c1aacca88c8f62dd64f658359c9579e77518d622
[sfrench/cifs-2.6.git] / drivers / block / floppy.c
1 /*
2  *  linux/drivers/block/floppy.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 1993, 1994  Alain Knaff
6  *  Copyright (C) 1998 Alan Cox
7  */
8
9 /*
10  * 02.12.91 - Changed to static variables to indicate need for reset
11  * and recalibrate. This makes some things easier (output_byte reset
12  * checking etc), and means less interrupt jumping in case of errors,
13  * so the code is hopefully easier to understand.
14  */
15
16 /*
17  * This file is certainly a mess. I've tried my best to get it working,
18  * but I don't like programming floppies, and I have only one anyway.
19  * Urgel. I should check for more errors, and do more graceful error
20  * recovery. Seems there are problems with several drives. I've tried to
21  * correct them. No promises.
22  */
23
24 /*
25  * As with hd.c, all routines within this file can (and will) be called
26  * by interrupts, so extreme caution is needed. A hardware interrupt
27  * handler may not sleep, or a kernel panic will happen. Thus I cannot
28  * call "floppy-on" directly, but have to set a special timer interrupt
29  * etc.
30  */
31
32 /*
33  * 28.02.92 - made track-buffering routines, based on the routines written
34  * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus.
35  */
36
37 /*
38  * Automatic floppy-detection and formatting written by Werner Almesberger
39  * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with
40  * the floppy-change signal detection.
41  */
42
43 /*
44  * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed
45  * FDC data overrun bug, added some preliminary stuff for vertical
46  * recording support.
47  *
48  * 1992/9/17: Added DMA allocation & DMA functions. -- hhb.
49  *
50  * TODO: Errors are still not counted properly.
51  */
52
53 /* 1992/9/20
54  * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl)
55  * modeled after the freeware MS-DOS program fdformat/88 V1.8 by
56  * Christoph H. Hochst\"atter.
57  * I have fixed the shift values to the ones I always use. Maybe a new
58  * ioctl() should be created to be able to modify them.
59  * There is a bug in the driver that makes it impossible to format a
60  * floppy as the first thing after bootup.
61  */
62
63 /*
64  * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and
65  * this helped the floppy driver as well. Much cleaner, and still seems to
66  * work.
67  */
68
69 /* 1994/6/24 --bbroad-- added the floppy table entries and made
70  * minor modifications to allow 2.88 floppies to be run.
71  */
72
73 /* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more
74  * disk types.
75  */
76
77 /*
78  * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger
79  * format bug fixes, but unfortunately some new bugs too...
80  */
81
82 /* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write
83  * errors to allow safe writing by specialized programs.
84  */
85
86 /* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks
87  * by defining bit 1 of the "stretch" parameter to mean put sectors on the
88  * opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's
89  * drives are "upside-down").
90  */
91
92 /*
93  * 1995/8/26 -- Andreas Busse -- added Mips support.
94  */
95
96 /*
97  * 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent
98  * features to asm/floppy.h.
99  */
100
101 /*
102  * 1998/1/21 -- Richard Gooch <rgooch@atnf.csiro.au> -- devfs support
103  */
104
105 /*
106  * 1998/05/07 -- Russell King -- More portability cleanups; moved definition of
107  * interrupt and dma channel to asm/floppy.h. Cleaned up some formatting &
108  * use of '0' for NULL.
109  */
110
111 /*
112  * 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation
113  * failures.
114  */
115
116 /*
117  * 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives.
118  */
119
120 /*
121  * 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24
122  * days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were
123  * being used to store jiffies, which are unsigned longs).
124  */
125
126 /*
127  * 2000/08/28 -- Arnaldo Carvalho de Melo <acme@conectiva.com.br>
128  * - get rid of check_region
129  * - s/suser/capable/
130  */
131
132 /*
133  * 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no
134  * floppy controller (lingering task on list after module is gone... boom.)
135  */
136
137 /*
138  * 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range
139  * (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix
140  * requires many non-obvious changes in arch dependent code.
141  */
142
143 /* 2003/07/28 -- Daniele Bellucci <bellucda@tiscali.it>.
144  * Better audit of register_blkdev.
145  */
146
147 #undef  FLOPPY_SILENT_DCL_CLEAR
148
149 #define REALLY_SLOW_IO
150
151 #define DEBUGT 2
152
153 #define DPRINT(format, args...) \
154         pr_info("floppy%d: " format, current_drive, ##args)
155
156 #define DCL_DEBUG               /* debug disk change line */
157 #ifdef DCL_DEBUG
158 #define debug_dcl(test, fmt, args...) \
159         do { if ((test) & FD_DEBUG) DPRINT(fmt, ##args); } while (0)
160 #else
161 #define debug_dcl(test, fmt, args...) \
162         do { if (0) DPRINT(fmt, ##args); } while (0)
163 #endif
164
165 /* do print messages for unexpected interrupts */
166 static int print_unex = 1;
167 #include <linux/module.h>
168 #include <linux/sched.h>
169 #include <linux/fs.h>
170 #include <linux/kernel.h>
171 #include <linux/timer.h>
172 #include <linux/workqueue.h>
173 #define FDPATCHES
174 #include <linux/fdreg.h>
175 #include <linux/fd.h>
176 #include <linux/hdreg.h>
177 #include <linux/errno.h>
178 #include <linux/slab.h>
179 #include <linux/mm.h>
180 #include <linux/bio.h>
181 #include <linux/string.h>
182 #include <linux/jiffies.h>
183 #include <linux/fcntl.h>
184 #include <linux/delay.h>
185 #include <linux/mc146818rtc.h>  /* CMOS defines */
186 #include <linux/ioport.h>
187 #include <linux/interrupt.h>
188 #include <linux/init.h>
189 #include <linux/platform_device.h>
190 #include <linux/mod_devicetable.h>
191 #include <linux/mutex.h>
192 #include <linux/io.h>
193 #include <linux/uaccess.h>
194 #include <linux/async.h>
195
196 /*
197  * PS/2 floppies have much slower step rates than regular floppies.
198  * It's been recommended that take about 1/4 of the default speed
199  * in some more extreme cases.
200  */
201 static DEFINE_MUTEX(floppy_mutex);
202 static int slow_floppy;
203
204 #include <asm/dma.h>
205 #include <asm/irq.h>
206
207 static int FLOPPY_IRQ = 6;
208 static int FLOPPY_DMA = 2;
209 static int can_use_virtual_dma = 2;
210 /* =======
211  * can use virtual DMA:
212  * 0 = use of virtual DMA disallowed by config
213  * 1 = use of virtual DMA prescribed by config
214  * 2 = no virtual DMA preference configured.  By default try hard DMA,
215  * but fall back on virtual DMA when not enough memory available
216  */
217
218 static int use_virtual_dma;
219 /* =======
220  * use virtual DMA
221  * 0 using hard DMA
222  * 1 using virtual DMA
223  * This variable is set to virtual when a DMA mem problem arises, and
224  * reset back in floppy_grab_irq_and_dma.
225  * It is not safe to reset it in other circumstances, because the floppy
226  * driver may have several buffers in use at once, and we do currently not
227  * record each buffers capabilities
228  */
229
230 static DEFINE_SPINLOCK(floppy_lock);
231
232 static unsigned short virtual_dma_port = 0x3f0;
233 irqreturn_t floppy_interrupt(int irq, void *dev_id);
234 static int set_dor(int fdc, char mask, char data);
235
236 #define K_64    0x10000         /* 64KB */
237
238 /* the following is the mask of allowed drives. By default units 2 and
239  * 3 of both floppy controllers are disabled, because switching on the
240  * motor of these drives causes system hangs on some PCI computers. drive
241  * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if
242  * a drive is allowed.
243  *
244  * NOTE: This must come before we include the arch floppy header because
245  *       some ports reference this variable from there. -DaveM
246  */
247
248 static int allowed_drive_mask = 0x33;
249
250 #include <asm/floppy.h>
251
252 static int irqdma_allocated;
253
254 #include <linux/blkdev.h>
255 #include <linux/blkpg.h>
256 #include <linux/cdrom.h>        /* for the compatibility eject ioctl */
257 #include <linux/completion.h>
258
259 static struct request *current_req;
260 static void do_fd_request(struct request_queue *q);
261 static int set_next_request(void);
262
263 #ifndef fd_get_dma_residue
264 #define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA)
265 #endif
266
267 /* Dma Memory related stuff */
268
269 #ifndef fd_dma_mem_free
270 #define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size))
271 #endif
272
273 #ifndef fd_dma_mem_alloc
274 #define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL, get_order(size))
275 #endif
276
277 static inline void fallback_on_nodma_alloc(char **addr, size_t l)
278 {
279 #ifdef FLOPPY_CAN_FALLBACK_ON_NODMA
280         if (*addr)
281                 return;         /* we have the memory */
282         if (can_use_virtual_dma != 2)
283                 return;         /* no fallback allowed */
284         pr_info("DMA memory shortage. Temporarily falling back on virtual DMA\n");
285         *addr = (char *)nodma_mem_alloc(l);
286 #else
287         return;
288 #endif
289 }
290
291 /* End dma memory related stuff */
292
293 static unsigned long fake_change;
294 static bool initialized;
295
296 #define ITYPE(x)        (((x) >> 2) & 0x1f)
297 #define TOMINOR(x)      ((x & 3) | ((x & 4) << 5))
298 #define UNIT(x)         ((x) & 0x03)            /* drive on fdc */
299 #define FDC(x)          (((x) & 0x04) >> 2)     /* fdc of drive */
300         /* reverse mapping from unit and fdc to drive */
301 #define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2))
302
303 #define DP      (&drive_params[current_drive])
304 #define DRS     (&drive_state[current_drive])
305 #define DRWE    (&write_errors[current_drive])
306 #define FDCS    (&fdc_state[fdc])
307
308 #define UDP     (&drive_params[drive])
309 #define UDRS    (&drive_state[drive])
310 #define UDRWE   (&write_errors[drive])
311 #define UFDCS   (&fdc_state[FDC(drive)])
312
313 #define PH_HEAD(floppy, head) (((((floppy)->stretch & 2) >> 1) ^ head) << 2)
314 #define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH)
315
316 /* read/write */
317 #define COMMAND         (raw_cmd->cmd[0])
318 #define DR_SELECT       (raw_cmd->cmd[1])
319 #define TRACK           (raw_cmd->cmd[2])
320 #define HEAD            (raw_cmd->cmd[3])
321 #define SECTOR          (raw_cmd->cmd[4])
322 #define SIZECODE        (raw_cmd->cmd[5])
323 #define SECT_PER_TRACK  (raw_cmd->cmd[6])
324 #define GAP             (raw_cmd->cmd[7])
325 #define SIZECODE2       (raw_cmd->cmd[8])
326 #define NR_RW 9
327
328 /* format */
329 #define F_SIZECODE      (raw_cmd->cmd[2])
330 #define F_SECT_PER_TRACK (raw_cmd->cmd[3])
331 #define F_GAP           (raw_cmd->cmd[4])
332 #define F_FILL          (raw_cmd->cmd[5])
333 #define NR_F 6
334
335 /*
336  * Maximum disk size (in kilobytes).
337  * This default is used whenever the current disk size is unknown.
338  * [Now it is rather a minimum]
339  */
340 #define MAX_DISK_SIZE 4         /* 3984 */
341
342 /*
343  * globals used by 'result()'
344  */
345 #define MAX_REPLIES 16
346 static unsigned char reply_buffer[MAX_REPLIES];
347 static int inr;         /* size of reply buffer, when called from interrupt */
348 #define ST0             (reply_buffer[0])
349 #define ST1             (reply_buffer[1])
350 #define ST2             (reply_buffer[2])
351 #define ST3             (reply_buffer[0])       /* result of GETSTATUS */
352 #define R_TRACK         (reply_buffer[3])
353 #define R_HEAD          (reply_buffer[4])
354 #define R_SECTOR        (reply_buffer[5])
355 #define R_SIZECODE      (reply_buffer[6])
356
357 #define SEL_DLY         (2 * HZ / 100)
358
359 /*
360  * this struct defines the different floppy drive types.
361  */
362 static struct {
363         struct floppy_drive_params params;
364         const char *name;       /* name printed while booting */
365 } default_drive_params[] = {
366 /* NOTE: the time values in jiffies should be in msec!
367  CMOS drive type
368   |     Maximum data rate supported by drive type
369   |     |   Head load time, msec
370   |     |   |   Head unload time, msec (not used)
371   |     |   |   |     Step rate interval, usec
372   |     |   |   |     |       Time needed for spinup time (jiffies)
373   |     |   |   |     |       |      Timeout for spinning down (jiffies)
374   |     |   |   |     |       |      |   Spindown offset (where disk stops)
375   |     |   |   |     |       |      |   |     Select delay
376   |     |   |   |     |       |      |   |     |     RPS
377   |     |   |   |     |       |      |   |     |     |    Max number of tracks
378   |     |   |   |     |       |      |   |     |     |    |     Interrupt timeout
379   |     |   |   |     |       |      |   |     |     |    |     |   Max nonintlv. sectors
380   |     |   |   |     |       |      |   |     |     |    |     |   | -Max Errors- flags */
381 {{0,  500, 16, 16, 8000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  80, 3*HZ, 20, {3,1,2,0,2}, 0,
382       0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" },
383
384 {{1,  300, 16, 16, 8000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  40, 3*HZ, 17, {3,1,2,0,2}, 0,
385       0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/
386
387 {{2,  500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6,  83, 3*HZ, 17, {3,1,2,0,2}, 0,
388       0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/
389
390 {{3,  250, 16, 16, 3000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  83, 3*HZ, 20, {3,1,2,0,2}, 0,
391       0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/
392
393 {{4,  500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 20, {3,1,2,0,2}, 0,
394       0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/
395
396 {{5, 1000, 15,  8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 40, {3,1,2,0,2}, 0,
397       0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/
398
399 {{6, 1000, 15,  8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 40, {3,1,2,0,2}, 0,
400       0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/
401 /*    |  --autodetected formats---    |      |      |
402  *    read_track                      |      |    Name printed when booting
403  *                                    |     Native format
404  *                  Frequency of disk change checks */
405 };
406
407 static struct floppy_drive_params drive_params[N_DRIVE];
408 static struct floppy_drive_struct drive_state[N_DRIVE];
409 static struct floppy_write_errors write_errors[N_DRIVE];
410 static struct timer_list motor_off_timer[N_DRIVE];
411 static struct gendisk *disks[N_DRIVE];
412 static struct block_device *opened_bdev[N_DRIVE];
413 static DEFINE_MUTEX(open_lock);
414 static struct floppy_raw_cmd *raw_cmd, default_raw_cmd;
415 static int fdc_queue;
416
417 /*
418  * This struct defines the different floppy types.
