_irqrestore(&skdev->lock, flags);
2385         return IRQ_HANDLED;
2386 }
2387
2388 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2389 {
2390         struct skd_device *skdev = skd_host_data;
2391         unsigned long flags;
2392         int flush_enqueued = 0;
2393         int deferred;
2394
2395         spin_lock_irqsave(&skdev->lock, flags);
2396         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2397                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2398         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2399         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2400                                                 &flush_enqueued);
2401         if (flush_enqueued)
2402                 schedule_work(&skdev->start_queue);
2403
2404         if (deferred)
2405                 schedule_work(&skdev->completion_worker);
2406         else if (!flush_enqueued)
2407                 schedule_work(&skdev->start_queue);
2408
2409         spin_unlock_irqrestore(&skdev->lock, flags);
2410
2411         return IRQ_HANDLED;
2412 }
2413
2414 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2415 {
2416         struct skd_device *skdev = skd_host_data;
2417         unsigned long flags;
2418
2419         spin_lock_irqsave(&skdev->lock, flags);
2420         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2421                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2422         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2423         skd_isr_msg_from_dev(skdev);
2424         spin_unlock_irqrestore(&skdev->lock, flags);
2425         return IRQ_HANDLED;
2426 }
2427
2428 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2429 {
2430         struct skd_device *skdev = skd_host_data;
2431         unsigned long flags;
2432
2433         spin_lock_irqsave(&skdev->lock, flags);
2434         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2435                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2436         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2437         spin_unlock_irqrestore(&skdev->lock, flags);
2438         return IRQ_HANDLED;
2439 }
2440
2441 /*
2442  *****************************************************************************
2443  * PCIe MSI/MSI-X SETUP
2444  *****************************************************************************
2445  */
2446
2447 struct skd_msix_entry {
2448         char isr_name[30];
2449 };
2450
2451 struct skd_init_msix_entry {
2452         const char *name;
2453         irq_handler_t handler;
2454 };
2455
2456 #define SKD_MAX_MSIX_COUNT              13
2457 #define SKD_MIN_MSIX_COUNT              7
2458 #define SKD_BASE_MSIX_IRQ               4
2459
2460 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2461         { "(DMA 0)",        skd_reserved_isr },
2462         { "(DMA 1)",        skd_reserved_isr },
2463         { "(DMA 2)",        skd_reserved_isr },
2464         { "(DMA 3)",        skd_reserved_isr },
2465         { "(State Change)", skd_statec_isr   },
2466         { "(COMPL_Q)",      skd_comp_q       },
2467         { "(MSG)",          skd_msg_isr      },
2468         { "(Reserved)",     skd_reserved_isr },
2469         { "(Reserved)",     skd_reserved_isr },
2470         { "(Queue Full 0)", skd_qfull_isr    },
2471         { "(Queue Full 1)", skd_qfull_isr    },
2472         { "(Queue Full 2)", skd_qfull_isr    },
2473         { "(Queue Full 3)", skd_qfull_isr    },
2474 };
2475
2476 static int skd_acquire_msix(struct skd_device *skdev)
2477 {
2478         int i, rc;
2479         struct pci_dev *pdev = skdev->pdev;
2480
2481         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2482                         PCI_IRQ_MSIX);
2483         if (rc < 0) {
2484                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2485                 goto out;
2486         }
2487
2488         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2489                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2490         if (!skdev->msix_entries) {
2491                 rc = -ENOMEM;
2492                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2493                 goto out;
2494         }
2495
2496         /* Enable MSI-X vectors for the base queue */
2497         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2498                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2499
2500                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2501                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2502                          msix_entries[i].name);
2503
2504                 rc = devm_request_irq(&skdev->pdev->dev,
2505                                 pci_irq_vector(skdev->pdev, i),
2506                                 msix_entries[i].handler, 0,
2507                                 qentry->isr_name, skdev);
2508                 if (rc) {
2509                         dev_err(&skdev->pdev->dev,
2510                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2511                                 rc, i, qentry->isr_name);
2512                         goto msix_out;
2513                 }
2514         }
2515
2516         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2517                 SKD_MAX_MSIX_COUNT);
2518         return 0;
2519
2520 msix_out:
2521         while (--i >= 0)
2522                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2523 out:
2524         kfree(skdev->msix_entries);
2525         skdev->msix_entries = NULL;
2526         return rc;
2527 }
2528
2529 static int skd_acquire_irq(struct skd_device *skdev)
2530 {
2531         struct pci_dev *pdev = skdev->pdev;
2532         unsigned int irq_flag = PCI_IRQ_LEGACY;
2533         int rc;
2534
2535         if (skd_isr_type == SKD_IRQ_MSIX) {
2536                 rc = skd_acquire_msix(skdev);
