fb2c31edca245e572eef88474194a1a9b17cd71a
[sfrench/cifs-2.6.git] / drivers / block / pktcdvd.c
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  *
5  * May be copied or modified under the terms of the GNU General Public
6  * License.  See linux/COPYING for more information.
7  *
8  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9  * DVD-RAM devices.
10  *
11  * Theory of operation:
12  *
13  * At the lowest level, there is the standard driver for the CD/DVD device,
14  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15  * but it doesn't know anything about the special restrictions that apply to
16  * packet writing. One restriction is that write requests must be aligned to
17  * packet boundaries on the physical media, and the size of a write request
18  * must be equal to the packet size. Another restriction is that a
19  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20  * command, if the previous command was a write.
21  *
22  * The purpose of the packet writing driver is to hide these restrictions from
23  * higher layers, such as file systems, and present a block device that can be
24  * randomly read and written using 2kB-sized blocks.
25  *
26  * The lowest layer in the packet writing driver is the packet I/O scheduler.
27  * Its data is defined by the struct packet_iosched and includes two bio
28  * queues with pending read and write requests. These queues are processed
29  * by the pkt_iosched_process_queue() function. The write requests in this
30  * queue are already properly aligned and sized. This layer is responsible for
31  * issuing the flush cache commands and scheduling the I/O in a good order.
32  *
33  * The next layer transforms unaligned write requests to aligned writes. This
34  * transformation requires reading missing pieces of data from the underlying
35  * block device, assembling the pieces to full packets and queuing them to the
36  * packet I/O scheduler.
37  *
38  * At the top layer there is a custom make_request_fn function that forwards
39  * read requests directly to the iosched queue and puts write requests in the
40  * unaligned write queue. A kernel thread performs the necessary read
41  * gathering to convert the unaligned writes to aligned writes and then feeds
42  * them to the packet I/O scheduler.
43  *
44  *************************************************************************/
45
46 #include <linux/pktcdvd.h>
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/suspend.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_ioctl.h>
61 #include <scsi/scsi.h>
62
63 #include <asm/uaccess.h>
64
65 #if PACKET_DEBUG
66 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
67 #else
68 #define DPRINTK(fmt, args...)
69 #endif
70
71 #if PACKET_DEBUG > 1
72 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #else
74 #define VPRINTK(fmt, args...)
75 #endif
76
77 #define MAX_SPEED 0xffff
78
79 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
80
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pkt_major;
84 static struct semaphore ctl_mutex;      /* Serialize open/close/setup/teardown */
85 static mempool_t *psd_pool;
86
87
88 static void pkt_bio_finished(struct pktcdvd_device *pd)
89 {
90         BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
91         if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
92                 VPRINTK("pktcdvd: queue empty\n");
93                 atomic_set(&pd->iosched.attention, 1);
94                 wake_up(&pd->wqueue);
95         }
96 }
97
98 static void pkt_bio_destructor(struct bio *bio)
99 {
100         kfree(bio->bi_io_vec);
101         kfree(bio);
102 }
103
104 static struct bio *pkt_bio_alloc(int nr_iovecs)
105 {
106         struct bio_vec *bvl = NULL;
107         struct bio *bio;
108
109         bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
110         if (!bio)
111                 goto no_bio;
112         bio_init(bio);
113
114         bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
115         if (!bvl)
116                 goto no_bvl;
117
118         bio->bi_max_vecs = nr_iovecs;
119         bio->bi_io_vec = bvl;
120         bio->bi_destructor = pkt_bio_destructor;
121
122         return bio;
123
124  no_bvl:
125         kfree(bio);
126  no_bio:
127         return NULL;
128 }
129
130 /*
131  * Allocate a packet_data struct
132  */
133 static struct packet_data *pkt_alloc_packet_data(int frames)
134 {
135         int i;
136         struct packet_data *pkt;
137
138         pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
139         if (!pkt)
140                 goto no_pkt;
141
142         pkt->frames = frames;
143         pkt->w_bio = pkt_bio_alloc(frames);
144         if (!pkt->w_bio)
145                 goto no_bio;
146
147         for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
148                 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
149                 if (!pkt->pages[i])
150                         goto no_page;
151         }
152
153         spin_lock_init(&pkt->lock);
154
155         for (i = 0; i < frames; i++) {
156                 struct bio *bio = pkt_bio_alloc(1);
157                 if (!bio)
158                         goto no_rd_bio;
159                 pkt->r_bios[i] = bio;
160         }
161
162         return pkt;
163
164 no_rd_bio:
165         for (i = 0; i < frames; i++) {
166                 struct bio *bio = pkt->r_bios[i];
167                 if (bio)
168                         bio_put(bio);
169         }
170
171 no_page:
172         for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
173                 if (pkt->pages[i])
174                         __free_page(pkt->pages[i]);
175         bio_put(pkt->w_bio);
176 no_bio:
177         kfree(pkt);
178 no_pkt:
179         return NULL;
180 }
181
182 /*
183  * Free a packet_data struct
184  */
185 static void pkt_free_packet_data(struct packet_data *pkt)
186 {
187         int i;
188
189         for (i = 0; i < pkt->frames; i++) {
190                 struct bio *bio = pkt->r_bios[i];
191                 if (bio)
192                         bio_put(bio);
193         }
194         for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
195                 __free_page(pkt->pages[i]);
196         bio_put(pkt->w_bio);
197         kfree(pkt);
198 }
199
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
201 {
202         struct packet_data *pkt, *next;
203
204         BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
205
206         list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207                 pkt_free_packet_data(pkt);
208         }
209         INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
210 }
211
212 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
213 {
214         struct packet_data *pkt;
215
216         BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
217
218         while (nr_packets > 0) {
219                 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
220                 if (!pkt) {
221                         pkt_shrink_pktlist(pd);
222                         return 0;
223                 }
224                 pkt->id = nr_packets;
225                 pkt->pd = pd;
226                 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
227                 nr_packets--;
228         }
229         return 1;
230 }
231
232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
233 {
234         return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
235 }
236
237 static void pkt_rb_free(void *ptr, void *data)
238 {
239         kfree(ptr);
240 }
241
242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
243 {
244         struct rb_node *n = rb_next(&node->rb_node);
245         if (!n)
246                 return NULL;
247         return rb_entry(n, struct pkt_rb_node, rb_node);
248 }
249
250 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
251 {
252         rb_erase(&node->rb_node, &pd->bio_queue);
253         mempool_free(node, pd->rb_pool);
254         pd->bio_queue_size--;
255         BUG_ON(pd->bio_queue_size < 0);
256 }
257
258 /*
259  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
260  */
261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
262 {
263         struct rb_node *n = pd->bio_queue.rb_node;
264         struct rb_node *next;
265         struct pkt_rb_node *tmp;
266
267         if (!n) {
268                 BUG_ON(pd->bio_queue_size > 0);
269                 return NULL;
270         }
271
272         for (;;) {
273                 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
274                 if (s <= tmp->bio->bi_sector)
275                         next = n->rb_left;
276                 else
277                         next = n->rb_right;
278                 if (!next)
279                         break;
280                 n = next;
281         }
282
283         if (s > tmp->bio->bi_sector) {
284                 tmp = pkt_rbtree_next(tmp);
285                 if (!tmp)
286                         return NULL;
287         }
288         BUG_ON(s > tmp->bio->bi_sector);
289         return tmp;
290 }
291
292 /*
293  * Insert a node into the pd->bio_queue rb tree.
294  */
295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
296 {
297         struct rb_node **p = &pd->bio_queue.rb_node;
298         struct rb_node *parent = NULL;
299         sector_t s = node->bio->bi_sector;
300         struct pkt_rb_node *tmp;
301
302         while (*p) {
303                 parent = *p;
304                 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
305                 if (s < tmp->bio->bi_sector)
306                         p = &(*p)->rb_left;
307                 else
308                         p = &(*p)->rb_right;
309         }
310         rb_link_node(&node->rb_node, parent, p);
311         rb_insert_color(&node->rb_node, &pd->bio_queue);
312         pd->bio_queue_size++;
313 }
314
315 /*
316  * Add a bio to a single linked list defined by its head and tail pointers.
317  */
318 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
319 {
320         bio->bi_next = NULL;
321         if (*list_tail) {
322                 BUG_ON((*list_head) == NULL);
323                 (*list_tail)->bi_next = bio;
324                 (*list_tail) = bio;
325         } else {
326                 BUG_ON((*list_head) != NULL);
327                 (*list_head) = bio;
328                 (*list_tail) = bio;
329         }
330 }
331
332 /*
333  * Remove and return the first bio from a single linked list defined by its
334  * head and tail pointers.
335  */
336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
337 {
338         struct bio *bio;
339
340         if (*list_head == NULL)
341                 return NULL;
342
343         bio = *list_head;
344         *list_head = bio->bi_next;
345         if (*list_head == NULL)
346                 *list_tail = NULL;
347
348         bio->bi_next = NULL;
349         return bio;
350 }
351
352 /*
353  * Send a packet_command to the underlying block device and
354  * wait for completion.
355  */
356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
357 {
358         char sense[SCSI_SENSE_BUFFERSIZE];
359         request_queue_t *q;
360         struct request *rq;
361         DECLARE_COMPLETION(wait);
362         int err = 0;
363
364         q = bdev_get_queue(pd->bdev);
365
366         rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
367                              __GFP_WAIT);
368         rq->errors = 0;
369         rq->rq_disk = pd->bdev->bd_disk;
370         rq->bio = NULL;
371         rq->buffer = NULL;
372         rq->timeout = 60*HZ;
373         rq->data = cgc->buffer;
374         rq->data_len = cgc->buflen;
375         rq->sense = sense;
376         memset(sense, 0, sizeof(sense));
377         rq->sense_len = 0;
378         rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
379         if (cgc->quiet)
380                 rq->flags |= REQ_QUIET;
381         memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
382         if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
383                 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
384         rq->cmd_len = COMMAND_SIZE(rq->cmd[0]);
385
386         rq->ref_count++;
387         rq->flags |= REQ_NOMERGE;
388         rq->waiting = &wait;
389         rq->end_io = blk_end_sync_rq;
390         elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
391         generic_unplug_device(q);
392         wait_for_completion(&wait);
393
394         if (rq->errors)
395                 err = -EIO;
396
397         blk_put_request(rq);
398         return err;
399 }
400
401 /*
402  * A generic sense dump / resolve mechanism should be implemented across
403  * all ATAPI + SCSI devices.