419  *
420  * Bit 0 of 'stretch' tells if the tracks need to be doubled for some
421  * types (e.g. 360kB diskette in 1.2MB drive, etc.).  Bit 1 of 'stretch'
422  * tells if the disk is in Commodore 1581 format, which means side 0 sectors
423  * are located on side 1 of the disk but with a side 0 ID, and vice-versa.
424  * This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the
425  * 1581's logical side 0 is on physical side 1, whereas the Sharp's logical
426  * side 0 is on physical side 0 (but with the misnamed sector IDs).
427  * 'stretch' should probably be renamed to something more general, like
428  * 'options'.
429  *
430  * Bits 2 through 9 of 'stretch' tell the number of the first sector.
431  * The LSB (bit 2) is flipped. For most disks, the first sector
432  * is 1 (represented by 0x00<<2).  For some CP/M and music sampler
433  * disks (such as Ensoniq EPS 16plus) it is 0 (represented as 0x01<<2).
434  * For Amstrad CPC disks it is 0xC1 (represented as 0xC0<<2).
435  *
436  * Other parameters should be self-explanatory (see also setfdprm(8)).
437  */
438 /*
439             Size
440              |  Sectors per track
441              |  | Head
442              |  | |  Tracks
443              |  | |  | Stretch
444              |  | |  | |  Gap 1 size
445              |  | |  | |    |  Data rate, | 0x40 for perp
446              |  | |  | |    |    |  Spec1 (stepping rate, head unload
447              |  | |  | |    |    |    |    /fmt gap (gap2) */
448 static struct floppy_struct floppy_type[32] = {
449         {    0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL    }, /*  0 no testing    */
450         {  720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360"  }, /*  1 360KB PC      */
451         { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /*  2 1.2MB AT      */
452         {  720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360"  }, /*  3 360KB SS 3.5" */
453         { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720"  }, /*  4 720KB 3.5"    */
454         {  720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360"  }, /*  5 360KB AT      */
455         { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720"  }, /*  6 720KB AT      */
456         { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /*  7 1.44MB 3.5"   */
457         { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /*  8 2.88MB 3.5"   */
458         { 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /*  9 3.12MB 3.5"   */
459
460         { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25"  */
461         { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5"   */
462         {  820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410"  }, /* 12 410KB 5.25"   */
463         { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820"  }, /* 13 820KB 3.5"    */
464         { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25"  */
465         { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5"   */
466         {  840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420"  }, /* 16 420KB 5.25"   */
467         { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830"  }, /* 17 830KB 3.5"    */
468         { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25"  */
469         { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5"  */
470
471         { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880"  }, /* 20 880KB 5.25"   */
472         { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5"   */
473         { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5"   */
474         { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25"   */
475         { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5"   */
476         { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5"   */
477         { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5"   */
478         { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5"   */
479         { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5"   */
480         { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5"   */
481
482         { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800"  }, /* 30 800KB 3.5"    */
483         { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5"    */
484 };
485
486 #define SECTSIZE (_FD_SECTSIZE(*floppy))
487
488 /* Auto-detection: Disk type used until the next media change occurs. */
489 static struct floppy_struct *current_type[N_DRIVE];
490
491 /*
492  * User-provided type information. current_type points to
493  * the respective entry of this array.
494  */
495 static struct floppy_struct user_params[N_DRIVE];
496
497 static sector_t floppy_sizes[256];
498
499 static char floppy_device_name[] = "floppy";
500
501 /*
502  * The driver is trying to determine the correct media format
503  * while probing is set. rw_interrupt() clears it after a
504  * successful access.
505  */
506 static int probing;
507
508 /* Synchronization of FDC access. */
509 #define FD_COMMAND_NONE         -1
510 #define FD_COMMAND_ERROR        2
511 #define FD_COMMAND_OKAY         3
512
513 static volatile int command_status = FD_COMMAND_NONE;
514 static unsigned long fdc_busy;
515 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
516 static DECLARE_WAIT_QUEUE_HEAD(command_done);
517
518 /* Errors during formatting are counted here. */
519 static int format_errors;
520
521 /* Format request descriptor. */
522 static struct format_descr format_req;
523
524 /*
525  * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps
526  * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc),
527  * H is head unload time (1=16ms, 2=32ms, etc)
528  */
529
530 /*
531  * Track buffer
532  * Because these are written to by the DMA controller, they must
533  * not contain a 64k byte boundary crossing, or data will be
534  * corrupted/lost.
535  */
536 static char *floppy_track_buffer;
537 static int max_buffer_sectors;
538
539 static int *errors;
540 typedef void (*done_f)(int);
541 static const struct cont_t {
542         void (*interrupt)(void);
543                                 /* this is called after the interrupt of the
544                                  * main command */
545         void (*redo)(void);     /* this is called to retry the operation */
546         void (*error)(void);    /* this is called to tally an error */
547         done_f done;            /* this is called to say if the operation has
548                                  * succeeded/failed */
549 } *cont;
550
551 static void floppy_ready(void);
552 static void floppy_start(void);
553 static void process_fd_request(void);
554 static void recalibrate_floppy(void);
555 static void floppy_shutdown(struct work_struct *);
556
557 static int floppy_request_regions(int);
558 static void floppy_release_regions(int);
559 static int floppy_grab_irq_and_dma(void);
560 static void floppy_release_irq_and_dma(void);
561
562 /*
563  * The "reset" variable should be tested whenever an interrupt is scheduled,
564  * after the commands have been sent. This is to ensure that the driver doesn't
565  * get wedged when the interrupt doesn't come because of a failed command.
566  * reset doesn't need to be tested before sending commands, because
567  * output_byte is automatically disabled when reset is set.
568  */
569 static void reset_fdc(void);
570
571 /*
572  * These are global variables, as that's the easiest way to give
573  * information to interrupts. They are the data used for the current
574  * request.
575  */
576 #define NO_TRACK        -1
577 #define NEED_1_RECAL    -2
578 #define NEED_2_RECAL    -3
579
580 static atomic_t usage_count = ATOMIC_INIT(0);
581
582 /* buffer related variables */
583 static int buffer_track = -1;
584 static int buffer_drive = -1;
585 static int buffer_min = -1;
586 static int buffer_max = -1;
587
588 /* fdc related variables, should end up in a struct */
589 static struct floppy_fdc_state fdc_state[N_FDC];
590 static int fdc;                 /* current fdc */
591
592 static struct workqueue_struct *floppy_wq;
593
594 static struct floppy_struct *_floppy = floppy_type;
595 static unsigned char current_drive;
596 static long current_count_sectors;
597 static unsigned char fsector_t; /* sector in track */
598 static unsigned char in_sector_offset;  /* offset within physical sector,
599                                          * expressed in units of 512 bytes */
600
601 static inline bool drive_no_geom(int drive)
602 {
603         return !current_type[drive] && !ITYPE(UDRS->fd_device);
604 }
605
606 #ifndef fd_eject
607 static inline int fd_eject(int drive)
608 {
609         return -EINVAL;
610 }
611 #endif
612
613 /*
614  * Debugging
615  * =========
616  */
617 #ifdef DEBUGT
618 static long unsigned debugtimer;
619
620 static inline void set_debugt(void)
621 {
622         debugtimer = jiffies;
623 }
624
625 static inline void debugt(const char *func, const char *msg)
626 {
627         if (DP->flags & DEBUGT)
628                 pr_info("%s:%s dtime=%lu\n", func, msg, jiffies - debugtimer);
629 }
630 #else
631 static inline void set_debugt(void) { }
632 static inline void debugt(const char *func, const char *msg) { }
633 #endif /* DEBUGT */
634
635
636 static DECLARE_DELAYED_WORK(fd_timeout, floppy_shutdown);
637 static const char *timeout_message;
638
639 static void is_alive(const char *func, const char *message)
640 {
641         /* this routine checks whether the floppy driver is "alive" */
642         if (test_bit(0, &fdc_busy) && command_status < 2 &&
643             !delayed_work_pending(&fd_timeout)) {
644                 DPRINT("%s: timeout handler died.  %s\n", func, message);
645         }
646 }
647
648 static void (*do_floppy)(void) = NULL;
649
650 #define OLOGSIZE 20
651
652 static void (*lasthandler)(void);
653 static unsigned long interruptjiffies;
654 static unsigned long resultjiffies;
655 static int resultsize;
656 static unsigned long lastredo;
657
658 static struct output_log {
659         unsigned char data;
660         unsigned char status;
661         unsigned long jiffies;
662 } output_log[OLOGSIZE];
663
664 static int output_log_pos;
665
666 #define current_reqD -1
667 #define MAXTIMEOUT -2
668
669 static void __reschedule_timeout(int drive, const char *message)
670 {
671         unsigned long delay;
672
673         if (drive == current_reqD)
674                 drive = current_drive;
675
676         if (drive < 0 || drive >= N_DRIVE) {
677                 delay = 20UL * HZ;
678                 drive = 0;
679         } else
680                 delay = UDP->timeout;
681
682         mod_delayed_work(floppy_wq, &fd_timeout, delay);
683         if (UDP->flags & FD_DEBUG)
684                 DPRINT("reschedule timeout %s\n", message);
685         timeout_message = message;
686 }
687
688 static void reschedule_timeout(int drive, const char *message)
689 {
690         unsigned long flags;
691
692         spin_lock_irqsave(&floppy_lock, flags);
693         __reschedule_timeout(drive, message);
694         spin_unlock_irqrestore(&floppy_lock, flags);
695 }
696
697 #define INFBOUND(a, b) (a) = max_t(int, a, b)
698 #define SUPBOUND(a, b) (a) = min_t(int, a, b)
699
700 /*
701  * Bottom half floppy driver.
702  * ==========================
703  *
704  * This part of the file contains the code talking directly to the hardware,
705  * and also the main service loop (seek-configure-spinup-command)
706  */
707
708 /*
709  * disk change.
710  * This routine is responsible for maintaining the FD_DISK_CHANGE flag,
711  * and the last_checked date.
712  *
713  * last_checked is the date of the last check which showed 'no disk change'
714  * FD_DISK_CHANGE is set under two conditions:
715  * 1. The floppy has been changed after some i/o to that floppy already
716  *    took place.
717  * 2. No floppy disk is in the drive. This is done in order to ensure that
718  *    requests are quickly flushed in case there is no disk in the drive. It
719  *    follows that FD_DISK_CHANGE can only be cleared if there is a disk in
720  *    the drive.
721  *
722  * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet.
723  * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on
724  *  each seek. If a disk is present, the disk change line should also be
725  *  cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk
726  *  change line is set, this means either that no disk is in the drive, or
727  *  that it has been removed since the last seek.
728  *
729  * This means that we really have a third possibility too:
730  *  The floppy has been changed after the last seek.
731  */
732
733 static int disk_change(int drive)
734 {
735         int fdc = FDC(drive);
736
737         if (time_before(jiffies, UDRS->select_date + UDP->select_delay))
738                 DPRINT("WARNING disk change called early\n");
739         if (!(FDCS->dor & (0x10 << UNIT(drive))) ||
740             (FDCS->dor & 3) != UNIT(drive) || fdc != FDC(drive)) {
741                 DPRINT("probing disk change on unselected drive\n");
742                 DPRINT("drive=%d fdc=%d dor=%x\n", drive, FDC(drive),
743                        (unsigned int)FDCS->dor);
744         }
745
746         debug_dcl(UDP->flags,
747                   "checking disk change line for drive %d\n", drive);
748         debug_dcl(UDP->flags, "jiffies=%lu\n", jiffies);
749         debug_dcl(UDP->flags, "disk change line=%x\n", fd_inb(FD_DIR) & 0x80);
750         debug_dcl(UDP->flags, "flags=%lx\n", UDRS->flags);
751
752         if (UDP->flags & FD_BROKEN_DCL)
753                 return test_bit(FD_DISK_CHANGED_BIT, &UDRS->flags);
754         if ((fd_inb(FD_DIR) ^ UDP->flags) & 0x80) {
755                 set_bit(FD_VERIFY_BIT, &UDRS->flags);
756                                         /* verify write protection */
757
758                 if (UDRS->maxblock)     /* mark it changed */
759                         set_bit(FD_DISK_CHANGED_BIT, &UDRS->flags);
760
761                 /* invalidate its geometry */
762                 if (UDRS->keep_data >= 0) {
763                         if ((UDP->flags & FTD_MSG) &&
764                             current_type[drive] != NULL)
765                                 DPRINT("Disk type is undefined after disk change\n");
766                         current_type[drive] = NULL;
767                         floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE << 1;
768                 }
769
770                 return 1;
771         } else {
772                 UDRS->last_checked = jiffies;
773                 clear_bit(FD_DISK_NEWCHANGE_BIT, &UDRS->flags);
774         }
775         return 0;
776 }
777
778 static inline int is_selected(int dor, int unit)
779 {
780         return ((dor & (0x10 << unit)) && (dor & 3) == unit);
781 }
782
783 static bool is_ready_state(int status)
784 {
785         int state = status & (STATUS_READY | STATUS_DIR | STATUS_DMA);
786         return state == STATUS_READY;
787 }
788
789 static int set_dor(int fdc, char mask, char data)
790 {
791         unsigned char unit;
792         unsigned char drive;
793         unsigned char newdor;
794         unsigned char olddor;
795
796         if (FDCS->address == -1)
797                 return -1;
798
799         olddor = FDCS->dor;
800         newdor = (olddor & mask) | data;
801         if (newdor != olddor) {
802                 unit = olddor & 0x3;
803                 if (is_selected(olddor, unit) && !is_selected(newdor, unit)) {
804                         drive = REVDRIVE(fdc, unit);
805                         debug_dcl(UDP->flags,
806                                   "calling disk change from set_dor\n");
807                         disk_change(drive);
808                 }
809                 FDCS->dor = newdor;
810                 fd_outb(newdor, FD_DOR);
811
812                 unit = newdor & 0x3;
813                 if (!is_selected(olddor, unit) && is_selected(newdor, unit)) {
814                         drive = REVDRIVE(fdc, unit);
815                         UDRS->select_date = jiffies;
816                 }
817         }
818         return olddor;
819 }
820
821 static void twaddle(void)
822 {
823         if (DP->select_delay)
824                 return;
825         fd_outb(FDCS->dor & ~(0x10 << UNIT(current_drive)), FD_DOR);
826         fd_outb(FDCS->dor, FD_DOR);
827         DRS->select_date = jiffies;
828 }
829
830 /*
831  * Reset all driver information about the current fdc.