2537                 if (!rc)
2538                         return 0;
2539
2540                 dev_err(&skdev->pdev->dev,
2541                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2542         }
2543
2544         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2545                         skdev->devno);
2546
2547         if (skd_isr_type != SKD_IRQ_LEGACY)
2548                 irq_flag |= PCI_IRQ_MSI;
2549         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2550         if (rc < 0) {
2551                 dev_err(&skdev->pdev->dev,
2552                         "failed to allocate the MSI interrupt %d\n", rc);
2553                 return rc;
2554         }
2555
2556         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2557                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2558                         skdev->isr_name, skdev);
2559         if (rc) {
2560                 pci_free_irq_vectors(pdev);
2561                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2562                         rc);
2563                 return rc;
2564         }
2565
2566         return 0;
2567 }
2568
2569 static void skd_release_irq(struct skd_device *skdev)
2570 {
2571         struct pci_dev *pdev = skdev->pdev;
2572
2573         if (skdev->msix_entries) {
2574                 int i;
2575
2576                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2577                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2578                                         skdev);
2579                 }
2580
2581                 kfree(skdev->msix_entries);
2582                 skdev->msix_entries = NULL;
2583         } else {
2584                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2585         }
2586
2587         pci_free_irq_vectors(pdev);
2588 }
2589
2590 /*
2591  *****************************************************************************
2592  * CONSTRUCT
2593  *****************************************************************************
2594  */
2595
2596 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2597                            dma_addr_t *dma_handle, gfp_t gfp,
2598                            enum dma_data_direction dir)
2599 {
2600         struct device *dev = &skdev->pdev->dev;
2601         void *buf;
2602
2603         buf = kmem_cache_alloc(s, gfp);
2604         if (!buf)
2605                 return NULL;
2606         *dma_handle = dma_map_single(dev, buf,
2607                                      kmem_cache_size(s), dir);
2608         if (dma_mapping_error(dev, *dma_handle)) {
2609                 kmem_cache_free(s, buf);
2610                 buf = NULL;
2611         }
2612         return buf;
2613 }
2614
2615 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2616                          void *vaddr, dma_addr_t dma_handle,
2617                          enum dma_data_direction dir)
2618 {
2619         if (!vaddr)
2620                 return;
2621
2622         dma_unmap_single(&skdev->pdev->dev, dma_handle,
2623                          kmem_cache_size(s), dir);
2624         kmem_cache_free(s, vaddr);
2625 }
2626
2627 static int skd_cons_skcomp(struct skd_device *skdev)
2628 {
2629         int rc = 0;
2630         struct fit_completion_entry_v1 *skcomp;
2631
2632         dev_dbg(&skdev->pdev->dev,
2633                 "comp pci_alloc, total bytes %zd entries %d\n",
2634                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2635
2636         skcomp = dma_zalloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2637                                      &skdev->cq_dma_address, GFP_KERNEL);
2638
2639         if (skcomp == NULL) {
2640                 rc = -ENOMEM;
2641                 goto err_out;
2642         }
2643
2644         skdev->skcomp_table = skcomp;
2645         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2646                                                            sizeof(*skcomp) *
2647                                                            SKD_N_COMPLETION_ENTRY);
2648
2649 err_out:
2650         return rc;
2651 }
2652
2653 static int skd_cons_skmsg(struct skd_device *skdev)
2654 {
2655         int rc = 0;
2656         u32 i;
2657
2658         dev_dbg(&skdev->pdev->dev,
2659                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2660                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2661                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2662
2663         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2664                                      sizeof(struct skd_fitmsg_context),
2665                                      GFP_KERNEL);
2666         if (skdev->skmsg_table == NULL) {
2667                 rc = -ENOMEM;
2668                 goto err_out;
2669         }
2670
2671         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2672                 struct skd_fitmsg_context *skmsg;
2673
2674                 skmsg = &skdev->skmsg_table[i];
2675
2676                 skmsg->id = i + SKD_ID_FIT_MSG;
2677
2678                 skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2679                                                     SKD_N_FITMSG_BYTES,
2680                                                     &skmsg->mb_dma_address,
2681                                                     GFP_KERNEL);
2682                 if (skmsg->msg_buf == NULL) {
2683                         rc = -ENOMEM;
2684                         goto err_out;
2685                 }
2686
2687                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2688                      (FIT_QCMD_ALIGN - 1),
2689                      "not aligned: msg_buf %p mb_dma_address %pad\n",
2690                      skmsg->msg_buf, &skmsg->mb_dma_address);
2691                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2692         }
2693
2694 err_out:
2695         return rc;
2696 }
2697
2698 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2699                                                   u32 n_sg,
2700                                                   dma_addr_t *ret_dma_addr)
2701 {
2702         struct fit_sg_descriptor *sg_list;
2703
2704         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2705                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2706
2707         if (sg_list != NULL) {
2708                 uint64_t dma_address = *ret_dma_addr;
2709                 u32 i;
2710
2711                 for (i = 0; i < n_sg - 1; i++) {
2712                         uint64_t ndp_off;
2713                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2714
2715                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2716                 }
2717                 sg_list[i].next_desc_ptr = 0LL;
2718         }
2719
2720         return sg_list;
2721 }
2722
2723 static void skd_free_sg_list(struct skd_device *skdev,
2724                              struct fit_sg_descriptor *sg_list,
2725                              dma_addr_t dma_addr)
2726 {
2727         if (WARN_ON_ONCE(!sg_list))
2728                 return;
2729
2730         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2731                      DMA_TO_DEVICE);
2732 }
2733
2734 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2735                             unsigned int hctx_idx, unsigned int numa_node)
2736 {
2737         struct skd_device *skdev = set->driver_data;
2738         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2739
2740         skreq->state = SKD_REQ_STATE_IDLE;
2741         skreq->sg = (void *)(skreq + 1);
2742         sg_init_table(skreq->sg, skd_sgs_per_request);
2743         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2744                                             &skreq->sksg_dma_address);
2745
2746         return skreq->sksg_list ? 0 : -ENOMEM;
2747 }
2748
2749 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2750                              unsigned int hctx_idx)
2751 {
2752         struct skd_device *skdev = set->driver_data;
2753         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2754
2755         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2756 }
2757
2758 static int skd_cons_sksb(struct skd_device *skdev)
2759 {
2760         int rc = 0;
2761         struct skd_special_context *skspcl;
2762
2763         skspcl = &skdev->internal_skspcl;
2764
2765         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2766         skspcl->req.state = SKD_REQ_STATE_IDLE;
2767
2768         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2769                                          &skspcl->db_dma_address,
2770                                          GFP_DMA | __GFP_ZERO,
2771                                          DMA_BIDIRECTIONAL);
2772         if (skspcl->data_buf == NULL) {
2773                 rc = -ENOMEM;
2774                 goto err_out;
2775         }
2776
2777         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2778                                         &skspcl->mb_dma_address,
2779                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2780         if (skspcl->msg_buf == NULL) {
2781                 rc = -ENOMEM;
2782                 goto err_out;
2783         }
2784
2785         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2786                                                  &skspcl->req.sksg_dma_address);
2787         if (skspcl->req.sksg_list == NULL) {
2788                 rc = -ENOMEM;
2789                 goto err_out;
2790         }
2791
2792         if (!skd_format_internal_skspcl(skdev)) {
2793                 rc = -EINVAL;
2794                 goto err_out;
2795         }
2796
2797 err_out:
2798         return rc;
2799 }
2800
2801 static const struct blk_mq_ops skd_mq_ops = {
2802         .queue_rq       = skd_mq_queue_rq,
2803         .complete       = skd_complete_rq,
2804         .timeout        = skd_timed_out,
2805         .init_request   = skd_init_request,
2806         .exit_request   = skd_exit_request,
2807 };
2808
2809 static int skd_cons_disk(struct skd_device *skdev)
2810 {
2811         int rc = 0;
2812         struct gendisk *disk;
2813         struct request_queue *q;
2814         unsigned long flags;
2815
2816         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2817         if (!disk) {
2818                 rc = -ENOMEM;
2819                 goto err_out;
2820         }
2821
2822         skdev->disk = disk;
2823         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2824
2825         disk->major = skdev->major;
2826         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2827         disk->fops = &skd_blockdev_ops;
2828         disk->private_data = skdev;
2829
2830         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2831         skdev->tag_set.ops = &skd_mq_ops;
2832         skdev->tag_set.nr_hw_queues = 1;
2833         skdev->tag_set.queue_depth = skd_max_queue_depth;
2834         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2835                 skdev->sgs_per_request * sizeof(struct scatterlist);
2836         skdev->tag_set.numa_node = NUMA_NO_NODE;
2837         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2838                 BLK_MQ_F_SG_MERGE |
2839                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2840         skdev->tag_set.driver_data = skdev;
2841         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2842         if (rc)
2843                 goto err_out;
2844         q = blk_mq_init_queue(&skdev->tag_set);
2845         if (IS_ERR(q)) {
2846                 blk_mq_free_tag_set(&skdev->tag_set);
2847                 rc = PTR_ERR(q);
2848                 goto err_out;
2849         }
2850         q->queuedata = skdev;