404  */
405 static void pkt_dump_sense(struct packet_command *cgc)
406 {
407         static char *info[9] = { "No sense", "Recovered error", "Not ready",
408                                  "Medium error", "Hardware error", "Illegal request",
409                                  "Unit attention", "Data protect", "Blank check" };
410         int i;
411         struct request_sense *sense = cgc->sense;
412
413         printk("pktcdvd:");
414         for (i = 0; i < CDROM_PACKET_SIZE; i++)
415                 printk(" %02x", cgc->cmd[i]);
416         printk(" - ");
417
418         if (sense == NULL) {
419                 printk("no sense\n");
420                 return;
421         }
422
423         printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
424
425         if (sense->sense_key > 8) {
426                 printk(" (INVALID)\n");
427                 return;
428         }
429
430         printk(" (%s)\n", info[sense->sense_key]);
431 }
432
433 /*
434  * flush the drive cache to media
435  */
436 static int pkt_flush_cache(struct pktcdvd_device *pd)
437 {
438         struct packet_command cgc;
439
440         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
441         cgc.cmd[0] = GPCMD_FLUSH_CACHE;
442         cgc.quiet = 1;
443
444         /*
445          * the IMMED bit -- we default to not setting it, although that
446          * would allow a much faster close, this is safer
447          */
448 #if 0
449         cgc.cmd[1] = 1 << 1;
450 #endif
451         return pkt_generic_packet(pd, &cgc);
452 }
453
454 /*
455  * speed is given as the normal factor, e.g. 4 for 4x
456  */
457 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
458 {
459         struct packet_command cgc;
460         struct request_sense sense;
461         int ret;
462
463         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
464         cgc.sense = &sense;
465         cgc.cmd[0] = GPCMD_SET_SPEED;
466         cgc.cmd[2] = (read_speed >> 8) & 0xff;
467         cgc.cmd[3] = read_speed & 0xff;
468         cgc.cmd[4] = (write_speed >> 8) & 0xff;
469         cgc.cmd[5] = write_speed & 0xff;
470
471         if ((ret = pkt_generic_packet(pd, &cgc)))
472                 pkt_dump_sense(&cgc);
473
474         return ret;
475 }
476
477 /*
478  * Queue a bio for processing by the low-level CD device. Must be called
479  * from process context.
480  */
481 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
482 {
483         spin_lock(&pd->iosched.lock);
484         if (bio_data_dir(bio) == READ) {
485                 pkt_add_list_last(bio, &pd->iosched.read_queue,
486                                   &pd->iosched.read_queue_tail);
487         } else {
488                 pkt_add_list_last(bio, &pd->iosched.write_queue,
489                                   &pd->iosched.write_queue_tail);
490         }
491         spin_unlock(&pd->iosched.lock);
492
493         atomic_set(&pd->iosched.attention, 1);
494         wake_up(&pd->wqueue);
495 }
496
497 /*
498  * Process the queued read/write requests. This function handles special
499  * requirements for CDRW drives:
500  * - A cache flush command must be inserted before a read request if the
501  *   previous request was a write.
502  * - Switching between reading and writing is slow, so don't do it more often
503  *   than necessary.
504  * - Optimize for throughput at the expense of latency. This means that streaming
505  *   writes will never be interrupted by a read, but if the drive has to seek
506  *   before the next write, switch to reading instead if there are any pending
507  *   read requests.
508  * - Set the read speed according to current usage pattern. When only reading
509  *   from the device, it's best to use the highest possible read speed, but
510  *   when switching often between reading and writing, it's better to have the
511  *   same read and write speeds.
512  */
513 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
514 {
515
516         if (atomic_read(&pd->iosched.attention) == 0)
517                 return;
518         atomic_set(&pd->iosched.attention, 0);
519
520         for (;;) {
521                 struct bio *bio;
522                 int reads_queued, writes_queued;
523
524                 spin_lock(&pd->iosched.lock);
525                 reads_queued = (pd->iosched.read_queue != NULL);
526                 writes_queued = (pd->iosched.write_queue != NULL);
527                 spin_unlock(&pd->iosched.lock);
528
529                 if (!reads_queued && !writes_queued)
530                         break;
531
532                 if (pd->iosched.writing) {
533                         int need_write_seek = 1;
534                         spin_lock(&pd->iosched.lock);
535                         bio = pd->iosched.write_queue;
536                         spin_unlock(&pd->iosched.lock);
537                         if (bio && (bio->bi_sector == pd->iosched.last_write))
538                                 need_write_seek = 0;
539                         if (need_write_seek && reads_queued) {
540                                 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
541                                         VPRINTK("pktcdvd: write, waiting\n");
542                                         break;
543                                 }
544                                 pkt_flush_cache(pd);
545                                 pd->iosched.writing = 0;
546                         }
547                 } else {
548                         if (!reads_queued && writes_queued) {
549                                 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
550                                         VPRINTK("pktcdvd: read, waiting\n");
551                                         break;
552                                 }
553                                 pd->iosched.writing = 1;
554                         }
555                 }
556
557                 spin_lock(&pd->iosched.lock);
558                 if (pd->iosched.writing) {
559                         bio = pkt_get_list_first(&pd->iosched.write_queue,
560                                                  &pd->iosched.write_queue_tail);
561                 } else {
562                         bio = pkt_get_list_first(&pd->iosched.read_queue,
563                                                  &pd->iosched.read_queue_tail);
564                 }
565                 spin_unlock(&pd->iosched.lock);
566
567                 if (!bio)
568                         continue;
569
570                 if (bio_data_dir(bio) == READ)
571                         pd->iosched.successive_reads += bio->bi_size >> 10;
572                 else {
573                         pd->iosched.successive_reads = 0;
574                         pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
575                 }
576                 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
577                         if (pd->read_speed == pd->write_speed) {
578                                 pd->read_speed = MAX_SPEED;
579                                 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
580                         }
581                 } else {
582                         if (pd->read_speed != pd->write_speed) {
583                                 pd->read_speed = pd->write_speed;
584                                 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
585                         }
586                 }
587
588                 atomic_inc(&pd->cdrw.pending_bios);
589                 generic_make_request(bio);
590         }
591 }
592
593 /*
594  * Special care is needed if the underlying block device has a small
595  * max_phys_segments value.
596  */
597 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
598 {
599         if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
600                 /*
601                  * The cdrom device can handle one segment/frame
602                  */
603                 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
604                 return 0;
605         } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
606                 /*
607                  * We can handle this case at the expense of some extra memory
608                  * copies during write operations
609                  */
610                 set_bit(PACKET_MERGE_SEGS, &pd->flags);
611                 return 0;
612         } else {
613                 printk("pktcdvd: cdrom max_phys_segments too small\n");
614                 return -EIO;
615         }
616 }
617
618 /*
619  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
620  */
621 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
622 {
623         unsigned int copy_size = CD_FRAMESIZE;
624
625         while (copy_size > 0) {
626                 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
627                 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
628                         src_bvl->bv_offset + offs;
629                 void *vto = page_address(dst_page) + dst_offs;
630                 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
631
632                 BUG_ON(len < 0);
633                 memcpy(vto, vfrom, len);
634                 kunmap_atomic(vfrom, KM_USER0);
635
636                 seg++;
637                 offs = 0;
638                 dst_offs += len;
639                 copy_size -= len;
640         }
641 }
642
643 /*
644  * Copy all data for this packet to pkt->pages[], so that
645  * a) The number of required segments for the write bio is minimized, which
646  *    is necessary for some scsi controllers.
647  * b) The data can be used as cache to avoid read requests if we receive a
648  *    new write request for the same zone.
649  */
650 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
651 {
652         int f, p, offs;
653
654         /* Copy all data to pkt->pages[] */
655         p = 0;
656         offs = 0;
657         for (f = 0; f < pkt->frames; f++) {
658                 if (bvec[f].bv_page != pkt->pages[p]) {
659                         void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
660                         void *vto = page_address(pkt->pages[p]) + offs;
661                         memcpy(vto, vfrom, CD_FRAMESIZE);
662                         kunmap_atomic(vfrom, KM_USER0);
663                         bvec[f].bv_page = pkt->pages[p];
664                         bvec[f].bv_offset = offs;
665                 } else {
666                         BUG_ON(bvec[f].bv_offset != offs);
667                 }
668                 offs += CD_FRAMESIZE;
669                 if (offs >= PAGE_SIZE) {
670                         offs = 0;
671                         p++;
672                 }
673         }
674 }
675
676 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
677 {
678         struct packet_data *pkt = bio->bi_private;
679         struct pktcdvd_device *pd = pkt->pd;
680         BUG_ON(!pd);
681
682         if (bio->bi_size)
683                 return 1;
684
685         VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
686                 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
687
688         if (err)
689                 atomic_inc(&pkt->io_errors);
690         if (atomic_dec_and_test(&pkt->io_wait)) {
691                 atomic_inc(&pkt->run_sm);
692                 wake_up(&pd->wqueue);
693         }
694         pkt_bio_finished(pd);
695
696         return 0;
697 }
698
699 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
700 {
701         struct packet_data *pkt = bio->bi_private;
702         struct pktcdvd_device *pd = pkt->pd;
703         BUG_ON(!pd);
704
705         if (bio->bi_size)
706                 return 1;
707
708         VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
709
710         pd->stats.pkt_ended++;
711
712         pkt_bio_finished(pd);
713         atomic_dec(&pkt->io_wait);
714         atomic_inc(&pkt->run_sm);
715         wake_up(&pd->wqueue);
716         return 0;
717 }
718
719 /*
720  * Schedule reads for the holes in a packet
721  */
722 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
723 {
724         int frames_read = 0;
725         struct bio *bio;
726         int f;
727         char written[PACKET_MAX_SIZE];
728
729         BUG_ON(!pkt->orig_bios);
730
731         atomic_set(&pkt->io_wait, 0);
732         atomic_set(&pkt->io_errors, 0);
733
734         /*
735          * Figure out which frames we need to read before we can write.