832  * This is needed after a reset, and after a raw command.
833  */
834 static void reset_fdc_info(int mode)
835 {
836         int drive;
837
838         FDCS->spec1 = FDCS->spec2 = -1;
839         FDCS->need_configure = 1;
840         FDCS->perp_mode = 1;
841         FDCS->rawcmd = 0;
842         for (drive = 0; drive < N_DRIVE; drive++)
843                 if (FDC(drive) == fdc && (mode || UDRS->track != NEED_1_RECAL))
844                         UDRS->track = NEED_2_RECAL;
845 }
846
847 /* selects the fdc and drive, and enables the fdc's input/dma. */
848 static void set_fdc(int drive)
849 {
850         if (drive >= 0 && drive < N_DRIVE) {
851                 fdc = FDC(drive);
852                 current_drive = drive;
853         }
854         if (fdc != 1 && fdc != 0) {
855                 pr_info("bad fdc value\n");
856                 return;
857         }
858         set_dor(fdc, ~0, 8);
859 #if N_FDC > 1
860         set_dor(1 - fdc, ~8, 0);
861 #endif
862         if (FDCS->rawcmd == 2)
863                 reset_fdc_info(1);
864         if (fd_inb(FD_STATUS) != STATUS_READY)
865                 FDCS->reset = 1;
866 }
867
868 /* locks the driver */
869 static int lock_fdc(int drive)
870 {
871         if (WARN(atomic_read(&usage_count) == 0,
872                  "Trying to lock fdc while usage count=0\n"))
873                 return -1;
874
875         if (wait_event_interruptible(fdc_wait, !test_and_set_bit(0, &fdc_busy)))
876                 return -EINTR;
877
878         command_status = FD_COMMAND_NONE;
879
880         reschedule_timeout(drive, "lock fdc");
881         set_fdc(drive);
882         return 0;
883 }
884
885 /* unlocks the driver */
886 static void unlock_fdc(void)
887 {
888         if (!test_bit(0, &fdc_busy))
889                 DPRINT("FDC access conflict!\n");
890
891         raw_cmd = NULL;
892         command_status = FD_COMMAND_NONE;
893         cancel_delayed_work(&fd_timeout);
894         do_floppy = NULL;
895         cont = NULL;
896         clear_bit(0, &fdc_busy);
897         wake_up(&fdc_wait);
898 }
899
900 /* switches the motor off after a given timeout */
901 static void motor_off_callback(unsigned long nr)
902 {
903         unsigned char mask = ~(0x10 << UNIT(nr));
904
905         set_dor(FDC(nr), mask, 0);
906 }
907
908 /* schedules motor off */
909 static void floppy_off(unsigned int drive)
910 {
911         unsigned long volatile delta;
912         int fdc = FDC(drive);
913
914         if (!(FDCS->dor & (0x10 << UNIT(drive))))
915                 return;
916
917         del_timer(motor_off_timer + drive);
918
919         /* make spindle stop in a position which minimizes spinup time
920          * next time */
921         if (UDP->rps) {
922                 delta = jiffies - UDRS->first_read_date + HZ -
923                     UDP->spindown_offset;
924                 delta = ((delta * UDP->rps) % HZ) / UDP->rps;
925                 motor_off_timer[drive].expires =
926                     jiffies + UDP->spindown - delta;
927         }
928         add_timer(motor_off_timer + drive);
929 }
930
931 /*
932  * cycle through all N_DRIVE floppy drives, for disk change testing.
933  * stopping at current drive. This is done before any long operation, to
934  * be sure to have up to date disk change information.
935  */
936 static void scandrives(void)
937 {
938         int i;
939         int drive;
940         int saved_drive;
941
942         if (DP->select_delay)
943                 return;
944
945         saved_drive = current_drive;
946         for (i = 0; i < N_DRIVE; i++) {
947                 drive = (saved_drive + i + 1) % N_DRIVE;
948                 if (UDRS->fd_ref == 0 || UDP->select_delay != 0)
949                         continue;       /* skip closed drives */
950                 set_fdc(drive);
951                 if (!(set_dor(fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) &
952                       (0x10 << UNIT(drive))))
953                         /* switch the motor off again, if it was off to
954                          * begin with */
955                         set_dor(fdc, ~(0x10 << UNIT(drive)), 0);
956         }
957         set_fdc(saved_drive);
958 }
959
960 static void empty(void)
961 {
962 }
963
964 static void (*floppy_work_fn)(void);
965
966 static void floppy_work_workfn(struct work_struct *work)
967 {
968         floppy_work_fn();
969 }
970
971 static DECLARE_WORK(floppy_work, floppy_work_workfn);
972
973 static void schedule_bh(void (*handler)(void))
974 {
975         WARN_ON(work_pending(&floppy_work));
976
977         floppy_work_fn = handler;
978         queue_work(floppy_wq, &floppy_work);
979 }
980
981 static void (*fd_timer_fn)(void) = NULL;
982
983 static void fd_timer_workfn(struct work_struct *work)
984 {
985         fd_timer_fn();
986 }
987
988 static DECLARE_DELAYED_WORK(fd_timer, fd_timer_workfn);
989
990 static void cancel_activity(void)
991 {
992         do_floppy = NULL;
993         cancel_delayed_work_sync(&fd_timer);
994         cancel_work_sync(&floppy_work);
995 }
996
997 /* this function makes sure that the disk stays in the drive during the
998  * transfer */
999 static void fd_watchdog(void)
1000 {
1001         debug_dcl(DP->flags, "calling disk change from watchdog\n");
1002
1003         if (disk_change(current_drive)) {
1004                 DPRINT("disk removed during i/o\n");
1005                 cancel_activity();
1006                 cont->done(0);
1007                 reset_fdc();
1008         } else {
1009                 cancel_delayed_work(&fd_timer);
1010                 fd_timer_fn = fd_watchdog;
1011                 queue_delayed_work(floppy_wq, &fd_timer, HZ / 10);
1012         }
1013 }
1014
1015 static void main_command_interrupt(void)
1016 {
1017         cancel_delayed_work(&fd_timer);
1018         cont->interrupt();
1019 }
1020
1021 /* waits for a delay (spinup or select) to pass */
1022 static int fd_wait_for_completion(unsigned long expires,
1023                                   void (*function)(void))
1024 {
1025         if (FDCS->reset) {
1026                 reset_fdc();    /* do the reset during sleep to win time
1027                                  * if we don't need to sleep, it's a good
1028                                  * occasion anyways */
1029                 return 1;
1030         }
1031
1032         if (time_before(jiffies, expires)) {
1033                 cancel_delayed_work(&fd_timer);
1034                 fd_timer_fn = function;
1035                 queue_delayed_work(floppy_wq, &fd_timer, expires - jiffies);
1036                 return 1;
1037         }
1038         return 0;
1039 }
1040
1041 static void setup_DMA(void)
1042 {
1043         unsigned long f;
1044
1045         if (raw_cmd->length == 0) {
1046                 int i;
1047
1048                 pr_info("zero dma transfer size:");
1049                 for (i = 0; i < raw_cmd->cmd_count; i++)
1050                         pr_cont("%x,", raw_cmd->cmd[i]);
1051                 pr_cont("\n");
1052                 cont->done(0);
1053                 FDCS->reset = 1;
1054                 return;
1055         }
1056         if (((unsigned long)raw_cmd->kernel_data) % 512) {
1057                 pr_info("non aligned address: %p\n", raw_cmd->kernel_data);
1058                 cont->done(0);
1059                 FDCS->reset = 1;
1060                 return;
1061         }
1062         f = claim_dma_lock();
1063         fd_disable_dma();
1064 #ifdef fd_dma_setup
1065         if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length,
1066                          (raw_cmd->flags & FD_RAW_READ) ?
1067                          DMA_MODE_READ : DMA_MODE_WRITE, FDCS->address) < 0) {
1068                 release_dma_lock(f);
1069                 cont->done(0);
1070                 FDCS->reset = 1;
1071                 return;
1072         }
1073         release_dma_lock(f);
1074 #else
1075         fd_clear_dma_ff();
1076         fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length);
1077         fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ) ?
1078                         DMA_MODE_READ : DMA_MODE_WRITE);
1079         fd_set_dma_addr(raw_cmd->kernel_data);
1080         fd_set_dma_count(raw_cmd->length);
1081         virtual_dma_port = FDCS->address;
1082         fd_enable_dma();
1083         release_dma_lock(f);
1084 #endif
1085 }
1086
1087 static void show_floppy(void);
1088
1089 /* waits until the fdc becomes ready */
1090 static int wait_til_ready(void)
1091 {
1092         int status;
1093         int counter;
1094
1095         if (FDCS->reset)
1096                 return -1;
1097         for (counter = 0; counter < 10000; counter++) {
1098                 status = fd_inb(FD_STATUS);
1099                 if (status & STATUS_READY)
1100                         return status;
1101         }
1102         if (initialized) {
1103                 DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc);
1104                 show_floppy();
1105         }
1106         FDCS->reset = 1;
1107         return -1;
1108 }
1109
1110 /* sends a command byte to the fdc */
1111 static int output_byte(char byte)
1112 {
1113         int status = wait_til_ready();
1114
1115         if (status < 0)
1116                 return -1;
1117
1118         if (is_ready_state(status)) {
1119                 fd_outb(byte, FD_DATA);
1120                 output_log[output_log_pos].data = byte;
1121                 output_log[output_log_pos].status = status;
1122                 output_log[output_log_pos].jiffies = jiffies;
1123                 output_log_pos = (output_log_pos + 1) % OLOGSIZE;
1124                 return 0;
1125         }
1126         FDCS->reset = 1;
1127         if (initialized) {
1128                 DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n",
1129                        byte, fdc, status);
1130                 show_floppy();
1131         }
1132         return -1;
1133 }
1134
1135 /* gets the response from the fdc */
1136 static int result(void)
1137 {
1138         int i;
1139         int status = 0;
1140
1141         for (i = 0; i < MAX_REPLIES; i++) {
1142                 status = wait_til_ready();
1143                 if (status < 0)
1144                         break;
1145                 status &= STATUS_DIR | STATUS_READY | STATUS_BUSY | STATUS_DMA;
1146                 if ((status & ~STATUS_BUSY) == STATUS_READY) {
1147                         resultjiffies = jiffies;
1148                         resultsize = i;
1149                         return i;
1150                 }
1151                 if (status == (STATUS_DIR | STATUS_READY | STATUS_BUSY))
1152                         reply_buffer[i] = fd_inb(FD_DATA);
1153                 else
1154                         break;
1155         }
1156         if (initialized) {
1157                 DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n",
1158                        fdc, status, i);
1159                 show_floppy();
1160         }
1161         FDCS->reset = 1;
1162         return -1;
1163 }
1164
1165 #define MORE_OUTPUT -2
1166 /* does the fdc need more output? */
1167 static int need_more_output(void)
1168 {
1169         int status = wait_til_ready();
1170
1171         if (status < 0)
1172                 return -1;
1173
1174         if (is_ready_state(status))
1175                 return MORE_OUTPUT;
1176
1177         return result();
1178 }
1179
1180 /* Set perpendicular mode as required, based on data rate, if supported.
1181  * 82077 Now tested. 1Mbps data rate only possible with 82077-1.
1182  */
1183 static void perpendicular_mode(void)
1184 {
1185         unsigned char perp_mode;
1186
1187         if (raw_cmd->rate & 0x40) {
1188                 switch (raw_cmd->rate & 3) {
1189                 case 0:
1190                         perp_mode = 2;
1191                         break;
1192                 case 3:
1193                         perp_mode = 3;
1194                         break;
1195                 default:
1196                         DPRINT("Invalid data rate for perpendicular mode!\n");
1197                         cont->done(0);
1198                         FDCS->reset = 1;
1199                                         /*
1200                                          * convenient way to return to
1201                                          * redo without too much hassle
1202                                          * (deep stack et al.)
1203                                          */
1204                         return;
1205                 }
1206         } else
1207                 perp_mode = 0;
1208
1209         if (FDCS->perp_mode == perp_mode)
1210                 return;
1211         if (FDCS->version >= FDC_82077_ORIG) {
1212                 output_byte(FD_PERPENDICULAR);
1213                 output_byte(perp_mode);
1214                 FDCS->perp_mode = perp_mode;
1215         } else if (perp_mode) {
1216                 DPRINT("perpendicular mode not supported by this FDC.\n");
1217         }
1218 }                               /* perpendicular_mode */
1219
1220 static int fifo_depth = 0xa;
1221 static int no_fifo;
1222
1223 static int fdc_configure(void)
1224 {
1225         /* Turn on FIFO */
1226         output_byte(FD_CONFIGURE);
1227         if (need_more_output() != MORE_OUTPUT)
1228                 return 0;
1229         output_byte(0);
1230         output_byte(0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf));
1231         output_byte(0);         /* pre-compensation from track
1232                                    0 upwards */
1233         return 1;
1234 }
1235
1236 #define NOMINAL_DTR 500
1237
1238 /* Issue a "SPECIFY" command to set the step rate time, head unload time,
1239  * head load time, and DMA disable flag to values needed by floppy.
1240  *
1241  * The value "dtr" is the data transfer rate in Kbps.  It is needed
1242  * to account for the data rate-based scaling done by the 82072 and 82077
1243  * FDC types.  This parameter is ignored for other types of FDCs (i.e.
1244  * 8272a).
1245  *
1246  * Note that changing the data transfer rate has a (probably deleterious)
1247  * effect on the parameters subject to scaling for 82072/82077 FDCs, so
1248  * fdc_specify is called again after each data transfer rate
1249  * change.
1250  *
1251  * srt: 1000 to 16000 in microseconds
1252  * hut: 16 to 240 milliseconds
1253  * hlt: 2 to 254 milliseconds
1254  *
1255  * These values are rounded up to the next highest available delay time.