2851
2852         skdev->queue = q;
2853         disk->queue = q;
2854
2855         blk_queue_write_cache(q, true, true);
2856         blk_queue_max_segments(q, skdev->sgs_per_request);
2857         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2858
2859         /* set optimal I/O size to 8KB */
2860         blk_queue_io_opt(q, 8192);
2861
2862         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2863         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2864
2865         blk_queue_rq_timeout(q, 8 * HZ);
2866
2867         spin_lock_irqsave(&skdev->lock, flags);
2868         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2869         blk_mq_stop_hw_queues(skdev->queue);
2870         spin_unlock_irqrestore(&skdev->lock, flags);
2871
2872 err_out:
2873         return rc;
2874 }
2875
2876 #define SKD_N_DEV_TABLE         16u
2877 static u32 skd_next_devno;
2878
2879 static struct skd_device *skd_construct(struct pci_dev *pdev)
2880 {
2881         struct skd_device *skdev;
2882         int blk_major = skd_major;
2883         size_t size;
2884         int rc;
2885
2886         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2887
2888         if (!skdev) {
2889                 dev_err(&pdev->dev, "memory alloc failure\n");
2890                 return NULL;
2891         }
2892
2893         skdev->state = SKD_DRVR_STATE_LOAD;
2894         skdev->pdev = pdev;
2895         skdev->devno = skd_next_devno++;
2896         skdev->major = blk_major;
2897         skdev->dev_max_queue_depth = 0;
2898
2899         skdev->num_req_context = skd_max_queue_depth;
2900         skdev->num_fitmsg_context = skd_max_queue_depth;
2901         skdev->cur_max_queue_depth = 1;
2902         skdev->queue_low_water_mark = 1;
2903         skdev->proto_ver = 99;
2904         skdev->sgs_per_request = skd_sgs_per_request;
2905         skdev->dbg_level = skd_dbg_level;
2906
2907         spin_lock_init(&skdev->lock);
2908
2909         INIT_WORK(&skdev->start_queue, skd_start_queue);
2910         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2911
2912         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2913         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2914                                                 SLAB_HWCACHE_ALIGN, NULL);
2915         if (!skdev->msgbuf_cache)
2916                 goto err_out;
2917         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2918                   "skd-msgbuf: %d < %zd\n",
2919                   kmem_cache_size(skdev->msgbuf_cache), size);
2920         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2921         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2922                                                 SLAB_HWCACHE_ALIGN, NULL);
2923         if (!skdev->sglist_cache)
2924                 goto err_out;
2925         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2926                   "skd-sglist: %d < %zd\n",
2927                   kmem_cache_size(skdev->sglist_cache), size);
2928         size = SKD_N_INTERNAL_BYTES;
2929         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2930                                                  SLAB_HWCACHE_ALIGN, NULL);
2931         if (!skdev->databuf_cache)
2932                 goto err_out;
2933         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2934                   "skd-databuf: %d < %zd\n",
2935                   kmem_cache_size(skdev->databuf_cache), size);
2936
2937         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2938         rc = skd_cons_skcomp(skdev);
2939         if (rc < 0)
2940                 goto err_out;
2941
2942         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2943         rc = skd_cons_skmsg(skdev);
2944         if (rc < 0)
2945                 goto err_out;
2946
2947         dev_dbg(&skdev->pdev->dev, "sksb\n");
2948         rc = skd_cons_sksb(skdev);
2949         if (rc < 0)
2950                 goto err_out;
2951
2952         dev_dbg(&skdev->pdev->dev, "disk\n");
2953         rc = skd_cons_disk(skdev);
2954         if (rc < 0)
2955                 goto err_out;
2956
2957         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2958         return skdev;
2959
2960 err_out:
2961         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2962         skd_destruct(skdev);
2963         return NULL;
2964 }
2965
2966 /*
2967  *****************************************************************************
2968  * DESTRUCT (FREE)
2969  *****************************************************************************
2970  */
2971
2972 static void skd_free_skcomp(struct skd_device *skdev)
2973 {
2974         if (skdev->skcomp_table)
2975                 dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2976                                   skdev->skcomp_table, skdev->cq_dma_address);
2977
2978         skdev->skcomp_table = NULL;
2979         skdev->cq_dma_address = 0;
2980 }
2981
2982 static void skd_free_skmsg(struct skd_device *skdev)
2983 {
2984         u32 i;
2985
2986         if (skdev->skmsg_table == NULL)
2987                 return;
2988
2989         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2990                 struct skd_fitmsg_context *skmsg;
2991
2992                 skmsg = &skdev->skmsg_table[i];
2993
2994                 if (skmsg->msg_buf != NULL) {
2995                         dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
2996                                           skmsg->msg_buf,
2997                                             skmsg->mb_dma_address);
2998                 }
2999                 skmsg->msg_buf = NULL;
3000                 skmsg->mb_dma_address = 0;
3001         }
3002
3003         kfree(skdev->skmsg_table);
3004         skdev->skmsg_table = NULL;
3005 }
3006
3007 static void skd_free_sksb(struct skd_device *skdev)
3008 {