736          */
737         memset(written, 0, sizeof(written));
738         spin_lock(&pkt->lock);
739         for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
740                 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
741                 int num_frames = bio->bi_size / CD_FRAMESIZE;
742                 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
743                 BUG_ON(first_frame < 0);
744                 BUG_ON(first_frame + num_frames > pkt->frames);
745                 for (f = first_frame; f < first_frame + num_frames; f++)
746                         written[f] = 1;
747         }
748         spin_unlock(&pkt->lock);
749
750         if (pkt->cache_valid) {
751                 VPRINTK("pkt_gather_data: zone %llx cached\n",
752                         (unsigned long long)pkt->sector);
753                 goto out_account;
754         }
755
756         /*
757          * Schedule reads for missing parts of the packet.
758          */
759         for (f = 0; f < pkt->frames; f++) {
760                 int p, offset;
761                 if (written[f])
762                         continue;
763                 bio = pkt->r_bios[f];
764                 bio_init(bio);
765                 bio->bi_max_vecs = 1;
766                 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
767                 bio->bi_bdev = pd->bdev;
768                 bio->bi_end_io = pkt_end_io_read;
769                 bio->bi_private = pkt;
770
771                 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
772                 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
773                 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
774                         f, pkt->pages[p], offset);
775                 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
776                         BUG();
777
778                 atomic_inc(&pkt->io_wait);
779                 bio->bi_rw = READ;
780                 pkt_queue_bio(pd, bio);
781                 frames_read++;
782         }
783
784 out_account:
785         VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
786                 frames_read, (unsigned long long)pkt->sector);
787         pd->stats.pkt_started++;
788         pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
789 }
790
791 /*
792  * Find a packet matching zone, or the least recently used packet if
793  * there is no match.
794  */
795 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
796 {
797         struct packet_data *pkt;
798
799         list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
800                 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
801                         list_del_init(&pkt->list);
802                         if (pkt->sector != zone)
803                                 pkt->cache_valid = 0;
804                         return pkt;
805                 }
806         }
807         BUG();
808         return NULL;
809 }
810
811 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
812 {
813         if (pkt->cache_valid) {
814                 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
815         } else {
816                 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
817         }
818 }
819
820 /*
821  * recover a failed write, query for relocation if possible
822  *
823  * returns 1 if recovery is possible, or 0 if not
824  *
825  */
826 static int pkt_start_recovery(struct packet_data *pkt)
827 {
828         /*
829          * FIXME. We need help from the file system to implement
830          * recovery handling.
831          */
832         return 0;
833 #if 0
834         struct request *rq = pkt->rq;
835         struct pktcdvd_device *pd = rq->rq_disk->private_data;
836         struct block_device *pkt_bdev;
837         struct super_block *sb = NULL;
838         unsigned long old_block, new_block;
839         sector_t new_sector;
840
841         pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
842         if (pkt_bdev) {
843                 sb = get_super(pkt_bdev);
844                 bdput(pkt_bdev);
845         }
846
847         if (!sb)
848                 return 0;
849
850         if (!sb->s_op || !sb->s_op->relocate_blocks)
851                 goto out;
852
853         old_block = pkt->sector / (CD_FRAMESIZE >> 9);
854         if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
855                 goto out;
856
857         new_sector = new_block * (CD_FRAMESIZE >> 9);
858         pkt->sector = new_sector;
859
860         pkt->bio->bi_sector = new_sector;
861         pkt->bio->bi_next = NULL;
862         pkt->bio->bi_flags = 1 << BIO_UPTODATE;
863         pkt->bio->bi_idx = 0;
864
865         BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
866         BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
867         BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
868         BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
869         BUG_ON(pkt->bio->bi_private != pkt);
870
871         drop_super(sb);
872         return 1;
873
874 out:
875         drop_super(sb);
876         return 0;
877 #endif
878 }
879
880 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
881 {
882 #if PACKET_DEBUG > 1
883         static const char *state_name[] = {
884                 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
885         };
886         enum packet_data_state old_state = pkt->state;
887         VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
888                 state_name[old_state], state_name[state]);
889 #endif
890         pkt->state = state;
891 }
892
893 /*
894  * Scan the work queue to see if we can start a new packet.
895  * returns non-zero if any work was done.
896  */
897 static int pkt_handle_queue(struct pktcdvd_device *pd)
898 {
899         struct packet_data *pkt, *p;
900         struct bio *bio = NULL;
901         sector_t zone = 0; /* Suppress gcc warning */
902         struct pkt_rb_node *node, *first_node;
903         struct rb_node *n;
904
905         VPRINTK("handle_queue\n");
906
907         atomic_set(&pd->scan_queue, 0);
908
909         if (list_empty(&pd->cdrw.pkt_free_list)) {
910                 VPRINTK("handle_queue: no pkt\n");
911                 return 0;
912         }
913
914         /*
915          * Try to find a zone we are not already working on.
916          */
917         spin_lock(&pd->lock);
918         first_node = pkt_rbtree_find(pd, pd->current_sector);
919         if (!first_node) {
920                 n = rb_first(&pd->bio_queue);
921                 if (n)
922                         first_node = rb_entry(n, struct pkt_rb_node, rb_node);
923         }
924         node = first_node;
925         while (node) {
926                 bio = node->bio;
927                 zone = ZONE(bio->bi_sector, pd);
928                 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
929                         if (p->sector == zone) {
930                                 bio = NULL;
931                                 goto try_next_bio;
932                         }
933                 }
934                 break;
935 try_next_bio:
936                 node = pkt_rbtree_next(node);
937                 if (!node) {
938                         n = rb_first(&pd->bio_queue);
939                         if (n)
940                                 node = rb_entry(n, struct pkt_rb_node, rb_node);
941                 }
942                 if (node == first_node)
943                         node = NULL;
944         }
945         spin_unlock(&pd->lock);
946         if (!bio) {
947                 VPRINTK("handle_queue: no bio\n");
948                 return 0;
949         }
950
951         pkt = pkt_get_packet_data(pd, zone);
952
953         pd->current_sector = zone + pd->settings.size;
954         pkt->sector = zone;
955         BUG_ON(pkt->frames != pd->settings.size >> 2);
956         pkt->write_size = 0;
957
958         /*
959          * Scan work queue for bios in the same zone and link them
960          * to this packet.
961          */
962         spin_lock(&pd->lock);
963         VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
964         while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
965                 bio = node->bio;
966                 VPRINTK("pkt_handle_queue: found zone=%llx\n",
967                         (unsigned long long)ZONE(bio->bi_sector, pd));
968                 if (ZONE(bio->bi_sector, pd) != zone)
969                         break;
970                 pkt_rbtree_erase(pd, node);
971                 spin_lock(&pkt->lock);
972                 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
973                 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
974                 spin_unlock(&pkt->lock);
975         }
976         spin_unlock(&pd->lock);
977
978         pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
979         pkt_set_state(pkt, PACKET_WAITING_STATE);
980         atomic_set(&pkt->run_sm, 1);
981
982         spin_lock(&pd->cdrw.active_list_lock);
983         list_add(&pkt->list, &pd->cdrw.pkt_active_list);
984         spin_unlock(&pd->cdrw.active_list_lock);
985
986         return 1;
987 }
988
989 /*
990  * Assemble a bio to write one packet and queue the bio for processing
991  * by the underlying block device.
992  */
993 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
994 {
995         struct bio *bio;
996         int f;
997         int frames_write;
998         struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
999
1000         for (f = 0; f < pkt->frames; f++) {
1001                 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1002                 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1003         }
1004
1005         /*
1006          * Fill-in bvec with data from orig_bios.