1256  */
1257 static void fdc_specify(void)
1258 {
1259         unsigned char spec1;
1260         unsigned char spec2;
1261         unsigned long srt;
1262         unsigned long hlt;
1263         unsigned long hut;
1264         unsigned long dtr = NOMINAL_DTR;
1265         unsigned long scale_dtr = NOMINAL_DTR;
1266         int hlt_max_code = 0x7f;
1267         int hut_max_code = 0xf;
1268
1269         if (FDCS->need_configure && FDCS->version >= FDC_82072A) {
1270                 fdc_configure();
1271                 FDCS->need_configure = 0;
1272         }
1273
1274         switch (raw_cmd->rate & 0x03) {
1275         case 3:
1276                 dtr = 1000;
1277                 break;
1278         case 1:
1279                 dtr = 300;
1280                 if (FDCS->version >= FDC_82078) {
1281                         /* chose the default rate table, not the one
1282                          * where 1 = 2 Mbps */
1283                         output_byte(FD_DRIVESPEC);
1284                         if (need_more_output() == MORE_OUTPUT) {
1285                                 output_byte(UNIT(current_drive));
1286                                 output_byte(0xc0);
1287                         }
1288                 }
1289                 break;
1290         case 2:
1291                 dtr = 250;
1292                 break;
1293         }
1294
1295         if (FDCS->version >= FDC_82072) {
1296                 scale_dtr = dtr;
1297                 hlt_max_code = 0x00;    /* 0==256msec*dtr0/dtr (not linear!) */
1298                 hut_max_code = 0x0;     /* 0==256msec*dtr0/dtr (not linear!) */
1299         }
1300
1301         /* Convert step rate from microseconds to milliseconds and 4 bits */
1302         srt = 16 - DIV_ROUND_UP(DP->srt * scale_dtr / 1000, NOMINAL_DTR);
1303         if (slow_floppy)
1304                 srt = srt / 4;
1305
1306         SUPBOUND(srt, 0xf);
1307         INFBOUND(srt, 0);
1308
1309         hlt = DIV_ROUND_UP(DP->hlt * scale_dtr / 2, NOMINAL_DTR);
1310         if (hlt < 0x01)
1311                 hlt = 0x01;
1312         else if (hlt > 0x7f)
1313                 hlt = hlt_max_code;
1314
1315         hut = DIV_ROUND_UP(DP->hut * scale_dtr / 16, NOMINAL_DTR);
1316         if (hut < 0x1)
1317                 hut = 0x1;
1318         else if (hut > 0xf)
1319                 hut = hut_max_code;
1320
1321         spec1 = (srt << 4) | hut;
1322         spec2 = (hlt << 1) | (use_virtual_dma & 1);
1323
1324         /* If these parameters did not change, just return with success */
1325         if (FDCS->spec1 != spec1 || FDCS->spec2 != spec2) {
1326                 /* Go ahead and set spec1 and spec2 */
1327                 output_byte(FD_SPECIFY);
1328                 output_byte(FDCS->spec1 = spec1);
1329                 output_byte(FDCS->spec2 = spec2);
1330         }
1331 }                               /* fdc_specify */
1332
1333 /* Set the FDC's data transfer rate on behalf of the specified drive.
1334  * NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue
1335  * of the specify command (i.e. using the fdc_specify function).
1336  */
1337 static int fdc_dtr(void)
1338 {
1339         /* If data rate not already set to desired value, set it. */
1340         if ((raw_cmd->rate & 3) == FDCS->dtr)
1341                 return 0;
1342
1343         /* Set dtr */
1344         fd_outb(raw_cmd->rate & 3, FD_DCR);
1345
1346         /* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB)
1347          * need a stabilization period of several milliseconds to be
1348          * enforced after data rate changes before R/W operations.
1349          * Pause 5 msec to avoid trouble. (Needs to be 2 jiffies)
1350          */
1351         FDCS->dtr = raw_cmd->rate & 3;
1352         return fd_wait_for_completion(jiffies + 2UL * HZ / 100, floppy_ready);
1353 }                               /* fdc_dtr */
1354
1355 static void tell_sector(void)
1356 {
1357         pr_cont(": track %d, head %d, sector %d, size %d",
1358                 R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE);
1359 }                               /* tell_sector */
1360
1361 static void print_errors(void)
1362 {
1363         DPRINT("");
1364         if (ST0 & ST0_ECE) {
1365                 pr_cont("Recalibrate failed!");
1366         } else if (ST2 & ST2_CRC) {
1367                 pr_cont("data CRC error");
1368                 tell_sector();
1369         } else if (ST1 & ST1_CRC) {
1370                 pr_cont("CRC error");
1371                 tell_sector();
1372         } else if ((ST1 & (ST1_MAM | ST1_ND)) ||
1373                    (ST2 & ST2_MAM)) {
1374                 if (!probing) {
1375                         pr_cont("sector not found");
1376                         tell_sector();
1377                 } else
1378                         pr_cont("probe failed...");
1379         } else if (ST2 & ST2_WC) {      /* seek error */
1380                 pr_cont("wrong cylinder");
1381         } else if (ST2 & ST2_BC) {      /* cylinder marked as bad */
1382                 pr_cont("bad cylinder");
1383         } else {
1384                 pr_cont("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x",
1385                         ST0, ST1, ST2);
1386                 tell_sector();
1387         }
1388         pr_cont("\n");
1389 }
1390
1391 /*
1392  * OK, this error interpreting routine is called after a
1393  * DMA read/write has succeeded
1394  * or failed, so we check the results, and copy any buffers.
1395  * hhb: Added better error reporting.
1396  * ak: Made this into a separate routine.
1397  */
1398 static int interpret_errors(void)
1399 {
1400         char bad;
1401
1402         if (inr != 7) {
1403                 DPRINT("-- FDC reply error\n");
1404                 FDCS->reset = 1;
1405                 return 1;
1406         }
1407
1408         /* check IC to find cause of interrupt */
1409         switch (ST0 & ST0_INTR) {
1410         case 0x40:              /* error occurred during command execution */
1411                 if (ST1 & ST1_EOC)
1412                         return 0;       /* occurs with pseudo-DMA */
1413                 bad = 1;
1414                 if (ST1 & ST1_WP) {
1415                         DPRINT("Drive is write protected\n");
1416                         clear_bit(FD_DISK_WRITABLE_BIT, &DRS->flags);
1417                         cont->done(0);
1418                         bad = 2;
1419                 } else if (ST1 & ST1_ND) {
1420                         set_bit(FD_NEED_TWADDLE_BIT, &DRS->flags);
1421                 } else if (ST1 & ST1_OR) {
1422                         if (DP->flags & FTD_MSG)
1423                                 DPRINT("Over/Underrun - retrying\n");
1424                         bad = 0;
1425                 } else if (*errors >= DP->max_errors.reporting) {
1426                         print_errors();
1427                 }
1428                 if (ST2 & ST2_WC || ST2 & ST2_BC)
1429                         /* wrong cylinder => recal */
1430                         DRS->track = NEED_2_RECAL;
1431                 return bad;
1432         case 0x80:              /* invalid command given */
1433                 DPRINT("Invalid FDC command given!\n");
1434                 cont->done(0);
1435                 return 2;
1436         case 0xc0:
1437                 DPRINT("Abnormal termination caused by polling\n");
1438                 cont->error();
1439                 return 2;
1440         default:                /* (0) Normal command termination */
1441                 return 0;
1442         }
1443 }
1444
1445 /*
1446  * This routine is called when everything should be correctly set up
1447  * for the transfer (i.e. floppy motor is on, the correct floppy is
1448  * selected, and the head is sitting on the right track).
1449  */
1450 static void setup_rw_floppy(void)
1451 {
1452         int i;
1453         int r;
1454         int flags;
1455         int dflags;
1456         unsigned long ready_date;
1457         void (*function)(void);
1458
1459         flags = raw_cmd->flags;
1460         if (flags & (FD_RAW_READ | FD_RAW_WRITE))
1461                 flags |= FD_RAW_INTR;
1462
1463         if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)) {
1464                 ready_date = DRS->spinup_date + DP->spinup;
1465                 /* If spinup will take a long time, rerun scandrives
1466                  * again just before spinup completion. Beware that
1467                  * after scandrives, we must again wait for selection.
1468                  */
1469                 if (time_after(ready_date, jiffies + DP->select_delay)) {
1470                         ready_date -= DP->select_delay;
1471                         function = floppy_start;
1472                 } else
1473                         function = setup_rw_floppy;
1474
1475                 /* wait until the floppy is spinning fast enough */
1476                 if (fd_wait_for_completion(ready_date, function))
1477                         return;
1478         }
1479         dflags = DRS->flags;
1480
1481         if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE))
1482                 setup_DMA();
1483
1484         if (flags & FD_RAW_INTR)
1485                 do_floppy = main_command_interrupt;
1486
1487         r = 0;
1488         for (i = 0; i < raw_cmd->cmd_count; i++)
1489                 r |= output_byte(raw_cmd->cmd[i]);
1490
1491         debugt(__func__, "rw_command");
1492
1493         if (r) {
1494                 cont->error();
1495                 reset_fdc();
1496                 return;
1497         }
1498
1499         if (!(flags & FD_RAW_INTR)) {
1500                 inr = result();
1501                 cont->interrupt();
1502         } else if (flags & FD_RAW_NEED_DISK)
1503                 fd_watchdog();
1504 }
1505
1506 static int blind_seek;
1507
1508 /*
1509  * This is the routine called after every seek (or recalibrate) interrupt
1510  * from the floppy controller.
1511  */
1512 static void seek_interrupt(void)
1513 {
1514         debugt(__func__, "");
1515         if (inr != 2 || (ST0 & 0xF8) != 0x20) {
1516                 DPRINT("seek failed\n");
1517                 DRS->track = NEED_2_RECAL;
1518                 cont->error();
1519                 cont->redo();
1520                 return;
1521         }
1522         if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek) {
1523                 debug_dcl(DP->flags,
1524                           "clearing NEWCHANGE flag because of effective seek\n");
1525                 debug_dcl(DP->flags, "jiffies=%lu\n", jiffies);
1526                 clear_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
1527                                         /* effective seek */
1528                 DRS->select_date = jiffies;
1529         }
1530         DRS->track = ST1;
1531         floppy_ready();
1532 }
1533
1534 static void check_wp(void)
1535 {
1536         if (test_bit(FD_VERIFY_BIT, &DRS->flags)) {
1537                                         /* check write protection */
1538                 output_byte(FD_GETSTATUS);
1539                 output_byte(UNIT(current_drive));
1540                 if (result() != 1) {
1541                         FDCS->reset = 1;
1542                         return;
1543                 }
1544                 clear_bit(FD_VERIFY_BIT, &DRS->flags);
1545                 clear_bit(FD_NEED_TWADDLE_BIT, &DRS->flags);
1546                 debug_dcl(DP->flags,
1547                           "checking whether disk is write protected\n");
1548                 debug_dcl(DP->flags, "wp=%x\n", ST3 & 0x40);
1549                 if (!(ST3 & 0x40))
1550                         set_bit(FD_DISK_WRITABLE_BIT, &DRS->flags);
1551                 else
1552                         clear_bit(FD_DISK_WRITABLE_BIT, &DRS->flags);
1553         }
1554 }
1555
1556 static void seek_floppy(void)
1557 {
1558         int track;
1559
1560         blind_seek = 0;
1561
1562         debug_dcl(DP->flags, "calling disk change from %s\n", __func__);
1563
1564         if (!test_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags) &&
1565             disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)) {
1566                 /* the media changed flag should be cleared after the seek.
1567                  * If it isn't, this means that there is really no disk in
1568                  * the drive.
1569                  */
1570                 set_bit(FD_DISK_CHANGED_BIT, &DRS->flags);
1571                 cont->done(0);
1572                 cont->redo();
1573                 return;
1574         }
1575         if (DRS->track <= NEED_1_RECAL) {
1576                 recalibrate_floppy();
1577                 return;
1578         } else if (test_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags) &&
1579                    (raw_cmd->flags & FD_RAW_NEED_DISK) &&
1580                    (DRS->track <= NO_TRACK || DRS->track == raw_cmd->track)) {
1581                 /* we seek to clear the media-changed condition. Does anybody
1582                  * know a more elegant way, which works on all drives? */
1583                 if (raw_cmd->track)
1584                         track = raw_cmd->track - 1;
1585                 else {
1586                         if (DP->flags & FD_SILENT_DCL_CLEAR) {
1587                                 set_dor(fdc, ~(0x10 << UNIT(current_drive)), 0);
1588                                 blind_seek = 1;
1589                                 raw_cmd->flags |= FD_RAW_NEED_SEEK;
1590                         }
1591                         track = 1;
1592                 }
1593         } else {
1594                 check_wp();
1595                 if (raw_cmd->track != DRS->track &&
1596                     (raw_cmd->flags & FD_RAW_NEED_SEEK))
1597                         track = raw_cmd->track;
1598                 else {
1599                         setup_rw_floppy();
1600                         return;
1601                 }
1602         }
1603
1604         do_floppy = seek_interrupt;
1605         output_byte(FD_SEEK);
1606         output_byte(UNIT(current_drive));
1607         if (output_byte(track) < 0) {
1608                 reset_fdc();
1609                 return;
1610         }
1611         debugt(__func__, "");
1612 }
1613
1614 static void recal_interrupt(void)
1615 {
1616         debugt(__func__, "");
1617         if (inr != 2)
1618                 FDCS->reset = 1;
1619         else if (ST0 & ST0_ECE) {
1620                 switch (DRS->track) {
1621                 case NEED_1_RECAL:
1622                         debugt(__func__, "need 1 recal");
1623                         /* after a second recalibrate, we still haven't
1624                          * reached track 0. Probably no drive. Raise an
1625                          * error, as failing immediately might upset
1626                          * computers possessed by the Devil :-) */
1627                         cont->error();
1628                         cont->redo();
1629                         return;
1630                 case NEED_2_RECAL:
1631                         debugt(__func__, "need 2 recal");
1632                         /* If we already did a recalibrate,
1633                          * and we are not at track 0, this
1634                          * means we have moved. (The only way
1635                          * not to move at recalibration is to
1636                          * be already at track 0.) Clear the
1637                          * new change flag */
1638                         debug_dcl(DP->flags,
1639                                   "clearing NEWCHANGE flag because of second recalibrate\n");
1640
1641                         clear_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
1642                         DRS->select_date = jiffies;
1643                         /* fall through */
1644                 default:
1645                         debugt(__func__, "default");
1646                         /* Recalibrate moves the head by at
1647                          * most 80 steps. If after one
1648                          * recalibrate we don't have reached
1649                          * track 0, this might mean that we
1650                          * started beyond track 80.  Try
1651                          * again.  */
1652                         DRS->track = NEED_1_RECAL;
1653                         break;
1654                 }
1655         } else
1656                 DRS->track = ST1;
1657         floppy_ready();
1658 }
1659
1660 static void print_result(char *message, int inr)
1661 {
1662         int i;
1663
1664         DPRINT("%s ", message);
1665         if (inr >= 0)
1666                 for (i = 0; i < inr; i++)
1667                         pr_cont("repl[%d]=%x ", i, reply_buffer[i]);
1668         pr_cont("\n");
1669 }
1670
1671 /* interrupt handler. Note that this can be called externally on the Sparc */
1672 irqreturn_t floppy_interrupt(int irq, void *dev_id)
1673 {
1674         int do_print;
1675         unsigned long f;
1676         void (*handler)(void) = do_floppy;
1677
1678         lasthandler = handler;
1679         interruptjiffies = jiffies;
1680
1681         f = claim_dma_lock();
1682         fd_disable_dma();
1683         release_dma_lock(f);
1684
1685         do_floppy = NULL;
1686         if (fdc >= N_FDC || FDCS->address == -1) {
1687                 /* we don't even know which FDC is the culprit */
1688                 pr_info("DOR0=%x\n", fdc_state[0].dor);
1689                 pr_info("floppy interrupt on bizarre fdc %d\n", fdc);
1690                 pr_info("handler=%pf\n", handler);
1691                 is_alive(__func__, "bizarre fdc");
1692                 return IRQ_NONE;
1693         }
1694
1695         FDCS->reset = 0;
1696         /* We have to clear the reset flag here, because apparently on boxes
1697          * with level triggered interrupts (PS/2, Sparc, ...), it is needed to
1698          * emit SENSEI's to clear the interrupt line. And FDCS->reset blocks the
1699          * emission of the SENSEI's.
