Merge branch 'floppy'
[sfrench/cifs-2.6.git] / drivers / block / floppy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/block/floppy.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 1993, 1994  Alain Knaff
7  *  Copyright (C) 1998 Alan Cox
8  */
9
10 /*
11  * 02.12.91 - Changed to static variables to indicate need for reset
12  * and recalibrate. This makes some things easier (output_byte reset
13  * checking etc), and means less interrupt jumping in case of errors,
14  * so the code is hopefully easier to understand.
15  */
16
17 /*
18  * This file is certainly a mess. I've tried my best to get it working,
19  * but I don't like programming floppies, and I have only one anyway.
20  * Urgel. I should check for more errors, and do more graceful error
21  * recovery. Seems there are problems with several drives. I've tried to
22  * correct them. No promises.
23  */
24
25 /*
26  * As with hd.c, all routines within this file can (and will) be called
27  * by interrupts, so extreme caution is needed. A hardware interrupt
28  * handler may not sleep, or a kernel panic will happen. Thus I cannot
29  * call "floppy-on" directly, but have to set a special timer interrupt
30  * etc.
31  */
32
33 /*
34  * 28.02.92 - made track-buffering routines, based on the routines written
35  * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus.
36  */
37
38 /*
39  * Automatic floppy-detection and formatting written by Werner Almesberger
40  * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with
41  * the floppy-change signal detection.
42  */
43
44 /*
45  * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed
46  * FDC data overrun bug, added some preliminary stuff for vertical
47  * recording support.
48  *
49  * 1992/9/17: Added DMA allocation & DMA functions. -- hhb.
50  *
51  * TODO: Errors are still not counted properly.
52  */
53
54 /* 1992/9/20
55  * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl)
56  * modeled after the freeware MS-DOS program fdformat/88 V1.8 by
57  * Christoph H. Hochst\"atter.
58  * I have fixed the shift values to the ones I always use. Maybe a new
59  * ioctl() should be created to be able to modify them.
60  * There is a bug in the driver that makes it impossible to format a
61  * floppy as the first thing after bootup.
62  */
63
64 /*
65  * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and
66  * this helped the floppy driver as well. Much cleaner, and still seems to
67  * work.
68  */
69
70 /* 1994/6/24 --bbroad-- added the floppy table entries and made
71  * minor modifications to allow 2.88 floppies to be run.
72  */
73
74 /* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more
75  * disk types.
76  */
77
78 /*
79  * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger
80  * format bug fixes, but unfortunately some new bugs too...
81  */
82
83 /* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write
84  * errors to allow safe writing by specialized programs.
85  */
86
87 /* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks
88  * by defining bit 1 of the "stretch" parameter to mean put sectors on the
89  * opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's
90  * drives are "upside-down").
91  */
92
93 /*
94  * 1995/8/26 -- Andreas Busse -- added Mips support.
95  */
96
97 /*
98  * 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent
99  * features to asm/floppy.h.
100  */
101
102 /*
103  * 1998/1/21 -- Richard Gooch <rgooch@atnf.csiro.au> -- devfs support
104  */
105
106 /*
107  * 1998/05/07 -- Russell King -- More portability cleanups; moved definition of
108  * interrupt and dma channel to asm/floppy.h. Cleaned up some formatting &
109  * use of '0' for NULL.
110  */
111
112 /*
113  * 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation
114  * failures.
115  */
116
117 /*
118  * 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives.
119  */
120
121 /*
122  * 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24
123  * days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were
124  * being used to store jiffies, which are unsigned longs).
125  */
126
127 /*
128  * 2000/08/28 -- Arnaldo Carvalho de Melo <acme@conectiva.com.br>
129  * - get rid of check_region
130  * - s/suser/capable/
131  */
132
133 /*
134  * 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no
135  * floppy controller (lingering task on list after module is gone... boom.)
136  */
137
138 /*
139  * 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range
140  * (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix
141  * requires many non-obvious changes in arch dependent code.
142  */
143
144 /* 2003/07/28 -- Daniele Bellucci <bellucda@tiscali.it>.
145  * Better audit of register_blkdev.
146  */
147
148 #undef  FLOPPY_SILENT_DCL_CLEAR
149
150 #define REALLY_SLOW_IO
151
152 #define DEBUGT 2
153
154 #define DPRINT(format, args...) \
155         pr_info("floppy%d: " format, current_drive, ##args)
156
157 #define DCL_DEBUG               /* debug disk change line */
158 #ifdef DCL_DEBUG
159 #define debug_dcl(test, fmt, args...) \
160         do { if ((test) & FD_DEBUG) DPRINT(fmt, ##args); } while (0)
161 #else
162 #define debug_dcl(test, fmt, args...) \
163         do { if (0) DPRINT(fmt, ##args); } while (0)
164 #endif
165
166 /* do print messages for unexpected interrupts */
167 static int print_unex = 1;
168 #include <linux/module.h>
169 #include <linux/sched.h>
170 #include <linux/fs.h>
171 #include <linux/kernel.h>
172 #include <linux/timer.h>
173 #include <linux/workqueue.h>
174 #define FDPATCHES
175 #include <linux/fdreg.h>
176 #include <linux/fd.h>
177 #include <linux/hdreg.h>
178 #include <linux/errno.h>
179 #include <linux/slab.h>
180 #include <linux/mm.h>
181 #include <linux/bio.h>
182 #include <linux/string.h>
183 #include <linux/jiffies.h>
184 #include <linux/fcntl.h>
185 #include <linux/delay.h>
186 #include <linux/mc146818rtc.h>  /* CMOS defines */
187 #include <linux/ioport.h>
188 #include <linux/interrupt.h>
189 #include <linux/init.h>
190 #include <linux/platform_device.h>
191 #include <linux/mod_devicetable.h>
192 #include <linux/mutex.h>
193 #include <linux/io.h>
194 #include <linux/uaccess.h>
195 #include <linux/async.h>
196 #include <linux/compat.h>
197
198 /*
199  * PS/2 floppies have much slower step rates than regular floppies.
200  * It's been recommended that take about 1/4 of the default speed
201  * in some more extreme cases.
202  */
203 static DEFINE_MUTEX(floppy_mutex);
204 static int slow_floppy;
205
206 #include <asm/dma.h>
207 #include <asm/irq.h>
208
209 static int FLOPPY_IRQ = 6;
210 static int FLOPPY_DMA = 2;
211 static int can_use_virtual_dma = 2;
212 /* =======
213  * can use virtual DMA:
214  * 0 = use of virtual DMA disallowed by config
215  * 1 = use of virtual DMA prescribed by config
216  * 2 = no virtual DMA preference configured.  By default try hard DMA,
217  * but fall back on virtual DMA when not enough memory available
218  */
219
220 static int use_virtual_dma;
221 /* =======
222  * use virtual DMA
223  * 0 using hard DMA
224  * 1 using virtual DMA
225  * This variable is set to virtual when a DMA mem problem arises, and
226  * reset back in floppy_grab_irq_and_dma.
227  * It is not safe to reset it in other circumstances, because the floppy
228  * driver may have several buffers in use at once, and we do currently not
229  * record each buffers capabilities
230  */
231
232 static DEFINE_SPINLOCK(floppy_lock);
233
234 static unsigned short virtual_dma_port = 0x3f0;
235 irqreturn_t floppy_interrupt(int irq, void *dev_id);
236 static int set_dor(int fdc, char mask, char data);
237
238 #define K_64    0x10000         /* 64KB */
239
240 /* the following is the mask of allowed drives. By default units 2 and
241  * 3 of both floppy controllers are disabled, because switching on the
242  * motor of these drives causes system hangs on some PCI computers. drive
243  * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if
244  * a drive is allowed.
