3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
47 #include "rbd_types.h"
49 #define RBD_DEBUG /* Activate rbd_assert() calls */
52 * The basic unit of block I/O is a sector. It is interpreted in a
53 * number of contexts in Linux (blk, bio, genhd), but the default is
54 * universally 512 bytes. These symbols are just slightly more
55 * meaningful than the bare numbers they represent.
57 #define SECTOR_SHIFT 9
58 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61 * Increment the given counter and return its updated value.
62 * If the counter is already 0 it will not be incremented.
63 * If the counter is already at its maximum value returns
64 * -EINVAL without updating it.
66 static int atomic_inc_return_safe(atomic_t *v)
70 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 if (counter <= (unsigned int)INT_MAX)
79 /* Decrement the counter. Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
84 counter = atomic_dec_return(v);
93 #define RBD_DRV_NAME "rbd"
95 #define RBD_MINORS_PER_MAJOR 256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN \
100 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
104 #define RBD_SNAP_HEAD_NAME "-"
106 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX 64
112 #define RBD_OBJ_PREFIX_LEN_MAX 64
116 #define RBD_FEATURE_LAYERING (1<<0)
117 #define RBD_FEATURE_STRIPINGV2 (1<<1)
118 #define RBD_FEATURES_ALL \
119 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 /* Features supported by this (client software) implementation. */
123 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
126 * An RBD device name will be "rbd#", where the "rbd" comes from
127 * RBD_DRV_NAME above, and # is a unique integer identifier.
128 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129 * enough to hold all possible device names.
131 #define DEV_NAME_LEN 32
132 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
135 * block device image metadata (in-memory version)
137 struct rbd_image_header {
138 /* These six fields never change for a given rbd image */
145 u64 features; /* Might be changeable someday? */
147 /* The remaining fields need to be updated occasionally */
149 struct ceph_snap_context *snapc;
150 char *snap_names; /* format 1 only */
151 u64 *snap_sizes; /* format 1 only */
155 * An rbd image specification.
157 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158 * identify an image. Each rbd_dev structure includes a pointer to
159 * an rbd_spec structure that encapsulates this identity.
161 * Each of the id's in an rbd_spec has an associated name. For a
162 * user-mapped image, the names are supplied and the id's associated
163 * with them are looked up. For a layered image, a parent image is
164 * defined by the tuple, and the names are looked up.
166 * An rbd_dev structure contains a parent_spec pointer which is
167 * non-null if the image it represents is a child in a layered
168 * image. This pointer will refer to the rbd_spec structure used
169 * by the parent rbd_dev for its own identity (i.e., the structure
170 * is shared between the parent and child).
172 * Since these structures are populated once, during the discovery
173 * phase of image construction, they are effectively immutable so
174 * we make no effort to synchronize access to them.
176 * Note that code herein does not assume the image name is known (it
177 * could be a null pointer).
181 const char *pool_name;
183 const char *image_id;
184 const char *image_name;
187 const char *snap_name;
193 * an instance of the client. multiple devices may share an rbd client.
196 struct ceph_client *client;
198 struct list_head node;
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 enum obj_request_type {
210 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
213 enum obj_operation_type {
220 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
221 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
222 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
223 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
226 struct rbd_obj_request {
227 const char *object_name;
228 u64 offset; /* object start byte */
229 u64 length; /* bytes from offset */
233 * An object request associated with an image will have its
234 * img_data flag set; a standalone object request will not.
236 * A standalone object request will have which == BAD_WHICH
237 * and a null obj_request pointer.
239 * An object request initiated in support of a layered image
240 * object (to check for its existence before a write) will
241 * have which == BAD_WHICH and a non-null obj_request pointer.
243 * Finally, an object request for rbd image data will have
244 * which != BAD_WHICH, and will have a non-null img_request
245 * pointer. The value of which will be in the range
246 * 0..(img_request->obj_request_count-1).
249 struct rbd_obj_request *obj_request; /* STAT op */
251 struct rbd_img_request *img_request;
253 /* links for img_request->obj_requests list */
254 struct list_head links;
257 u32 which; /* posn image request list */
259 enum obj_request_type type;
261 struct bio *bio_list;
267 struct page **copyup_pages;
268 u32 copyup_page_count;
270 struct ceph_osd_request *osd_req;
272 u64 xferred; /* bytes transferred */
275 rbd_obj_callback_t callback;
276 struct completion completion;
282 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
283 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
284 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
285 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
288 struct rbd_img_request {
289 struct rbd_device *rbd_dev;
290 u64 offset; /* starting image byte offset */
291 u64 length; /* byte count from offset */
294 u64 snap_id; /* for reads */
295 struct ceph_snap_context *snapc; /* for writes */
298 struct request *rq; /* block request */
299 struct rbd_obj_request *obj_request; /* obj req initiator */
301 struct page **copyup_pages;
302 u32 copyup_page_count;
303 spinlock_t completion_lock;/* protects next_completion */
305 rbd_img_callback_t callback;
306 u64 xferred;/* aggregate bytes transferred */
307 int result; /* first nonzero obj_request result */
309 u32 obj_request_count;
310 struct list_head obj_requests; /* rbd_obj_request structs */
315 #define for_each_obj_request(ireq, oreq) \
316 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
332 int dev_id; /* blkdev unique id */
334 int major; /* blkdev assigned major */
336 struct gendisk *disk; /* blkdev's gendisk and rq */
338 u32 image_format; /* Either 1 or 2 */
339 struct rbd_client *rbd_client;
341 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 struct list_head rq_queue; /* incoming rq queue */
344 spinlock_t lock; /* queue, flags, open_count */
345 struct workqueue_struct *rq_wq;
346 struct work_struct rq_work;
348 struct rbd_image_header header;
349 unsigned long flags; /* possibly lock protected */
350 struct rbd_spec *spec;
354 struct ceph_file_layout layout;
356 struct ceph_osd_event *watch_event;
357 struct rbd_obj_request *watch_request;
359 struct rbd_spec *parent_spec;
362 struct rbd_device *parent;
364 /* protects updating the header */
365 struct rw_semaphore header_rwsem;
367 struct rbd_mapping mapping;
369 struct list_head node;
373 unsigned long open_count; /* protected by lock */
377 * Flag bits for rbd_dev->flags. If atomicity is required,
378 * rbd_dev->lock is used to protect access.
380 * Currently, only the "removing" flag (which is coupled with the
381 * "open_count" field) requires atomic access.
384 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
385 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
388 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
390 static LIST_HEAD(rbd_dev_list); /* devices */
391 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393 static LIST_HEAD(rbd_client_list); /* clients */
394 static DEFINE_SPINLOCK(rbd_client_list_lock);
396 /* Slab caches for frequently-allocated structures */
398 static struct kmem_cache *rbd_img_request_cache;
399 static struct kmem_cache *rbd_obj_request_cache;
400 static struct kmem_cache *rbd_segment_name_cache;
402 static int rbd_major;
403 static DEFINE_IDA(rbd_dev_id_ida);
406 * Default to false for now, as single-major requires >= 0.75 version of
407 * userspace rbd utility.
409 static bool single_major = false;
410 module_param(single_major, bool, S_IRUGO);
411 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415 static void rbd_dev_device_release(struct device *dev);
417 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
426 static void rbd_spec_put(struct rbd_spec *spec);
428 static int rbd_dev_id_to_minor(int dev_id)
430 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
433 static int minor_to_rbd_dev_id(int minor)
435 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
438 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
439 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
440 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
441 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443 static struct attribute *rbd_bus_attrs[] = {
445 &bus_attr_remove.attr,
446 &bus_attr_add_single_major.attr,
447 &bus_attr_remove_single_major.attr,
451 static umode_t rbd_bus_is_visible(struct kobject *kobj,
452 struct attribute *attr, int index)
455 (attr == &bus_attr_add_single_major.attr ||
456 attr == &bus_attr_remove_single_major.attr))
462 static const struct attribute_group rbd_bus_group = {
463 .attrs = rbd_bus_attrs,
464 .is_visible = rbd_bus_is_visible,
466 __ATTRIBUTE_GROUPS(rbd_bus);
468 static struct bus_type rbd_bus_type = {
470 .bus_groups = rbd_bus_groups,
473 static void rbd_root_dev_release(struct device *dev)
477 static struct device rbd_root_dev = {
479 .release = rbd_root_dev_release,
482 static __printf(2, 3)
483 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 struct va_format vaf;
493 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
494 else if (rbd_dev->disk)
495 printk(KERN_WARNING "%s: %s: %pV\n",
496 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
497 else if (rbd_dev->spec && rbd_dev->spec->image_name)
498 printk(KERN_WARNING "%s: image %s: %pV\n",
499 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
500 else if (rbd_dev->spec && rbd_dev->spec->image_id)
501 printk(KERN_WARNING "%s: id %s: %pV\n",
502 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
505 RBD_DRV_NAME, rbd_dev, &vaf);
510 #define rbd_assert(expr) \
511 if (unlikely(!(expr))) { \
512 printk(KERN_ERR "\nAssertion failure in %s() " \
514 "\trbd_assert(%s);\n\n", \
515 __func__, __LINE__, #expr); \
518 #else /* !RBD_DEBUG */
519 # define rbd_assert(expr) ((void) 0)
520 #endif /* !RBD_DEBUG */
522 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
523 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
524 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
526 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
527 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
528 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
529 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
530 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
532 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
533 u8 *order, u64 *snap_size);
534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
536 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
538 static int rbd_open(struct block_device *bdev, fmode_t mode)
540 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
541 bool removing = false;
543 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
546 spin_lock_irq(&rbd_dev->lock);
547 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
550 rbd_dev->open_count++;
551 spin_unlock_irq(&rbd_dev->lock);
555 (void) get_device(&rbd_dev->dev);
560 static void rbd_release(struct gendisk *disk, fmode_t mode)
562 struct rbd_device *rbd_dev = disk->private_data;
563 unsigned long open_count_before;
565 spin_lock_irq(&rbd_dev->lock);
566 open_count_before = rbd_dev->open_count--;
567 spin_unlock_irq(&rbd_dev->lock);
568 rbd_assert(open_count_before > 0);
570 put_device(&rbd_dev->dev);
573 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 bool ro_changed = false;
580 /* get_user() may sleep, so call it before taking rbd_dev->lock */
581 if (get_user(val, (int __user *)(arg)))
584 ro = val ? true : false;
585 /* Snapshot doesn't allow to write*/
586 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
589 spin_lock_irq(&rbd_dev->lock);
590 /* prevent others open this device */
591 if (rbd_dev->open_count > 1) {
596 if (rbd_dev->mapping.read_only != ro) {
597 rbd_dev->mapping.read_only = ro;
602 spin_unlock_irq(&rbd_dev->lock);
603 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
604 if (ret == 0 && ro_changed)
605 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
611 unsigned int cmd, unsigned long arg)
613 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618 ret = rbd_ioctl_set_ro(rbd_dev, arg);
628 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
629 unsigned int cmd, unsigned long arg)
631 return rbd_ioctl(bdev, mode, cmd, arg);
633 #endif /* CONFIG_COMPAT */
635 static const struct block_device_operations rbd_bd_ops = {
636 .owner = THIS_MODULE,
638 .release = rbd_release,
641 .compat_ioctl = rbd_compat_ioctl,
646 * Initialize an rbd client instance. Success or not, this function
647 * consumes ceph_opts. Caller holds client_mutex.