1700          * It is OK to emit floppy commands because we are in an interrupt
1701          * handler here, and thus we have to fear no interference of other
1702          * activity.
1703          */
1704
1705         do_print = !handler && print_unex && initialized;
1706
1707         inr = result();
1708         if (do_print)
1709                 print_result("unexpected interrupt", inr);
1710         if (inr == 0) {
1711                 int max_sensei = 4;
1712                 do {
1713                         output_byte(FD_SENSEI);
1714                         inr = result();
1715                         if (do_print)
1716                                 print_result("sensei", inr);
1717                         max_sensei--;
1718                 } while ((ST0 & 0x83) != UNIT(current_drive) &&
1719                          inr == 2 && max_sensei);
1720         }
1721         if (!handler) {
1722                 FDCS->reset = 1;
1723                 return IRQ_NONE;
1724         }
1725         schedule_bh(handler);
1726         is_alive(__func__, "normal interrupt end");
1727
1728         /* FIXME! Was it really for us? */
1729         return IRQ_HANDLED;
1730 }
1731
1732 static void recalibrate_floppy(void)
1733 {
1734         debugt(__func__, "");
1735         do_floppy = recal_interrupt;
1736         output_byte(FD_RECALIBRATE);
1737         if (output_byte(UNIT(current_drive)) < 0)
1738                 reset_fdc();
1739 }
1740
1741 /*
1742  * Must do 4 FD_SENSEIs after reset because of ``drive polling''.
1743  */
1744 static void reset_interrupt(void)
1745 {
1746         debugt(__func__, "");
1747         result();               /* get the status ready for set_fdc */
1748         if (FDCS->reset) {
1749                 pr_info("reset set in interrupt, calling %pf\n", cont->error);
1750                 cont->error();  /* a reset just after a reset. BAD! */
1751         }
1752         cont->redo();
1753 }
1754
1755 /*
1756  * reset is done by pulling bit 2 of DOR low for a while (old FDCs),
1757  * or by setting the self clearing bit 7 of STATUS (newer FDCs)
1758  */
1759 static void reset_fdc(void)
1760 {
1761         unsigned long flags;
1762
1763         do_floppy = reset_interrupt;
1764         FDCS->reset = 0;
1765         reset_fdc_info(0);
1766
1767         /* Pseudo-DMA may intercept 'reset finished' interrupt.  */
1768         /* Irrelevant for systems with true DMA (i386).          */
1769
1770         flags = claim_dma_lock();
1771         fd_disable_dma();
1772         release_dma_lock(flags);
1773
1774         if (FDCS->version >= FDC_82072A)
1775                 fd_outb(0x80 | (FDCS->dtr & 3), FD_STATUS);
1776         else {
1777                 fd_outb(FDCS->dor & ~0x04, FD_DOR);
1778                 udelay(FD_RESET_DELAY);
1779                 fd_outb(FDCS->dor, FD_DOR);
1780         }
1781 }
1782
1783 static void show_floppy(void)
1784 {
1785         int i;
1786
1787         pr_info("\n");
1788         pr_info("floppy driver state\n");
1789         pr_info("-------------------\n");
1790         pr_info("now=%lu last interrupt=%lu diff=%lu last called handler=%pf\n",
1791                 jiffies, interruptjiffies, jiffies - interruptjiffies,
1792                 lasthandler);
1793
1794         pr_info("timeout_message=%s\n", timeout_message);
1795         pr_info("last output bytes:\n");
1796         for (i = 0; i < OLOGSIZE; i++)
1797                 pr_info("%2x %2x %lu\n",
1798                         output_log[(i + output_log_pos) % OLOGSIZE].data,
1799                         output_log[(i + output_log_pos) % OLOGSIZE].status,
1800                         output_log[(i + output_log_pos) % OLOGSIZE].jiffies);
1801         pr_info("last result at %lu\n", resultjiffies);
1802         pr_info("last redo_fd_request at %lu\n", lastredo);
1803         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1,
1804                        reply_buffer, resultsize, true);
1805
1806         pr_info("status=%x\n", fd_inb(FD_STATUS));
1807         pr_info("fdc_busy=%lu\n", fdc_busy);
1808         if (do_floppy)
1809                 pr_info("do_floppy=%pf\n", do_floppy);
1810         if (work_pending(&floppy_work))
1811                 pr_info("floppy_work.func=%pf\n", floppy_work.func);
1812         if (delayed_work_pending(&fd_timer))
1813                 pr_info("delayed work.function=%p expires=%ld\n",
1814                        fd_timer.work.func,
1815                        fd_timer.timer.expires - jiffies);
1816         if (delayed_work_pending(&fd_timeout))
1817                 pr_info("timer_function=%p expires=%ld\n",
1818                        fd_timeout.work.func,
1819                        fd_timeout.timer.expires - jiffies);
1820
1821         pr_info("cont=%p\n", cont);
1822         pr_info("current_req=%p\n", current_req);
1823         pr_info("command_status=%d\n", command_status);
1824         pr_info("\n");
1825 }
1826
1827 static void floppy_shutdown(struct work_struct *arg)
1828 {
1829         unsigned long flags;
1830
1831         if (initialized)
1832                 show_floppy();
1833         cancel_activity();
1834
1835         flags = claim_dma_lock();
1836         fd_disable_dma();
1837         release_dma_lock(flags);
1838
1839         /* avoid dma going to a random drive after shutdown */
1840
1841         if (initialized)
1842                 DPRINT("floppy timeout called\n");
1843         FDCS->reset = 1;
1844         if (cont) {
1845                 cont->done(0);
1846                 cont->redo();   /* this will recall reset when needed */
1847         } else {
1848                 pr_info("no cont in shutdown!\n");
1849                 process_fd_request();
1850         }
1851         is_alive(__func__, "");
1852 }
1853
1854 /* start motor, check media-changed condition and write protection */
1855 static int start_motor(void (*function)(void))
1856 {
1857         int mask;
1858         int data;
1859
1860         mask = 0xfc;
1861         data = UNIT(current_drive);
1862         if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)) {
1863                 if (!(FDCS->dor & (0x10 << UNIT(current_drive)))) {
1864                         set_debugt();
1865                         /* no read since this drive is running */
1866                         DRS->first_read_date = 0;
1867                         /* note motor start time if motor is not yet running */
1868                         DRS->spinup_date = jiffies;
1869                         data |= (0x10 << UNIT(current_drive));
1870                 }
1871         } else if (FDCS->dor & (0x10 << UNIT(current_drive)))
1872                 mask &= ~(0x10 << UNIT(current_drive));
1873
1874         /* starts motor and selects floppy */
1875         del_timer(motor_off_timer + current_drive);
1876         set_dor(fdc, mask, data);
1877
1878         /* wait_for_completion also schedules reset if needed. */
1879         return fd_wait_for_completion(DRS->select_date + DP->select_delay,
1880                                       function);
1881 }
1882
1883 static void floppy_ready(void)
1884 {
1885         if (FDCS->reset) {
1886                 reset_fdc();
1887                 return;
1888         }
1889         if (start_motor(floppy_ready))
1890                 return;
1891         if (fdc_dtr())
1892                 return;
1893
1894         debug_dcl(DP->flags, "calling disk change from floppy_ready\n");
1895         if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) &&
1896             disk_change(current_drive) && !DP->select_delay)
1897                 twaddle();      /* this clears the dcl on certain
1898                                  * drive/controller combinations */
1899
1900 #ifdef fd_chose_dma_mode
1901         if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) {
1902                 unsigned long flags = claim_dma_lock();
1903                 fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length);
1904                 release_dma_lock(flags);
1905         }
1906 #endif
1907
1908         if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)) {
1909                 perpendicular_mode();
1910                 fdc_specify();  /* must be done here because of hut, hlt ... */
1911                 seek_floppy();
1912         } else {
1913                 if ((raw_cmd->flags & FD_RAW_READ) ||
1914                     (raw_cmd->flags & FD_RAW_WRITE))
1915                         fdc_specify();
1916                 setup_rw_floppy();
1917         }
1918 }
1919
1920 static void floppy_start(void)
1921 {
1922         reschedule_timeout(current_reqD, "floppy start");
1923
1924         scandrives();
1925         debug_dcl(DP->flags, "setting NEWCHANGE in floppy_start\n");
1926         set_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
1927         floppy_ready();
1928 }
1929
1930 /*
1931  * ========================================================================
1932  * here ends the bottom half. Exported routines are:
1933  * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc,
1934  * start_motor, reset_fdc, reset_fdc_info, interpret_errors.
1935  * Initialization also uses output_byte, result, set_dor, floppy_interrupt
1936  * and set_dor.
1937  * ========================================================================
1938  */
1939 /*
1940  * General purpose continuations.
1941  * ==============================
1942  */
1943
1944 static void do_wakeup(void)
1945 {
1946         reschedule_timeout(MAXTIMEOUT, "do wakeup");
1947         cont = NULL;
1948         command_status += 2;
1949         wake_up(&command_done);
1950 }
1951
1952 static const struct cont_t wakeup_cont = {
1953         .interrupt      = empty,
1954         .redo           = do_wakeup,
1955         .error          = empty,
1956         .done           = (done_f)empty
1957 };
1958
1959 static const struct cont_t intr_cont = {
1960         .interrupt      = empty,
1961         .redo           = process_fd_request,
1962         .error          = empty,
1963         .done           = (done_f)empty
1964 };
1965
1966 static int wait_til_done(void (*handler)(void), bool interruptible)
1967 {
1968         int ret;
1969
1970         schedule_bh(handler);
1971
1972         if (interruptible)
1973                 wait_event_interruptible(command_done, command_status >= 2);
1974         else
1975                 wait_event(command_done, command_status >= 2);
1976
1977         if (command_status < 2) {
1978                 cancel_activity();
1979                 cont = &intr_cont;
1980                 reset_fdc();
1981                 return -EINTR;
1982         }
1983
1984         if (FDCS->reset)
1985                 command_status = FD_COMMAND_ERROR;
1986         if (command_status == FD_COMMAND_OKAY)
1987                 ret = 0;
1988         else
1989                 ret = -EIO;
1990         command_status = FD_COMMAND_NONE;
1991         return ret;
1992 }
1993
1994 static void generic_done(int result)
1995 {
1996         command_status = result;
1997         cont = &wakeup_cont;
1998 }
1999
2000 static void generic_success(void)
2001 {
2002         cont->done(1);
2003 }
2004
2005 static void generic_failure(void)
2006 {
2007         cont->done(0);
2008 }
2009
2010 static void success_and_wakeup(void)
2011 {
2012         generic_success();
2013         cont->redo();
2014 }
2015
2016 /*
2017  * formatting and rw support.
2018  * ==========================
2019  */
2020
2021 static int next_valid_format(void)
2022 {
2023         int probed_format;
2024
2025         probed_format = DRS->probed_format;
2026         while (1) {
2027                 if (probed_format >= 8 || !DP->autodetect[probed_format]) {
2028                         DRS->probed_format = 0;
2029                         return 1;
2030                 }
2031                 if (floppy_type[DP->autodetect[probed_format]].sect) {
2032                         DRS->probed_format = probed_format;
2033                         return 0;
2034                 }
2035                 probed_format++;
2036         }
2037 }
2038
2039 static void bad_flp_intr(void)
2040 {
2041         int err_count;
2042
2043         if (probing) {
2044                 DRS->probed_format++;
2045                 if (!next_valid_format())
2046                         return;
2047         }
2048         err_count = ++(*errors);
2049         INFBOUND(DRWE->badness, err_count);
2050         if (err_count > DP->max_errors.abort)
2051                 cont->done(0);
2052         if (err_count > DP->max_errors.reset)
2053                 FDCS->reset = 1;
2054         else if (err_count > DP->max_errors.recal)
2055                 DRS->track = NEED_2_RECAL;
2056 }
2057
2058 static void set_floppy(int drive)
2059 {
2060         int type = ITYPE(UDRS->fd_device);
2061
2062         if (type)
2063                 _floppy = floppy_type + type;
2064         else
2065                 _floppy = current_type[drive];
2066 }
2067
2068 /*
2069  * formatting support.