245  *
246  * NOTE: This must come before we include the arch floppy header because
247  *       some ports reference this variable from there. -DaveM
248  */
249
250 static int allowed_drive_mask = 0x33;
251
252 #include <asm/floppy.h>
253
254 static int irqdma_allocated;
255
256 #include <linux/blk-mq.h>
257 #include <linux/blkpg.h>
258 #include <linux/cdrom.h>        /* for the compatibility eject ioctl */
259 #include <linux/completion.h>
260
261 static LIST_HEAD(floppy_reqs);
262 static struct request *current_req;
263 static int set_next_request(void);
264
265 #ifndef fd_get_dma_residue
266 #define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA)
267 #endif
268
269 /* Dma Memory related stuff */
270
271 #ifndef fd_dma_mem_free
272 #define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size))
273 #endif
274
275 #ifndef fd_dma_mem_alloc
276 #define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL, get_order(size))
277 #endif
278
279 #ifndef fd_cacheflush
280 #define fd_cacheflush(addr, size) /* nothing... */
281 #endif
282
283 static inline void fallback_on_nodma_alloc(char **addr, size_t l)
284 {
285 #ifdef FLOPPY_CAN_FALLBACK_ON_NODMA
286         if (*addr)
287                 return;         /* we have the memory */
288         if (can_use_virtual_dma != 2)
289                 return;         /* no fallback allowed */
290         pr_info("DMA memory shortage. Temporarily falling back on virtual DMA\n");
291         *addr = (char *)nodma_mem_alloc(l);
292 #else
293         return;
294 #endif
295 }
296
297 /* End dma memory related stuff */
298
299 static unsigned long fake_change;
300 static bool initialized;
301
302 #define ITYPE(x)        (((x) >> 2) & 0x1f)
303 #define TOMINOR(x)      ((x & 3) | ((x & 4) << 5))
304 #define UNIT(x)         ((x) & 0x03)            /* drive on fdc */
305 #define FDC(x)          (((x) & 0x04) >> 2)     /* fdc of drive */
306         /* reverse mapping from unit and fdc to drive */
307 #define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2))
308
309 #define DP      (&drive_params[current_drive])
310 #define DRS     (&drive_state[current_drive])
311 #define DRWE    (&write_errors[current_drive])
312 #define FDCS    (&fdc_state[fdc])
313
314 #define UDP     (&drive_params[drive])
315 #define UDRS    (&drive_state[drive])
316 #define UDRWE   (&write_errors[drive])
317 #define UFDCS   (&fdc_state[FDC(drive)])
318
319 #define PH_HEAD(floppy, head) (((((floppy)->stretch & 2) >> 1) ^ head) << 2)
320 #define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH)
321
322 /* read/write */
323 #define COMMAND         (raw_cmd->cmd[0])
324 #define DR_SELECT       (raw_cmd->cmd[1])
325 #define TRACK           (raw_cmd->cmd[2])
326 #define HEAD            (raw_cmd->cmd[3])
327 #define SECTOR          (raw_cmd->cmd[4])
328 #define SIZECODE        (raw_cmd->cmd[5])
329 #define SECT_PER_TRACK  (raw_cmd->cmd[6])
330 #define GAP             (raw_cmd->cmd[7])
331 #define SIZECODE2       (raw_cmd->cmd[8])
332 #define NR_RW 9
333
334 /* format */
335 #define F_SIZECODE      (raw_cmd->cmd[2])
336 #define F_SECT_PER_TRACK (raw_cmd->cmd[3])
337 #define F_GAP           (raw_cmd->cmd[4])
338 #define F_FILL          (raw_cmd->cmd[5])
339 #define NR_F 6
340
341 /*
342  * Maximum disk size (in kilobytes).
343  * This default is used whenever the current disk size is unknown.
344  * [Now it is rather a minimum]
345  */
346 #define MAX_DISK_SIZE 4         /* 3984 */
347
348 /*
349  * globals used by 'result()'
350  */
351 #define MAX_REPLIES 16
352 static unsigned char reply_buffer[MAX_REPLIES];
353 static int inr;         /* size of reply buffer, when called from interrupt */
354 #define ST0             (reply_buffer[0])
355 #define ST1             (reply_buffer[1])
356 #define ST2             (reply_buffer[2])
357 #define ST3             (reply_buffer[0])       /* result of GETSTATUS */
358 #define R_TRACK         (reply_buffer[3])
359 #define R_HEAD          (reply_buffer[4])
360 #define R_SECTOR        (reply_buffer[5])
361 #define R_SIZECODE      (reply_buffer[6])
362
363 #define SEL_DLY         (2 * HZ / 100)
364
365 /*
366  * this struct defines the different floppy drive types.
367  */
368 static struct {
369         struct floppy_drive_params params;
370         const char *name;       /* name printed while booting */
371 } default_drive_params[] = {
372 /* NOTE: the time values in jiffies should be in msec!
373  CMOS drive type
374   |     Maximum data rate supported by drive type
375   |     |   Head load time, msec
376   |     |   |   Head unload time, msec (not used)
377   |     |   |   |     Step rate interval, usec
378   |     |   |   |     |       Time needed for spinup time (jiffies)
379   |     |   |   |     |       |      Timeout for spinning down (jiffies)
380   |     |   |   |     |       |      |   Spindown offset (where disk stops)
381   |     |   |   |     |       |      |   |     Select delay
382   |     |   |   |     |       |      |   |     |     RPS
383   |     |   |   |     |       |      |   |     |     |    Max number of tracks
384   |     |   |   |     |       |      |   |     |     |    |     Interrupt timeout
385   |     |   |   |     |       |      |   |     |     |    |     |   Max nonintlv. sectors
386   |     |   |   |     |       |      |   |     |     |    |     |   | -Max Errors- flags */
387 {{0,  500, 16, 16, 8000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  80, 3*HZ, 20, {3,1,2,0,2}, 0,
388       0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" },
389
390 {{1,  300, 16, 16, 8000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  40, 3*HZ, 17, {3,1,2,0,2}, 0,
391       0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/
392
393 {{2,  500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6,  83, 3*HZ, 17, {3,1,2,0,2}, 0,
394       0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/
395
396 {{3,  250, 16, 16, 3000,    1*HZ, 3*HZ,  0, SEL_DLY, 5,  83, 3*HZ, 20, {3,1,2,0,2}, 0,
397       0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/
398
399 {{4,  500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 20, {3,1,2,0,2}, 0,
400       0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/
401
402 {{5, 1000, 15,  8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 40, {3,1,2,0,2}, 0,
403       0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/
404
405 {{6, 1000, 15,  8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5,  83, 3*HZ, 40, {3,1,2,0,2}, 0,
406       0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/
407 /*    |  --autodetected formats---    |      |      |
408  *    read_track                      |      |    Name printed when booting
409  *                                    |     Native format
410  *                  Frequency of disk change checks */
411 };
412
413 static struct floppy_drive_params drive_params[N_DRIVE];
414 static struct floppy_drive_struct drive_state[N_DRIVE];
415 static struct floppy_write_errors write_errors[N_DRIVE];
416 static struct timer_list motor_off_timer[N_DRIVE];
417 static struct gendisk *disks[N_DRIVE];
418 static struct blk_mq_tag_set tag_sets[N_DRIVE];
419 static struct block_device *opened_bdev[N_DRIVE];
420 static DEFINE_MUTEX(open_lock);
421 static struct floppy_raw_cmd *raw_cmd, default_raw_cmd;
422
423 /*
424  * This struct defines the different floppy types.
425  *
426  * Bit 0 of 'stretch' tells if the tracks need to be doubled for some
427  * types (e.g. 360kB diskette in 1.2MB drive, etc.).  Bit 1 of 'stretch'
428  * tells if the disk is in Commodore 1581 format, which means side 0 sectors
429  * are located on side 1 of the disk but with a side 0 ID, and vice-versa.
430  * This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the
431  * 1581's logical side 0 is on physical side 1, whereas the Sharp's logical
432  * side 0 is on physical side 0 (but with the misnamed sector IDs).
433  * 'stretch' should probably be renamed to something more general, like
434  * 'options'.
435  *
436  * Bits 2 through 9 of 'stretch' tell the number of the first sector.
437  * The LSB (bit 2) is flipped. For most disks, the first sector
438  * is 1 (represented by 0x00<<2).  For some CP/M and music sampler
439  * disks (such as Ensoniq EPS 16plus) it is 0 (represented as 0x01<<2).
440  * For Amstrad CPC disks it is 0xC1 (represented as 0xC0<<2).
441  *
442  * Other parameters should be self-explanatory (see also setfdprm(8)).
443  */
444 /*
445             Size
446              |  Sectors per track
447              |  | Head
448              |  | |  Tracks
449              |  | |  | Stretch
450              |  | |  | |  Gap 1 size
451              |  | |  | |    |  Data rate, | 0x40 for perp
452              |  | |  | |    |    |  Spec1 (stepping rate, head unload
453              |  | |  | |    |    |    |    /fmt gap (gap2) */
454 static struct floppy_struct floppy_type[32] = {
455         {    0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL    }, /*  0 no testing    */
456         {  720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360"  }, /*  1 360KB PC      */
457         { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /*  2 1.2MB AT      */
458         {  720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360"  }, /*  3 360KB SS 3.5" */
459         { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720"  }, /*  4 720KB 3.5"    */
460         {  720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360"  }, /*  5 360KB AT      */
461         { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720"  }, /*  6 720KB AT      */
462         { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /*  7 1.44MB 3.5"   */
463         { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /*  8 2.88MB 3.5"   */
464         { 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /*  9 3.12MB 3.5"   */
465
466         { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25"  */
467         { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5"   */
468         {  820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410"  }, /* 12 410KB 5.25"   */
469         { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820"  }, /* 13 820KB 3.5"    */
470         { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25"  */
471         { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5"   */
472         {  840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420"  }, /* 16 420KB 5.25"   */
473         { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830"  }, /* 17 830KB 3.5"    */
474         { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25"  */
475         { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5"  */
476
477         { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880"  }, /* 20 880KB 5.25"   */
478         { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5"   */
479         { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5"   */
480         { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25"   */
481         { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5"   */
482         { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5"   */
483         { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5"   */
484         { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5"   */
485         { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5"   */
486         { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5"   */
487
488         { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800"  }, /* 30 800KB 3.5"    */
489         { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5"    */
490 };
491
492 #define SECTSIZE (_FD_SECTSIZE(*floppy))
493
494 /* Auto-detection: Disk type used until the next media change occurs. */
495 static struct floppy_struct *current_type[N_DRIVE];
496
497 /*
498  * User-provided type information. current_type points to
499  * the respective entry of this array.
500  */
501 static struct floppy_struct user_params[N_DRIVE];
502
503 static sector_t floppy_sizes[256];
504
505 static char floppy_device_name[] = "floppy";
506
507 /*
508  * The driver is trying to determine the correct media format
509  * while probing is set. rw_interrupt() clears it after a
510  * successful access.