3009         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3010
3011         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3012                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3013
3014         skspcl->data_buf = NULL;
3015         skspcl->db_dma_address = 0;
3016
3017         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3018                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3019
3020         skspcl->msg_buf = NULL;
3021         skspcl->mb_dma_address = 0;
3022
3023         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3024                          skspcl->req.sksg_dma_address);
3025
3026         skspcl->req.sksg_list = NULL;
3027         skspcl->req.sksg_dma_address = 0;
3028 }
3029
3030 static void skd_free_disk(struct skd_device *skdev)
3031 {
3032         struct gendisk *disk = skdev->disk;
3033
3034         if (disk && (disk->flags & GENHD_FL_UP))
3035                 del_gendisk(disk);
3036
3037         if (skdev->queue) {
3038                 blk_cleanup_queue(skdev->queue);
3039                 skdev->queue = NULL;
3040                 if (disk)
3041                         disk->queue = NULL;
3042         }
3043
3044         if (skdev->tag_set.tags)
3045                 blk_mq_free_tag_set(&skdev->tag_set);
3046
3047         put_disk(disk);
3048         skdev->disk = NULL;
3049 }
3050
3051 static void skd_destruct(struct skd_device *skdev)
3052 {
3053         if (skdev == NULL)
3054                 return;
3055
3056         cancel_work_sync(&skdev->start_queue);
3057
3058         dev_dbg(&skdev->pdev->dev, "disk\n");
3059         skd_free_disk(skdev);
3060
3061         dev_dbg(&skdev->pdev->dev, "sksb\n");
3062         skd_free_sksb(skdev);
3063
3064         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3065         skd_free_skmsg(skdev);
3066
3067         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3068         skd_free_skcomp(skdev);
3069
3070         kmem_cache_destroy(skdev->databuf_cache);
3071         kmem_cache_destroy(skdev->sglist_cache);
3072         kmem_cache_destroy(skdev->msgbuf_cache);
3073
3074         dev_dbg(&skdev->pdev->dev, "skdev\n");
3075         kfree(skdev);
3076 }
3077
3078 /*
3079  *****************************************************************************
3080  * BLOCK DEVICE (BDEV) GLUE
3081  *****************************************************************************
3082  */
3083
3084 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3085 {
3086         struct skd_device *skdev;
3087         u64 capacity;
3088
3089         skdev = bdev->bd_disk->private_data;
3090
3091         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3092                 bdev->bd_disk->disk_name, current->comm);
3093
3094         if (skdev->read_cap_is_valid) {
3095                 capacity = get_capacity(skdev->disk);
3096                 geo->heads = 64;
3097                 geo->sectors = 255;
3098                 geo->cylinders = (capacity) / (255 * 64);
3099
3100                 return 0;
3101         }
3102         return -EIO;
3103 }
3104
3105 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3106 {
3107         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3108         device_add_disk(parent, skdev->disk, NULL);
3109         return 0;
3110 }
3111
3112 static const struct block_device_operations skd_blockdev_ops = {
3113         .owner          = THIS_MODULE,
3114         .getgeo         = skd_bdev_getgeo,
3115 };
3116
3117 /*
3118  *****************************************************************************
3119  * PCIe DRIVER GLUE
3120  *****************************************************************************
3121  */
3122
3123 static const struct pci_device_id skd_pci_tbl[] = {
3124         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3125           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3126         { 0 }                     /* terminate list */
3127 };
3128
3129 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3130
3131 static char *skd_pci_info(struct skd_device *skdev, char *str)
3132 {
3133         int pcie_reg;
3134
3135         strcpy(str, "PCIe (");
3136         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3137
3138         if (pcie_reg) {
3139
3140                 char lwstr[6];
3141                 uint16_t pcie_lstat, lspeed, lwidth;
3142
3143                 pcie_reg += 0x12;
3144                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3145                 lspeed = pcie_lstat & (0xF);
3146                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3147
3148                 if (lspeed == 1)
3149                         strcat(str, "2.5GT/s ");
3150                 else if (lspeed == 2)
3151                         strcat(str, "5.0GT/s ");
3152                 else
3153                         strcat(str, "<unknown> ");
3154                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3155                 strcat(str, lwstr);
3156         }
3157         return str;
3158 }
3159
3160 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3161 {
3162         int i;
3163         int rc = 0;
3164         char pci_str[32];
3165         struct skd_device *skdev;
3166
3167         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3168                 pdev->device);
3169
3170         rc = pci_enable_device(pdev);
3171         if (rc)
3172                 return rc;
3173         rc = pci_request_regions(pdev, DRV_NAME);
3174         if (rc)
3175                 goto err_out;
3176         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3177         if (rc)
3178                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3179         if (rc) {
3180                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3181                 goto err_out_regions;
3182         }
3183
3184         if (!skd_major) {