1007          */
1008         frames_write = 0;
1009         spin_lock(&pkt->lock);
1010         for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1011                 int segment = bio->bi_idx;
1012                 int src_offs = 0;
1013                 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1014                 int num_frames = bio->bi_size / CD_FRAMESIZE;
1015                 BUG_ON(first_frame < 0);
1016                 BUG_ON(first_frame + num_frames > pkt->frames);
1017                 for (f = first_frame; f < first_frame + num_frames; f++) {
1018                         struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1019
1020                         while (src_offs >= src_bvl->bv_len) {
1021                                 src_offs -= src_bvl->bv_len;
1022                                 segment++;
1023                                 BUG_ON(segment >= bio->bi_vcnt);
1024                                 src_bvl = bio_iovec_idx(bio, segment);
1025                         }
1026
1027                         if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1028                                 bvec[f].bv_page = src_bvl->bv_page;
1029                                 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1030                         } else {
1031                                 pkt_copy_bio_data(bio, segment, src_offs,
1032                                                   bvec[f].bv_page, bvec[f].bv_offset);
1033                         }
1034                         src_offs += CD_FRAMESIZE;
1035                         frames_write++;
1036                 }
1037         }
1038         pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1039         spin_unlock(&pkt->lock);
1040
1041         VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1042                 frames_write, (unsigned long long)pkt->sector);
1043         BUG_ON(frames_write != pkt->write_size);
1044
1045         if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1046                 pkt_make_local_copy(pkt, bvec);
1047                 pkt->cache_valid = 1;
1048         } else {
1049                 pkt->cache_valid = 0;
1050         }
1051
1052         /* Start the write request */
1053         bio_init(pkt->w_bio);
1054         pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1055         pkt->w_bio->bi_sector = pkt->sector;
1056         pkt->w_bio->bi_bdev = pd->bdev;
1057         pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1058         pkt->w_bio->bi_private = pkt;
1059         for (f = 0; f < pkt->frames; f++)
1060                 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1061                         BUG();
1062         VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1063
1064         atomic_set(&pkt->io_wait, 1);
1065         pkt->w_bio->bi_rw = WRITE;
1066         pkt_queue_bio(pd, pkt->w_bio);
1067 }
1068
1069 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1070 {
1071         struct bio *bio, *next;
1072
1073         if (!uptodate)
1074                 pkt->cache_valid = 0;
1075
1076         /* Finish all bios corresponding to this packet */
1077         bio = pkt->orig_bios;
1078         while (bio) {
1079                 next = bio->bi_next;
1080                 bio->bi_next = NULL;
1081                 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1082                 bio = next;
1083         }
1084         pkt->orig_bios = pkt->orig_bios_tail = NULL;
1085 }
1086
1087 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1088 {
1089         int uptodate;
1090
1091         VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1092
1093         for (;;) {
1094                 switch (pkt->state) {
1095                 case PACKET_WAITING_STATE:
1096                         if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1097                                 return;
1098
1099                         pkt->sleep_time = 0;
1100                         pkt_gather_data(pd, pkt);
1101                         pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1102                         break;
1103
1104                 case PACKET_READ_WAIT_STATE:
1105                         if (atomic_read(&pkt->io_wait) > 0)
1106                                 return;
1107
1108                         if (atomic_read(&pkt->io_errors) > 0) {
1109                                 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1110                         } else {
1111                                 pkt_start_write(pd, pkt);
1112                         }
1113                         break;
1114
1115                 case PACKET_WRITE_WAIT_STATE:
1116                         if (atomic_read(&pkt->io_wait) > 0)
1117                                 return;
1118
1119                         if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1120                                 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1121                         } else {
1122                                 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1123                         }
1124                         break;
1125
1126                 case PACKET_RECOVERY_STATE:
1127                         if (pkt_start_recovery(pkt)) {
1128                                 pkt_start_write(pd, pkt);
1129                         } else {
1130                                 VPRINTK("No recovery possible\n");
1131                                 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1132                         }
1133                         break;
1134
1135                 case PACKET_FINISHED_STATE:
1136                         uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1137                         pkt_finish_packet(pkt, uptodate);
1138                         return;
1139
1140                 default:
1141                         BUG();
1142                         break;
1143                 }
1144         }
1145 }
1146
1147 static void pkt_handle_packets(struct pktcdvd_device *pd)
1148 {
1149         struct packet_data *pkt, *next;
1150
1151         VPRINTK("pkt_handle_packets\n");
1152
1153         /*
1154          * Run state machine for active packets
1155          */
1156         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1157                 if (atomic_read(&pkt->run_sm) > 0) {
1158                         atomic_set(&pkt->run_sm, 0);
1159                         pkt_run_state_machine(pd, pkt);
1160                 }
1161         }
1162
1163         /*
1164          * Move no longer active packets to the free list
1165          */
1166         spin_lock(&pd->cdrw.active_list_lock);
1167         list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1168                 if (pkt->state == PACKET_FINISHED_STATE) {
1169                         list_del(&pkt->list);
1170                         pkt_put_packet_data(pd, pkt);
1171                         pkt_set_state(pkt, PACKET_IDLE_STATE);
1172                         atomic_set(&pd->scan_queue, 1);
1173                 }
1174         }
1175         spin_unlock(&pd->cdrw.active_list_lock);
1176 }
1177
1178 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1179 {
1180         struct packet_data *pkt;
1181         int i;
1182
1183         for (i = 0; i < PACKET_NUM_STATES; i++)
1184                 states[i] = 0;
1185
1186         spin_lock(&pd->cdrw.active_list_lock);
1187         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1188                 states[pkt->state]++;
1189         }
1190         spin_unlock(&pd->cdrw.active_list_lock);
1191 }
1192
1193 /*
1194  * kcdrwd is woken up when writes have been queued for one of our
1195  * registered devices
1196  */
1197 static int kcdrwd(void *foobar)
1198 {
1199         struct pktcdvd_device *pd = foobar;
1200         struct packet_data *pkt;
1201         long min_sleep_time, residue;
1202
1203         set_user_nice(current, -20);
1204
1205         for (;;) {
1206                 DECLARE_WAITQUEUE(wait, current);
1207
1208                 /*
1209                  * Wait until there is something to do
1210                  */
1211                 add_wait_queue(&pd->wqueue, &wait);
1212                 for (;;) {
1213                         set_current_state(TASK_INTERRUPTIBLE);
1214
1215                         /* Check if we need to run pkt_handle_queue */
1216                         if (atomic_read(&pd->scan_queue) > 0)
1217                                 goto work_to_do;
1218
1219                         /* Check if we need to run the state machine for some packet */
1220                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1221                                 if (atomic_read(&pkt->run_sm) > 0)
1222                                         goto work_to_do;
1223                         }
1224
1225                         /* Check if we need to process the iosched queues */
1226                         if (atomic_read(&pd->iosched.attention) != 0)
1227                                 goto work_to_do;
1228
1229                         /* Otherwise, go to sleep */
1230                         if (PACKET_DEBUG > 1) {
1231                                 int states[PACKET_NUM_STATES];
1232                                 pkt_count_states(pd, states);
1233                                 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1234                                         states[0], states[1], states[2], states[3],
1235                                         states[4], states[5]);
1236                         }
1237
1238                         min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1239                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1240                                 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1241                                         min_sleep_time = pkt->sleep_time;
1242                         }
1243
1244                         generic_unplug_device(bdev_get_queue(pd->bdev));
1245
1246                         VPRINTK("kcdrwd: sleeping\n");
1247                         residue = schedule_timeout(min_sleep_time);
1248                         VPRINTK("kcdrwd: wake up\n");
1249
1250                         /* make swsusp happy with our thread */
1251                         try_to_freeze();
1252
1253                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1254                                 if (!pkt->sleep_time)
1255                                         continue;
1256                                 pkt->sleep_time -= min_sleep_time - residue;
1257                                 if (pkt->sleep_time <= 0) {
1258                                         pkt->sleep_time = 0;
1259                                         atomic_inc(&pkt->run_sm);
1260                                 }
1261                         }
1262
1263                         if (signal_pending(current)) {
1264                                 flush_signals(current);
1265                         }
1266                         if (kthread_should_stop())
1267                                 break;
1268                 }
1269 work_to_do:
1270                 set_current_state(TASK_RUNNING);
1271                 remove_wait_queue(&pd->wqueue, &wait);
1272
1273                 if (kthread_should_stop())
1274                         break;
1275
1276                 /*
1277                  * if pkt_handle_queue returns true, we can queue
1278                  * another request.