649 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
651 struct rbd_client *rbdc;
654 dout("%s:\n", __func__);
655 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659 kref_init(&rbdc->kref);
660 INIT_LIST_HEAD(&rbdc->node);
662 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
663 if (IS_ERR(rbdc->client))
665 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
667 ret = ceph_open_session(rbdc->client);
671 spin_lock(&rbd_client_list_lock);
672 list_add_tail(&rbdc->node, &rbd_client_list);
673 spin_unlock(&rbd_client_list_lock);
675 dout("%s: rbdc %p\n", __func__, rbdc);
679 ceph_destroy_client(rbdc->client);
684 ceph_destroy_options(ceph_opts);
685 dout("%s: error %d\n", __func__, ret);
690 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
692 kref_get(&rbdc->kref);
698 * Find a ceph client with specific addr and configuration. If
699 * found, bump its reference count.
701 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
703 struct rbd_client *client_node;
706 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
709 spin_lock(&rbd_client_list_lock);
710 list_for_each_entry(client_node, &rbd_client_list, node) {
711 if (!ceph_compare_options(ceph_opts, client_node->client)) {
712 __rbd_get_client(client_node);
718 spin_unlock(&rbd_client_list_lock);
720 return found ? client_node : NULL;
730 /* string args above */
733 /* Boolean args above */
737 static match_table_t rbd_opts_tokens = {
739 /* string args above */
740 {Opt_read_only, "read_only"},
741 {Opt_read_only, "ro"}, /* Alternate spelling */
742 {Opt_read_write, "read_write"},
743 {Opt_read_write, "rw"}, /* Alternate spelling */
744 /* Boolean args above */
752 #define RBD_READ_ONLY_DEFAULT false
754 static int parse_rbd_opts_token(char *c, void *private)
756 struct rbd_options *rbd_opts = private;
757 substring_t argstr[MAX_OPT_ARGS];
758 int token, intval, ret;
760 token = match_token(c, rbd_opts_tokens, argstr);
764 if (token < Opt_last_int) {
765 ret = match_int(&argstr[0], &intval);
767 pr_err("bad mount option arg (not int) "
771 dout("got int token %d val %d\n", token, intval);
772 } else if (token > Opt_last_int && token < Opt_last_string) {
773 dout("got string token %d val %s\n", token,
775 } else if (token > Opt_last_string && token < Opt_last_bool) {
776 dout("got Boolean token %d\n", token);
778 dout("got token %d\n", token);
783 rbd_opts->read_only = true;
786 rbd_opts->read_only = false;
795 static char* obj_op_name(enum obj_operation_type op_type)
810 * Get a ceph client with specific addr and configuration, if one does
811 * not exist create it. Either way, ceph_opts is consumed by this
814 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
816 struct rbd_client *rbdc;
818 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
819 rbdc = rbd_client_find(ceph_opts);
820 if (rbdc) /* using an existing client */
821 ceph_destroy_options(ceph_opts);
823 rbdc = rbd_client_create(ceph_opts);
824 mutex_unlock(&client_mutex);
830 * Destroy ceph client
832 * Caller must hold rbd_client_list_lock.
834 static void rbd_client_release(struct kref *kref)
836 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
838 dout("%s: rbdc %p\n", __func__, rbdc);
839 spin_lock(&rbd_client_list_lock);
840 list_del(&rbdc->node);
841 spin_unlock(&rbd_client_list_lock);
843 ceph_destroy_client(rbdc->client);
848 * Drop reference to ceph client node. If it's not referenced anymore, release
851 static void rbd_put_client(struct rbd_client *rbdc)
854 kref_put(&rbdc->kref, rbd_client_release);
857 static bool rbd_image_format_valid(u32 image_format)
859 return image_format == 1 || image_format == 2;
862 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
867 /* The header has to start with the magic rbd header text */
868 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
871 /* The bio layer requires at least sector-sized I/O */
873 if (ondisk->options.order < SECTOR_SHIFT)
876 /* If we use u64 in a few spots we may be able to loosen this */
878 if (ondisk->options.order > 8 * sizeof (int) - 1)
882 * The size of a snapshot header has to fit in a size_t, and
883 * that limits the number of snapshots.
885 snap_count = le32_to_cpu(ondisk->snap_count);
886 size = SIZE_MAX - sizeof (struct ceph_snap_context);
887 if (snap_count > size / sizeof (__le64))
891 * Not only that, but the size of the entire the snapshot
892 * header must also be representable in a size_t.
894 size -= snap_count * sizeof (__le64);
895 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
902 * Fill an rbd image header with information from the given format 1
905 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
906 struct rbd_image_header_ondisk *ondisk)
908 struct rbd_image_header *header = &rbd_dev->header;
909 bool first_time = header->object_prefix == NULL;
910 struct ceph_snap_context *snapc;
911 char *object_prefix = NULL;
912 char *snap_names = NULL;
913 u64 *snap_sizes = NULL;
919 /* Allocate this now to avoid having to handle failure below */
924 len = strnlen(ondisk->object_prefix,
925 sizeof (ondisk->object_prefix));
926 object_prefix = kmalloc(len + 1, GFP_KERNEL);
929 memcpy(object_prefix, ondisk->object_prefix, len);
930 object_prefix[len] = '\0';
933 /* Allocate the snapshot context and fill it in */
935 snap_count = le32_to_cpu(ondisk->snap_count);
936 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
939 snapc->seq = le64_to_cpu(ondisk->snap_seq);
941 struct rbd_image_snap_ondisk *snaps;
942 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
944 /* We'll keep a copy of the snapshot names... */
946 if (snap_names_len > (u64)SIZE_MAX)
948 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952 /* ...as well as the array of their sizes. */
954 size = snap_count * sizeof (*header->snap_sizes);
955 snap_sizes = kmalloc(size, GFP_KERNEL);
960 * Copy the names, and fill in each snapshot's id
963 * Note that rbd_dev_v1_header_info() guarantees the
964 * ondisk buffer we're working with has
965 * snap_names_len bytes beyond the end of the
966 * snapshot id array, this memcpy() is safe.
968 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
969 snaps = ondisk->snaps;
970 for (i = 0; i < snap_count; i++) {
971 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
972 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976 /* We won't fail any more, fill in the header */
979 header->object_prefix = object_prefix;
980 header->obj_order = ondisk->options.order;
981 header->crypt_type = ondisk->options.crypt_type;
982 header->comp_type = ondisk->options.comp_type;
983 /* The rest aren't used for format 1 images */
984 header->stripe_unit = 0;
985 header->stripe_count = 0;
986 header->features = 0;
988 ceph_put_snap_context(header->snapc);
989 kfree(header->snap_names);
990 kfree(header->snap_sizes);
993 /* The remaining fields always get updated (when we refresh) */
995 header->image_size = le64_to_cpu(ondisk->image_size);
996 header->snapc = snapc;
997 header->snap_names = snap_names;
998 header->snap_sizes = snap_sizes;
1006 ceph_put_snap_context(snapc);
1007 kfree(object_prefix);
1012 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1014 const char *snap_name;
1016 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1018 /* Skip over names until we find the one we are looking for */
1020 snap_name = rbd_dev->header.snap_names;
1022 snap_name += strlen(snap_name) + 1;
1024 return kstrdup(snap_name, GFP_KERNEL);
1028 * Snapshot id comparison function for use with qsort()/bsearch().