3185                 rc = register_blkdev(0, DRV_NAME);
3186                 if (rc < 0)
3187                         goto err_out_regions;
3188                 BUG_ON(!rc);
3189                 skd_major = rc;
3190         }
3191
3192         skdev = skd_construct(pdev);
3193         if (skdev == NULL) {
3194                 rc = -ENOMEM;
3195                 goto err_out_regions;
3196         }
3197
3198         skd_pci_info(skdev, pci_str);
3199         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3200
3201         pci_set_master(pdev);
3202         rc = pci_enable_pcie_error_reporting(pdev);
3203         if (rc) {
3204                 dev_err(&pdev->dev,
3205                         "bad enable of PCIe error reporting rc=%d\n", rc);
3206                 skdev->pcie_error_reporting_is_enabled = 0;
3207         } else
3208                 skdev->pcie_error_reporting_is_enabled = 1;
3209
3210         pci_set_drvdata(pdev, skdev);
3211
3212         for (i = 0; i < SKD_MAX_BARS; i++) {
3213                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3214                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3215                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3216                                             skdev->mem_size[i]);
3217                 if (!skdev->mem_map[i]) {
3218                         dev_err(&pdev->dev,
3219                                 "Unable to map adapter memory!\n");
3220                         rc = -ENODEV;
3221                         goto err_out_iounmap;
3222                 }
3223                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3224                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3225                         skdev->mem_size[i]);
3226         }
3227
3228         rc = skd_acquire_irq(skdev);
3229         if (rc) {
3230                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3231                 goto err_out_iounmap;
3232         }
3233
3234         rc = skd_start_timer(skdev);
3235         if (rc)
3236                 goto err_out_timer;
3237
3238         init_waitqueue_head(&skdev->waitq);
3239
3240         skd_start_device(skdev);
3241
3242         rc = wait_event_interruptible_timeout(skdev->waitq,
3243                                               (skdev->gendisk_on),
3244                                               (SKD_START_WAIT_SECONDS * HZ));
3245         if (skdev->gendisk_on > 0) {
3246                 /* device came on-line after reset */
3247                 skd_bdev_attach(&pdev->dev, skdev);
3248                 rc = 0;
3249         } else {
3250                 /* we timed out, something is wrong with the device,
3251                    don't add the disk structure */
3252                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3253                         rc);
3254                 /* in case of no error; we timeout with ENXIO */
3255                 if (!rc)
3256                         rc = -ENXIO;
3257                 goto err_out_timer;
3258         }
3259
3260         return rc;
3261
3262 err_out_timer:
3263         skd_stop_device(skdev);
3264         skd_release_irq(skdev);
3265
3266 err_out_iounmap:
3267         for (i = 0; i < SKD_MAX_BARS; i++)
3268                 if (skdev->mem_map[i])
3269                         iounmap(skdev->mem_map[i]);
3270
3271         if (skdev->pcie_error_reporting_is_enabled)
3272                 pci_disable_pcie_error_reporting(pdev);
3273
3274         skd_destruct(skdev);
3275
3276 err_out_regions:
3277         pci_release_regions(pdev);
3278
3279 err_out:
3280         pci_disable_device(pdev);
3281         pci_set_drvdata(pdev, NULL);
3282         return rc;
3283 }
3284
3285 static void skd_pci_remove(struct pci_dev *pdev)
3286 {
3287         int i;
3288         struct skd_device *skdev;
3289
3290         skdev = pci_get_drvdata(pdev);
3291         if (!skdev) {
3292                 dev_err(&pdev->dev, "no device data for PCI\n");
3293                 return;
3294         }
3295         skd_stop_device(skdev);
3296         skd_release_irq(skdev);
3297
3298         for (i = 0; i < SKD_MAX_BARS; i++)
3299                 if (skdev->mem_map[i])
3300                         iounmap(skdev->mem_map[i]);
3301
3302         if (skdev->pcie_error_reporting_is_enabled)
3303                 pci_disable_pcie_error_reporting(pdev);
3304
3305         skd_destruct(skdev);
3306
3307         pci_release_regions(pdev);
3308         pci_disable_device(pdev);
3309         pci_set_drvdata(pdev, NULL);
3310
3311         return;
3312 }
3313
3314 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3315 {
3316         int i;
3317         struct skd_device *skdev;
3318
3319         skdev = pci_get_drvdata(pdev);
3320         if (!skdev) {
3321                 dev_err(&pdev->dev, "no device data for PCI\n");
3322                 return -EIO;
3323         }
3324
3325         skd_stop_device(skdev);
3326
3327         skd_release_irq(skdev);
3328
3329         for (i = 0; i < SKD_MAX_BARS; i++)
3330                 if (skdev->mem_map[i])
3331                         iounmap(skdev->mem_map[i]);
3332
3333         if (skdev->pcie_error_reporting_is_enabled)
3334                 pci_disable_pcie_error_reporting(pdev);
3335
3336         pci_release_regions(pdev);
3337         pci_save_state(pdev);
3338         pci_disable_device(pdev);
3339         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3340         return 0;
3341 }
3342
3343 static int skd_pci_resume(struct pci_dev *pdev)
3344 {
3345         int i;
3346         int rc = 0;
3347         struct skd_device *skdev;
3348
3349         skdev = pci_get_drvdata(pdev);
3350         if (!skdev) {
3351                 dev_err(&pdev->dev, "no device data for PCI\n");
3352                 return -1;
3353         }
3354
3355         pci_set_power_state(pdev, PCI_D0);