1279                  */
1280                 while (pkt_handle_queue(pd))
1281                         ;
1282
1283                 /*
1284                  * Handle packet state machine
1285                  */
1286                 pkt_handle_packets(pd);
1287
1288                 /*
1289                  * Handle iosched queues
1290                  */
1291                 pkt_iosched_process_queue(pd);
1292         }
1293
1294         return 0;
1295 }
1296
1297 static void pkt_print_settings(struct pktcdvd_device *pd)
1298 {
1299         printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1300         printk("%u blocks, ", pd->settings.size >> 2);
1301         printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1302 }
1303
1304 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1305 {
1306         memset(cgc->cmd, 0, sizeof(cgc->cmd));
1307
1308         cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1309         cgc->cmd[2] = page_code | (page_control << 6);
1310         cgc->cmd[7] = cgc->buflen >> 8;
1311         cgc->cmd[8] = cgc->buflen & 0xff;
1312         cgc->data_direction = CGC_DATA_READ;
1313         return pkt_generic_packet(pd, cgc);
1314 }
1315
1316 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1317 {
1318         memset(cgc->cmd, 0, sizeof(cgc->cmd));
1319         memset(cgc->buffer, 0, 2);
1320         cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1321         cgc->cmd[1] = 0x10;             /* PF */
1322         cgc->cmd[7] = cgc->buflen >> 8;
1323         cgc->cmd[8] = cgc->buflen & 0xff;
1324         cgc->data_direction = CGC_DATA_WRITE;
1325         return pkt_generic_packet(pd, cgc);
1326 }
1327
1328 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1329 {
1330         struct packet_command cgc;
1331         int ret;
1332
1333         /* set up command and get the disc info */
1334         init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1335         cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1336         cgc.cmd[8] = cgc.buflen = 2;
1337         cgc.quiet = 1;
1338
1339         if ((ret = pkt_generic_packet(pd, &cgc)))
1340                 return ret;
1341
1342         /* not all drives have the same disc_info length, so requeue
1343          * packet with the length the drive tells us it can supply
1344          */
1345         cgc.buflen = be16_to_cpu(di->disc_information_length) +
1346                      sizeof(di->disc_information_length);
1347
1348         if (cgc.buflen > sizeof(disc_information))
1349                 cgc.buflen = sizeof(disc_information);
1350
1351         cgc.cmd[8] = cgc.buflen;
1352         return pkt_generic_packet(pd, &cgc);
1353 }
1354
1355 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1356 {
1357         struct packet_command cgc;
1358         int ret;
1359
1360         init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1361         cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1362         cgc.cmd[1] = type & 3;
1363         cgc.cmd[4] = (track & 0xff00) >> 8;
1364         cgc.cmd[5] = track & 0xff;
1365         cgc.cmd[8] = 8;
1366         cgc.quiet = 1;
1367
1368         if ((ret = pkt_generic_packet(pd, &cgc)))
1369                 return ret;
1370
1371         cgc.buflen = be16_to_cpu(ti->track_information_length) +
1372                      sizeof(ti->track_information_length);
1373
1374         if (cgc.buflen > sizeof(track_information))
1375                 cgc.buflen = sizeof(track_information);
1376
1377         cgc.cmd[8] = cgc.buflen;
1378         return pkt_generic_packet(pd, &cgc);
1379 }
1380
1381 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1382 {
1383         disc_information di;
1384         track_information ti;
1385         __u32 last_track;
1386         int ret = -1;
1387
1388         if ((ret = pkt_get_disc_info(pd, &di)))
1389                 return ret;
1390
1391         last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1392         if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1393                 return ret;
1394
1395         /* if this track is blank, try the previous. */
1396         if (ti.blank) {
1397                 last_track--;
1398                 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1399                         return ret;
1400         }
1401
1402         /* if last recorded field is valid, return it. */
1403         if (ti.lra_v) {
1404                 *last_written = be32_to_cpu(ti.last_rec_address);
1405         } else {
1406                 /* make it up instead */
1407                 *last_written = be32_to_cpu(ti.track_start) +
1408                                 be32_to_cpu(ti.track_size);
1409                 if (ti.free_blocks)
1410                         *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1411         }
1412         return 0;
1413 }
1414
1415 /*
1416  * write mode select package based on pd->settings
1417  */
1418 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1419 {
1420         struct packet_command cgc;
1421         struct request_sense sense;
1422         write_param_page *wp;
1423         char buffer[128];
1424         int ret, size;
1425
1426         /* doesn't apply to DVD+RW or DVD-RAM */
1427         if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1428                 return 0;
1429
1430         memset(buffer, 0, sizeof(buffer));
1431         init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1432         cgc.sense = &sense;
1433         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1434                 pkt_dump_sense(&cgc);
1435                 return ret;
1436         }
1437
1438         size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1439         pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1440         if (size > sizeof(buffer))
1441                 size = sizeof(buffer);
1442
1443         /*
1444          * now get it all
1445          */
1446         init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1447         cgc.sense = &sense;
1448         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1449                 pkt_dump_sense(&cgc);
1450                 return ret;
1451         }
1452
1453         /*
1454          * write page is offset header + block descriptor length
1455          */
1456         wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1457
1458         wp->fp = pd->settings.fp;
1459         wp->track_mode = pd->settings.track_mode;
1460         wp->write_type = pd->settings.write_type;
1461         wp->data_block_type = pd->settings.block_mode;
1462
1463         wp->multi_session = 0;
1464
1465 #ifdef PACKET_USE_LS
1466         wp->link_size = 7;
1467         wp->ls_v = 1;
1468 #endif
1469
1470         if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1471                 wp->session_format = 0;
1472                 wp->subhdr2 = 0x20;
1473         } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1474                 wp->session_format = 0x20;
1475                 wp->subhdr2 = 8;
1476 #if 0
1477                 wp->mcn[0] = 0x80;
1478                 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1479 #endif
1480         } else {
1481                 /*
1482                  * paranoia
1483                  */
1484                 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1485                 return 1;
1486         }
1487         wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1488
1489         cgc.buflen = cgc.cmd[8] = size;
1490         if ((ret = pkt_mode_select(pd, &cgc))) {
1491                 pkt_dump_sense(&cgc);
1492                 return ret;
1493         }
1494
1495         pkt_print_settings(pd);
1496         return 0;
1497 }
1498
1499 /*
1500  * 1 -- we can write to this track, 0 -- we can't
1501  */
1502 static int pkt_writable_track(track_information *ti)
1503 {
1504         /*
1505          * only good for CD-RW at the moment, not DVD-RW
1506          */
1507
1508         /*
1509          * FIXME: only for FP
1510          */
1511         if (ti->fp == 0)
1512                 return 1;
1513
1514         /*
1515          * "good" settings as per Mt Fuji.
1516          */
1517         if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1518                 return 1;
1519
1520         if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1521                 return 1;
1522
1523         if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1524                 return 1;
1525
1526         printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1527         return 0;
1528 }
1529
1530 /*
1531  * 1 -- we can write to this disc, 0 -- we can't
1532  */
1533 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1534 {
1535         switch (pd->mmc3_profile) {
1536                 case 0x0a: /* CD-RW */
1537                 case 0xffff: /* MMC3 not supported */
1538                         break;
1539                 case 0x1a: /* DVD+RW */
1540                 case 0x13: /* DVD-RW */
1541                 case 0x12: /* DVD-RAM */
1542                         return 1;
1543                 default:
1544                         VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1545                         return 0;
1546         }
1547
1548         /*
1549          * for disc type 0xff we should probably reserve a new track.
1550          * but i'm not sure, should we leave this to user apps? probably.
1551          */
1552         if (di->disc_type == 0xff) {
1553                 printk("pktcdvd: Unknown disc. No track?\n");
1554                 return 0;
1555         }
1556
1557         if (di->disc_type != 0x20 && di->disc_type != 0) {
1558                 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1559                 return 0;
1560         }
1561
1562         if (di->erasable == 0) {
1563                 printk("pktcdvd: Disc not erasable\n");
1564                 return 0;
1565         }
1566
1567         if (di->border_status == PACKET_SESSION_RESERVED) {
1568                 printk("pktcdvd: Can't write to last track (reserved)\n");
1569                 return 0;
1570         }
1571
1572         return 1;
1573 }
1574
1575 static int pkt_probe_settings(struct pktcdvd_device *pd)
1576 {
1577         struct packet_command cgc;
1578         unsigned char buf[12];
1579         disc_information di;
1580         track_information ti;
1581         int ret, track;
1582
1583         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1584         cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1585         cgc.cmd[8] = 8;
1586         ret = pkt_generic_packet(pd, &cgc);
1587         pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1588
1589         memset(&di, 0, sizeof(disc_information));
1590         memset(&ti, 0, sizeof(track_information));
1591
1592         if ((ret = pkt_get_disc_info(pd, &di))) {
1593                 printk("failed get_disc\n");
1594                 return ret;
1595         }
1596
1597         if (!pkt_writable_disc(pd, &di))
1598                 return -ENXIO;
1599
1600         switch (pd->mmc3_profile) {
1601                 case 0x1a: /* DVD+RW */
1602                         printk("pktcdvd: inserted media is DVD+RW\n");
1603                         break;
1604                 case 0x13: /* DVD-RW */
1605                         printk("pktcdvd: inserted media is DVD-RW\n");
1606                         break;
1607                 case 0x12: /* DVD-RAM */
1608                         printk("pktcdvd: inserted media is DVD-RAM\n");
1609                         break;
1610                 default:
1611                         printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1612                         break;
1613         }
1614         pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1615
1616         track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1617         if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1618                 printk("pktcdvd: failed get_track\n");
1619                 return ret;
1620         }
1621
1622         if (!pkt_writable_track(&ti)) {
1623                 printk("pktcdvd: can't write to this track\n");
1624                 return -ENXIO;
1625         }
1626
1627         /*
1628          * we keep packet size in 512 byte units, makes it easier to
1629          * deal with request calculations.
1630          */
1631         pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1632         if (pd->settings.size == 0) {
1633                 printk("pktcdvd: detected zero packet size!\n");
1634                 return -ENXIO;
1635         }
1636         if (pd->settings.size > PACKET_MAX_SECTORS) {
1637                 printk("pktcdvd: packet size is too big\n");
1638                 return -ENXIO;
1639         }
1640         pd->settings.fp = ti.fp;
1641         pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1642
1643         if (ti.nwa_v) {
1644                 pd->nwa = be32_to_cpu(ti.next_writable);
1645                 set_bit(PACKET_NWA_VALID, &pd->flags);
1646         }
1647
1648         /*
1649          * in theory we could use lra on -RW media as well and just zero
1650          * blocks that haven't been written yet, but in practice that
1651          * is just a no-go. we'll use that for -R, naturally.