1029 * Note that result is for snapshots in *descending* order.
1031 static int snapid_compare_reverse(const void *s1, const void *s2)
1033 u64 snap_id1 = *(u64 *)s1;
1034 u64 snap_id2 = *(u64 *)s2;
1036 if (snap_id1 < snap_id2)
1038 return snap_id1 == snap_id2 ? 0 : -1;
1042 * Search a snapshot context to see if the given snapshot id is
1045 * Returns the position of the snapshot id in the array if it's found,
1046 * or BAD_SNAP_INDEX otherwise.
1048 * Note: The snapshot array is in kept sorted (by the osd) in
1049 * reverse order, highest snapshot id first.
1051 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1053 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1056 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1057 sizeof (snap_id), snapid_compare_reverse);
1059 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1062 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066 const char *snap_name;
1068 which = rbd_dev_snap_index(rbd_dev, snap_id);
1069 if (which == BAD_SNAP_INDEX)
1070 return ERR_PTR(-ENOENT);
1072 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1073 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1076 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1078 if (snap_id == CEPH_NOSNAP)
1079 return RBD_SNAP_HEAD_NAME;
1081 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1082 if (rbd_dev->image_format == 1)
1083 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1085 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1088 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1091 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092 if (snap_id == CEPH_NOSNAP) {
1093 *snap_size = rbd_dev->header.image_size;
1094 } else if (rbd_dev->image_format == 1) {
1097 which = rbd_dev_snap_index(rbd_dev, snap_id);
1098 if (which == BAD_SNAP_INDEX)
1101 *snap_size = rbd_dev->header.snap_sizes[which];
1106 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1118 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1119 if (snap_id == CEPH_NOSNAP) {
1120 *snap_features = rbd_dev->header.features;
1121 } else if (rbd_dev->image_format == 1) {
1122 *snap_features = 0; /* No features for format 1 */
1127 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131 *snap_features = features;
1136 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1138 u64 snap_id = rbd_dev->spec->snap_id;
1143 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1146 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150 rbd_dev->mapping.size = size;
1151 rbd_dev->mapping.features = features;
1156 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1158 rbd_dev->mapping.size = 0;
1159 rbd_dev->mapping.features = 0;
1162 static void rbd_segment_name_free(const char *name)
1164 /* The explicit cast here is needed to drop the const qualifier */
1166 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1169 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1176 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1179 segment = offset >> rbd_dev->header.obj_order;
1180 name_format = "%s.%012llx";
1181 if (rbd_dev->image_format == 2)
1182 name_format = "%s.%016llx";
1183 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1184 rbd_dev->header.object_prefix, segment);
1185 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1186 pr_err("error formatting segment name for #%llu (%d)\n",
1188 rbd_segment_name_free(name);
1195 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1197 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1199 return offset & (segment_size - 1);
1202 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1203 u64 offset, u64 length)
1205 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1207 offset &= segment_size - 1;
1209 rbd_assert(length <= U64_MAX - offset);
1210 if (offset + length > segment_size)
1211 length = segment_size - offset;
1217 * returns the size of an object in the image
1219 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1221 return 1 << header->obj_order;
1228 static void bio_chain_put(struct bio *chain)
1234 chain = chain->bi_next;
1240 * zeros a bio chain, starting at specific offset
1242 static void zero_bio_chain(struct bio *chain, int start_ofs)
1245 struct bvec_iter iter;
1246 unsigned long flags;
1251 bio_for_each_segment(bv, chain, iter) {
1252 if (pos + bv.bv_len > start_ofs) {
1253 int remainder = max(start_ofs - pos, 0);
1254 buf = bvec_kmap_irq(&bv, &flags);
1255 memset(buf + remainder, 0,
1256 bv.bv_len - remainder);
1257 flush_dcache_page(bv.bv_page);
1258 bvec_kunmap_irq(buf, &flags);
1263 chain = chain->bi_next;
1268 * similar to zero_bio_chain(), zeros data defined by a page array,
1269 * starting at the given byte offset from the start of the array and
1270 * continuing up to the given end offset. The pages array is
1271 * assumed to be big enough to hold all bytes up to the end.
1273 static void zero_pages(struct page **pages, u64 offset, u64 end)
1275 struct page **page = &pages[offset >> PAGE_SHIFT];
1277 rbd_assert(end > offset);
1278 rbd_assert(end - offset <= (u64)SIZE_MAX);
1279 while (offset < end) {
1282 unsigned long flags;
1285 page_offset = offset & ~PAGE_MASK;
1286 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1287 local_irq_save(flags);
1288 kaddr = kmap_atomic(*page);
1289 memset(kaddr + page_offset, 0, length);
1290 flush_dcache_page(*page);
1291 kunmap_atomic(kaddr);
1292 local_irq_restore(flags);
1300 * Clone a portion of a bio, starting at the given byte offset
1301 * and continuing for the number of bytes indicated.
1303 static struct bio *bio_clone_range(struct bio *bio_src,
1304 unsigned int offset,
1310 bio = bio_clone(bio_src, gfpmask);
1312 return NULL; /* ENOMEM */
1314 bio_advance(bio, offset);
1315 bio->bi_iter.bi_size = len;
1321 * Clone a portion of a bio chain, starting at the given byte offset
1322 * into the first bio in the source chain and continuing for the
1323 * number of bytes indicated. The result is another bio chain of
1324 * exactly the given length, or a null pointer on error.
1326 * The bio_src and offset parameters are both in-out. On entry they
1327 * refer to the first source bio and the offset into that bio where
1328 * the start of data to be cloned is located.
1330 * On return, bio_src is updated to refer to the bio in the source
1331 * chain that contains first un-cloned byte, and *offset will
1332 * contain the offset of that byte within that bio.
1334 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1335 unsigned int *offset,
1339 struct bio *bi = *bio_src;
1340 unsigned int off = *offset;
1341 struct bio *chain = NULL;
1344 /* Build up a chain of clone bios up to the limit */
1346 if (!bi || off >= bi->bi_iter.bi_size || !len)
1347 return NULL; /* Nothing to clone */
1351 unsigned int bi_size;
1355 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1356 goto out_err; /* EINVAL; ran out of bio's */
1358 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1359 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1361 goto out_err; /* ENOMEM */
1364 end = &bio->bi_next;
1367 if (off == bi->bi_iter.bi_size) {
1378 bio_chain_put(chain);
1384 * The default/initial value for all object request flags is 0. For
1385 * each flag, once its value is set to 1 it is never reset to 0
1388 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1390 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1391 struct rbd_device *rbd_dev;
1393 rbd_dev = obj_request->img_request->rbd_dev;
1394 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1399 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1402 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1405 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1407 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1408 struct rbd_device *rbd_dev = NULL;
1410 if (obj_request_img_data_test(obj_request))
1411 rbd_dev = obj_request->img_request->rbd_dev;
1412 rbd_warn(rbd_dev, "obj_request %p already marked done",
1417 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1420 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 * This sets the KNOWN flag after (possibly) setting the EXISTS
1425 * flag. The latter is set based on the "exists" value provided.
1427 * Note that for our purposes once an object exists it never goes
1428 * away again. It's possible that the response from two existence
1429 * checks are separated by the creation of the target object, and
1430 * the first ("doesn't exist") response arrives *after* the second
1431 * ("does exist"). In that case we ignore the second one.
1433 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1438 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1445 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1448 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1451 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1454 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1456 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1458 return obj_request->img_offset <
1459 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1462 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1464 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1465 atomic_read(&obj_request->kref.refcount));
1466 kref_get(&obj_request->kref);
1469 static void rbd_obj_request_destroy(struct kref *kref);
1470 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1472 rbd_assert(obj_request != NULL);
1473 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1474 atomic_read(&obj_request->kref.refcount));
1475 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1478 static void rbd_img_request_get(struct rbd_img_request *img_request)
1480 dout("%s: img %p (was %d)\n", __func__, img_request,
1481 atomic_read(&img_request->kref.refcount));
1482 kref_get(&img_request->kref);
1485 static bool img_request_child_test(struct rbd_img_request *img_request);
1486 static void rbd_parent_request_destroy(struct kref *kref);
1487 static void rbd_img_request_destroy(struct kref *kref);
1488 static void rbd_img_request_put(struct rbd_img_request *img_request)
1490 rbd_assert(img_request != NULL);
1491 dout("%s: img %p (was %d)\n", __func__, img_request,
1492 atomic_read(&img_request->kref.refcount));
1493 if (img_request_child_test(img_request))
1494 kref_put(&img_request->kref, rbd_parent_request_destroy);
1496 kref_put(&img_request->kref, rbd_img_request_destroy);
1499 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1500 struct rbd_obj_request *obj_request)
1502 rbd_assert(obj_request->img_request == NULL);
1504 /* Image request now owns object's original reference */
1505 obj_request->img_request = img_request;
1506 obj_request->which = img_request->obj_request_count;
1507 rbd_assert(!obj_request_img_data_test(obj_request));
1508 obj_request_img_data_set(obj_request);
1509 rbd_assert(obj_request->which != BAD_WHICH);
1510 img_request->obj_request_count++;
1511 list_add_tail(&obj_request->links, &img_request->obj_requests);
1512 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1513 obj_request->which);
1516 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1517 struct rbd_obj_request *obj_request)
1519 rbd_assert(obj_request->which != BAD_WHICH);
1521 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1522 obj_request->which);
1523 list_del(&obj_request->links);
1524 rbd_assert(img_request->obj_request_count > 0);
1525 img_request->obj_request_count--;
1526 rbd_assert(obj_request->which == img_request->obj_request_count);
1527 obj_request->which = BAD_WHICH;
1528 rbd_assert(obj_request_img_data_test(obj_request));
1529 rbd_assert(obj_request->img_request == img_request);
1530 obj_request->img_request = NULL;
1531 obj_request->callback = NULL;
1532 rbd_obj_request_put(obj_request);
1535 static bool obj_request_type_valid(enum obj_request_type type)
1538 case OBJ_REQUEST_NODATA:
1539 case OBJ_REQUEST_BIO:
1540 case OBJ_REQUEST_PAGES:
1547 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1548 struct rbd_obj_request *obj_request)
1550 dout("%s %p\n", __func__, obj_request);
1551 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1554 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1556 dout("%s %p\n", __func__, obj_request);
1557 ceph_osdc_cancel_request(obj_request->osd_req);
1561 * Wait for an object request to complete. If interrupted, cancel the
1562 * underlying osd request.