3356         pci_enable_wake(pdev, PCI_D0, 0);
3357         pci_restore_state(pdev);
3358
3359         rc = pci_enable_device(pdev);
3360         if (rc)
3361                 return rc;
3362         rc = pci_request_regions(pdev, DRV_NAME);
3363         if (rc)
3364                 goto err_out;
3365         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3366         if (rc)
3367                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3368         if (rc) {
3369                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3370                 goto err_out_regions;
3371         }
3372
3373         pci_set_master(pdev);
3374         rc = pci_enable_pcie_error_reporting(pdev);
3375         if (rc) {
3376                 dev_err(&pdev->dev,
3377                         "bad enable of PCIe error reporting rc=%d\n", rc);
3378                 skdev->pcie_error_reporting_is_enabled = 0;
3379         } else
3380                 skdev->pcie_error_reporting_is_enabled = 1;
3381
3382         for (i = 0; i < SKD_MAX_BARS; i++) {
3383
3384                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3385                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3386                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3387                                             skdev->mem_size[i]);
3388                 if (!skdev->mem_map[i]) {
3389                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3390                         rc = -ENODEV;
3391                         goto err_out_iounmap;
3392                 }
3393                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3394                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3395                         skdev->mem_size[i]);
3396         }
3397         rc = skd_acquire_irq(skdev);
3398         if (rc) {
3399                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3400                 goto err_out_iounmap;
3401         }
3402
3403         rc = skd_start_timer(skdev);
3404         if (rc)
3405                 goto err_out_timer;
3406
3407         init_waitqueue_head(&skdev->waitq);
3408
3409         skd_start_device(skdev);
3410
3411         return rc;
3412
3413 err_out_timer:
3414         skd_stop_device(skdev);
3415         skd_release_irq(skdev);
3416
3417 err_out_iounmap:
3418         for (i = 0; i < SKD_MAX_BARS; i++)
3419                 if (skdev->mem_map[i])
3420                         iounmap(skdev->mem_map[i]);
3421
3422         if (skdev->pcie_error_reporting_is_enabled)
3423                 pci_disable_pcie_error_reporting(pdev);
3424
3425 err_out_regions:
3426         pci_release_regions(pdev);
3427
3428 err_out:
3429         pci_disable_device(pdev);
3430         return rc;
3431 }
3432
3433 static void skd_pci_shutdown(struct pci_dev *pdev)
3434 {
3435         struct skd_device *skdev;
3436
3437         dev_err(&pdev->dev, "%s called\n", __func__);
3438
3439         skdev = pci_get_drvdata(pdev);
3440         if (!skdev) {
3441                 dev_err(&pdev->dev, "no device data for PCI\n");
3442                 return;
3443         }
3444
3445         dev_err(&pdev->dev, "calling stop\n");
3446         skd_stop_device(skdev);
3447 }
3448
3449 static struct pci_driver skd_driver = {
3450         .name           = DRV_NAME,
3451         .id_table       = skd_pci_tbl,
3452         .probe          = skd_pci_probe,
3453         .remove         = skd_pci_remove,
3454         .suspend        = skd_pci_suspend,
3455         .resume         = skd_pci_resume,
3456         .shutdown       = skd_pci_shutdown,
3457 };
3458
3459 /*
3460  *****************************************************************************
3461  * LOGGING SUPPORT
3462  *****************************************************************************
3463  */
3464
3465 const char *skd_drive_state_to_str(int state)
3466 {
3467         switch (state) {
3468         case FIT_SR_DRIVE_OFFLINE:
3469                 return "OFFLINE";
3470         case FIT_SR_DRIVE_INIT:
3471                 return "INIT";
3472         case FIT_SR_DRIVE_ONLINE:
3473                 return "ONLINE";
3474         case FIT_SR_DRIVE_BUSY:
3475                 return "BUSY";
3476         case FIT_SR_DRIVE_FAULT:
3477                 return "FAULT";
3478         case FIT_SR_DRIVE_DEGRADED:
3479                 return "DEGRADED";
3480         case FIT_SR_PCIE_LINK_DOWN:
3481                 return "INK_DOWN";
3482         case FIT_SR_DRIVE_SOFT_RESET:
3483                 return "SOFT_RESET";
3484         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3485                 return "NEED_FW";
3486         case FIT_SR_DRIVE_INIT_FAULT:
3487                 return "INIT_FAULT";
3488         case FIT_SR_DRIVE_BUSY_SANITIZE:
3489                 return "BUSY_SANITIZE";
3490         case FIT_SR_DRIVE_BUSY_ERASE:
3491                 return "BUSY_ERASE";
3492         case FIT_SR_DRIVE_FW_BOOTING:
3493                 return "FW_BOOTING";
3494         default:
3495                 return "???";
3496         }
3497 }
3498
3499 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3500 {
3501         switch (state) {
3502         case SKD_DRVR_STATE_LOAD:
3503                 return "LOAD";
3504         case SKD_DRVR_STATE_IDLE:
3505                 return "IDLE";
3506         case SKD_DRVR_STATE_BUSY:
3507                 return "BUSY";
3508         case SKD_DRVR_STATE_STARTING:
3509                 return "STARTING";
3510         case SKD_DRVR_STATE_ONLINE:
3511                 return "ONLINE";
3512         case SKD_DRVR_STATE_PAUSING:
3513                 return "PAUSING";
3514         case SKD_DRVR_STATE_PAUSED:
3515                 return "PAUSED";
3516         case SKD_DRVR_STATE_RESTARTING:
3517                 return "RESTARTING";
3518         case SKD_DRVR_STATE_RESUMING:
3519                 return "RESUMING";