1652          */
1653         if (ti.lra_v) {
1654                 pd->lra = be32_to_cpu(ti.last_rec_address);
1655                 set_bit(PACKET_LRA_VALID, &pd->flags);
1656         } else {
1657                 pd->lra = 0xffffffff;
1658                 set_bit(PACKET_LRA_VALID, &pd->flags);
1659         }
1660
1661         /*
1662          * fine for now
1663          */
1664         pd->settings.link_loss = 7;
1665         pd->settings.write_type = 0;    /* packet */
1666         pd->settings.track_mode = ti.track_mode;
1667
1668         /*
1669          * mode1 or mode2 disc
1670          */
1671         switch (ti.data_mode) {
1672                 case PACKET_MODE1:
1673                         pd->settings.block_mode = PACKET_BLOCK_MODE1;
1674                         break;
1675                 case PACKET_MODE2:
1676                         pd->settings.block_mode = PACKET_BLOCK_MODE2;
1677                         break;
1678                 default:
1679                         printk("pktcdvd: unknown data mode\n");
1680                         return 1;
1681         }
1682         return 0;
1683 }
1684
1685 /*
1686  * enable/disable write caching on drive
1687  */
1688 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1689 {
1690         struct packet_command cgc;
1691         struct request_sense sense;
1692         unsigned char buf[64];
1693         int ret;
1694
1695         memset(buf, 0, sizeof(buf));
1696         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1697         cgc.sense = &sense;
1698         cgc.buflen = pd->mode_offset + 12;
1699
1700         /*
1701          * caching mode page might not be there, so quiet this command
1702          */
1703         cgc.quiet = 1;
1704
1705         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1706                 return ret;
1707
1708         buf[pd->mode_offset + 10] |= (!!set << 2);
1709
1710         cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1711         ret = pkt_mode_select(pd, &cgc);
1712         if (ret) {
1713                 printk("pktcdvd: write caching control failed\n");
1714                 pkt_dump_sense(&cgc);
1715         } else if (!ret && set)
1716                 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1717         return ret;
1718 }
1719
1720 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1721 {
1722         struct packet_command cgc;
1723
1724         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1725         cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1726         cgc.cmd[4] = lockflag ? 1 : 0;
1727         return pkt_generic_packet(pd, &cgc);
1728 }
1729
1730 /*
1731  * Returns drive maximum write speed
1732  */
1733 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1734 {
1735         struct packet_command cgc;
1736         struct request_sense sense;
1737         unsigned char buf[256+18];
1738         unsigned char *cap_buf;
1739         int ret, offset;
1740
1741         memset(buf, 0, sizeof(buf));
1742         cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1743         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1744         cgc.sense = &sense;
1745
1746         ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1747         if (ret) {
1748                 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1749                              sizeof(struct mode_page_header);
1750                 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1751                 if (ret) {
1752                         pkt_dump_sense(&cgc);
1753                         return ret;
1754                 }
1755         }
1756
1757         offset = 20;                        /* Obsoleted field, used by older drives */
1758         if (cap_buf[1] >= 28)
1759                 offset = 28;                /* Current write speed selected */
1760         if (cap_buf[1] >= 30) {
1761                 /* If the drive reports at least one "Logical Unit Write
1762                  * Speed Performance Descriptor Block", use the information
1763                  * in the first block. (contains the highest speed)
1764                  */
1765                 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1766                 if (num_spdb > 0)
1767                         offset = 34;
1768         }
1769
1770         *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1771         return 0;
1772 }
1773
1774 /* These tables from cdrecord - I don't have orange book */
1775 /* standard speed CD-RW (1-4x) */
1776 static char clv_to_speed[16] = {
1777         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1778            0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1779 };
1780 /* high speed CD-RW (-10x) */
1781 static char hs_clv_to_speed[16] = {
1782         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1783            0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1784 };
1785 /* ultra high speed CD-RW */
1786 static char us_clv_to_speed[16] = {
1787         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1788            0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1789 };
1790
1791 /*
1792  * reads the maximum media speed from ATIP
1793  */
1794 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1795 {
1796         struct packet_command cgc;
1797         struct request_sense sense;
1798         unsigned char buf[64];
1799         unsigned int size, st, sp;
1800         int ret;
1801
1802         init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1803         cgc.sense = &sense;
1804         cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1805         cgc.cmd[1] = 2;
1806         cgc.cmd[2] = 4; /* READ ATIP */
1807         cgc.cmd[8] = 2;
1808         ret = pkt_generic_packet(pd, &cgc);
1809         if (ret) {
1810                 pkt_dump_sense(&cgc);
1811                 return ret;
1812         }
1813         size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1814         if (size > sizeof(buf))
1815                 size = sizeof(buf);
1816
1817         init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1818         cgc.sense = &sense;
1819         cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1820         cgc.cmd[1] = 2;
1821         cgc.cmd[2] = 4;
1822         cgc.cmd[8] = size;
1823         ret = pkt_generic_packet(pd, &cgc);
1824         if (ret) {
1825                 pkt_dump_sense(&cgc);
1826                 return ret;
1827         }
1828
1829         if (!buf[6] & 0x40) {
1830                 printk("pktcdvd: Disc type is not CD-RW\n");
1831                 return 1;
1832         }
1833         if (!buf[6] & 0x4) {
1834                 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1835                 return 1;
1836         }
1837
1838         st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1839
1840         sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1841
1842         /* Info from cdrecord */
1843         switch (st) {
1844                 case 0: /* standard speed */
1845                         *speed = clv_to_speed[sp];
1846                         break;
1847                 case 1: /* high speed */
1848                         *speed = hs_clv_to_speed[sp];
1849                         break;
1850                 case 2: /* ultra high speed */
1851                         *speed = us_clv_to_speed[sp];
1852                         break;
1853                 default:
1854                         printk("pktcdvd: Unknown disc sub-type %d\n",st);
1855                         return 1;
1856         }
1857         if (*speed) {
1858                 printk("pktcdvd: Max. media speed: %d\n",*speed);
1859                 return 0;
1860         } else {
1861                 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1862                 return 1;
1863         }
1864 }
1865
1866 static int pkt_perform_opc(struct pktcdvd_device *pd)
1867 {
1868         struct packet_command cgc;
1869         struct request_sense sense;
1870         int ret;
1871
1872         VPRINTK("pktcdvd: Performing OPC\n");
1873
1874         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1875         cgc.sense = &sense;
1876         cgc.timeout = 60*HZ;
1877         cgc.cmd[0] = GPCMD_SEND_OPC;
1878         cgc.cmd[1] = 1;
1879         if ((ret = pkt_generic_packet(pd, &cgc)))
1880                 pkt_dump_sense(&cgc);
1881         return ret;
1882 }
1883
1884 static int pkt_open_write(struct pktcdvd_device *pd)
1885 {
1886         int ret;
1887         unsigned int write_speed, media_write_speed, read_speed;
1888
1889         if ((ret = pkt_probe_settings(pd))) {
1890                 VPRINTK("pktcdvd: %s failed probe\n", pd->name);
1891                 return -EROFS;
1892         }
1893
1894         if ((ret = pkt_set_write_settings(pd))) {
1895                 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1896                 return -EIO;
1897         }
1898
1899         pkt_write_caching(pd, USE_WCACHING);
1900
1901         if ((ret = pkt_get_max_speed(pd, &write_speed)))
1902                 write_speed = 16 * 177;
1903         switch (pd->mmc3_profile) {
1904                 case 0x13: /* DVD-RW */
1905                 case 0x1a: /* DVD+RW */
1906                 case 0x12: /* DVD-RAM */
1907                         DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1908                         break;
1909                 default:
1910                         if ((ret = pkt_media_speed(pd, &media_write_speed)))
1911                                 media_write_speed = 16;
1912                         write_speed = min(write_speed, media_write_speed * 177);
1913                         DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1914                         break;
1915         }
1916         read_speed = write_speed;
1917
1918         if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1919                 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1920                 return -EIO;
1921         }
1922         pd->write_speed = write_speed;
1923         pd->read_speed = read_speed;
1924
1925         if ((ret = pkt_perform_opc(pd))) {
1926                 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1927         }
1928
1929         return 0;
1930 }
1931
1932 /*
1933  * called at open time.
1934  */
1935 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1936 {
1937         int ret;
1938         long lba;
1939         request_queue_t *q;
1940
1941         /*
1942          * We need to re-open the cdrom device without O_NONBLOCK to be able
1943          * to read/write from/to it. It is already opened in O_NONBLOCK mode
1944          * so bdget() can't fail.
1945          */
1946         bdget(pd->bdev->bd_dev);
1947         if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1948                 goto out;
1949
1950         if ((ret = bd_claim(pd->bdev, pd)))
1951                 goto out_putdev;
1952
1953         if ((ret = pkt_get_last_written(pd, &lba))) {
1954                 printk("pktcdvd: pkt_get_last_written failed\n");
1955                 goto out_unclaim;
1956         }
1957
1958         set_capacity(pd->disk, lba << 2);
1959         set_capacity(pd->bdev->bd_disk, lba << 2);
1960         bd_set_size(pd->bdev, (loff_t)lba << 11);
1961
1962         q = bdev_get_queue(pd->bdev);
1963         if (write) {
1964                 if ((ret = pkt_open_write(pd)))
1965                         goto out_unclaim;
1966                 /*
1967                  * Some CDRW drives can not handle writes larger than one packet,
1968                  * even if the size is a multiple of the packet size.
1969                  */
1970                 spin_lock_irq(q->queue_lock);
1971                 blk_queue_max_sectors(q, pd->settings.size);
1972                 spin_unlock_irq(q->queue_lock);
1973                 set_bit(PACKET_WRITABLE, &pd->flags);
1974         } else {
1975                 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1976                 clear_bit(PACKET_WRITABLE, &pd->flags);
1977         }
1978
1979         if ((ret = pkt_set_segment_merging(pd, q)))
1980                 goto out_unclaim;
1981
1982         if (write) {
1983                 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
1984                         printk("pktcdvd: not enough memory for buffers\n");
1985                         ret = -ENOMEM;
1986                         goto out_unclaim;
1987                 }
1988                 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1989         }
1990
1991         return 0;
1992
1993 out_unclaim:
1994         bd_release(pd->bdev);
1995 out_putdev:
1996         blkdev_put(pd->bdev);
1997 out:
1998         return ret;
1999 }
2000
2001 /*
2002  * called when the device is closed. makes sure that the device flushes
2003  * the internal cache before we close.