511  */
512 static int probing;
513
514 /* Synchronization of FDC access. */
515 #define FD_COMMAND_NONE         -1
516 #define FD_COMMAND_ERROR        2
517 #define FD_COMMAND_OKAY         3
518
519 static volatile int command_status = FD_COMMAND_NONE;
520 static unsigned long fdc_busy;
521 static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
522 static DECLARE_WAIT_QUEUE_HEAD(command_done);
523
524 /* Errors during formatting are counted here. */
525 static int format_errors;
526
527 /* Format request descriptor. */
528 static struct format_descr format_req;
529
530 /*
531  * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps
532  * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc),
533  * H is head unload time (1=16ms, 2=32ms, etc)
534  */
535
536 /*
537  * Track buffer
538  * Because these are written to by the DMA controller, they must
539  * not contain a 64k byte boundary crossing, or data will be
540  * corrupted/lost.
541  */
542 static char *floppy_track_buffer;
543 static int max_buffer_sectors;
544
545 static int *errors;
546 typedef void (*done_f)(int);
547 static const struct cont_t {
548         void (*interrupt)(void);
549                                 /* this is called after the interrupt of the
550                                  * main command */
551         void (*redo)(void);     /* this is called to retry the operation */
552         void (*error)(void);    /* this is called to tally an error */
553         done_f done;            /* this is called to say if the operation has
554                                  * succeeded/failed */
555 } *cont;
556
557 static void floppy_ready(void);
558 static void floppy_start(void);
559 static void process_fd_request(void);
560 static void recalibrate_floppy(void);
561 static void floppy_shutdown(struct work_struct *);
562
563 static int floppy_request_regions(int);
564 static void floppy_release_regions(int);
565 static int floppy_grab_irq_and_dma(void);
566 static void floppy_release_irq_and_dma(void);
567
568 /*
569  * The "reset" variable should be tested whenever an interrupt is scheduled,
570  * after the commands have been sent. This is to ensure that the driver doesn't
571  * get wedged when the interrupt doesn't come because of a failed command.
572  * reset doesn't need to be tested before sending commands, because
573  * output_byte is automatically disabled when reset is set.
574  */
575 static void reset_fdc(void);
576
577 /*
578  * These are global variables, as that's the easiest way to give
579  * information to interrupts. They are the data used for the current
580  * request.
581  */
582 #define NO_TRACK        -1
583 #define NEED_1_RECAL    -2
584 #define NEED_2_RECAL    -3
585
586 static atomic_t usage_count = ATOMIC_INIT(0);
587
588 /* buffer related variables */
589 static int buffer_track = -1;
590 static int buffer_drive = -1;
591 static int buffer_min = -1;
592 static int buffer_max = -1;
593
594 /* fdc related variables, should end up in a struct */
595 static struct floppy_fdc_state fdc_state[N_FDC];
596 static int fdc;                 /* current fdc */
597
598 static struct workqueue_struct *floppy_wq;
599
600 static struct floppy_struct *_floppy = floppy_type;
601 static unsigned char current_drive;
602 static long current_count_sectors;
603 static unsigned char fsector_t; /* sector in track */
604 static unsigned char in_sector_offset;  /* offset within physical sector,
605                                          * expressed in units of 512 bytes */
606
607 static inline bool drive_no_geom(int drive)
608 {
609         return !current_type[drive] && !ITYPE(UDRS->fd_device);
610 }
611
612 #ifndef fd_eject
613 static inline int fd_eject(int drive)
614 {
615         return -EINVAL;
616 }
617 #endif
618
619 /*
620  * Debugging
621  * =========
622  */
623 #ifdef DEBUGT
624 static long unsigned debugtimer;
625
626 static inline void set_debugt(void)
627 {
628         debugtimer = jiffies;
629 }
630
631 static inline void debugt(const char *func, const char *msg)
632 {
633         if (DP->flags & DEBUGT)
634                 pr_info("%s:%s dtime=%lu\n", func, msg, jiffies - debugtimer);
635 }
636 #else
637 static inline void set_debugt(void) { }
638 static inline void debugt(const char *func, const char *msg) { }
639 #endif /* DEBUGT */
640
641
642 static DECLARE_DELAYED_WORK(fd_timeout, floppy_shutdown);
643 static const char *timeout_message;
644
645 static void is_alive(const char *func, const char *message)
646 {
647         /* this routine checks whether the floppy driver is "alive" */
648         if (test_bit(0, &fdc_busy) && command_status < 2 &&
649             !delayed_work_pending(&fd_timeout)) {
650                 DPRINT("%s: timeout handler died.  %s\n", func, message);
651         }
652 }
653
654 static void (*do_floppy)(void) = NULL;
655
656 #define OLOGSIZE 20
657
658 static void (*lasthandler)(void);
659 static unsigned long interruptjiffies;
660 static unsigned long resultjiffies;
661 static int resultsize;
662 static unsigned long lastredo;
663
664 static struct output_log {
665         unsigned char data;
666         unsigned char status;
667         unsigned long jiffies;
668 } output_log[OLOGSIZE];
669
670 static int output_log_pos;
671
672 #define current_reqD -1
673 #define MAXTIMEOUT -2
674
675 static void __reschedule_timeout(int drive, const char *message)
676 {
677         unsigned long delay;
678
679         if (drive == current_reqD)
680                 drive = current_drive;
681
682         if (drive < 0 || drive >= N_DRIVE) {
683                 delay = 20UL * HZ;
684                 drive = 0;
685         } else
686                 delay = UDP->timeout;
687
688         mod_delayed_work(floppy_wq, &fd_timeout, delay);
689         if (UDP->flags & FD_DEBUG)
690                 DPRINT("reschedule timeout %s\n", message);
691         timeout_message = message;
692 }
693
694 static void reschedule_timeout(int drive, const char *message)
695 {
696         unsigned long flags;
697
698         spin_lock_irqsave(&floppy_lock, flags);
699         __reschedule_timeout(drive, message);
700         spin_unlock_irqrestore(&floppy_lock, flags);
701 }
702
703 #define INFBOUND(a, b) (a) = max_t(int, a, b)
704 #define SUPBOUND(a, b) (a) = min_t(int, a, b)
705
706 /*
707  * Bottom half floppy driver.
708  * ==========================
709  *
710  * This part of the file contains the code talking directly to the hardware,
711  * and also the main service loop (seek-configure-spinup-command)
712  */
713
714 /*
715  * disk change.
716  * This routine is responsible for maintaining the FD_DISK_CHANGE flag,
717  * and the last_checked date.
718  *
719  * last_checked is the date of the last check which showed 'no disk change'
720  * FD_DISK_CHANGE is set under two conditions:
721  * 1. The floppy has been changed after some i/o to that floppy already
722  *    took place.
723  * 2. No floppy disk is in the drive. This is done in order to ensure that
724  *    requests are quickly flushed in case there is no disk in the drive. It
725  *    follows that FD_DISK_CHANGE can only be cleared if there is a disk in
726  *    the drive.
727  *
728  * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet.
729  * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on
730  *  each seek. If a disk is present, the disk change line should also be
731  *  cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk
732  *  change line is set, this means either that no disk is in the drive, or
733  *  that it has been removed since the last seek.
734  *
735  * This means that we really have a third possibility too:
736  *  The floppy has been changed after the last seek.
737  */
738
739 static int disk_change(int drive)
740 {
741         int fdc = FDC(drive);
742
743         if (time_before(jiffies, UDRS->select_date + UDP->select_delay))
744                 DPRINT("WARNING disk change called early\n");
745         if (!(FDCS->dor & (0x10 << UNIT(drive))) ||
746             (FDCS->dor & 3) != UNIT(drive) || fdc != FDC(drive)) {
747                 DPRINT("probing disk change on unselected drive\n");
748                 DPRINT("drive=%d fdc=%d dor=%x\n", drive, FDC(drive),
749                        (unsigned int)FDCS->dor);
750         }
751
752         debug_dcl(UDP->flags,
753                   "checking disk change line for drive %d\n", drive);
754         debug_dcl(UDP->flags, "jiffies=%lu\n", jiffies);
755         debug_dcl(UDP->flags, "disk change line=%x\n", fd_inb(FD_DIR) & 0x80);
756         debug_dcl(UDP->flags, "flags=%lx\n", UDRS->flags);
757
758         if (UDP->flags & FD_BROKEN_DCL)
759                 return test_bit(FD_DISK_CHANGED_BIT, &UDRS->flags);
760         if ((fd_inb(FD_DIR) ^ UDP->flags) & 0x80) {
761                 set_bit(FD_VERIFY_BIT, &UDRS->flags);
762                                         /* verify write protection */
763
764                 if (UDRS->maxblock)     /* mark it changed */
765                         set_bit(FD_DISK_CHANGED_BIT, &UDRS->flags);
766
767                 /* invalidate its geometry */
768                 if (UDRS->keep_data >= 0) {
769                         if ((UDP->flags & FTD_MSG) &&
770                             current_type[drive] != NULL)
771                                 DPRINT("Disk type is undefined after disk change\n");
772                         current_type[drive] = NULL;
773                         floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE << 1;
774                 }
775
776                 return 1;
777         } else {
778                 UDRS->last_checked = jiffies;
779                 clear_bit(FD_DISK_NEWCHANGE_BIT, &UDRS->flags);
780         }
781         return 0;
782 }
783
784 static inline int is_selected(int dor, int unit)
785 {
786         return ((dor & (0x10 << unit)) && (dor & 3) == unit);
787 }
788
789 static bool is_ready_state(int status)
790 {
791         int state = status & (STATUS_READY | STATUS_DIR | STATUS_DMA);
792         return state == STATUS_READY;
793 }
794
795 static int set_dor(int fdc, char mask, char data)
796 {
797         unsigned char unit;
798         unsigned char drive;
799         unsigned char newdor;
800         unsigned char olddor;
801
802         if (FDCS->address == -1)
803                 return -1;
804
805         olddor = FDCS->dor;
806         newdor = (olddor & mask) | data;
807         if (newdor != olddor) {
808                 unit = olddor & 0x3;
809                 if (is_selected(olddor, unit) && !is_selected(newdor, unit)) {
810                         drive = REVDRIVE(fdc, unit);
811                         debug_dcl(UDP->flags,
812                                   "calling disk change from set_dor\n");
813                         disk_change(drive);
814                 }
815                 FDCS->dor = newdor;
816                 fd_outb(newdor, FD_DOR);
817
818                 unit = newdor & 0x3;
819                 if (!is_selected(olddor, unit) && is_selected(newdor, unit)) {
820                         drive = REVDRIVE(fdc, unit);
821                         UDRS->select_date = jiffies;
822                 }
823         }
824         return olddor;
825 }
826
827 static void twaddle(void)
828 {
829         if (DP->select_delay)
830                 return;
831         fd_outb(FDCS->dor & ~(0x10 << UNIT(current_drive)), FD_DOR);
832         fd_outb(FDCS->dor, FD_DOR);
833         DRS->select_date = jiffies;
834 }
835
836 /*
837  * Reset all driver information about the current fdc.