2070  * ===================
2071  */
2072 static void format_interrupt(void)
2073 {
2074         switch (interpret_errors()) {
2075         case 1:
2076                 cont->error();
2077         case 2:
2078                 break;
2079         case 0:
2080                 cont->done(1);
2081         }
2082         cont->redo();
2083 }
2084
2085 #define FM_MODE(x, y) ((y) & ~(((x)->rate & 0x80) >> 1))
2086 #define CT(x) ((x) | 0xc0)
2087
2088 static void setup_format_params(int track)
2089 {
2090         int n;
2091         int il;
2092         int count;
2093         int head_shift;
2094         int track_shift;
2095         struct fparm {
2096                 unsigned char track, head, sect, size;
2097         } *here = (struct fparm *)floppy_track_buffer;
2098
2099         raw_cmd = &default_raw_cmd;
2100         raw_cmd->track = track;
2101
2102         raw_cmd->flags = (FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN |
2103                           FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK);
2104         raw_cmd->rate = _floppy->rate & 0x43;
2105         raw_cmd->cmd_count = NR_F;
2106         COMMAND = FM_MODE(_floppy, FD_FORMAT);
2107         DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy, format_req.head);
2108         F_SIZECODE = FD_SIZECODE(_floppy);
2109         F_SECT_PER_TRACK = _floppy->sect << 2 >> F_SIZECODE;
2110         F_GAP = _floppy->fmt_gap;
2111         F_FILL = FD_FILL_BYTE;
2112
2113         raw_cmd->kernel_data = floppy_track_buffer;
2114         raw_cmd->length = 4 * F_SECT_PER_TRACK;
2115
2116         /* allow for about 30ms for data transport per track */
2117         head_shift = (F_SECT_PER_TRACK + 5) / 6;
2118
2119         /* a ``cylinder'' is two tracks plus a little stepping time */
2120         track_shift = 2 * head_shift + 3;
2121
2122         /* position of logical sector 1 on this track */
2123         n = (track_shift * format_req.track + head_shift * format_req.head)
2124             % F_SECT_PER_TRACK;
2125
2126         /* determine interleave */
2127         il = 1;
2128         if (_floppy->fmt_gap < 0x22)
2129                 il++;
2130
2131         /* initialize field */
2132         for (count = 0; count < F_SECT_PER_TRACK; ++count) {
2133                 here[count].track = format_req.track;
2134                 here[count].head = format_req.head;
2135                 here[count].sect = 0;
2136                 here[count].size = F_SIZECODE;
2137         }
2138         /* place logical sectors */
2139         for (count = 1; count <= F_SECT_PER_TRACK; ++count) {
2140                 here[n].sect = count;
2141                 n = (n + il) % F_SECT_PER_TRACK;
2142                 if (here[n].sect) {     /* sector busy, find next free sector */
2143                         ++n;
2144                         if (n >= F_SECT_PER_TRACK) {
2145                                 n -= F_SECT_PER_TRACK;
2146                                 while (here[n].sect)
2147                                         ++n;
2148                         }
2149                 }
2150         }
2151         if (_floppy->stretch & FD_SECTBASEMASK) {
2152                 for (count = 0; count < F_SECT_PER_TRACK; count++)
2153                         here[count].sect += FD_SECTBASE(_floppy) - 1;
2154         }
2155 }
2156
2157 static void redo_format(void)
2158 {
2159         buffer_track = -1;
2160         setup_format_params(format_req.track << STRETCH(_floppy));
2161         floppy_start();
2162         debugt(__func__, "queue format request");
2163 }
2164
2165 static const struct cont_t format_cont = {
2166         .interrupt      = format_interrupt,
2167         .redo           = redo_format,
2168         .error          = bad_flp_intr,
2169         .done           = generic_done
2170 };
2171
2172 static int do_format(int drive, struct format_descr *tmp_format_req)
2173 {
2174         int ret;
2175
2176         if (lock_fdc(drive))
2177                 return -EINTR;
2178
2179         set_floppy(drive);
2180         if (!_floppy ||
2181             _floppy->track > DP->tracks ||
2182             tmp_format_req->track >= _floppy->track ||
2183             tmp_format_req->head >= _floppy->head ||
2184             (_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) ||
2185             !_floppy->fmt_gap) {
2186                 process_fd_request();
2187                 return -EINVAL;
2188         }
2189         format_req = *tmp_format_req;
2190         format_errors = 0;
2191         cont = &format_cont;
2192         errors = &format_errors;
2193         ret = wait_til_done(redo_format, true);
2194         if (ret == -EINTR)
2195                 return -EINTR;
2196         process_fd_request();
2197         return ret;
2198 }
2199
2200 /*
2201  * Buffer read/write and support
2202  * =============================
2203  */
2204
2205 static void floppy_end_request(struct request *req, int error)
2206 {
2207         unsigned int nr_sectors = current_count_sectors;
2208         unsigned int drive = (unsigned long)req->rq_disk->private_data;
2209
2210         /* current_count_sectors can be zero if transfer failed */
2211         if (error)
2212                 nr_sectors = blk_rq_cur_sectors(req);
2213         if (__blk_end_request(req, error, nr_sectors << 9))
2214                 return;
2215
2216         /* We're done with the request */
2217         floppy_off(drive);
2218         current_req = NULL;
2219 }
2220
2221 /* new request_done. Can handle physical sectors which are smaller than a
2222  * logical buffer */
2223 static void request_done(int uptodate)
2224 {
2225         struct request *req = current_req;
2226         struct request_queue *q;
2227         unsigned long flags;
2228         int block;
2229         char msg[sizeof("request done ") + sizeof(int) * 3];
2230
2231         probing = 0;
2232         snprintf(msg, sizeof(msg), "request done %d", uptodate);
2233         reschedule_timeout(MAXTIMEOUT, msg);
2234
2235         if (!req) {
2236                 pr_info("floppy.c: no request in request_done\n");
2237                 return;
2238         }
2239
2240         q = req->q;
2241
2242         if (uptodate) {
2243                 /* maintain values for invalidation on geometry
2244                  * change */
2245                 block = current_count_sectors + blk_rq_pos(req);
2246                 INFBOUND(DRS->maxblock, block);
2247                 if (block > _floppy->sect)
2248                         DRS->maxtrack = 1;
2249
2250                 /* unlock chained buffers */
2251                 spin_lock_irqsave(q->queue_lock, flags);
2252                 floppy_end_request(req, 0);
2253                 spin_unlock_irqrestore(q->queue_lock, flags);
2254         } else {
2255                 if (rq_data_dir(req) == WRITE) {
2256                         /* record write error information */
2257                         DRWE->write_errors++;
2258                         if (DRWE->write_errors == 1) {
2259                                 DRWE->first_error_sector = blk_rq_pos(req);
2260                                 DRWE->first_error_generation = DRS->generation;
2261                         }
2262                         DRWE->last_error_sector = blk_rq_pos(req);
2263                         DRWE->last_error_generation = DRS->generation;
2264                 }
2265                 spin_lock_irqsave(q->queue_lock, flags);
2266                 floppy_end_request(req, -EIO);
2267                 spin_unlock_irqrestore(q->queue_lock, flags);
2268         }
2269 }
2270
2271 /* Interrupt handler evaluating the result of the r/w operation */
2272 static void rw_interrupt(void)
2273 {
2274         int eoc;
2275         int ssize;
2276         int heads;
2277         int nr_sectors;
2278
2279         if (R_HEAD >= 2) {
2280                 /* some Toshiba floppy controllers occasionnally seem to
2281                  * return bogus interrupts after read/write operations, which
2282                  * can be recognized by a bad head number (>= 2) */
2283                 return;
2284         }
2285
2286         if (!DRS->first_read_date)
2287                 DRS->first_read_date = jiffies;
2288
2289         nr_sectors = 0;
2290         ssize = DIV_ROUND_UP(1 << SIZECODE, 4);
2291
2292         if (ST1 & ST1_EOC)
2293                 eoc = 1;
2294         else
2295                 eoc = 0;
2296
2297         if (COMMAND & 0x80)
2298                 heads = 2;
2299         else
2300                 heads = 1;
2301
2302         nr_sectors = (((R_TRACK - TRACK) * heads +
2303                        R_HEAD - HEAD) * SECT_PER_TRACK +
2304                       R_SECTOR - SECTOR + eoc) << SIZECODE >> 2;
2305
2306         if (nr_sectors / ssize >
2307             DIV_ROUND_UP(in_sector_offset + current_count_sectors, ssize)) {
2308                 DPRINT("long rw: %x instead of %lx\n",
2309                        nr_sectors, current_count_sectors);
2310                 pr_info("rs=%d s=%d\n", R_SECTOR, SECTOR);
2311                 pr_info("rh=%d h=%d\n", R_HEAD, HEAD);
2312                 pr_info("rt=%d t=%d\n", R_TRACK, TRACK);
2313                 pr_info("heads=%d eoc=%d\n", heads, eoc);
2314                 pr_info("spt=%d st=%d ss=%d\n",
2315                         SECT_PER_TRACK, fsector_t, ssize);
2316                 pr_info("in_sector_offset=%d\n", in_sector_offset);
2317         }
2318
2319         nr_sectors -= in_sector_offset;
2320         INFBOUND(nr_sectors, 0);
2321         SUPBOUND(current_count_sectors, nr_sectors);
2322
2323         switch (interpret_errors()) {
2324         case 2:
2325                 cont->redo();
2326                 return;
2327         case 1:
2328                 if (!current_count_sectors) {
2329                         cont->error();
2330                         cont->redo();
2331                         return;
2332                 }
2333                 break;
2334         case 0:
2335                 if (!current_count_sectors) {
2336                         cont->redo();
2337                         return;
2338                 }
2339                 current_type[current_drive] = _floppy;
2340                 floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
2341                 break;
2342         }
2343
2344         if (probing) {
2345                 if (DP->flags & FTD_MSG)
2346                         DPRINT("Auto-detected floppy type %s in fd%d\n",
2347                                _floppy->name, current_drive);
2348                 current_type[current_drive] = _floppy;
2349                 floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
2350                 probing = 0;
2351         }
2352
2353         if (CT(COMMAND) != FD_READ ||
2354             raw_cmd->kernel_data == current_req->buffer) {
2355                 /* transfer directly from buffer */
2356                 cont->done(1);
2357         } else if (CT(COMMAND) == FD_READ) {
2358                 buffer_track = raw_cmd->track;
2359                 buffer_drive = current_drive;
2360                 INFBOUND(buffer_max, nr_sectors + fsector_t);
2361         }
2362         cont->redo();
2363 }
2364
2365 /* Compute maximal contiguous buffer size. */
2366 static int buffer_chain_size(void)
2367 {
2368         struct bio_vec bv;
2369         int size;
2370         struct req_iterator iter;
2371         char *base;
2372
2373         base = bio_data(current_req->bio);
2374         size = 0;
2375
2376         rq_for_each_segment(bv, current_req, iter) {
2377                 if (page_address(bv.bv_page) + bv.bv_offset != base + size)
2378                         break;
2379
2380                 size += bv.bv_len;
2381         }
2382
2383         return size >> 9;
2384 }
2385
2386 /* Compute the maximal transfer size */
2387 static int transfer_size(int ssize, int max_sector, int max_size)
2388 {
2389         SUPBOUND(max_sector, fsector_t + max_size);
2390
2391         /* alignment */
2392         max_sector -= (max_sector % _floppy->sect) % ssize;
2393
2394         /* transfer size, beginning not aligned */
2395         current_count_sectors = max_sector - fsector_t;
2396
2397         return max_sector;
2398 }
2399
2400 /*
2401  * Move data from/to the track buffer to/from the buffer cache.
2402  */
2403 static void copy_buffer(int ssize, int max_sector, int max_sector_2)
2404 {
2405         int remaining;          /* number of transferred 512-byte sectors */
2406         struct bio_vec bv;
2407         char *buffer;
2408         char *dma_buffer;
2409         int size;
2410         struct req_iterator iter;
2411
2412         max_sector = transfer_size(ssize,
2413                                    min(max_sector, max_sector_2),
2414                                    blk_rq_sectors(current_req));
2415
2416         if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE &&
2417             buffer_max > fsector_t + blk_rq_sectors(current_req))
2418                 current_count_sectors = min_t(int, buffer_max - fsector_t,
2419                                               blk_rq_sectors(current_req));
2420
2421         remaining = current_count_sectors << 9;
2422         if (remaining > blk_rq_bytes(current_req) && CT(COMMAND) == FD_WRITE) {
2423                 DPRINT("in copy buffer\n");
2424                 pr_info("current_count_sectors=%ld\n", current_count_sectors);
2425                 pr_info("remaining=%d\n", remaining >> 9);
2426                 pr_info("current_req->nr_sectors=%u\n",
2427                         blk_rq_sectors(current_req));
2428                 pr_info("current_req->current_nr_sectors=%u\n",
2429                         blk_rq_cur_sectors(current_req));
2430                 pr_info("max_sector=%d\n", max_sector);
2431                 pr_info("ssize=%d\n", ssize);
2432         }
2433
2434         buffer_max = max(max_sector, buffer_max);
2435
2436         dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9);
2437
2438         size = blk_rq_cur_bytes(current_req);
2439
2440         rq_for_each_segment(bv, current_req, iter) {
2441                 if (!remaining)
2442                         break;
2443
2444                 size = bv.bv_len;
2445                 SUPBOUND(size, remaining);
2446
2447                 buffer = page_address(bv.bv_page) + bv.bv_offset;
2448                 if (dma_buffer + size >
2449                     floppy_track_buffer + (max_buffer_sectors << 10) ||
2450                     dma_buffer < floppy_track_buffer) {
2451                         DPRINT("buffer overrun in copy buffer %d\n",
2452                                (int)((floppy_track_buffer - dma_buffer) >> 9));
2453                         pr_info("fsector_t=%d buffer_min=%d\n",
2454                                 fsector_t, buffer_min);
2455                         pr_info("current_count_sectors=%ld\n",
2456                                 current_count_sectors);
2457                         if (CT(COMMAND) == FD_READ)
2458                                 pr_info("read\n");
2459                         if (CT(COMMAND) == FD_WRITE)
2460                                 pr_info("write\n");
2461                         break;
2462                 }
2463                 if (((unsigned long)buffer) % 512)
2464                         DPRINT("%p buffer not aligned\n", buffer);
2465
2466                 if (CT(COMMAND) == FD_READ)
2467                         memcpy(buffer, dma_buffer, size);
2468                 else
2469                         memcpy(dma_buffer, buffer, size);
2470
2471                 remaining -= size;
2472                 dma_buffer += size;
2473         }
2474         if (remaining) {
2475                 if (remaining > 0)
2476                         max_sector -= remaining >> 9;
2477                 DPRINT("weirdness: remaining %d\n", remaining >> 9);
2478         }
2479 }
2480
2481 /* work around a bug in pseudo DMA
2482  * (on some FDCs) pseudo DMA does not stop when the CPU stops
2483  * sending data.  Hence we need a different way to signal the
2484  * transfer length:  We use SECT_PER_TRACK.  Unfortunately, this
2485  * does not work with MT, hence we can only transfer one head at
2486  * a time
2487  */
2488 static void virtualdmabug_workaround(void)
2489 {
2490         int hard_sectors;
2491         int end_sector;
2492
2493         if (CT(COMMAND) == FD_WRITE) {
2494                 COMMAND &= ~0x80;       /* switch off multiple track mode */
2495
2496                 hard_sectors = raw_cmd->length >> (7 + SIZECODE);
2497                 end_sector = SECTOR + hard_sectors - 1;
2498                 if (end_sector > SECT_PER_TRACK) {
2499                         pr_info("too many sectors %d > %d\n",
2500                                 end_sector, SECT_PER_TRACK);
2501                         return;
2502                 }
2503                 SECT_PER_TRACK = end_sector;
2504                                         /* make sure SECT_PER_TRACK
2505                                          * points to end of transfer */
2506         }
2507 }
2508
2509 /*
2510  * Formulate a read/write request.