2004  */
2005 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2006 {
2007         if (flush && pkt_flush_cache(pd))
2008                 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2009
2010         pkt_lock_door(pd, 0);
2011
2012         pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2013         bd_release(pd->bdev);
2014         blkdev_put(pd->bdev);
2015
2016         pkt_shrink_pktlist(pd);
2017 }
2018
2019 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2020 {
2021         if (dev_minor >= MAX_WRITERS)
2022                 return NULL;
2023         return pkt_devs[dev_minor];
2024 }
2025
2026 static int pkt_open(struct inode *inode, struct file *file)
2027 {
2028         struct pktcdvd_device *pd = NULL;
2029         int ret;
2030
2031         VPRINTK("pktcdvd: entering open\n");
2032
2033         down(&ctl_mutex);
2034         pd = pkt_find_dev_from_minor(iminor(inode));
2035         if (!pd) {
2036                 ret = -ENODEV;
2037                 goto out;
2038         }
2039         BUG_ON(pd->refcnt < 0);
2040
2041         pd->refcnt++;
2042         if (pd->refcnt > 1) {
2043                 if ((file->f_mode & FMODE_WRITE) &&
2044                     !test_bit(PACKET_WRITABLE, &pd->flags)) {
2045                         ret = -EBUSY;
2046                         goto out_dec;
2047                 }
2048         } else {
2049                 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2050                 if (ret)
2051                         goto out_dec;
2052                 /*
2053                  * needed here as well, since ext2 (among others) may change
2054                  * the blocksize at mount time
2055                  */
2056                 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2057         }
2058
2059         up(&ctl_mutex);
2060         return 0;
2061
2062 out_dec:
2063         pd->refcnt--;
2064 out:
2065         VPRINTK("pktcdvd: failed open (%d)\n", ret);
2066         up(&ctl_mutex);
2067         return ret;
2068 }
2069
2070 static int pkt_close(struct inode *inode, struct file *file)
2071 {
2072         struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2073         int ret = 0;
2074
2075         down(&ctl_mutex);
2076         pd->refcnt--;
2077         BUG_ON(pd->refcnt < 0);
2078         if (pd->refcnt == 0) {
2079                 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2080                 pkt_release_dev(pd, flush);
2081         }
2082         up(&ctl_mutex);
2083         return ret;
2084 }
2085
2086
2087 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2088 {
2089         return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2090 }
2091
2092 static void psd_pool_free(void *ptr, void *data)
2093 {
2094         kfree(ptr);
2095 }
2096
2097 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2098 {
2099         struct packet_stacked_data *psd = bio->bi_private;
2100         struct pktcdvd_device *pd = psd->pd;
2101
2102         if (bio->bi_size)
2103                 return 1;
2104
2105         bio_put(bio);
2106         bio_endio(psd->bio, psd->bio->bi_size, err);
2107         mempool_free(psd, psd_pool);
2108         pkt_bio_finished(pd);
2109         return 0;
2110 }
2111
2112 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2113 {
2114         struct pktcdvd_device *pd;
2115         char b[BDEVNAME_SIZE];
2116         sector_t zone;
2117         struct packet_data *pkt;
2118         int was_empty, blocked_bio;
2119         struct pkt_rb_node *node;
2120
2121         pd = q->queuedata;
2122         if (!pd) {
2123                 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2124                 goto end_io;
2125         }
2126
2127         /*
2128          * Clone READ bios so we can have our own bi_end_io callback.
2129          */
2130         if (bio_data_dir(bio) == READ) {
2131                 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2132                 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2133
2134                 psd->pd = pd;
2135                 psd->bio = bio;
2136                 cloned_bio->bi_bdev = pd->bdev;
2137                 cloned_bio->bi_private = psd;
2138                 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2139                 pd->stats.secs_r += bio->bi_size >> 9;
2140                 pkt_queue_bio(pd, cloned_bio);
2141                 return 0;
2142         }
2143
2144         if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2145                 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2146                         pd->name, (unsigned long long)bio->bi_sector);
2147                 goto end_io;
2148         }
2149
2150         if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2151                 printk("pktcdvd: wrong bio size\n");
2152                 goto end_io;
2153         }
2154
2155         blk_queue_bounce(q, &bio);
2156
2157         zone = ZONE(bio->bi_sector, pd);
2158         VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2159                 (unsigned long long)bio->bi_sector,
2160                 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2161
2162         /* Check if we have to split the bio */
2163         {
2164                 struct bio_pair *bp;
2165                 sector_t last_zone;
2166                 int first_sectors;
2167
2168                 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2169                 if (last_zone != zone) {
2170                         BUG_ON(last_zone != zone + pd->settings.size);
2171                         first_sectors = last_zone - bio->bi_sector;
2172                         bp = bio_split(bio, bio_split_pool, first_sectors);
2173                         BUG_ON(!bp);
2174                         pkt_make_request(q, &bp->bio1);
2175                         pkt_make_request(q, &bp->bio2);
2176                         bio_pair_release(bp);
2177                         return 0;
2178                 }
2179         }
2180
2181         /*
2182          * If we find a matching packet in state WAITING or READ_WAIT, we can
2183          * just append this bio to that packet.
2184          */
2185         spin_lock(&pd->cdrw.active_list_lock);
2186         blocked_bio = 0;
2187         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2188                 if (pkt->sector == zone) {
2189                         spin_lock(&pkt->lock);
2190                         if ((pkt->state == PACKET_WAITING_STATE) ||
2191                             (pkt->state == PACKET_READ_WAIT_STATE)) {
2192                                 pkt_add_list_last(bio, &pkt->orig_bios,
2193                                                   &pkt->orig_bios_tail);
2194                                 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2195                                 if ((pkt->write_size >= pkt->frames) &&
2196                                     (pkt->state == PACKET_WAITING_STATE)) {
2197                                         atomic_inc(&pkt->run_sm);
2198                                         wake_up(&pd->wqueue);
2199                                 }
2200                                 spin_unlock(&pkt->lock);
2201                                 spin_unlock(&pd->cdrw.active_list_lock);
2202                                 return 0;
2203                         } else {
2204                                 blocked_bio = 1;
2205                         }
2206                         spin_unlock(&pkt->lock);
2207                 }
2208         }
2209         spin_unlock(&pd->cdrw.active_list_lock);
2210
2211         /*
2212          * No matching packet found. Store the bio in the work queue.
2213          */
2214         node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2215         node->bio = bio;
2216         spin_lock(&pd->lock);
2217         BUG_ON(pd->bio_queue_size < 0);
2218         was_empty = (pd->bio_queue_size == 0);
2219         pkt_rbtree_insert(pd, node);
2220         spin_unlock(&pd->lock);
2221
2222         /*
2223          * Wake up the worker thread.
2224          */
2225         atomic_set(&pd->scan_queue, 1);
2226         if (was_empty) {
2227                 /* This wake_up is required for correct operation */
2228                 wake_up(&pd->wqueue);
2229         } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2230                 /*
2231                  * This wake up is not required for correct operation,
2232                  * but improves performance in some cases.
2233                  */
2234                 wake_up(&pd->wqueue);
2235         }
2236         return 0;
2237 end_io:
2238         bio_io_error(bio, bio->bi_size);
2239         return 0;
2240 }
2241
2242
2243
2244 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2245 {
2246         struct pktcdvd_device *pd = q->queuedata;
2247         sector_t zone = ZONE(bio->bi_sector, pd);
2248         int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2249         int remaining = (pd->settings.size << 9) - used;
2250         int remaining2;
2251
2252         /*
2253          * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2254          * boundary, pkt_make_request() will split the bio.
2255          */
2256         remaining2 = PAGE_SIZE - bio->bi_size;
2257         remaining = max(remaining, remaining2);
2258
2259         BUG_ON(remaining < 0);
2260         return remaining;
2261 }
2262
2263 static void pkt_init_queue(struct pktcdvd_device *pd)
2264 {
2265         request_queue_t *q = pd->disk->queue;
2266
2267         blk_queue_make_request(q, pkt_make_request);
2268         blk_queue_hardsect_size(q, CD_FRAMESIZE);
2269         blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2270         blk_queue_merge_bvec(q, pkt_merge_bvec);
2271         q->queuedata = pd;
2272 }
2273
2274 static int pkt_seq_show(struct seq_file *m, void *p)
2275 {
2276         struct pktcdvd_device *pd = m->private;
2277         char *msg;
2278         char bdev_buf[BDEVNAME_SIZE];
2279         int states[PACKET_NUM_STATES];
2280
2281         seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2282                    bdevname(pd->bdev, bdev_buf));
2283
2284         seq_printf(m, "\nSettings:\n");
2285         seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2286
2287         if (pd->settings.write_type == 0)
2288                 msg = "Packet";
2289         else
2290                 msg = "Unknown";
2291         seq_printf(m, "\twrite type:\t\t%s\n", msg);
2292
2293         seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2294         seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2295
2296         seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2297
2298         if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2299                 msg = "Mode 1";
2300         else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2301                 msg = "Mode 2";
2302         else
2303                 msg = "Unknown";
2304         seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2305
2306         seq_printf(m, "\nStatistics:\n");
2307         seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2308         seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2309         seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2310         seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2311         seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2312
2313         seq_printf(m, "\nMisc:\n");
2314         seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2315         seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2316         seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2317         seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2318         seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2319         seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2320
2321         seq_printf(m, "\nQueue state:\n");
2322         seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2323         seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2324         seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2325
2326         pkt_count_states(pd, states);
2327         seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2328                    states[0], states[1], states[2], states[3], states[4], states[5]);
2329
2330         return 0;
2331 }
2332
2333 static int pkt_seq_open(struct inode *inode, struct file *file)
2334 {
2335         return single_open(file, pkt_seq_show, PDE(inode)->data);
2336 }
2337
2338 static struct file_operations pkt_proc_fops = {
2339         .open   = pkt_seq_open,
2340         .read   = seq_read,
2341         .llseek = seq_lseek,
2342         .release = single_release
2343 };
2344
2345 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2346 {
2347         int i;
2348         int ret = 0;
2349         char b[BDEVNAME_SIZE];
2350         struct proc_dir_entry *proc;
2351         struct block_device *bdev;
2352
2353         if (pd->pkt_dev == dev) {
2354                 printk("pktcdvd: Recursive setup not allowed\n");
2355                 return -EBUSY;
2356         }
2357         for (i = 0; i < MAX_WRITERS; i++) {
2358                 struct pktcdvd_device *pd2 = pkt_devs[i];
2359                 if (!pd2)
2360                         continue;
2361                 if (pd2->bdev->bd_dev == dev) {
2362                         printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2363                         return -EBUSY;
2364                 }
2365                 if (pd2->pkt_dev == dev) {
2366                         printk("pktcdvd: Can't chain pktcdvd devices\n");
2367                         return -EBUSY;
2368                 }
2369         }
2370
2371         bdev = bdget(dev);
2372         if (!bdev)
2373                 return -ENOMEM;
2374         ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2375         if (ret)
2376                 return ret;
2377
2378         /* This is safe, since we have a reference from open(). */
2379         __module_get(THIS_MODULE);
2380
2381         pd->bdev = bdev;
2382         set_blocksize(bdev, CD_FRAMESIZE);
2383
2384         pkt_init_queue(pd);
2385
2386         atomic_set(&pd->cdrw.pending_bios, 0);
2387         pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2388         if (IS_ERR(pd->cdrw.thread)) {
2389                 printk("pktcdvd: can't start kernel thread\n");
2390                 ret = -ENOMEM;
2391                 goto out_mem;
2392         }
2393
2394         proc = create_proc_entry(pd->name, 0, pkt_proc);
2395         if (proc) {
2396                 proc->data = pd;
2397                 proc->proc_fops = &pkt_proc_fops;
2398         }
2399         DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2400         return 0;
2401
2402 out_mem:
2403         blkdev_put(bdev);
2404         /* This is safe: open() is still holding a reference. */
2405         module_put(THIS_MODULE);
2406         return ret;
2407 }
2408
2409 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2410 {
2411         struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2412
2413         VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2414
2415         switch (cmd) {
2416         /*
2417          * forward selected CDROM ioctls to CD-ROM, for UDF
2418          */
2419         case CDROMMULTISESSION:
2420         case CDROMREADTOCENTRY:
2421         case CDROM_LAST_WRITTEN:
2422         case CDROM_SEND_PACKET:
2423         case SCSI_IOCTL_SEND_COMMAND:
2424                 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2425
2426         case CDROMEJECT:
2427                 /*
2428                  * The door gets locked when the device is opened, so we
2429                  * have to unlock it or else the eject command fails.