838  * This is needed after a reset, and after a raw command.
839  */
840 static void reset_fdc_info(int mode)
841 {
842         int drive;
843
844         FDCS->spec1 = FDCS->spec2 = -1;
845         FDCS->need_configure = 1;
846         FDCS->perp_mode = 1;
847         FDCS->rawcmd = 0;
848         for (drive = 0; drive < N_DRIVE; drive++)
849                 if (FDC(drive) == fdc && (mode || UDRS->track != NEED_1_RECAL))
850                         UDRS->track = NEED_2_RECAL;
851 }
852
853 /* selects the fdc and drive, and enables the fdc's input/dma. */
854 static void set_fdc(int drive)
855 {
856         if (drive >= 0 && drive < N_DRIVE) {
857                 fdc = FDC(drive);
858                 current_drive = drive;
859         }
860         if (fdc != 1 && fdc != 0) {
861                 pr_info("bad fdc value\n");
862                 return;
863         }
864         set_dor(fdc, ~0, 8);
865 #if N_FDC > 1
866         set_dor(1 - fdc, ~8, 0);
867 #endif
868         if (FDCS->rawcmd == 2)
869                 reset_fdc_info(1);
870         if (fd_inb(FD_STATUS) != STATUS_READY)
871                 FDCS->reset = 1;
872 }
873
874 /* locks the driver */
875 static int lock_fdc(int drive)
876 {
877         if (WARN(atomic_read(&usage_count) == 0,
878                  "Trying to lock fdc while usage count=0\n"))
879                 return -1;
880
881         if (wait_event_interruptible(fdc_wait, !test_and_set_bit(0, &fdc_busy)))
882                 return -EINTR;
883
884         command_status = FD_COMMAND_NONE;
885
886         reschedule_timeout(drive, "lock fdc");
887         set_fdc(drive);
888         return 0;
889 }
890
891 /* unlocks the driver */
892 static void unlock_fdc(void)
893 {
894         if (!test_bit(0, &fdc_busy))
895                 DPRINT("FDC access conflict!\n");
896
897         raw_cmd = NULL;
898         command_status = FD_COMMAND_NONE;
899         cancel_delayed_work(&fd_timeout);
900         do_floppy = NULL;
901         cont = NULL;
902         clear_bit(0, &fdc_busy);
903         wake_up(&fdc_wait);
904 }
905
906 /* switches the motor off after a given timeout */
907 static void motor_off_callback(struct timer_list *t)
908 {
909         unsigned long nr = t - motor_off_timer;
910         unsigned char mask = ~(0x10 << UNIT(nr));
911
912         if (WARN_ON_ONCE(nr >= N_DRIVE))
913                 return;
914
915         set_dor(FDC(nr), mask, 0);
916 }
917
918 /* schedules motor off */
919 static void floppy_off(unsigned int drive)
920 {
921         unsigned long volatile delta;
922         int fdc = FDC(drive);
923
924         if (!(FDCS->dor & (0x10 << UNIT(drive))))
925                 return;
926
927         del_timer(motor_off_timer + drive);
928
929         /* make spindle stop in a position which minimizes spinup time
930          * next time */
931         if (UDP->rps) {
932                 delta = jiffies - UDRS->first_read_date + HZ -
933                     UDP->spindown_offset;
934                 delta = ((delta * UDP->rps) % HZ) / UDP->rps;
935                 motor_off_timer[drive].expires =
936                     jiffies + UDP->spindown - delta;
937         }
938         add_timer(motor_off_timer + drive);
939 }
940
941 /*
942  * cycle through all N_DRIVE floppy drives, for disk change testing.
943  * stopping at current drive. This is done before any long operation, to
944  * be sure to have up to date disk change information.
945  */
946 static void scandrives(void)
947 {
948         int i;
949         int drive;
950         int saved_drive;
951
952         if (DP->select_delay)
953                 return;
954
955         saved_drive = current_drive;
956         for (i = 0; i < N_DRIVE; i++) {
957                 drive = (saved_drive + i + 1) % N_DRIVE;
958                 if (UDRS->fd_ref == 0 || UDP->select_delay != 0)
959                         continue;       /* skip closed drives */
960                 set_fdc(drive);
961                 if (!(set_dor(fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) &
962                       (0x10 << UNIT(drive))))
963                         /* switch the motor off again, if it was off to
964                          * begin with */
965                         set_dor(fdc, ~(0x10 << UNIT(drive)), 0);
966         }
967         set_fdc(saved_drive);
968 }
969
970 static void empty(void)
971 {
972 }
973
974 static void (*floppy_work_fn)(void);
975
976 static void floppy_work_workfn(struct work_struct *work)
977 {
978         floppy_work_fn();
979 }
980
981 static DECLARE_WORK(floppy_work, floppy_work_workfn);
982
983 static void schedule_bh(void (*handler)(void))
984 {
985         WARN_ON(work_pending(&floppy_work));
986
987         floppy_work_fn = handler;
988         queue_work(floppy_wq, &floppy_work);
989 }
990
991 static void (*fd_timer_fn)(void) = NULL;
992
993 static void fd_timer_workfn(struct work_struct *work)
994 {
995         fd_timer_fn();
996 }
997
998 static DECLARE_DELAYED_WORK(fd_timer, fd_timer_workfn);
999
1000 static void cancel_activity(void)
1001 {
1002         do_floppy = NULL;
1003         cancel_delayed_work_sync(&fd_timer);
1004         cancel_work_sync(&floppy_work);
1005 }
1006
1007 /* this function makes sure that the disk stays in the drive during the
1008  * transfer */
1009 static void fd_watchdog(void)
1010 {
1011         debug_dcl(DP->flags, "calling disk change from watchdog\n");
1012
1013         if (disk_change(current_drive)) {
1014                 DPRINT("disk removed during i/o\n");
1015                 cancel_activity();
1016                 cont->done(0);
1017                 reset_fdc();
1018         } else {
1019                 cancel_delayed_work(&fd_timer);
1020                 fd_timer_fn = fd_watchdog;
1021                 queue_delayed_work(floppy_wq, &fd_timer, HZ / 10);
1022         }
1023 }
1024
1025 static void main_command_interrupt(void)
1026 {
1027         cancel_delayed_work(&fd_timer);
1028         cont->interrupt();
1029 }
1030
1031 /* waits for a delay (spinup or select) to pass */
1032 static int fd_wait_for_completion(unsigned long expires,
1033                                   void (*function)(void))
1034 {
1035         if (FDCS->reset) {
1036                 reset_fdc();    /* do the reset during sleep to win time
1037                                  * if we don't need to sleep, it's a good
1038                                  * occasion anyways */
1039                 return 1;
1040         }
1041
1042         if (time_before(jiffies, expires)) {
1043                 cancel_delayed_work(&fd_timer);
1044                 fd_timer_fn = function;
1045                 queue_delayed_work(floppy_wq, &fd_timer, expires - jiffies);
1046                 return 1;
1047         }
1048         return 0;
1049 }
1050
1051 static void setup_DMA(void)
1052 {
1053         unsigned long f;
1054
1055         if (raw_cmd->length == 0) {
1056                 int i;
1057
1058                 pr_info("zero dma transfer size:");
1059                 for (i = 0; i < raw_cmd->cmd_count; i++)
1060                         pr_cont("%x,", raw_cmd->cmd[i]);
1061                 pr_cont("\n");
1062                 cont->done(0);
1063                 FDCS->reset = 1;
1064                 return;
1065         }
1066         if (((unsigned long)raw_cmd->kernel_data) % 512) {
1067                 pr_info("non aligned address: %p\n", raw_cmd->kernel_data);
1068                 cont->done(0);
1069                 FDCS->reset = 1;
1070                 return;
1071         }
1072         f = claim_dma_lock();
1073         fd_disable_dma();
1074 #ifdef fd_dma_setup
1075         if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length,
1076                          (raw_cmd->flags & FD_RAW_READ) ?