2511  * this routine decides where to load the data (directly to buffer, or to
2512  * tmp floppy area), how much data to load (the size of the buffer, the whole
2513  * track, or a single sector)
2514  * All floppy_track_buffer handling goes in here. If we ever add track buffer
2515  * allocation on the fly, it should be done here. No other part should need
2516  * modification.
2517  */
2518
2519 static int make_raw_rw_request(void)
2520 {
2521         int aligned_sector_t;
2522         int max_sector;
2523         int max_size;
2524         int tracksize;
2525         int ssize;
2526
2527         if (WARN(max_buffer_sectors == 0, "VFS: Block I/O scheduled on unopened device\n"))
2528                 return 0;
2529
2530         set_fdc((long)current_req->rq_disk->private_data);
2531
2532         raw_cmd = &default_raw_cmd;
2533         raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK;
2534         raw_cmd->cmd_count = NR_RW;
2535         if (rq_data_dir(current_req) == READ) {
2536                 raw_cmd->flags |= FD_RAW_READ;
2537                 COMMAND = FM_MODE(_floppy, FD_READ);
2538         } else if (rq_data_dir(current_req) == WRITE) {
2539                 raw_cmd->flags |= FD_RAW_WRITE;
2540                 COMMAND = FM_MODE(_floppy, FD_WRITE);
2541         } else {
2542                 DPRINT("%s: unknown command\n", __func__);
2543                 return 0;
2544         }
2545
2546         max_sector = _floppy->sect * _floppy->head;
2547
2548         TRACK = (int)blk_rq_pos(current_req) / max_sector;
2549         fsector_t = (int)blk_rq_pos(current_req) % max_sector;
2550         if (_floppy->track && TRACK >= _floppy->track) {
2551                 if (blk_rq_cur_sectors(current_req) & 1) {
2552                         current_count_sectors = 1;
2553                         return 1;
2554                 } else
2555                         return 0;
2556         }
2557         HEAD = fsector_t / _floppy->sect;
2558
2559         if (((_floppy->stretch & (FD_SWAPSIDES | FD_SECTBASEMASK)) ||
2560              test_bit(FD_NEED_TWADDLE_BIT, &DRS->flags)) &&
2561             fsector_t < _floppy->sect)
2562                 max_sector = _floppy->sect;
2563
2564         /* 2M disks have phantom sectors on the first track */
2565         if ((_floppy->rate & FD_2M) && (!TRACK) && (!HEAD)) {
2566                 max_sector = 2 * _floppy->sect / 3;
2567                 if (fsector_t >= max_sector) {
2568                         current_count_sectors =
2569                             min_t(int, _floppy->sect - fsector_t,
2570                                   blk_rq_sectors(current_req));
2571                         return 1;
2572                 }
2573                 SIZECODE = 2;
2574         } else
2575                 SIZECODE = FD_SIZECODE(_floppy);
2576         raw_cmd->rate = _floppy->rate & 0x43;
2577         if ((_floppy->rate & FD_2M) && (TRACK || HEAD) && raw_cmd->rate == 2)
2578                 raw_cmd->rate = 1;
2579
2580         if (SIZECODE)
2581                 SIZECODE2 = 0xff;
2582         else
2583                 SIZECODE2 = 0x80;
2584         raw_cmd->track = TRACK << STRETCH(_floppy);
2585         DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy, HEAD);
2586         GAP = _floppy->gap;
2587         ssize = DIV_ROUND_UP(1 << SIZECODE, 4);
2588         SECT_PER_TRACK = _floppy->sect << 2 >> SIZECODE;
2589         SECTOR = ((fsector_t % _floppy->sect) << 2 >> SIZECODE) +
2590             FD_SECTBASE(_floppy);
2591
2592         /* tracksize describes the size which can be filled up with sectors
2593          * of size ssize.
2594          */
2595         tracksize = _floppy->sect - _floppy->sect % ssize;
2596         if (tracksize < _floppy->sect) {
2597                 SECT_PER_TRACK++;
2598                 if (tracksize <= fsector_t % _floppy->sect)
2599                         SECTOR--;
2600
2601                 /* if we are beyond tracksize, fill up using smaller sectors */
2602                 while (tracksize <= fsector_t % _floppy->sect) {
2603                         while (tracksize + ssize > _floppy->sect) {
2604                                 SIZECODE--;
2605                                 ssize >>= 1;
2606                         }
2607                         SECTOR++;
2608                         SECT_PER_TRACK++;
2609                         tracksize += ssize;
2610                 }
2611                 max_sector = HEAD * _floppy->sect + tracksize;
2612         } else if (!TRACK && !HEAD && !(_floppy->rate & FD_2M) && probing) {
2613                 max_sector = _floppy->sect;
2614         } else if (!HEAD && CT(COMMAND) == FD_WRITE) {
2615                 /* for virtual DMA bug workaround */
2616                 max_sector = _floppy->sect;
2617         }
2618
2619         in_sector_offset = (fsector_t % _floppy->sect) % ssize;
2620         aligned_sector_t = fsector_t - in_sector_offset;
2621         max_size = blk_rq_sectors(current_req);
2622         if ((raw_cmd->track == buffer_track) &&
2623             (current_drive == buffer_drive) &&
2624             (fsector_t >= buffer_min) && (fsector_t < buffer_max)) {
2625                 /* data already in track buffer */
2626                 if (CT(COMMAND) == FD_READ) {
2627                         copy_buffer(1, max_sector, buffer_max);
2628                         return 1;
2629                 }
2630         } else if (in_sector_offset || blk_rq_sectors(current_req) < ssize) {
2631                 if (CT(COMMAND) == FD_WRITE) {
2632                         unsigned int sectors;
2633
2634                         sectors = fsector_t + blk_rq_sectors(current_req);
2635                         if (sectors > ssize && sectors < ssize + ssize)
2636                                 max_size = ssize + ssize;
2637                         else
2638                                 max_size = ssize;
2639                 }
2640                 raw_cmd->flags &= ~FD_RAW_WRITE;
2641                 raw_cmd->flags |= FD_RAW_READ;
2642                 COMMAND = FM_MODE(_floppy, FD_READ);
2643         } else if ((unsigned long)current_req->buffer < MAX_DMA_ADDRESS) {
2644                 unsigned long dma_limit;
2645                 int direct, indirect;
2646
2647                 indirect =
2648                     transfer_size(ssize, max_sector,
2649                                   max_buffer_sectors * 2) - fsector_t;
2650
2651                 /*
2652                  * Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide
2653                  * on a 64 bit machine!
2654                  */
2655                 max_size = buffer_chain_size();
2656                 dma_limit = (MAX_DMA_ADDRESS -
2657                              ((unsigned long)current_req->buffer)) >> 9;
2658                 if ((unsigned long)max_size > dma_limit)
2659                         max_size = dma_limit;
2660                 /* 64 kb boundaries */
2661                 if (CROSS_64KB(current_req->buffer, max_size << 9))
2662                         max_size = (K_64 -
2663                                     ((unsigned long)current_req->buffer) %
2664                                     K_64) >> 9;
2665                 direct = transfer_size(ssize, max_sector, max_size) - fsector_t;
2666                 /*
2667                  * We try to read tracks, but if we get too many errors, we
2668                  * go back to reading just one sector at a time.
2669                  *
2670                  * This means we should be able to read a sector even if there
2671                  * are other bad sectors on this track.
2672                  */
2673                 if (!direct ||
2674                     (indirect * 2 > direct * 3 &&
2675                      *errors < DP->max_errors.read_track &&
2676                      ((!probing ||
2677                        (DP->read_track & (1 << DRS->probed_format)))))) {
2678                         max_size = blk_rq_sectors(current_req);
2679                 } else {
2680                         raw_cmd->kernel_data = current_req->buffer;
2681                         raw_cmd->length = current_count_sectors << 9;
2682                         if (raw_cmd->length == 0) {
2683                                 DPRINT("%s: zero dma transfer attempted\n", __func__);
2684                                 DPRINT("indirect=%d direct=%d fsector_t=%d\n",
2685                                        indirect, direct, fsector_t);
2686                                 return 0;
2687                         }
2688                         virtualdmabug_workaround();
2689                         return 2;
2690                 }
2691         }
2692
2693         if (CT(COMMAND) == FD_READ)
2694                 max_size = max_sector;  /* unbounded */
2695
2696         /* claim buffer track if needed */
2697         if (buffer_track != raw_cmd->track ||   /* bad track */
2698             buffer_drive != current_drive ||    /* bad drive */
2699             fsector_t > buffer_max ||
2700             fsector_t < buffer_min ||
2701             ((CT(COMMAND) == FD_READ ||
2702               (!in_sector_offset && blk_rq_sectors(current_req) >= ssize)) &&
2703              max_sector > 2 * max_buffer_sectors + buffer_min &&
2704              max_size + fsector_t > 2 * max_buffer_sectors + buffer_min)) {
2705                 /* not enough space */
2706                 buffer_track = -1;
2707                 buffer_drive = current_drive;
2708                 buffer_max = buffer_min = aligned_sector_t;
2709         }
2710         raw_cmd->kernel_data = floppy_track_buffer +
2711                 ((aligned_sector_t - buffer_min) << 9);
2712
2713         if (CT(COMMAND) == FD_WRITE) {
2714                 /* copy write buffer to track buffer.
2715                  * if we get here, we know that the write
2716                  * is either aligned or the data already in the buffer
2717                  * (buffer will be overwritten) */
2718                 if (in_sector_offset && buffer_track == -1)
2719                         DPRINT("internal error offset !=0 on write\n");
2720                 buffer_track = raw_cmd->track;
2721                 buffer_drive = current_drive;
2722                 copy_buffer(ssize, max_sector,
2723                             2 * max_buffer_sectors + buffer_min);
2724         } else
2725                 transfer_size(ssize, max_sector,
2726                               2 * max_buffer_sectors + buffer_min -
2727                               aligned_sector_t);
2728
2729         /* round up current_count_sectors to get dma xfer size */
2730         raw_cmd->length = in_sector_offset + current_count_sectors;
2731         raw_cmd->length = ((raw_cmd->length - 1) | (ssize - 1)) + 1;
2732         raw_cmd->length <<= 9;
2733         if ((raw_cmd->length < current_count_sectors << 9) ||
2734             (raw_cmd->kernel_data != current_req->buffer &&
2735              CT(COMMAND) == FD_WRITE &&
2736              (aligned_sector_t + (raw_cmd->length >> 9) > buffer_max ||
2737               aligned_sector_t < buffer_min)) ||
2738             raw_cmd->length % (128 << SIZECODE) ||
2739             raw_cmd->length <= 0 || current_count_sectors <= 0) {
2740                 DPRINT("fractionary current count b=%lx s=%lx\n",
2741                        raw_cmd->length, current_count_sectors);
2742                 if (raw_cmd->kernel_data != current_req->buffer)
2743                         pr_info("addr=%d, length=%ld\n",
2744                                 (int)((raw_cmd->kernel_data -
2745                                        floppy_track_buffer) >> 9),
2746                                 current_count_sectors);
2747                 pr_info("st=%d ast=%d mse=%d msi=%d\n",
2748                         fsector_t, aligned_sector_t, max_sector, max_size);
2749                 pr_info("ssize=%x SIZECODE=%d\n", ssize, SIZECODE);
2750                 pr_info("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n",
2751                         COMMAND, SECTOR, HEAD, TRACK);
2752                 pr_info("buffer drive=%d\n", buffer_drive);
2753                 pr_info("buffer track=%d\n", buffer_track);
2754                 pr_info("buffer_min=%d\n", buffer_min);
2755                 pr_info("buffer_max=%d\n", buffer_max);
2756                 return 0;
2757         }
2758
2759         if (raw_cmd->kernel_data != current_req->buffer) {
2760                 if (raw_cmd->kernel_data < floppy_track_buffer ||
2761                     current_count_sectors < 0 ||
2762                     raw_cmd->length < 0 ||
2763                     raw_cmd->kernel_data + raw_cmd->length >
2764                     floppy_track_buffer + (max_buffer_sectors << 10)) {
2765                         DPRINT("buffer overrun in schedule dma\n");
2766                         pr_info("fsector_t=%d buffer_min=%d current_count=%ld\n",
2767                                 fsector_t, buffer_min, raw_cmd->length >> 9);
2768                         pr_info("current_count_sectors=%ld\n",
2769                                 current_count_sectors);
2770                         if (CT(COMMAND) == FD_READ)
2771                                 pr_info("read\n");
2772                         if (CT(COMMAND) == FD_WRITE)
2773                                 pr_info("write\n");
2774                         return 0;
2775                 }
2776         } else if (raw_cmd->length > blk_rq_bytes(current_req) ||
2777                    current_count_sectors > blk_rq_sectors(current_req)) {
2778                 DPRINT("buffer overrun in direct transfer\n");
2779                 return 0;
2780         } else if (raw_cmd->length < current_count_sectors << 9) {
2781                 DPRINT("more sectors than bytes\n");
2782                 pr_info("bytes=%ld\n", raw_cmd->length >> 9);
2783                 pr_info("sectors=%ld\n", current_count_sectors);
2784         }
2785         if (raw_cmd->length == 0) {
2786                 DPRINT("zero dma transfer attempted from make_raw_request\n");
2787                 return 0;
2788         }
2789
2790         virtualdmabug_workaround();
2791         return 2;
2792 }
2793
2794 /*
2795  * Round-robin between our available drives, doing one request from each
2796  */
2797 static int set_next_request(void)
2798 {
2799         struct request_queue *q;
2800         int old_pos = fdc_queue;
2801
2802         do {
2803                 q = disks[fdc_queue]->queue;
2804                 if (++fdc_queue == N_DRIVE)
2805                         fdc_queue = 0;
2806                 if (q) {
2807                         current_req = blk_fetch_request(q);
2808                         if (current_req)
2809                                 break;
2810                 }
2811         } while (fdc_queue != old_pos);
2812
2813         return current_req != NULL;
2814 }
2815
2816 static void redo_fd_request(void)
2817 {
2818         int drive;
2819         int tmp;
2820
2821         lastredo = jiffies;
2822         if (current_drive < N_DRIVE)
2823                 floppy_off(current_drive);
2824
2825 do_request:
2826         if (!current_req) {
2827                 int pending;
2828
2829                 spin_lock_irq(&floppy_lock);
2830                 pending = set_next_request();
2831                 spin_unlock_irq(&floppy_lock);
2832                 if (!pending) {
2833                         do_floppy = NULL;
2834                         unlock_fdc();
2835                         return;
2836                 }
2837         }
2838         drive = (long)current_req->rq_disk->private_data;
2839         set_fdc(drive);
2840         reschedule_timeout(current_reqD, "redo fd request");