2430                  */
2431                 if (pd->refcnt == 1)
2432                         pkt_lock_door(pd, 0);
2433                 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2434
2435         default:
2436                 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2437                 return -ENOTTY;
2438         }
2439
2440         return 0;
2441 }
2442
2443 static int pkt_media_changed(struct gendisk *disk)
2444 {
2445         struct pktcdvd_device *pd = disk->private_data;
2446         struct gendisk *attached_disk;
2447
2448         if (!pd)
2449                 return 0;
2450         if (!pd->bdev)
2451                 return 0;
2452         attached_disk = pd->bdev->bd_disk;
2453         if (!attached_disk)
2454                 return 0;
2455         return attached_disk->fops->media_changed(attached_disk);
2456 }
2457
2458 static struct block_device_operations pktcdvd_ops = {
2459         .owner =                THIS_MODULE,
2460         .open =                 pkt_open,
2461         .release =              pkt_close,
2462         .ioctl =                pkt_ioctl,
2463         .media_changed =        pkt_media_changed,
2464 };
2465
2466 /*
2467  * Set up mapping from pktcdvd device to CD-ROM device.
2468  */
2469 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2470 {
2471         int idx;
2472         int ret = -ENOMEM;
2473         struct pktcdvd_device *pd;
2474         struct gendisk *disk;
2475         dev_t dev = new_decode_dev(ctrl_cmd->dev);
2476
2477         for (idx = 0; idx < MAX_WRITERS; idx++)
2478                 if (!pkt_devs[idx])
2479                         break;
2480         if (idx == MAX_WRITERS) {
2481                 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2482                 return -EBUSY;
2483         }
2484
2485         pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2486         if (!pd)
2487                 return ret;
2488
2489         pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2490         if (!pd->rb_pool)
2491                 goto out_mem;
2492
2493         disk = alloc_disk(1);
2494         if (!disk)
2495                 goto out_mem;
2496         pd->disk = disk;
2497
2498         INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2499         INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2500         spin_lock_init(&pd->cdrw.active_list_lock);
2501
2502         spin_lock_init(&pd->lock);
2503         spin_lock_init(&pd->iosched.lock);
2504         sprintf(pd->name, "pktcdvd%d", idx);
2505         init_waitqueue_head(&pd->wqueue);
2506         pd->bio_queue = RB_ROOT;
2507
2508         disk->major = pkt_major;
2509         disk->first_minor = idx;
2510         disk->fops = &pktcdvd_ops;
2511         disk->flags = GENHD_FL_REMOVABLE;
2512         sprintf(disk->disk_name, "pktcdvd%d", idx);
2513         disk->private_data = pd;
2514         disk->queue = blk_alloc_queue(GFP_KERNEL);
2515         if (!disk->queue)
2516                 goto out_mem2;
2517
2518         pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2519         ret = pkt_new_dev(pd, dev);
2520         if (ret)
2521                 goto out_new_dev;
2522
2523         add_disk(disk);
2524         pkt_devs[idx] = pd;
2525         ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2526         return 0;
2527
2528 out_new_dev:
2529         blk_put_queue(disk->queue);
2530 out_mem2:
2531         put_disk(disk);
2532 out_mem:
2533         if (pd->rb_pool)
2534                 mempool_destroy(pd->rb_pool);
2535         kfree(pd);
2536         return ret;
2537 }
2538
2539 /*
2540  * Tear down mapping from pktcdvd device to CD-ROM device.
2541  */
2542 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2543 {
2544         struct pktcdvd_device *pd;
2545         int idx;
2546         dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2547
2548         for (idx = 0; idx < MAX_WRITERS; idx++) {
2549                 pd = pkt_devs[idx];
2550                 if (pd && (pd->pkt_dev == pkt_dev))
2551                         break;
2552         }
2553         if (idx == MAX_WRITERS) {
2554                 DPRINTK("pktcdvd: dev not setup\n");
2555                 return -ENXIO;
2556         }
2557
2558         if (pd->refcnt > 0)
2559                 return -EBUSY;
2560
2561         if (!IS_ERR(pd->cdrw.thread))
2562                 kthread_stop(pd->cdrw.thread);
2563
2564         blkdev_put(pd->bdev);
2565
2566         remove_proc_entry(pd->name, pkt_proc);
2567         DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2568
2569         del_gendisk(pd->disk);
2570         blk_put_queue(pd->disk->queue);
2571         put_disk(pd->disk);
2572
2573         pkt_devs[idx] = NULL;
2574         mempool_destroy(pd->rb_pool);
2575         kfree(pd);
2576
2577         /* This is safe: open() is still holding a reference. */
2578         module_put(THIS_MODULE);
2579         return 0;
2580 }
2581
2582 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2583 {
2584         struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2585         if (pd) {
2586                 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2587                 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2588         } else {
2589                 ctrl_cmd->dev = 0;
2590                 ctrl_cmd->pkt_dev = 0;
2591         }
2592         ctrl_cmd->num_devices = MAX_WRITERS;
2593 }
2594
2595 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2596 {
2597         void __user *argp = (void __user *)arg;
2598         struct pkt_ctrl_command ctrl_cmd;
2599         int ret = 0;
2600
2601         if (cmd != PACKET_CTRL_CMD)
2602                 return -ENOTTY;
2603
2604         if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2605                 return -EFAULT;
2606
2607         switch (ctrl_cmd.command) {
2608         case PKT_CTRL_CMD_SETUP:
2609                 if (!capable(CAP_SYS_ADMIN))
2610                         return -EPERM;
2611                 down(&ctl_mutex);
2612                 ret = pkt_setup_dev(&ctrl_cmd);
2613                 up(&ctl_mutex);
2614                 break;
2615         case PKT_CTRL_CMD_TEARDOWN:
2616                 if (!capable(CAP_SYS_ADMIN))
2617                         return -EPERM;
2618                 down(&ctl_mutex);
2619                 ret = pkt_remove_dev(&ctrl_cmd);
2620                 up(&ctl_mutex);
2621                 break;
2622         case PKT_CTRL_CMD_STATUS:
2623                 down(&ctl_mutex);
2624                 pkt_get_status(&ctrl_cmd);
2625                 up(&ctl_mutex);
2626                 break;
2627         default:
2628                 return -ENOTTY;
2629         }
2630
2631         if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2632                 return -EFAULT;
2633         return ret;
2634 }
2635
2636
2637 static struct file_operations pkt_ctl_fops = {
2638         .ioctl   = pkt_ctl_ioctl,
2639         .owner   = THIS_MODULE,
2640 };
2641
2642 static struct miscdevice pkt_misc = {
2643         .minor          = MISC_DYNAMIC_MINOR,
2644         .name           = "pktcdvd",
2645         .devfs_name     = "pktcdvd/control",
2646         .fops           = &pkt_ctl_fops
2647 };
2648
2649 static int __init pkt_init(void)
2650 {
2651         int ret;
2652
2653         psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2654         if (!psd_pool)
2655                 return -ENOMEM;
2656
2657         ret = register_blkdev(pkt_major, "pktcdvd");
2658         if (ret < 0) {
2659                 printk("pktcdvd: Unable to register block device\n");
2660                 goto out2;
2661         }
2662         if (!pkt_major)
2663                 pkt_major = ret;
2664
2665         ret = misc_register(&pkt_misc);
2666         if (ret) {
2667                 printk("pktcdvd: Unable to register misc device\n");
2668                 goto out;
2669         }
2670
2671         init_MUTEX(&ctl_mutex);
2672
2673         pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2674
2675         return 0;
2676
2677 out:
2678         unregister_blkdev(pkt_major, "pktcdvd");
2679 out2:
2680         mempool_destroy(psd_pool);
2681         return ret;
2682 }
2683
2684 static void __exit pkt_exit(void)
2685 {
2686         remove_proc_entry("pktcdvd", proc_root_driver);
2687         misc_deregister(&pkt_misc);
2688         unregister_blkdev(pkt_major, "pktcdvd");
2689         mempool_destroy(psd_pool);
2690 }
2691
2692 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2693 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2694 MODULE_LICENSE("GPL");
2695
2696 module_init(pkt_init);
2697 module_exit(pkt_exit);