1077                          DMA_MODE_READ : DMA_MODE_WRITE, FDCS->address) < 0) {
1078                 release_dma_lock(f);
1079                 cont->done(0);
1080                 FDCS->reset = 1;
1081                 return;
1082         }
1083         release_dma_lock(f);
1084 #else
1085         fd_clear_dma_ff();
1086         fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length);
1087         fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ) ?
1088                         DMA_MODE_READ : DMA_MODE_WRITE);
1089         fd_set_dma_addr(raw_cmd->kernel_data);
1090         fd_set_dma_count(raw_cmd->length);
1091         virtual_dma_port = FDCS->address;
1092         fd_enable_dma();
1093         release_dma_lock(f);
1094 #endif
1095 }
1096
1097 static void show_floppy(void);
1098
1099 /* waits until the fdc becomes ready */
1100 static int wait_til_ready(void)
1101 {
1102         int status;
1103         int counter;
1104
1105         if (FDCS->reset)
1106                 return -1;
1107         for (counter = 0; counter < 10000; counter++) {
1108                 status = fd_inb(FD_STATUS);
1109                 if (status & STATUS_READY)
1110                         return status;
1111         }
1112         if (initialized) {
1113                 DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc);
1114                 show_floppy();
1115         }
1116         FDCS->reset = 1;
1117         return -1;
1118 }
1119
1120 /* sends a command byte to the fdc */
1121 static int output_byte(char byte)
1122 {
1123         int status = wait_til_ready();
1124
1125         if (status < 0)
1126                 return -1;
1127
1128         if (is_ready_state(status)) {
1129                 fd_outb(byte, FD_DATA);
1130                 output_log[output_log_pos].data = byte;
1131                 output_log[output_log_pos].status = status;
1132                 output_log[output_log_pos].jiffies = jiffies;
1133                 output_log_pos = (output_log_pos + 1) % OLOGSIZE;
1134                 return 0;
1135         }
1136         FDCS->reset = 1;
1137         if (initialized) {
1138                 DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n",
1139                        byte, fdc, status);
1140                 show_floppy();
1141         }
1142         return -1;
1143 }
1144
1145 /* gets the response from the fdc */
1146 static int result(void)
1147 {
1148         int i;
1149         int status = 0;
1150
1151         for (i = 0; i < MAX_REPLIES; i++) {
1152                 status = wait_til_ready();
1153                 if (status < 0)
1154                         break;
1155                 status &= STATUS_DIR | STATUS_READY | STATUS_BUSY | STATUS_DMA;
1156                 if ((status & ~STATUS_BUSY) == STATUS_READY) {
1157                         resultjiffies = jiffies;
1158                         resultsize = i;
1159                         return i;
1160                 }
1161                 if (status == (STATUS_DIR | STATUS_READY | STATUS_BUSY))
1162                         reply_buffer[i] = fd_inb(FD_DATA);
1163                 else
1164                         break;
1165         }
1166         if (initialized) {
1167                 DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n",
1168                        fdc, status, i);
1169                 show_floppy();
1170         }
1171         FDCS->reset = 1;
1172         return -1;
1173 }
1174
1175 #define MORE_OUTPUT -2
1176 /* does the fdc need more output? */
1177 static int need_more_output(void)
1178 {
1179         int status = wait_til_ready();
1180
1181         if (status < 0)
1182                 return -1;
1183
1184         if (is_ready_state(status))
1185                 return MORE_OUTPUT;
1186
1187         return result();
1188 }
1189
1190 /* Set perpendicular mode as required, based on data rate, if supported.
1191  * 82077 Now tested. 1Mbps data rate only possible with 82077-1.
1192  */
1193 static void perpendicular_mode(void)
1194 {
1195         unsigned char perp_mode;
1196
1197         if (raw_cmd->rate & 0x40) {
1198                 switch (raw_cmd->rate & 3) {
1199                 case 0:
1200                         perp_mode = 2;
1201                         break;
1202                 case 3:
1203                         perp_mode = 3;
1204                         break;
1205                 default:
1206                         DPRINT("Invalid data rate for perpendicular mode!\n");
1207                         cont->done(0);
1208                         FDCS->reset = 1;
1209                                         /*
1210                                          * convenient way to return to
1211                                          * redo without too much hassle
1212                                          * (deep stack et al.)
1213                                          */
1214                         return;
1215                 }
1216         } else
1217                 perp_mode = 0;
1218
1219         if (FDCS->perp_mode == perp_mode)
1220                 return;
1221         if (FDCS->version >= FDC_82077_ORIG) {
1222                 output_byte(FD_PERPENDICULAR);
1223                 output_byte(perp_mode);
1224                 FDCS->perp_mode = perp_mode;
1225         } else if (perp_mode) {
1226                 DPRINT("perpendicular mode not supported by this FDC.\n");
1227         }
1228 }                               /* perpendicular_mode */
1229
1230 static int fifo_depth = 0xa;
1231 static int no_fifo;
1232
1233 static int fdc_configure(void)
1234 {
1235         /* Turn on FIFO */
1236         output_byte(FD_CONFIGURE);
1237         if (need_more_output() != MORE_OUTPUT)
1238                 return 0;
1239         output_byte(0);
1240         output_byte(0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf));
1241         output_byte(0);         /* pre-compensation from track
1242                                    0 upwards */
1243         return 1;
1244 }
1245
1246 #define NOMINAL_DTR 500
1247
1248 /* Issue a "SPECIFY" command to set the step rate time, head unload time,
1249  * head load time, and DMA disable flag to values needed by floppy.
1250  *
1251  * The value "dtr" is the data transfer rate in Kbps.  It is needed
1252  * to account for the data rate-based scaling done by the 82072 and 82077
1253  * FDC types.  This parameter is ignored for other types of FDCs (i.e.
1254  * 8272a).
1255  *
1256  * Note that changing the data transfer rate has a (probably deleterious)
1257  * effect on the parameters subject to scaling for 82072/82077 FDCs, so
1258  * fdc_specify is called again after each data transfer rate
1259  * change.
1260  *
1261  * srt: 1000 to 16000 in microseconds
1262  * hut: 16 to 240 milliseconds
1263  * hlt: 2 to 254 milliseconds
1264  *
1265  * These values are rounded up to the next highest available delay time.
1266  */
1267 static void fdc_specify(void)
1268 {
1269         unsigned char spec1;
1270         unsigned char spec2;
1271         unsigned long srt;
1272         unsigned long hlt;
1273         unsigned long hut;
1274         unsigned long dtr = NOMINAL_DTR;
1275         unsigned long scale_dtr = NOMINAL_DTR;
1276         int hlt_max_code = 0x7f;
1277         int hut_max_code = 0xf;
1278
1279         if (FDCS->need_configure && FDCS->version >= FDC_82072A) {
1280                 fdc_configure();
1281                 FDCS->need_configure = 0;
1282         }
1283
1284         switch (raw_cmd->rate & 0x03) {
1285         case 3:
1286                 dtr = 1000;
1287                 break;
1288         case 1:
1289                 dtr = 300;
1290                 if (FDCS->version >= FDC_82078) {
1291                         /* chose the default rate table, not the one
1292                          * where 1 = 2 Mbps */
1293                         output_byte(FD_DRIVESPEC);
1294                         if (need_more_output() == MORE_OUTPUT) {
1295                                 output_byte(UNIT(current_drive));
1296                                 output_byte(0xc0);
1297                         }
1298                 }
1299                 break;
1300         case 2:
1301                 dtr = 250;
1302                 break;
1303         }
1304
1305         if (FDCS->version >= FDC_82072) {
1306                 scale_dtr = dtr;
1307                 hlt_max_code = 0x00;    /* 0==256msec*dtr0/dtr (not linear!) */
1308                 hut_max_code = 0x0;     /* 0==256msec*dtr0/dtr (not linear!) */
1309         }
1310
1311         /* Convert step rate from microseconds to milliseconds and 4 bits */
1312         srt = 16 - DIV_ROUND_UP(DP->srt * scale_dtr / 1000, NOMINAL_DTR);
1313         if (slow_floppy)
1314                 srt = srt / 4;
1315
1316         SUPBOUND(srt, 0xf);
1317         INFBOUND(srt, 0);
1318
1319         hlt = DIV_ROUND_UP(DP->hlt * scale_dtr / 2, NOMINAL_DTR);
1320         if (hlt < 0x01)
1321                 hlt = 0x01;
1322         else if (hlt > 0x7f)
1323                 hlt = hlt_max_code;
1324
1325         hut = DIV_ROUND_UP(DP->hut * scale_dtr / 16, NOMINAL_DTR);
1326         if (hut < 0x1)
1327                 hut = 0x1;
1328         else if (hut > 0xf)
1329                 hut = hut_max_code;
1330
1331         spec1 = (srt << 4) | hut;
1332         spec2 = (hlt << 1) | (use_virtual_dma & 1);
1333
1334         /* If these parameters did not change, just return with success */
1335         if (FDCS->spec1 != spec1 || FDCS->spec2 != spec2) {
1336                 /* Go ahead and set spec1 and spec2 */
1337                 output_byte(FD_SPECIFY);
1338                 output_byte(FDCS->spec1 = spec1);
1339                 output_byte(FDCS->spec2 = spec2);
1340         }
1341 }                               /* fdc_specify */
1342
1343 /* Set the FDC's data transfer rate on behalf of the specified drive.