1564 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568 dout("%s %p\n", __func__, obj_request);
1570 ret = wait_for_completion_interruptible(&obj_request->completion);
1572 dout("%s %p interrupted\n", __func__, obj_request);
1573 rbd_obj_request_end(obj_request);
1577 dout("%s %p done\n", __func__, obj_request);
1581 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1584 dout("%s: img %p\n", __func__, img_request);
1587 * If no error occurred, compute the aggregate transfer
1588 * count for the image request. We could instead use
1589 * atomic64_cmpxchg() to update it as each object request
1590 * completes; not clear which way is better off hand.
1592 if (!img_request->result) {
1593 struct rbd_obj_request *obj_request;
1596 for_each_obj_request(img_request, obj_request)
1597 xferred += obj_request->xferred;
1598 img_request->xferred = xferred;
1601 if (img_request->callback)
1602 img_request->callback(img_request);
1604 rbd_img_request_put(img_request);
1608 * The default/initial value for all image request flags is 0. Each
1609 * is conditionally set to 1 at image request initialization time
1610 * and currently never change thereafter.
1612 static void img_request_write_set(struct rbd_img_request *img_request)
1614 set_bit(IMG_REQ_WRITE, &img_request->flags);
1618 static bool img_request_write_test(struct rbd_img_request *img_request)
1621 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625 * Set the discard flag when the img_request is an discard request
1627 static void img_request_discard_set(struct rbd_img_request *img_request)
1629 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633 static bool img_request_discard_test(struct rbd_img_request *img_request)
1636 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1639 static void img_request_child_set(struct rbd_img_request *img_request)
1641 set_bit(IMG_REQ_CHILD, &img_request->flags);
1645 static void img_request_child_clear(struct rbd_img_request *img_request)
1647 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651 static bool img_request_child_test(struct rbd_img_request *img_request)
1654 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1657 static void img_request_layered_set(struct rbd_img_request *img_request)
1659 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663 static void img_request_layered_clear(struct rbd_img_request *img_request)
1665 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669 static bool img_request_layered_test(struct rbd_img_request *img_request)
1672 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1675 static enum obj_operation_type
1676 rbd_img_request_op_type(struct rbd_img_request *img_request)
1678 if (img_request_write_test(img_request))
1679 return OBJ_OP_WRITE;
1680 else if (img_request_discard_test(img_request))
1681 return OBJ_OP_DISCARD;
1687 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1689 u64 xferred = obj_request->xferred;
1690 u64 length = obj_request->length;
1692 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1693 obj_request, obj_request->img_request, obj_request->result,
1696 * ENOENT means a hole in the image. We zero-fill the entire
1697 * length of the request. A short read also implies zero-fill
1698 * to the end of the request. An error requires the whole
1699 * length of the request to be reported finished with an error
1700 * to the block layer. In each case we update the xferred
1701 * count to indicate the whole request was satisfied.
1703 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1704 if (obj_request->result == -ENOENT) {
1705 if (obj_request->type == OBJ_REQUEST_BIO)
1706 zero_bio_chain(obj_request->bio_list, 0);
1708 zero_pages(obj_request->pages, 0, length);
1709 obj_request->result = 0;
1710 } else if (xferred < length && !obj_request->result) {
1711 if (obj_request->type == OBJ_REQUEST_BIO)
1712 zero_bio_chain(obj_request->bio_list, xferred);
1714 zero_pages(obj_request->pages, xferred, length);
1716 obj_request->xferred = length;
1717 obj_request_done_set(obj_request);
1720 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1722 dout("%s: obj %p cb %p\n", __func__, obj_request,
1723 obj_request->callback);
1724 if (obj_request->callback)
1725 obj_request->callback(obj_request);
1727 complete_all(&obj_request->completion);
1730 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1732 dout("%s: obj %p\n", __func__, obj_request);
1733 obj_request_done_set(obj_request);
1736 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1738 struct rbd_img_request *img_request = NULL;
1739 struct rbd_device *rbd_dev = NULL;
1740 bool layered = false;
1742 if (obj_request_img_data_test(obj_request)) {
1743 img_request = obj_request->img_request;
1744 layered = img_request && img_request_layered_test(img_request);
1745 rbd_dev = img_request->rbd_dev;
1748 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1749 obj_request, img_request, obj_request->result,
1750 obj_request->xferred, obj_request->length);
1751 if (layered && obj_request->result == -ENOENT &&
1752 obj_request->img_offset < rbd_dev->parent_overlap)
1753 rbd_img_parent_read(obj_request);
1754 else if (img_request)
1755 rbd_img_obj_request_read_callback(obj_request);
1757 obj_request_done_set(obj_request);
1760 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1762 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1763 obj_request->result, obj_request->length);
1765 * There is no such thing as a successful short write. Set
1766 * it to our originally-requested length.
1768 obj_request->xferred = obj_request->length;
1769 obj_request_done_set(obj_request);
1772 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1774 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775 obj_request->result, obj_request->length);
1777 * There is no such thing as a successful short discard. Set
1778 * it to our originally-requested length.
1780 obj_request->xferred = obj_request->length;
1781 /* discarding a non-existent object is not a problem */
1782 if (obj_request->result == -ENOENT)
1783 obj_request->result = 0;
1784 obj_request_done_set(obj_request);
1788 * For a simple stat call there's nothing to do. We'll do more if
1789 * this is part of a write sequence for a layered image.
1791 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1793 dout("%s: obj %p\n", __func__, obj_request);
1794 obj_request_done_set(obj_request);
1797 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1798 struct ceph_msg *msg)
1800 struct rbd_obj_request *obj_request = osd_req->r_priv;
1803 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1804 rbd_assert(osd_req == obj_request->osd_req);
1805 if (obj_request_img_data_test(obj_request)) {
1806 rbd_assert(obj_request->img_request);
1807 rbd_assert(obj_request->which != BAD_WHICH);
1809 rbd_assert(obj_request->which == BAD_WHICH);
1812 if (osd_req->r_result < 0)
1813 obj_request->result = osd_req->r_result;
1815 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1818 * We support a 64-bit length, but ultimately it has to be
1819 * passed to blk_end_request(), which takes an unsigned int.
1821 obj_request->xferred = osd_req->r_reply_op_len[0];
1822 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1824 opcode = osd_req->r_ops[0].op;
1826 case CEPH_OSD_OP_READ:
1827 rbd_osd_read_callback(obj_request);
1829 case CEPH_OSD_OP_SETALLOCHINT:
1830 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1832 case CEPH_OSD_OP_WRITE:
1833 rbd_osd_write_callback(obj_request);
1835 case CEPH_OSD_OP_STAT:
1836 rbd_osd_stat_callback(obj_request);
1838 case CEPH_OSD_OP_DELETE:
1839 case CEPH_OSD_OP_TRUNCATE:
1840 case CEPH_OSD_OP_ZERO:
1841 rbd_osd_discard_callback(obj_request);
1843 case CEPH_OSD_OP_CALL:
1844 case CEPH_OSD_OP_NOTIFY_ACK:
1845 case CEPH_OSD_OP_WATCH:
1846 rbd_osd_trivial_callback(obj_request);
1849 rbd_warn(NULL, "%s: unsupported op %hu",
1850 obj_request->object_name, (unsigned short) opcode);
1854 if (obj_request_done_test(obj_request))
1855 rbd_obj_request_complete(obj_request);
1858 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1860 struct rbd_img_request *img_request = obj_request->img_request;
1861 struct ceph_osd_request *osd_req = obj_request->osd_req;
1864 rbd_assert(osd_req != NULL);
1866 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1867 ceph_osdc_build_request(osd_req, obj_request->offset,
1868 NULL, snap_id, NULL);
1871 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1873 struct rbd_img_request *img_request = obj_request->img_request;
1874 struct ceph_osd_request *osd_req = obj_request->osd_req;
1875 struct ceph_snap_context *snapc;
1876 struct timespec mtime = CURRENT_TIME;
1878 rbd_assert(osd_req != NULL);
1880 snapc = img_request ? img_request->snapc : NULL;
1881 ceph_osdc_build_request(osd_req, obj_request->offset,
1882 snapc, CEPH_NOSNAP, &mtime);
1886 * Create an osd request. A read request has one osd op (read).