3520         case SKD_DRVR_STATE_STOPPING:
3521                 return "STOPPING";
3522         case SKD_DRVR_STATE_SYNCING:
3523                 return "SYNCING";
3524         case SKD_DRVR_STATE_FAULT:
3525                 return "FAULT";
3526         case SKD_DRVR_STATE_DISAPPEARED:
3527                 return "DISAPPEARED";
3528         case SKD_DRVR_STATE_BUSY_ERASE:
3529                 return "BUSY_ERASE";
3530         case SKD_DRVR_STATE_BUSY_SANITIZE:
3531                 return "BUSY_SANITIZE";
3532         case SKD_DRVR_STATE_BUSY_IMMINENT:
3533                 return "BUSY_IMMINENT";
3534         case SKD_DRVR_STATE_WAIT_BOOT:
3535                 return "WAIT_BOOT";
3536
3537         default:
3538                 return "???";
3539         }
3540 }
3541
3542 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3543 {
3544         switch (state) {
3545         case SKD_REQ_STATE_IDLE:
3546                 return "IDLE";
3547         case SKD_REQ_STATE_SETUP:
3548                 return "SETUP";
3549         case SKD_REQ_STATE_BUSY:
3550                 return "BUSY";
3551         case SKD_REQ_STATE_COMPLETED:
3552                 return "COMPLETED";
3553         case SKD_REQ_STATE_TIMEOUT:
3554                 return "TIMEOUT";
3555         default:
3556                 return "???";
3557         }
3558 }
3559
3560 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3561 {
3562         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3563         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3564                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3565                 skd_skdev_state_to_str(skdev->state), skdev->state);
3566         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3567                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3568                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3569         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3570                 skdev->skcomp_cycle, skdev->skcomp_ix);
3571 }
3572
3573 static void skd_log_skreq(struct skd_device *skdev,
3574                           struct skd_request_context *skreq, const char *event)
3575 {
3576         struct request *req = blk_mq_rq_from_pdu(skreq);
3577         u32 lba = blk_rq_pos(req);
3578         u32 count = blk_rq_sectors(req);
3579
3580         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3581         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3582                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3583                 skreq->fitmsg_id);
3584         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3585                 skreq->data_dir, skreq->n_sg);
3586
3587         dev_dbg(&skdev->pdev->dev,
3588                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3589                 count, count, (int)rq_data_dir(req));
3590 }
3591
3592 /*
3593  *****************************************************************************
3594  * MODULE GLUE
3595  *****************************************************************************
3596  */
3597
3598 static int __init skd_init(void)
3599 {
3600         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3601         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3602         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3603         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3604         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3605         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3606         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3607         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3608
3609         switch (skd_isr_type) {
3610         case SKD_IRQ_LEGACY:
3611         case SKD_IRQ_MSI:
3612         case SKD_IRQ_MSIX:
3613                 break;
3614         default:
3615                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3616                        skd_isr_type, SKD_IRQ_DEFAULT);
3617                 skd_isr_type = SKD_IRQ_DEFAULT;
3618         }
3619
3620         if (skd_max_queue_depth < 1 ||
3621             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3622                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3623                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3624                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3625         }
3626
3627         if (skd_max_req_per_msg < 1 ||
3628             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3629                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3630                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3631                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3632         }
3633
3634         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3635                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3636                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3637                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3638         }
3639
3640         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3641                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3642                        skd_dbg_level, 0);
3643                 skd_dbg_level = 0;
3644         }
3645
3646         if (skd_isr_comp_limit < 0) {
3647                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3648                        skd_isr_comp_limit, 0);
3649                 skd_isr_comp_limit = 0;
3650         }
3651
3652         return pci_register_driver(&skd_driver);
3653 }
3654
3655 static void __exit skd_exit(void)
3656 {
3657         pci_unregister_driver(&skd_driver);
3658
3659         if (skd_major)
3660                 unregister_blkdev(skd_major, DRV_NAME);
3661 }
3662
3663 module_init(skd_init);
3664 module_exit(skd_exit);