1344  * NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue
1345  * of the specify command (i.e. using the fdc_specify function).
1346  */
1347 static int fdc_dtr(void)
1348 {
1349         /* If data rate not already set to desired value, set it. */
1350         if ((raw_cmd->rate & 3) == FDCS->dtr)
1351                 return 0;
1352
1353         /* Set dtr */
1354         fd_outb(raw_cmd->rate & 3, FD_DCR);
1355
1356         /* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB)
1357          * need a stabilization period of several milliseconds to be
1358          * enforced after data rate changes before R/W operations.
1359          * Pause 5 msec to avoid trouble. (Needs to be 2 jiffies)
1360          */
1361         FDCS->dtr = raw_cmd->rate & 3;
1362         return fd_wait_for_completion(jiffies + 2UL * HZ / 100, floppy_ready);
1363 }                               /* fdc_dtr */
1364
1365 static void tell_sector(void)
1366 {
1367         pr_cont(": track %d, head %d, sector %d, size %d",
1368                 R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE);
1369 }                               /* tell_sector */
1370
1371 static void print_errors(void)
1372 {
1373         DPRINT("");
1374         if (ST0 & ST0_ECE) {
1375                 pr_cont("Recalibrate failed!");
1376         } else if (ST2 & ST2_CRC) {
1377                 pr_cont("data CRC error");
1378                 tell_sector();
1379         } else if (ST1 & ST1_CRC) {
1380                 pr_cont("CRC error");
1381                 tell_sector();
1382         } else if ((ST1 & (ST1_MAM | ST1_ND)) ||
1383                    (ST2 & ST2_MAM)) {
1384                 if (!probing) {
1385                         pr_cont("sector not found");
1386                         tell_sector();
1387                 } else
1388                         pr_cont("probe failed...");
1389         } else if (ST2 & ST2_WC) {      /* seek error */
1390                 pr_cont("wrong cylinder");
1391         } else if (ST2 & ST2_BC) {      /* cylinder marked as bad */
1392                 pr_cont("bad cylinder");
1393         } else {
1394                 pr_cont("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x",
1395                         ST0, ST1, ST2);
1396                 tell_sector();
1397         }
1398         pr_cont("\n");
1399 }
1400
1401 /*
1402  * OK, this error interpreting routine is called after a
1403  * DMA read/write has succeeded
1404  * or failed, so we check the results, and copy any buffers.
1405  * hhb: Added better error reporting.
1406  * ak: Made this into a separate routine.
1407  */
1408 static int interpret_errors(void)
1409 {
1410         char bad;
1411
1412         if (inr != 7) {
1413                 DPRINT("-- FDC reply error\n");
1414                 FDCS->reset = 1;
1415                 return 1;
1416         }
1417
1418         /* check IC to find cause of interrupt */
1419         switch (ST0 & ST0_INTR) {
1420         case 0x40:              /* error occurred during command execution */
1421                 if (ST1 & ST1_EOC)
1422                         return 0;       /* occurs with pseudo-DMA */
1423                 bad = 1;
1424                 if (ST1 & ST1_WP) {
1425                         DPRINT("Drive is write protected\n");
1426                         clear_bit(FD_DISK_WRITABLE_BIT, &DRS->flags);
1427                         cont->done(0);
1428                         bad = 2;
1429                 } else if (ST1 & ST1_ND) {
1430                         set_bit(FD_NEED_TWADDLE_BIT, &DRS->flags);
1431                 } else if (ST1 & ST1_OR) {
1432                         if (DP->flags & FTD_MSG)
1433                                 DPRINT("Over/Underrun - retrying\n");
1434                         bad = 0;
1435                 } else if (*errors >= DP->max_errors.reporting) {
1436                         print_errors();
1437                 }
1438                 if (ST2 & ST2_WC || ST2 & ST2_BC)
1439                         /* wrong cylinder => recal */
1440                         DRS->track = NEED_2_RECAL;
1441                 return bad;
1442         case 0x80:              /* invalid command given */
1443                 DPRINT("Invalid FDC command given!\n");
1444                 cont->done(0);
1445                 return 2;
1446         case 0xc0:
1447                 DPRINT("Abnormal termination caused by polling\n");
1448                 cont->error();
1449                 return 2;
1450         default:                /* (0) Normal command termination */
1451                 return 0;
1452         }
1453 }
1454
1455 /*
1456  * This routine is called when everything should be correctly set up
1457  * for the transfer (i.e. floppy motor is on, the correct floppy is
1458  * selected, and the head is sitting on the right track).
1459  */
1460 static void setup_rw_floppy(void)
1461 {
1462         int i;
1463         int r;
1464         int flags;
1465         unsigned long ready_date;
1466         void (*function)(void);
1467
1468         flags = raw_cmd->flags;
1469         if (flags & (FD_RAW_READ | FD_RAW_WRITE))
1470                 flags |= FD_RAW_INTR;
1471
1472         if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)) {
1473                 ready_date = DRS->spinup_date + DP->spinup;
1474                 /* If spinup will take a long time, rerun scandrives
1475                  * again just before spinup completion. Beware that
1476                  * after scandrives, we must again wait for selection.
1477                  */
1478                 if (time_after(ready_date, jiffies + DP->select_delay)) {
1479                         ready_date -= DP->select_delay;
1480                         function = floppy_start;
1481                 } else
1482                         function = setup_rw_floppy;
1483
1484                 /* wait until the floppy is spinning fast enough */
1485                 if (fd_wait_for_completion(ready_date, function))
1486                         return;
1487         }
1488         if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE))
1489                 setup_DMA();
1490
1491         if (flags & FD_RAW_INTR)
1492                 do_floppy = main_command_interrupt;
1493
1494         r = 0;
1495         for (i = 0; i < raw_cmd->cmd_count; i++)
1496                 r |= output_byte(raw_cmd->cmd[i]);
1497
1498         debugt(__func__, "rw_command");
1499
1500         if (r) {
1501                 cont->error();
1502                 reset_fdc();
1503                 return;
1504         }
1505
1506         if (!(flags & FD_RAW_INTR)) {
1507                 inr = result();
1508                 cont->interrupt();
1509         } else if (flags & FD_RAW_NEED_DISK)
1510                 fd_watchdog();
1511 }
1512
1513 static int blind_seek;
1514
1515 /*
1516  * This is the routine called after every seek (or recalibrate) interrupt
1517  * from the floppy controller.
1518  */
1519 static void seek_interrupt(void)
1520 {
1521         debugt(__func__, "");
1522         if (inr != 2 || (ST0 & 0xF8) != 0x20) {
1523                 DPRINT("seek failed\n");
1524                 DRS->track = NEED_2_RECAL;
1525                 cont->error();
1526                 cont->redo();
1527                 return;
1528         }
1529         if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek) {
1530                 debug_dcl(DP->flags,
1531                           "clearing NEWCHANGE flag because of effective seek\n");
1532                 debug_dcl(DP->flags, "jiffies=%lu\n", jiffies);
1533                 clear_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
1534                                         /* effective seek */
1535                 DRS->select_date = jiffies;
1536         }
1537         DRS->track = ST1;
1538         floppy_ready();
1539 }
1540
1541 static void check_wp(void)
1542 {
1543         if (test_bit(FD_VERIFY_BIT, &DRS->flags)) {
1544                                         /* check write protection */
1545                 output_byte(FD_GETSTATUS);
1546                 output_byte(UNIT(current_drive));
1547                 if (result() != 1) {
1548                         FDCS->reset = 1;
1549                         return;
1550                 }
1551                 clear_bit(FD_VERIFY_BIT, &DRS->flags);
1552                 clear_bit(FD_NEED_TWADDLE_BIT, &DRS->flags);
1553                 debug_dcl(DP->flags,
1554                           "checking whether disk is write protected\n");
1555                 debug_dcl(DP->flags, "wp=%x\n", ST3 & 0x40);
1556                 if (!(ST3 & 0x40))
1557                         set_bit(FD_DISK_WRITABLE_BIT, &DRS->flags);
1558                 else
1559                         clear_bit(FD_DISK_WRITABLE_BIT, &DRS->flags);
1560         }
1561 }
1562
1563 static void seek_floppy(void)
1564 {
1565         int track;
1566
1567         blind_seek = 0;
1568
1569         debug_dcl(DP->flags, "calling disk change from %s\n", __func__);
1570
1571         if (!test_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags) &&
1572             disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)) {
1573                 /* the media changed flag should be cleared after the seek.
1574                  * If it isn't, this means that there is really no disk in
1575                  * the drive.