1887 * A write request has either one (watch) or two (hint+write) osd ops.
1888 * (All rbd data writes are prefixed with an allocation hint op, but
1889 * technically osd watch is a write request, hence this distinction.)
1891 static struct ceph_osd_request *rbd_osd_req_create(
1892 struct rbd_device *rbd_dev,
1893 enum obj_operation_type op_type,
1894 unsigned int num_ops,
1895 struct rbd_obj_request *obj_request)
1897 struct ceph_snap_context *snapc = NULL;
1898 struct ceph_osd_client *osdc;
1899 struct ceph_osd_request *osd_req;
1901 if (obj_request_img_data_test(obj_request) &&
1902 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1903 struct rbd_img_request *img_request = obj_request->img_request;
1904 if (op_type == OBJ_OP_WRITE) {
1905 rbd_assert(img_request_write_test(img_request));
1907 rbd_assert(img_request_discard_test(img_request));
1909 snapc = img_request->snapc;
1912 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1914 /* Allocate and initialize the request, for the num_ops ops */
1916 osdc = &rbd_dev->rbd_client->client->osdc;
1917 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1920 return NULL; /* ENOMEM */
1922 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1923 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1925 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1927 osd_req->r_callback = rbd_osd_req_callback;
1928 osd_req->r_priv = obj_request;
1930 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1931 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1937 * Create a copyup osd request based on the information in the object
1938 * request supplied. A copyup request has two or three osd ops, a
1939 * copyup method call, potentially a hint op, and a write or truncate
1942 static struct ceph_osd_request *
1943 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1945 struct rbd_img_request *img_request;
1946 struct ceph_snap_context *snapc;
1947 struct rbd_device *rbd_dev;
1948 struct ceph_osd_client *osdc;
1949 struct ceph_osd_request *osd_req;
1950 int num_osd_ops = 3;
1952 rbd_assert(obj_request_img_data_test(obj_request));
1953 img_request = obj_request->img_request;
1954 rbd_assert(img_request);
1955 rbd_assert(img_request_write_test(img_request) ||
1956 img_request_discard_test(img_request));
1958 if (img_request_discard_test(img_request))
1961 /* Allocate and initialize the request, for all the ops */
1963 snapc = img_request->snapc;
1964 rbd_dev = img_request->rbd_dev;
1965 osdc = &rbd_dev->rbd_client->client->osdc;
1966 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1969 return NULL; /* ENOMEM */
1971 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1972 osd_req->r_callback = rbd_osd_req_callback;
1973 osd_req->r_priv = obj_request;
1975 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1976 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1982 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1984 ceph_osdc_put_request(osd_req);
1987 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1989 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1990 u64 offset, u64 length,
1991 enum obj_request_type type)
1993 struct rbd_obj_request *obj_request;
1997 rbd_assert(obj_request_type_valid(type));
1999 size = strlen(object_name) + 1;
2000 name = kmalloc(size, GFP_KERNEL);
2004 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2010 obj_request->object_name = memcpy(name, object_name, size);
2011 obj_request->offset = offset;
2012 obj_request->length = length;
2013 obj_request->flags = 0;
2014 obj_request->which = BAD_WHICH;
2015 obj_request->type = type;
2016 INIT_LIST_HEAD(&obj_request->links);
2017 init_completion(&obj_request->completion);
2018 kref_init(&obj_request->kref);
2020 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2021 offset, length, (int)type, obj_request);
2026 static void rbd_obj_request_destroy(struct kref *kref)
2028 struct rbd_obj_request *obj_request;
2030 obj_request = container_of(kref, struct rbd_obj_request, kref);
2032 dout("%s: obj %p\n", __func__, obj_request);
2034 rbd_assert(obj_request->img_request == NULL);
2035 rbd_assert(obj_request->which == BAD_WHICH);
2037 if (obj_request->osd_req)
2038 rbd_osd_req_destroy(obj_request->osd_req);
2040 rbd_assert(obj_request_type_valid(obj_request->type));
2041 switch (obj_request->type) {
2042 case OBJ_REQUEST_NODATA:
2043 break; /* Nothing to do */
2044 case OBJ_REQUEST_BIO:
2045 if (obj_request->bio_list)
2046 bio_chain_put(obj_request->bio_list);
2048 case OBJ_REQUEST_PAGES:
2049 if (obj_request->pages)
2050 ceph_release_page_vector(obj_request->pages,
2051 obj_request->page_count);
2055 kfree(obj_request->object_name);
2056 obj_request->object_name = NULL;
2057 kmem_cache_free(rbd_obj_request_cache, obj_request);
2060 /* It's OK to call this for a device with no parent */
2062 static void rbd_spec_put(struct rbd_spec *spec);
2063 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2065 rbd_dev_remove_parent(rbd_dev);
2066 rbd_spec_put(rbd_dev->parent_spec);
2067 rbd_dev->parent_spec = NULL;
2068 rbd_dev->parent_overlap = 0;
2072 * Parent image reference counting is used to determine when an
2073 * image's parent fields can be safely torn down--after there are no
2074 * more in-flight requests to the parent image. When the last
2075 * reference is dropped, cleaning them up is safe.
2077 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2081 if (!rbd_dev->parent_spec)
2084 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2088 /* Last reference; clean up parent data structures */
2091 rbd_dev_unparent(rbd_dev);
2093 rbd_warn(rbd_dev, "parent reference underflow");
2097 * If an image has a non-zero parent overlap, get a reference to its
2100 * We must get the reference before checking for the overlap to
2101 * coordinate properly with zeroing the parent overlap in
2102 * rbd_dev_v2_parent_info() when an image gets flattened. We
2103 * drop it again if there is no overlap.
2105 * Returns true if the rbd device has a parent with a non-zero
2106 * overlap and a reference for it was successfully taken, or
2109 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2113 if (!rbd_dev->parent_spec)
2116 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2117 if (counter > 0 && rbd_dev->parent_overlap)
2120 /* Image was flattened, but parent is not yet torn down */
2123 rbd_warn(rbd_dev, "parent reference overflow");
2129 * Caller is responsible for filling in the list of object requests
2130 * that comprises the image request, and the Linux request pointer
2131 * (if there is one).