2841
2842         set_floppy(drive);
2843         raw_cmd = &default_raw_cmd;
2844         raw_cmd->flags = 0;
2845         if (start_motor(redo_fd_request))
2846                 return;
2847
2848         disk_change(current_drive);
2849         if (test_bit(current_drive, &fake_change) ||
2850             test_bit(FD_DISK_CHANGED_BIT, &DRS->flags)) {
2851                 DPRINT("disk absent or changed during operation\n");
2852                 request_done(0);
2853                 goto do_request;
2854         }
2855         if (!_floppy) { /* Autodetection */
2856                 if (!probing) {
2857                         DRS->probed_format = 0;
2858                         if (next_valid_format()) {
2859                                 DPRINT("no autodetectable formats\n");
2860                                 _floppy = NULL;
2861                                 request_done(0);
2862                                 goto do_request;
2863                         }
2864                 }
2865                 probing = 1;
2866                 _floppy = floppy_type + DP->autodetect[DRS->probed_format];
2867         } else
2868                 probing = 0;
2869         errors = &(current_req->errors);
2870         tmp = make_raw_rw_request();
2871         if (tmp < 2) {
2872                 request_done(tmp);
2873                 goto do_request;
2874         }
2875
2876         if (test_bit(FD_NEED_TWADDLE_BIT, &DRS->flags))
2877                 twaddle();
2878         schedule_bh(floppy_start);
2879         debugt(__func__, "queue fd request");
2880         return;
2881 }
2882
2883 static const struct cont_t rw_cont = {
2884         .interrupt      = rw_interrupt,
2885         .redo           = redo_fd_request,
2886         .error          = bad_flp_intr,
2887         .done           = request_done
2888 };
2889
2890 static void process_fd_request(void)
2891 {
2892         cont = &rw_cont;
2893         schedule_bh(redo_fd_request);
2894 }
2895
2896 static void do_fd_request(struct request_queue *q)
2897 {
2898         if (WARN(max_buffer_sectors == 0,
2899                  "VFS: %s called on non-open device\n", __func__))
2900                 return;
2901
2902         if (WARN(atomic_read(&usage_count) == 0,
2903                  "warning: usage count=0, current_req=%p sect=%ld type=%x flags=%llx\n",
2904                  current_req, (long)blk_rq_pos(current_req), current_req->cmd_type,
2905                  (unsigned long long) current_req->cmd_flags))
2906                 return;
2907
2908         if (test_and_set_bit(0, &fdc_busy)) {
2909                 /* fdc busy, this new request will be treated when the
2910                    current one is done */
2911                 is_alive(__func__, "old request running");
2912                 return;
2913         }
2914         command_status = FD_COMMAND_NONE;
2915         __reschedule_timeout(MAXTIMEOUT, "fd_request");
2916         set_fdc(0);
2917         process_fd_request();
2918         is_alive(__func__, "");
2919 }
2920
2921 static const struct cont_t poll_cont = {
2922         .interrupt      = success_and_wakeup,
2923         .redo           = floppy_ready,
2924         .error          = generic_failure,
2925         .done           = generic_done
2926 };
2927
2928 static int poll_drive(bool interruptible, int flag)
2929 {
2930         /* no auto-sense, just clear dcl */
2931         raw_cmd = &default_raw_cmd;
2932         raw_cmd->flags = flag;
2933         raw_cmd->track = 0;
2934         raw_cmd->cmd_count = 0;
2935         cont = &poll_cont;
2936         debug_dcl(DP->flags, "setting NEWCHANGE in poll_drive\n");
2937         set_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
2938
2939         return wait_til_done(floppy_ready, interruptible);
2940 }
2941
2942 /*
2943  * User triggered reset
2944  * ====================
2945  */
2946
2947 static void reset_intr(void)
2948 {
2949         pr_info("weird, reset interrupt called\n");
2950 }
2951
2952 static const struct cont_t reset_cont = {
2953         .interrupt      = reset_intr,
2954         .redo           = success_and_wakeup,
2955         .error          = generic_failure,
2956         .done           = generic_done
2957 };
2958
2959 static int user_reset_fdc(int drive, int arg, bool interruptible)
2960 {
2961         int ret;
2962
2963         if (lock_fdc(drive))
2964                 return -EINTR;
2965
2966         if (arg == FD_RESET_ALWAYS)
2967                 FDCS->reset = 1;
2968         if (FDCS->reset) {
2969                 cont = &reset_cont;
2970                 ret = wait_til_done(reset_fdc, interruptible);
2971                 if (ret == -EINTR)
2972                         return -EINTR;
2973         }
2974         process_fd_request();
2975         return 0;
2976 }
2977
2978 /*
2979  * Misc Ioctl's and support
2980  * ========================
2981  */
2982 static inline int fd_copyout(void __user *param, const void *address,
2983                              unsigned long size)
2984 {
2985         return copy_to_user(param, address, size) ? -EFAULT : 0;
2986 }
2987
2988 static inline int fd_copyin(void __user *param, void *address,
2989                             unsigned long size)
2990 {
2991         return copy_from_user(address, param, size) ? -EFAULT : 0;
2992 }
2993
2994 static const char *drive_name(int type, int drive)
2995 {
2996         struct floppy_struct *floppy;
2997
2998         if (type)
2999                 floppy = floppy_type + type;
3000         else {
3001                 if (UDP->native_format)
3002                         floppy = floppy_type + UDP->native_format;
3003                 else
3004                         return "(null)";
3005         }
3006         if (floppy->name)
3007                 return floppy->name;
3008         else
3009                 return "(null)";
3010 }
3011
3012 /* raw commands */
3013 static void raw_cmd_done(int flag)
3014 {
3015         int i;
3016
3017         if (!flag) {
3018                 raw_cmd->flags |= FD_RAW_FAILURE;
3019                 raw_cmd->flags |= FD_RAW_HARDFAILURE;
3020         } else {
3021                 raw_cmd->reply_count = inr;
3022                 if (raw_cmd->reply_count > MAX_REPLIES)
3023                         raw_cmd->reply_count = 0;
3024                 for (i = 0; i < raw_cmd->reply_count; i++)
3025                         raw_cmd->reply[i] = reply_buffer[i];
3026
3027                 if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
3028                         unsigned long flags;
3029                         flags = claim_dma_lock();
3030                         raw_cmd->length = fd_get_dma_residue();
3031                         release_dma_lock(flags);
3032                 }
3033
3034                 if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) &&
3035                     (!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0)))
3036                         raw_cmd->flags |= FD_RAW_FAILURE;
3037
3038                 if (disk_change(current_drive))
3039                         raw_cmd->flags |= FD_RAW_DISK_CHANGE;
3040                 else
3041                         raw_cmd->flags &= ~FD_RAW_DISK_CHANGE;
3042                 if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER)
3043                         motor_off_callback(current_drive);
3044
3045                 if (raw_cmd->next &&
3046                     (!(raw_cmd->flags & FD_RAW_FAILURE) ||
3047                      !(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) &&
3048                     ((raw_cmd->flags & FD_RAW_FAILURE) ||
3049                      !(raw_cmd->flags & FD_RAW_STOP_IF_SUCCESS))) {
3050                         raw_cmd = raw_cmd->next;
3051                         return;
3052                 }
3053         }
3054         generic_done(flag);
3055 }
3056
3057 static const struct cont_t raw_cmd_cont = {
3058         .interrupt      = success_and_wakeup,
3059         .redo           = floppy_start,
3060         .error          = generic_failure,
3061         .done           = raw_cmd_done
3062 };
3063
3064 static int raw_cmd_copyout(int cmd, void __user *param,
3065                                   struct floppy_raw_cmd *ptr)
3066 {
3067         int ret;
3068
3069         while (ptr) {
3070                 struct floppy_raw_cmd cmd = *ptr;
3071                 cmd.next = NULL;
3072                 cmd.kernel_data = NULL;
3073                 ret = copy_to_user(param, &cmd, sizeof(cmd));
3074                 if (ret)
3075                         return -EFAULT;
3076                 param += sizeof(struct floppy_raw_cmd);
3077                 if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) {
3078                         if (ptr->length >= 0 &&
3079                             ptr->length <= ptr->buffer_length) {
3080                                 long length = ptr->buffer_length - ptr->length;
3081                                 ret = fd_copyout(ptr->data, ptr->kernel_data,
3082                                                  length);
3083                                 if (ret)
3084                                         return ret;
3085                         }
3086                 }
3087                 ptr = ptr->next;
3088         }
3089
3090         return 0;
3091 }
3092
3093 static void raw_cmd_free(struct floppy_raw_cmd **ptr)
3094 {
3095         struct floppy_raw_cmd *next;
3096         struct floppy_raw_cmd *this;
3097
3098         this = *ptr;
3099         *ptr = NULL;
3100         while (this) {
3101                 if (this->buffer_length) {
3102                         fd_dma_mem_free((unsigned long)this->kernel_data,
3103                                         this->buffer_length);
3104                         this->buffer_length = 0;
3105                 }
3106                 next = this->next;
3107                 kfree(this);
3108                 this = next;
3109         }
3110 }
3111
3112 static int raw_cmd_copyin(int cmd, void __user *param,
3113                                  struct floppy_raw_cmd **rcmd)
3114 {
3115         struct floppy_raw_cmd *ptr;
3116         int ret;
3117         int i;
3118
3119         *rcmd = NULL;
3120
3121 loop:
3122         ptr = kmalloc(sizeof(struct floppy_raw_cmd), GFP_USER);
3123         if (!ptr)
3124                 return -ENOMEM;
3125         *rcmd = ptr;
3126         ret = copy_from_user(ptr, param, sizeof(*ptr));
3127         ptr->next = NULL;
3128         ptr->buffer_length = 0;
3129         ptr->kernel_data = NULL;
3130         if (ret)
3131                 return -EFAULT;
3132         param += sizeof(struct floppy_raw_cmd);
3133         if (ptr->cmd_count > 33)
3134                         /* the command may now also take up the space
3135                          * initially intended for the reply & the
3136                          * reply count. Needed for long 82078 commands
3137                          * such as RESTORE, which takes ... 17 command
3138                          * bytes. Murphy's law #137: When you reserve
3139                          * 16 bytes for a structure, you'll one day
3140                          * discover that you really need 17...
3141                          */
3142                 return -EINVAL;
3143
3144         for (i = 0; i < 16; i++)
3145                 ptr->reply[i] = 0;
3146         ptr->resultcode = 0;
3147
3148         if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
3149                 if (ptr->length <= 0)
3150                         return -EINVAL;
3151                 ptr->kernel_data = (char *)fd_dma_mem_alloc(ptr->length);
3152                 fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length);
3153                 if (!ptr->kernel_data)
3154                         return -ENOMEM;
3155                 ptr->buffer_length = ptr->length;
3156         }
3157         if (ptr->flags & FD_RAW_WRITE) {
3158                 ret = fd_copyin(ptr->data, ptr->kernel_data, ptr->length);
3159                 if (ret)
3160                         return ret;
3161         }
3162
3163         if (ptr->flags & FD_RAW_MORE) {
3164                 rcmd = &(ptr->next);
3165                 ptr->rate &= 0x43;
3166                 goto loop;
3167         }
3168
3169         return 0;
3170 }
3171
3172 static int raw_cmd_ioctl(int cmd, void __user *param)
3173 {
3174         struct floppy_raw_cmd *my_raw_cmd;
3175         int drive;
3176         int ret2;
3177         int ret;
3178
3179         if (FDCS->rawcmd <= 1)
3180                 FDCS->rawcmd = 1;
3181         for (drive = 0; drive < N_DRIVE; drive++) {
3182                 if (FDC(drive) != fdc)
3183                         continue;
3184                 if (drive == current_drive) {
3185                         if (UDRS->fd_ref > 1) {
3186                                 FDCS->rawcmd = 2;
3187                                 break;
3188                         }
3189                 } else if (UDRS->fd_ref) {
3190                         FDCS->rawcmd = 2;
3191                         break;
3192                 }
3193         }
3194
3195         if (FDCS->reset)
3196                 return -EIO;
3197
3198         ret = raw_cmd_copyin(cmd, param, &my_raw_cmd);
3199         if (ret) {
3200                 raw_cmd_free(&my_raw_cmd);
3201                 return ret;
3202         }
3203
3204         raw_cmd = my_raw_cmd;
3205         cont = &raw_cmd_cont;
3206         ret = wait_til_done(floppy_start, true);
3207         debug_dcl(DP->flags, "calling disk change from raw_cmd ioctl\n");
3208
3209         if (ret != -EINTR && FDCS->reset)
3210                 ret = -EIO;
3211
3212         DRS->track = NO_TRACK;
3213
3214         ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd);
3215         if (!ret)
3216                 ret = ret2;
3217         raw_cmd_free(&my_raw_cmd);
3218         return ret;
3219 }
3220
3221 static int invalidate_drive(struct block_device *bdev)
3222 {
3223         /* invalidate the buffer track to force a reread */
3224         set_bit((long)bdev->bd_disk->private_data, &fake_change);
3225         process_fd_request();
3226         check_disk_change(bdev);
3227         return 0;
3228 }
3229
3230 static int set_geometry(unsigned int cmd, struct floppy_struct *g,
3231                                int drive, int type, struct block_device *bdev)
3232 {
3233         int cnt;
3234
3235         /* sanity checking for parameters. */
3236         if (g->sect <= 0 ||
3237             g->head <= 0 ||
3238             g->track <= 0 || g->track > UDP->tracks >> STRETCH(g) ||
3239             /* check if reserved bits are set */
3240             (g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_SECTBASEMASK)) != 0)
3241                 return -EINVAL;
3242         if (type) {
3243                 if (!capable(CAP_SYS_ADMIN))
3244                         return -EPERM;
3245                 mutex_lock(&open_lock);
3246                 if (lock_fdc(drive)) {
3247                         mutex_unlock(&open_lock);
3248                         return -EINTR;
3249                 }
3250                 floppy_type[type] = *g;
3251                 floppy_type[type].name = "user format";
3252                 for (cnt = type << 2; cnt < (type << 2) + 4; cnt++)
3253                         floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] =
3254                             floppy_type[type].size + 1;
3255                 process_fd_request();
3256                 for (cnt = 0; cnt < N_DRIVE; cnt++) {
3257                         struct block_device *bdev = opened_bdev[cnt];
3258                         if (!bdev || ITYPE(drive_state[cnt].fd_device) != type)
3259                     &