1576                  */
1577                 set_bit(FD_DISK_CHANGED_BIT, &DRS->flags);
1578                 cont->done(0);
1579                 cont->redo();
1580                 return;
1581         }
1582         if (DRS->track <= NEED_1_RECAL) {
1583                 recalibrate_floppy();
1584                 return;
1585         } else if (test_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags) &&
1586                    (raw_cmd->flags & FD_RAW_NEED_DISK) &&
1587                    (DRS->track <= NO_TRACK || DRS->track == raw_cmd->track)) {
1588                 /* we seek to clear the media-changed condition. Does anybody
1589                  * know a more elegant way, which works on all drives? */
1590                 if (raw_cmd->track)
1591                         track = raw_cmd->track - 1;
1592                 else {
1593                         if (DP->flags & FD_SILENT_DCL_CLEAR) {
1594                                 set_dor(fdc, ~(0x10 << UNIT(current_drive)), 0);
1595                                 blind_seek = 1;
1596                                 raw_cmd->flags |= FD_RAW_NEED_SEEK;
1597                         }
1598                         track = 1;
1599                 }
1600         } else {
1601                 check_wp();
1602                 if (raw_cmd->track != DRS->track &&
1603                     (raw_cmd->flags & FD_RAW_NEED_SEEK))
1604                         track = raw_cmd->track;
1605                 else {
1606                         setup_rw_floppy();
1607                         return;
1608                 }
1609         }
1610
1611         do_floppy = seek_interrupt;
1612         output_byte(FD_SEEK);
1613         output_byte(UNIT(current_drive));
1614         if (output_byte(track) < 0) {
1615                 reset_fdc();
1616                 return;
1617         }
1618         debugt(__func__, "");
1619 }
1620
1621 static void recal_interrupt(void)
1622 {
1623         debugt(__func__, "");
1624         if (inr != 2)
1625                 FDCS->reset = 1;
1626         else if (ST0 & ST0_ECE) {
1627                 switch (DRS->track) {
1628                 case NEED_1_RECAL:
1629                         debugt(__func__, "need 1 recal");
1630                         /* after a second recalibrate, we still haven't
1631                          * reached track 0. Probably no drive. Raise an
1632                          * error, as failing immediately might upset
1633                          * computers possessed by the Devil :-) */
1634                         cont->error();
1635                         cont->redo();
1636                         return;
1637                 case NEED_2_RECAL:
1638                         debugt(__func__, "need 2 recal");
1639                         /* If we already did a recalibrate,
1640                          * and we are not at track 0, this
1641                          * means we have moved. (The only way
1642                          * not to move at recalibration is to
1643                          * be already at track 0.) Clear the
1644                          * new change flag */
1645                         debug_dcl(DP->flags,
1646                                   "clearing NEWCHANGE flag because of second recalibrate\n");
1647
1648                         clear_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
1649                         DRS->select_date = jiffies;
1650                         /* fall through */
1651                 default:
1652                         debugt(__func__, "default");
1653                         /* Recalibrate moves the head by at
1654                          * most 80 steps. If after one
1655                          * recalibrate we don't have reached
1656                          * track 0, this might mean that we
1657                          * started beyond track 80.  Try
1658                          * again.  */
1659                         DRS->track = NEED_1_RECAL;
1660                         break;
1661                 }
1662         } else
1663                 DRS->track = ST1;
1664         floppy_ready();
1665 }
1666
1667 static void print_result(char *message, int inr)
1668 {
1669         int i;
1670
1671         DPRINT("%s ", message);
1672         if (inr >= 0)
1673                 for (i = 0; i < inr; i++)
1674                         pr_cont("repl[%d]=%x ", i, reply_buffer[i]);
1675         pr_cont("\n");
1676 }
1677
1678 /* interrupt handler. Note that this can be called externally on the Sparc */
1679 irqreturn_t floppy_interrupt(int irq, void *dev_id)
1680 {
1681         int do_print;
1682         unsigned long f;
1683         void (*handler)(void) = do_floppy;
1684
1685         lasthandler = handler;
1686         interruptjiffies = jiffies;
1687
1688         f = claim_dma_lock();
1689         fd_disable_dma();
1690         release_dma_lock(f);
1691
1692         do_floppy = NULL;
1693         if (fdc >= N_FDC || FDCS->address == -1) {
1694                 /* we don't even know which FDC is the culprit */
1695                 pr_info("DOR0=%x\n", fdc_state[0].dor);
1696                 pr_info("floppy interrupt on bizarre fdc %d\n", fdc);
1697                 pr_info("handler=%ps\n", handler);
1698                 is_alive(__func__, "bizarre fdc");
1699                 return IRQ_NONE;
1700         }
1701
1702         FDCS->reset = 0;
1703         /* We have to clear the reset flag here, because apparently on boxes
1704          * with level triggered interrupts (PS/2, Sparc, ...), it is needed to
1705          * emit SENSEI's to clear the interrupt line. And FDCS->reset blocks the
1706          * emission of the SENSEI's.
1707          * It is OK to emit floppy commands because we are in an interrupt
1708          * handler here, and thus we have to fear no interference of other
1709          * activity.
1710          */
1711
1712         do_print = !handler && print_unex && initialized;
1713
1714         inr = result();
1715         if (do_print)
1716                 print_result("unexpected interrupt", inr);
1717         if (inr == 0) {
1718                 int max_sensei = 4;
1719                 do {
1720                         output_byte(FD_SENSEI);
1721                         inr = result();
1722                         if (do_print)
1723                                 print_result("sensei", inr);
1724                         max_sensei--;
1725                 } while ((ST0 & 0x83) != UNIT(current_drive) &&
1726                          inr == 2 && max_sensei);
1727         }
1728         if (!handler) {
1729                 FDCS->reset = 1;
1730                 return IRQ_NONE;
1731         }
1732         schedule_bh(handler);
1733         is_alive(__func__, "normal interrupt end");
1734
1735         /* FIXME! Was it really for us? */
1736         return IRQ_HANDLED;
1737 }
1738
1739 static void recalibrate_floppy(void)
1740 {
1741         debugt(__func__, "");
1742         do_floppy = recal_interrupt;
1743         output_byte(FD_RECALIBRATE);
1744         if (output_byte(UNIT(current_drive)) < 0)
1745                 reset_fdc();
1746 }
1747
1748 /*
1749  * Must do 4 FD_SENSEIs after reset because of ``drive polling''.
1750  */
1751 static void reset_interrupt(void)
1752 {
1753         debugt(__func__, "");
1754         result();               /* get the status ready for set_fdc */
1755         if (FDCS->reset) {
1756                 pr_info("reset set in interrupt, calling %ps\n", cont->error);
1757                 cont->error();  /* a reset just after a reset. BAD! */
1758         }
1759         cont->redo();
1760 }
1761
1762 /*
1763  * reset is done by pulling bit 2 of DOR low for a while (old FDCs),
1764  * or by setting the self clearing bit 7 of STATUS (newer FDCs)
1765  */
1766 static void reset_fdc(void)
1767 {
1768         unsigned long flags;
1769
1770         do_floppy = reset_interrupt;
1771         FDCS->reset = 0;
1772         reset_fdc_info(0);
1773
1774         /* Pseudo-DMA may intercept 'reset finished' interrupt.  */
1775         /* Irrelevant for systems with true DMA (i386).          */
1776
1777         flags = claim_dma_lock();
1778         fd_disable_dma();
1779         release_dma_lock(flags);
1780
1781         if (FDCS->version >= FDC_82072A)
1782                 fd_outb(0x80 | (FDCS->dtr & 3), FD_STATUS);
1783         else {
1784                 fd_outb(FDCS->dor & ~0x04, FD_DOR);
1785                 udelay(FD_RESET_DELAY);
1786                 fd_outb(FDCS->dor, FD_DOR);
1787         }
1788 }
1789
1790 static void show_floppy(void)
1791 {
1792         int i;
1793
1794         pr_info("\n");
1795         pr_info("floppy driver state\n");
1796         pr_info("-------------------\n");
1797         pr_info("now=%lu last interrupt=%lu diff=%lu last called handler=%ps\n",
1798                 jiffies, interruptjiffies, jiffies - interruptjiffies,
1799                 lasthandler);
1800
1801         pr_info("timeout_message=%s\n", timeout_message);
1802         pr_info("last output bytes:\n");
1803         for (i = 0; i < OLOGSIZE; i++)
1804                 pr_info("%2x %2x %lu\n",
1805                         output_log[(i + output_log_pos) % OLOGSIZE].data,
1806                         output_log[(i + output_log_pos) % OLOGSIZE].status,
1807                         output_log[(i + output_log_pos) % OLOGSIZE].jiffies);
1808         pr_info("last result at %lu\n", resultjiffies);
1809         pr_info("last redo_fd_request at %lu\n", lastredo);
1810         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1,
1811                        reply_buffer, resultsize, true);
1812
1813         pr_info("status=%x\n", fd_inb(FD_STATUS));
1814         pr_info("fdc_busy=%lu\n", fdc_busy);
1815         if (do_floppy)
1816                 pr_info("do_floppy=%ps\n", do_floppy);
1817         if (work_pending(&floppy_work))
1818                 pr_info("floppy_work.func=%ps\n", floppy_work.func);
1819         if (delayed_work_pending(&fd_timer))
1820                 pr_info("delayed work.function=%p expires=%ld\n",
1821                        fd_timer.work.func,
1822                        fd_timer.timer.expires - jiffies);
1823         if (delayed_work_pending(&fd_timeout))
1824                 pr_info("timer_function=%p expires=%ld\n",