2133 static struct rbd_img_request *rbd_img_request_create(
2134 struct rbd_device *rbd_dev,
2135 u64 offset, u64 length,
2136 enum obj_operation_type op_type,
2137 struct ceph_snap_context *snapc)
2139 struct rbd_img_request *img_request;
2141 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2145 img_request->rq = NULL;
2146 img_request->rbd_dev = rbd_dev;
2147 img_request->offset = offset;
2148 img_request->length = length;
2149 img_request->flags = 0;
2150 if (op_type == OBJ_OP_DISCARD) {
2151 img_request_discard_set(img_request);
2152 img_request->snapc = snapc;
2153 } else if (op_type == OBJ_OP_WRITE) {
2154 img_request_write_set(img_request);
2155 img_request->snapc = snapc;
2157 img_request->snap_id = rbd_dev->spec->snap_id;
2159 if (rbd_dev_parent_get(rbd_dev))
2160 img_request_layered_set(img_request);
2161 spin_lock_init(&img_request->completion_lock);
2162 img_request->next_completion = 0;
2163 img_request->callback = NULL;
2164 img_request->result = 0;
2165 img_request->obj_request_count = 0;
2166 INIT_LIST_HEAD(&img_request->obj_requests);
2167 kref_init(&img_request->kref);
2169 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2170 obj_op_name(op_type), offset, length, img_request);
2175 static void rbd_img_request_destroy(struct kref *kref)
2177 struct rbd_img_request *img_request;
2178 struct rbd_obj_request *obj_request;
2179 struct rbd_obj_request *next_obj_request;
2181 img_request = container_of(kref, struct rbd_img_request, kref);
2183 dout("%s: img %p\n", __func__, img_request);
2185 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2186 rbd_img_obj_request_del(img_request, obj_request);
2187 rbd_assert(img_request->obj_request_count == 0);
2189 if (img_request_layered_test(img_request)) {
2190 img_request_layered_clear(img_request);
2191 rbd_dev_parent_put(img_request->rbd_dev);
2194 if (img_request_write_test(img_request) ||
2195 img_request_discard_test(img_request))
2196 ceph_put_snap_context(img_request->snapc);
2198 kmem_cache_free(rbd_img_request_cache, img_request);
2201 static struct rbd_img_request *rbd_parent_request_create(
2202 struct rbd_obj_request *obj_request,
2203 u64 img_offset, u64 length)
2205 struct rbd_img_request *parent_request;
2206 struct rbd_device *rbd_dev;
2208 rbd_assert(obj_request->img_request);
2209 rbd_dev = obj_request->img_request->rbd_dev;
2211 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2212 length, OBJ_OP_READ, NULL);
2213 if (!parent_request)
2216 img_request_child_set(parent_request);
2217 rbd_obj_request_get(obj_request);
2218 parent_request->obj_request = obj_request;
2220 return parent_request;
2223 static void rbd_parent_request_destroy(struct kref *kref)
2225 struct rbd_img_request *parent_request;
2226 struct rbd_obj_request *orig_request;
2228 parent_request = container_of(kref, struct rbd_img_request, kref);
2229 orig_request = parent_request->obj_request;
2231 parent_request->obj_request = NULL;
2232 rbd_obj_request_put(orig_request);
2233 img_request_child_clear(parent_request);
2235 rbd_img_request_destroy(kref);
2238 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2240 struct rbd_img_request *img_request;
2241 unsigned int xferred;
2245 rbd_assert(obj_request_img_data_test(obj_request));
2246 img_request = obj_request->img_request;
2248 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2249 xferred = (unsigned int)obj_request->xferred;
2250 result = obj_request->result;
2252 struct rbd_device *rbd_dev = img_request->rbd_dev;
2253 enum obj_operation_type op_type;
2255 if (img_request_discard_test(img_request))
2256 op_type = OBJ_OP_DISCARD;
2257 else if (img_request_write_test(img_request))
2258 op_type = OBJ_OP_WRITE;
2260 op_type = OBJ_OP_READ;
2262 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2263 obj_op_name(op_type), obj_request->length,
2264 obj_request->img_offset, obj_request->offset);
2265 rbd_warn(rbd_dev, " result %d xferred %x",
2267 if (!img_request->result)
2268 img_request->result = result;
2271 /* Image object requests don't own their page array */
2273 if (obj_request->type == OBJ_REQUEST_PAGES) {
2274 obj_request->pages = NULL;
2275 obj_request->page_count = 0;
2278 if (img_request_child_test(img_request)) {
2279 rbd_assert(img_request->obj_request != NULL);
2280 more = obj_request->which < img_request->obj_request_count - 1;
2282 rbd_assert(img_request->rq != NULL);
2283 more = blk_end_request(img_request->rq, result, xferred);
2289 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 struct rbd_img_request *img_request;
2292 u32 which = obj_request->which;
2295 rbd_assert(obj_request_img_data_test(obj_request));
2296 img_request = obj_request->img_request;
2298 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2299 rbd_assert(img_request != NULL);
2300 rbd_assert(img_request->obj_request_count > 0);
2301 rbd_assert(which != BAD_WHICH);
2302 rbd_assert(which < img_request->obj_request_count);
2304 spin_lock_irq(&img_request->completion_lock);
2305 if (which != img_request->next_completion)
2308 for_each_obj_request_from(img_request, obj_request) {
2310 rbd_assert(which < img_request->obj_request_count);
2312 if (!obj_request_done_test(obj_request))
2314 more = rbd_img_obj_end_request(obj_request);
2318 rbd_assert(more ^ (which == img_request->obj_request_count));
2319 img_request->next_completion = which;
2321 spin_unlock_irq(&img_request->completion_lock);
2322 rbd_img_request_put(img_request);
2325 rbd_img_request_complete(img_request);
2329 * Add individual osd ops to the given ceph_osd_request and prepare
2330 * them for submission. num_ops is the current number of
2331 * osd operations already to the object request.
2333 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2334 struct ceph_osd_request *osd_request,
2335 enum obj_operation_type op_type,
2336 unsigned int num_ops)
2338 struct rbd_img_request *img_request = obj_request->img_request;
2339 struct rbd_device *rbd_dev = img_request->rbd_dev;
2340 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2341 u64 offset = obj_request->offset;
2342 u64 length = obj_request->length;
2346 if (op_type == OBJ_OP_DISCARD) {
2347 if (!offset && length == object_size &&
2348 (!img_request_layered_test(img_request) ||
2349 !obj_request_overlaps_parent(obj_request))) {
2350 opcode = CEPH_OSD_OP_DELETE;
2351 } else if ((offset + length == object_size)) {
2352 opcode = CEPH_OSD_OP_TRUNCATE;
2354 down_read(&rbd_dev->header_rwsem);
2355 img_end = rbd_dev->header.image_size;
2356 up_read(&rbd_dev->header_rwsem);
2358 if (obj_request->img_offset + length == img_end)
2359 opcode = CEPH_OSD_OP_TRUNCATE;
2361 opcode = CEPH_OSD_OP_ZERO;
2363 } else if (op_type == OBJ_OP_WRITE) {
2364 opcode = CEPH_OSD_OP_WRITE;
2365 osd_req_op_alloc_hint_init(osd_request, num_ops,
2366 object_size, object_size);
2369 opcode = CEPH_OSD_OP_READ;
2372 osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2374 if (obj_request->type == OBJ_REQUEST_BIO)
2375 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2376 obj_request->bio_list, length);
2377 else if (obj_request->type == OBJ_REQUEST_PAGES)
2378 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2379 obj_request->pages, length,
2380 offset & ~PAGE_MASK, false, false);
2382 /* Discards are also writes */
2383 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2384 rbd_osd_req_format_write(obj_request);
2386 rbd_osd_req_format_read(obj_request);
2390 * Split up an image request into one or more object requests, each
2391 * to a different object. The "type" parameter indicates whether
2392 * "data_desc" is the pointer to the head of a list of bio
2393 * structures, or the base of a page array. In either case this
2394 * function assumes data_desc describes memory sufficient to hold
2395 * all data described by the image request.
2397 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2398 enum obj_request_type type,
2401 struct rbd_device *rbd_dev = img_request->rbd_dev;
2402 struct rbd_obj_request *obj_request = NULL;
2403 struct rbd_obj_request *next_obj_request;
2404 struct bio *bio_list = NULL;
2405 unsigned int bio_offset = 0;
2406 struct page **pages = NULL;
2407 enum obj_operation_type op_type;
2411 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2412 (int)type, data_desc);
2414 img_offset = img_request->offset;
2415 resid = img_request->length;
2416 rbd_assert(resid > 0);
2417 op_type = rbd_img_request_op_type(img_request);
2419 if (type == OBJ_REQUEST_BIO) {
2420 bio_list = data_desc;
2421 rbd_assert(img_offset ==
2422 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2423 } else if (type == OBJ_REQUEST_PAGES) {
2428 struct ceph_osd_request *osd_req;
2429 const char *object_name;
2433 object_name = rbd_segment_name(rbd_dev, img_offset);
2436 offset = rbd_segment_offset(rbd_dev, img_offset);
2437 length = rbd_segment_length(rbd_dev, img_offset, resid);
2438 obj_request = rbd_obj_request_create(object_name,
2439 offset, length, type);
2440 /* object request has its own copy of the object name */
2441 rbd_segment_name_free(object_name);
2446 * set obj_request->img_request before creating the
2447 * osd_request so that it gets the right snapc
2449 rbd_img_obj_request_add(img_request, obj_request);
2451 if (type == OBJ_REQUEST_BIO) {
2452 unsigned int clone_size;
2454 rbd_assert(length <= (u64)UINT_MAX);
2455 clone_size = (unsigned int)length;
2456 obj_request->bio_list =
2457 bio_chain_clone_range(&bio_list,
2461 if (!obj_request->bio_list)
2463 } else if (type == OBJ_REQUEST_PAGES) {
2464 unsigned int page_count;
2466 obj_request->pages = pages;
2467 page_count = (u32)calc_pages_for(offset, length);
2468 obj_request->page_count = page_count;
2469 if ((offset + length) & ~PAGE_MASK)
2470 page_count--; /* more on last page */
2471 pages += page_count;
2474 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2475 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2480 obj_request->osd_req = osd_req;
2481 obj_request->callback = rbd_img_obj_callback;
2482 obj_request->img_offset = img_offset;
2484 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2486 rbd_img_request_get(img_request);
2488 img_offset += length;
2495 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2496 rbd_img_obj_request_del(img_request, obj_request);
2502 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2504 struct rbd_img_request *img_request;
2505 struct rbd_device *rbd_dev;
2506 struct page **pages;
2509 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2510 obj_request->type == OBJ_REQUEST_NODATA);
2511 rbd_assert(obj_request_img_data_test(obj_request));
2512 img_request = obj_request->img_request;
2513 rbd_assert(img_request);
2515 rbd_dev = img_request->rbd_dev;
2516 rbd_assert(rbd_dev);
2518 pages = obj_request->copyup_pages;
2519 rbd_assert(pages != NULL);
2520 obj_request->copyup_pages = NULL;
2521 page_count = obj_request->copyup_page_count;
2522 rbd_assert(page_count);
2523 obj_request->copyup_page_count = 0;
2524 ceph_release_page_vector(pages, page_count);
2527 * We want the transfer count to reflect the size of the
2528 * original write request. There is no such thing as a
2529 * successful short write, so if the request was successful
2530 * we can just set it to the originally-requested length.
2532 if (!obj_request->result)
2533 obj_request->xferred = obj_request->length;
2535 /* Finish up with the normal image object callback */
2537 rbd_img_obj_callback(obj_request);
2541 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2543 struct rbd_obj_request *orig_request;
2544 struct ceph_osd_request *osd_req;
2545 struct ceph_osd_client *osdc;
2546 struct rbd_device *rbd_dev;
2547 struct page **pages;
2548 enum obj_operation_type op_type;
2553 rbd_assert(img_request_child_test(img_request));
2555 /* First get what we need from the image request */
2557 pages = img_request->copyup_pages;
2558 rbd_assert(pages != NULL);
2559 img_request->copyup_pages = NULL;
2560 page_count = img_request->copyup_page_count;
2561 rbd_assert(page_count);
2562 img_request->copyup_page_count = 0;
2564 orig_request = img_request->obj_request;
2565 rbd_assert(orig_request != NULL);
2566 rbd_assert(obj_request_type_valid(orig_request->type));
2567 img_result = img_request->result;
2568 parent_length = img_request->length;
2569 rbd_assert(parent_length == img_request->xferred);
2570 rbd_img_request_put(img_request);
2572 rbd_assert(orig_request->img_request);
2573 rbd_dev = orig_request->img_request->rbd_dev;
2574 rbd_assert(rbd_dev);
2577 * If the overlap has become 0 (most likely because the
2578 * image has been flattened) we need to free the pages
2579 * and re-submit the original write request.
2581 if (!rbd_dev->parent_overlap) {
2582 struct ceph_osd_client *osdc;
2584 ceph_release_page_vector(pages, page_count);
2585 osdc = &rbd_dev->rbd_client->client->osdc;
2586 img_result = rbd_obj_request_submit(osdc, orig_request);
2595 * The original osd request is of no use to use any more.
2596 * We need a new one that can hold the three ops in a copyup
2597 * request. Allocate the new copyup osd request for the
2598 * original request, and release the old one.
2600 img_result = -ENOMEM;
2601 osd_req = rbd_osd_req_create_copyup(orig_request);
2604 rbd_osd_req_destroy(orig_request->osd_req);
2605 orig_request->osd_req = osd_req;
2606 orig_request->copyup_pages = pages;
2607 orig_request->copyup_page_count = page_count;
2609 /* Initialize the copyup op */
2611 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2612 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2615 /* Add the other op(s) */
2617 op_type = rbd_img_request_op_type(orig_request->img_request);
2618 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2620 /* All set, send it off. */
2622 orig_request->callback = rbd_img_obj_copyup_callback;
2623 osdc = &rbd_dev->rbd_client->client->osdc;
2624 img_result = rbd_obj_request_submit(osdc, orig_request);
2628 /* Record the error code and complete the request */
2630 orig_request->result = img_result;
2631 orig_request->xferred = 0;
2632 obj_request_done_set(orig_request);
2633 rbd_obj_request_complete(orig_request);
2637 * Read from the parent image the range of data that covers the
2638 * entire target of the given object request. This is used for
2639 * satisfying a layered image write request when the target of an
2640 * object request from the image request does not exist.
2642 * A page array big enough to hold the returned data is allocated
2643 * and supplied to rbd_img_request_fill() as the "data descriptor."
2644 * When the read completes, this page array will be transferred to
2645 * the original object request for the copyup operation.
2647 * If an error occurs, record it as the result of the original
2648 * object request and mark it done so it gets completed.
2650 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2652 struct rbd_img_request *img_request = NULL;
2653 struct rbd_img_request *parent_request = NULL;
2654 struct rbd_device *rbd_dev;
2657 struct page **pages = NULL;
2661 rbd_assert(obj_request_img_data_test(obj_request));
2662 rbd_assert(obj_request_type_valid(obj_request->type));
2664 img_request = obj_request->img_request;
2665 rbd_assert(img_request != NULL);
2666 rbd_dev = img_request->rbd_dev;
2667 rbd_assert(rbd_dev->parent != NULL);
2670 * Determine the byte range covered by the object in the
2671 * child image to which the original request was to be sent.
2673 img_offset = obj_request->img_offset - obj_request->offset;
2674 length = (u64)1 << rbd_dev->header.obj_order;
2677 * There is no defined parent data beyond the parent
2678 * overlap, so limit what we read at that boundary if
2681 if (img_offset + length > rbd_dev->parent_overlap) {
2682 rbd_assert(img_offset < rbd_dev->parent_overlap);
2683 length = rbd_dev->parent_overlap - img_offset;
2687 * Allocate a page array big enough to receive the data read
2690 page_count = (u32)calc_pages_for(0, length);
2691 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2692 if (IS_ERR(pages)) {
2693 result = PTR_ERR(pages);
2699 parent_request = rbd_parent_request_create(obj_request,
2700 img_offset, length);
2701 if (!parent_request)
2704 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2707 parent_request->copyup_pages = pages;
2708 parent_request->copyup_page_count = page_count;
2710 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2711 result = rbd_img_request_submit(parent_request);
2715 parent_request->copyup_pages = NULL;
2716 parent_request->copyup_page_count = 0;
2717 parent_request->obj_request = NULL;
2718 rbd_obj_request_put(obj_request);
2721 ceph_release_page_vector(pages, page_count);
2723 rbd_img_request_put(parent_request);
2724 obj_request->result = result;
2725 obj_request->xferred = 0;
2726 obj_request_done_set(obj_request);
2731 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2733 struct rbd_obj_request *orig_request;
2734 struct rbd_device *rbd_dev;
2737 rbd_assert(!obj_request_img_data_test(obj_request));
2740 * All we need from the object request is the original
2741 * request and the result of the STAT op. Grab those, then
2742 * we're done with the request.
2744 orig_request = obj_request->obj_request;
2745 obj_request->obj_request = NULL;
2746 rbd_obj_request_put(orig_request);
2747 rbd_assert(orig_request);
2748 rbd_assert(orig_request->img_request);
2750 result = obj_request->result;
2751 obj_request->result = 0;
2753 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2754 obj_request, orig_request, result,
2755 obj_request->xferred, obj_request->length);
2756 rbd_obj_request_put(obj_request);
2759 * If the overlap has become 0 (most likely because the
2760 * image has been flattened) we need to free the pages
2761 * and re-submit the original write request.
2763 rbd_dev = orig_request->img_request->rbd_dev;
2764 if (!rbd_dev->parent_overlap) {
2765 struct ceph_osd_client *osdc;
2767 osdc = &rbd_dev->rbd_client->client->osdc;
2768 result = rbd_obj_request_submit(osdc, orig_request);
2774 * Our only purpose here is to determine whether the object
2775 * exists, and we don't want to treat the non-existence as
2776 * an error. If something else comes back, transfer the
2777 * error to the original request and complete it now.
2780 obj_request_existence_set(orig_request, true);
2781 } else if (result == -ENOENT) {
2782 obj_request_existence_set(orig_request, false);
2783 } else if (result) {
2784 orig_request->result = result;
2789 * Resubmit the original request now that we have recorded
2790 * whether the target object exists.
2792 orig_request->result = rbd_img_obj_request_submit(orig_request);
2794 if (orig_request->result)
2795 rbd_obj_request_complete(orig_request);
2798 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2800 struct rbd_obj_request *stat_request;
2801 struct rbd_device *rbd_dev;
2802 struct ceph_osd_client *osdc;
2803 struct page **pages = NULL;
2809 * The response data for a STAT call consists of:
2816 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2817 page_count = (u32)calc_pages_for(0, size);
2818 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2820 return PTR_ERR(pages);
2823 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2828 rbd_obj_request_get(obj_request);
2829 stat_request->obj_request = obj_request;
2830 stat_request->pages = pages;
2831 stat_request->page_count = page_count;
2833 rbd_assert(obj_request->img_request);
2834 rbd_dev = obj_request->img_request->rbd_dev;
2835 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2837 if (!stat_request->osd_req)
2839 stat_request->callback = rbd_img_obj_exists_callback;
2841 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2842 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2844 rbd_osd_req_format_read(stat_request);
2846 osdc = &rbd_dev->rbd_client->client->osdc;
2847 ret = rbd_obj_request_submit(osdc, stat_request);
2850 rbd_obj_request_put(obj_request);
2855 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2857 struct rbd_img_request *img_request;
2858 struct rbd_device *rbd_dev;
2860 rbd_assert(obj_request_img_data_test(obj_request));
2862 img_request = obj_request->img_request;
2863 rbd_assert(img_request);
2864 rbd_dev = img_request->rbd_dev;
2867 if (!img_request_write_test(img_request) &&
2868 !img_request_discard_test(img_request))
2871 /* Non-layered writes */
2872 if (!img_request_layered_test(img_request))
2876 * Layered writes outside of the parent overlap range don't
2877 * share any data with the parent.
2879 if (!obj_request_overlaps_parent(obj_request))
2883 * Entire-object layered writes - we will overwrite whatever
2884 * parent data there is anyway.
2886 if (!obj_request->offset &&
2887 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2891 * If the object is known to already exist, its parent data has
2892 * already been copied.
2894 if (obj_request_known_test(obj_request) &&
2895 obj_request_exists_test(obj_request))
2901 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2903 if (img_obj_request_simple(obj_request)) {
2904 struct rbd_device *rbd_dev;
2905 struct ceph_osd_client *osdc;
2907 rbd_dev = obj_request->img_request->rbd_dev;
2908 osdc = &rbd_dev->rbd_client->client->osdc;
2910 return rbd_obj_request_submit(osdc, obj_request);
2914 * It's a layered write. The target object might exist but
2915 * we may not know that yet. If we know it doesn't exist,
2916 * start by reading the data for the full target object from
2917 * the parent so we can use it for a copyup to the target.
2919 if (obj_request_known_test(obj_request))
2920 return rbd_img_obj_parent_read_full(obj_request);
2922 /* We don't know whether the target exists. Go find out. */
2924 return rbd_img_obj_exists_submit(obj_request);
2927 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2929 struct rbd_obj_request *obj_request;
2930 struct rbd_obj_request *next_obj_request;
2932 dout("%s: img %p\n", __func__, img_request);
2933 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2936 ret = rbd_img_obj_request_submit(obj_request);
2944 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2946 struct rbd_obj_request *obj_request;
2947 struct rbd_device *rbd_dev;
2952 rbd_assert(img_request_child_test(img_request));
2954 /* First get what we need from the image request and release it */
2956 obj_request = img_request->obj_request;
2957 img_xferred = img_request->xferred;
2958 img_result = img_request->result;
2959 rbd_img_request_put(img_request);
2962 * If the overlap has become 0 (most likely because the
2963 * image has been flattened) we need to re-submit the
2966 rbd_assert(obj_request);
2967 rbd_assert(obj_request->img_request);
2968 rbd_dev = obj_request->img_request->rbd_dev;
2969 if (!rbd_dev->parent_overlap) {
2970 struct ceph_osd_client *osdc;
2972 osdc = &rbd_dev->rbd_client->client->osdc;
2973 img_result = rbd_obj_request_submit(osdc, obj_request);
2978 obj_request->result = img_result;
2979 if (obj_request->result)
2983 * We need to zero anything beyond the parent overlap
2984 * boundary. Since rbd_img_obj_request_read_callback()
2985 * will zero anything beyond the end of a short read, an
2986 * easy way to do this is to pretend the data from the
2987 * parent came up short--ending at the overlap boundary.
2989 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2990 obj_end = obj_request->img_offset + obj_request->length;
2991 if (obj_end > rbd_dev->parent_overlap) {
2994 if (obj_request->img_offset < rbd_dev->parent_overlap)
2995 xferred = rbd_dev->parent_overlap -
2996 obj_request->img_offset;
2998 obj_request->xferred = min(img_xferred, xferred);
3000 obj_request->xferred = img_xferred;
3003 rbd_img_obj_request_read_callback(obj_request);
3004 rbd_obj_request_complete(obj_request);
3007 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3009 struct rbd_img_request *img_request;
3012 rbd_assert(obj_request_img_data_test(obj_request));
3013 rbd_assert(obj_request->img_request != NULL);
3014 rbd_assert(obj_request->result == (s32) -ENOENT);
3015 rbd_assert(obj_request_type_valid(obj_request->type));
3017 /* rbd_read_finish(obj_request, obj_request->length); */
3018 img_request = rbd_parent_request_create(obj_request,
3019 obj_request->img_offset,
3020 obj_request->length);
3025 if (obj_request->type == OBJ_REQUEST_BIO)
3026 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3027 obj_request->bio_list);
3029 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3030 obj_request->pages);
3034 img_request->callback = rbd_img_parent_read_callback;
3035 result = rbd_img_request_submit(img_request);
3042 rbd_img_request_put(img_request);
3043 obj_request->result = result;
3044 obj_request->xferred = 0;
3045 obj_request_done_set(obj_request);
3048 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3050 struct rbd_obj_request *obj_request;
3051 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3054 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3055 OBJ_REQUEST_NODATA);
3060 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3062 if (!obj_request->osd_req)
3065 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3067 rbd_osd_req_format_read(obj_request);
3069 ret = rbd_obj_request_submit(osdc, obj_request);
3072 ret = rbd_obj_request_wait(obj_request);
3074 rbd_obj_request_put(obj_request);
3079 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3081 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3087 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3088 rbd_dev->header_name, (unsigned long long)notify_id,
3089 (unsigned int)opcode);
3092 * Until adequate refresh error handling is in place, there is
3093 * not much we can do here, except warn.
3095 * See http://tracker.ceph.com/issues/5040
3097 ret = rbd_dev_refresh(rbd_dev);
3099 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3101 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3103 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3107 * Send a (un)watch request and wait for the ack. Return a request
3108 * with a ref held on success or error.
3110 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3111 struct rbd_device *rbd_dev,
3114 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3115 struct rbd_obj_request *obj_request;
3118 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3119 OBJ_REQUEST_NODATA);
3121 return ERR_PTR(-ENOMEM);
3123 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3125 if (!obj_request->osd_req) {
3130 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3131 rbd_dev->watch_event->cookie, 0, watch);
3132 rbd_osd_req_format_write(obj_request);
3135 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3137 ret = rbd_obj_request_submit(osdc, obj_request);
3141 ret = rbd_obj_request_wait(obj_request);
3145 ret = obj_request->result;
3148 rbd_obj_request_end(obj_request);
3155 rbd_obj_request_put(obj_request);
3156 return ERR_PTR(ret);
3160 * Initiate a watch request, synchronously.
3162 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3164 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3165 struct rbd_obj_request *obj_request;
3168 rbd_assert(!rbd_dev->watch_event);
3169 rbd_assert(!rbd_dev->watch_request);
3171 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3172 &rbd_dev->watch_event);
3176 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3177 if (IS_ERR(obj_request)) {
3178 ceph_osdc_cancel_event(rbd_dev->watch_event);
3179 rbd_dev->watch_event = NULL;
3180 return PTR_ERR(obj_request);
3184 * A watch request is set to linger, so the underlying osd
3185 * request won't go away until we unregister it. We retain
3186 * a pointer to the object request during that time (in
3187 * rbd_dev->watch_request), so we'll keep a reference to it.
3188 * We'll drop that reference after we've unregistered it in
3189 * rbd_dev_header_unwatch_sync().
3191 rbd_dev->watch_request = obj_request;
3197 * Tear down a watch request, synchronously.
3199 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3201 struct rbd_obj_request *obj_request;
3203 rbd_assert(rbd_dev->watch_event);
3204 rbd_assert(rbd_dev->watch_request);
3206 rbd_obj_request_end(rbd_dev->watch_request);
3207 rbd_obj_request_put(rbd_dev->watch_request);
3208 rbd_dev->watch_request = NULL;
3210 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3211 if (!IS_ERR(obj_request))
3212 rbd_obj_request_put(obj_request);
3214 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3215 PTR_ERR(obj_request));
3217 ceph_osdc_cancel_event(rbd_dev->watch_event);
3218 rbd_dev->watch_event = NULL;
3222 * Synchronous osd object method call. Returns the number of bytes
3223 * returned in the outbound buffer, or a negative error code.
3225 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3226 const char *object_name,
3227 const char *class_name,
3228 const char *method_name,
3229 const void *outbound,
3230 size_t outbound_size,
3232 size_t inbound_size)
3234 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3235 struct rbd_obj_request *obj_request;
3236 struct page **pages;
3241 * Method calls are ultimately read operations. The result
3242 * should placed into the inbound buffer provided. They
3243 * also supply outbound data--parameters for the object
3244 * method. Currently if this is present it will be a
3247 page_count = (u32)calc_pages_for(0, inbound_size);
3248 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3250 return PTR_ERR(pages);
3253 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3258 obj_request->pages = pages;
3259 obj_request->page_count = page_count;
3261 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3263 if (!obj_request->osd_req)
3266 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3267 class_name, method_name);
3268 if (outbound_size) {
3269 struct ceph_pagelist *pagelist;
3271 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3275 ceph_pagelist_init(pagelist);
3276 ceph_pagelist_append(pagelist, outbound, outbound_size);
3277 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3280 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3281 obj_request->pages, inbound_size,
3283 rbd_osd_req_format_read(obj_request);
3285 ret = rbd_obj_request_submit(osdc, obj_request);
3288 ret = rbd_obj_request_wait(obj_request);
3292 ret = obj_request->result;
3296 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3297 ret = (int)obj_request->xferred;
3298 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3301 rbd_obj_request_put(obj_request);
3303 ceph_release_page_vector(pages, page_count);
3308 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3310 struct rbd_img_request *img_request;
3311 struct ceph_snap_context *snapc = NULL;
3312 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3313 u64 length = blk_rq_bytes(rq);
3314 enum obj_operation_type op_type;
3318 if (rq->cmd_flags & REQ_DISCARD)
3319 op_type = OBJ_OP_DISCARD;
3320 else if (rq->cmd_flags & REQ_WRITE)
3321 op_type = OBJ_OP_WRITE;
3323 op_type = OBJ_OP_READ;
3325 /* Ignore/skip any zero-length requests */
3328 dout("%s: zero-length request\n", __func__);
3333 /* Only reads are allowed to a read-only device */
3335 if (op_type != OBJ_OP_READ) {
3336 if (rbd_dev->mapping.read_only) {
3340 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3344 * Quit early if the mapped snapshot no longer exists. It's
3345 * still possible the snapshot will have disappeared by the
3346 * time our request arrives at the osd, but there's no sense in
3347 * sending it if we already know.
3349 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3350 dout("request for non-existent snapshot");
3351 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3356 if (offset && length > U64_MAX - offset + 1) {
3357 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3360 goto err_rq; /* Shouldn't happen */
3363 down_read(&rbd_dev->header_rwsem);
3364 mapping_size = rbd_dev->mapping.size;
3365 if (op_type != OBJ_OP_READ) {