1825                        fd_timeout.work.func,
1826                        fd_timeout.timer.expires - jiffies);
1827
1828         pr_info("cont=%p\n", cont);
1829         pr_info("current_req=%p\n", current_req);
1830         pr_info("command_status=%d\n", command_status);
1831         pr_info("\n");
1832 }
1833
1834 static void floppy_shutdown(struct work_struct *arg)
1835 {
1836         unsigned long flags;
1837
1838         if (initialized)
1839                 show_floppy();
1840         cancel_activity();
1841
1842         flags = claim_dma_lock();
1843         fd_disable_dma();
1844         release_dma_lock(flags);
1845
1846         /* avoid dma going to a random drive after shutdown */
1847
1848         if (initialized)
1849                 DPRINT("floppy timeout called\n");
1850         FDCS->reset = 1;
1851         if (cont) {
1852                 cont->done(0);
1853                 cont->redo();   /* this will recall reset when needed */
1854         } else {
1855                 pr_info("no cont in shutdown!\n");
1856                 process_fd_request();
1857         }
1858         is_alive(__func__, "");
1859 }
1860
1861 /* start motor, check media-changed condition and write protection */
1862 static int start_motor(void (*function)(void))
1863 {
1864         int mask;
1865         int data;
1866
1867         mask = 0xfc;
1868         data = UNIT(current_drive);
1869         if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)) {
1870                 if (!(FDCS->dor & (0x10 << UNIT(current_drive)))) {
1871                         set_debugt();
1872                         /* no read since this drive is running */
1873                         DRS->first_read_date = 0;
1874                         /* note motor start time if motor is not yet running */
1875                         DRS->spinup_date = jiffies;
1876                         data |= (0x10 << UNIT(current_drive));
1877                 }
1878         } else if (FDCS->dor & (0x10 << UNIT(current_drive)))
1879                 mask &= ~(0x10 << UNIT(current_drive));
1880
1881         /* starts motor and selects floppy */
1882         del_timer(motor_off_timer + current_drive);
1883         set_dor(fdc, mask, data);
1884
1885         /* wait_for_completion also schedules reset if needed. */
1886         return fd_wait_for_completion(DRS->select_date + DP->select_delay,
1887                                       function);
1888 }
1889
1890 static void floppy_ready(void)
1891 {
1892         if (FDCS->reset) {
1893                 reset_fdc();
1894                 return;
1895         }
1896         if (start_motor(floppy_ready))
1897                 return;
1898         if (fdc_dtr())
1899                 return;
1900
1901         debug_dcl(DP->flags, "calling disk change from floppy_ready\n");
1902         if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) &&
1903             disk_change(current_drive) && !DP->select_delay)
1904                 twaddle();      /* this clears the dcl on certain
1905                                  * drive/controller combinations */
1906
1907 #ifdef fd_chose_dma_mode
1908         if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) {
1909                 unsigned long flags = claim_dma_lock();
1910                 fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length);
1911                 release_dma_lock(flags);
1912         }
1913 #endif
1914
1915         if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)) {
1916                 perpendicular_mode();
1917                 fdc_specify();  /* must be done here because of hut, hlt ... */
1918                 seek_floppy();
1919         } else {
1920                 if ((raw_cmd->flags & FD_RAW_READ) ||
1921                     (raw_cmd->flags & FD_RAW_WRITE))
1922                         fdc_specify();
1923                 setup_rw_floppy();
1924         }
1925 }
1926
1927 static void floppy_start(void)
1928 {
1929         reschedule_timeout(current_reqD, "floppy start");
1930
1931         scandrives();
1932         debug_dcl(DP->flags, "setting NEWCHANGE in floppy_start\n");
1933         set_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
1934         floppy_ready();
1935 }
1936
1937 /*
1938  * ========================================================================
1939  * here ends the bottom half. Exported routines are:
1940  * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc,
1941  * start_motor, reset_fdc, reset_fdc_info, interpret_errors.
1942  * Initialization also uses output_byte, result, set_dor, floppy_interrupt
1943  * and set_dor.
1944  * ========================================================================
1945  */
1946 /*
1947  * General purpose continuations.
1948  * ==============================
1949  */
1950
1951 static void do_wakeup(void)
1952 {
1953         reschedule_timeout(MAXTIMEOUT, "do wakeup");
1954         cont = NULL;
1955         command_status += 2;
1956         wake_up(&command_done);
1957 }
1958
1959 static const struct cont_t wakeup_cont = {
1960         .interrupt      = empty,
1961         .redo           = do_wakeup,
1962         .error          = empty,
1963         .done           = (done_f)empty
1964 };
1965
1966 static const struct cont_t intr_cont = {
1967         .interrupt      = empty,
1968         .redo           = process_fd_request,
1969         .error          = empty,
1970         .done           = (done_f)empty
1971 };
1972
1973 static int wait_til_done(void (*handler)(void), bool interruptible)
1974 {
1975         int ret;
1976
1977         schedule_bh(handler);
1978
1979         if (interruptible)
1980                 wait_event_interruptible(command_done, command_status >= 2);
1981         else
1982                 wait_event(command_done, command_status >= 2);
1983
1984         if (command_status < 2) {
1985                 cancel_activity();
1986                 cont = &intr_cont;
1987                 reset_fdc();
1988                 return -EINTR;
1989         }
1990
1991         if (FDCS->reset)
1992                 command_status = FD_COMMAND_ERROR;
1993         if (command_status == FD_COMMAND_OKAY)
1994                 ret = 0;
1995         else
1996                 ret = -EIO;
1997         command_status = FD_COMMAND_NONE;
1998         return ret;
1999 }
2000
2001 static void generic_done(int result)
2002 {
2003         command_status = result;
2004         cont = &wakeup_cont;
2005 }
2006
2007 static void generic_success(void)
2008 {
2009         cont->done(1);
2010 }
2011
2012 static void generic_failure(void)
2013 {
2014         cont->done(0);
2015 }
2016
2017 static void success_and_wakeup(void)
2018 {
2019         generic_success();
2020         cont->redo();
2021 }
2022
2023 /*
2024  * formatting and rw support.
2025  * ==========================
2026  */
2027
2028 static int next_valid_format(void)
2029 {
2030         int probed_format;
2031
2032         probed_format = DRS->probed_format;
2033         while (1) {
2034                 if (probed_format >= 8 || !DP->autodetect[probed_format]) {
2035                         DRS->probed_format = 0;
2036                         return 1;
2037                 }
2038                 if (floppy_type[DP->autodetect[probed_format]].sect) {
2039                         DRS->probed_format = probed_format;
2040                         return 0;
2041                 }
2042                 probed_format++;
2043         }
2044 }
2045
2046 static void bad_flp_intr(void)
2047 {
2048         int err_count;
2049
2050         if (probing) {
2051                 DRS->probed_format++;
2052                 if (!next_valid_format())
2053                         return;
2054         }
2055         err_count = ++(*errors);
2056         INFBOUND(DRWE->badness, err_count);
2057         if (err_count > DP->max_errors.abort)
2058                 cont->done(0);
2059         if (err_count > DP->max_errors.reset)
2060                 FDCS->reset = 1;
2061         else if (err_count > DP->max_errors.recal)
2062                 DRS->track = NEED_2_RECAL;
2063 }
2064
2065 static void set_floppy(int drive)
2066 {
2067         int type = ITYPE(UDRS->fd_device);
2068
2069         if (type)
2070                 _floppy = floppy_type + type;
2071         else
2072                 _floppy = current_type[drive];
2073 }
2074
2075 /*
2076  * formatting support.
2077  * ===================
2078  */
2079 static void format_interrupt(void)
2080 {
2081         switch (interpret_errors()) {
2082         case 1:
2083                 cont->error();
2084         case 2:
2085                 break;
2086         case 0:
2087                 cont->done(1);
2088         }
2089         cont->redo();
2090 }
2091
2092 #define FM_MODE(x, y) ((y) & ~(((x)->rate & 0x80) >> 1))
2093 #define CT(x) ((x) | 0xc0)
2094
2095 static void setup_format_params(int track)
2096 {
2097         int n;
2098         int il;
2099         int count;
2100         int head_shift;
2101         int track_shift;
2102         struct fparm {
2103                 unsigned char track, head, sect, size;
2104         } *here = (struct fparm *)floppy_track_buffer;
2105
2106         raw_cmd = &default_raw_cmd;
2107         raw_cmd->track = track;
2108
2109         raw_cmd->flags = (FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN |
2110                           FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK);
2111         raw_cmd->rate = _floppy->rate & 0x43;
2112         raw_cmd->cmd_count = NR_F;
2113         COMMAND = FM_MODE(_floppy, FD_FORMAT);
2114         DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy, format_req.head);
2115         F_SIZECODE = FD_SIZECODE(_floppy);
2116         F_SECT_PER_TRACK = _floppy->sect << 2 >> F_SIZECODE;
2117         F_GAP = _floppy->fmt_gap;
2118         F_FILL = FD_FILL_BYTE;
2119
2120         raw_cmd->kernel_data = floppy_track_buffer;
2121         raw_cmd->length = 4 * F_SECT_PER_TRACK;
2122
2123         if (!F_SECT_PER_TRACK)
2124                 return;
2125
2126         /* allow for about 30ms for data transport per track */
2127         head_shift = (F_SECT_PER_TRACK + 5) / 6;
2128
2129         /* a ``cylinder'' is two tracks plus a little stepping time */
2130         track_shift = 2 * head_shift + 3;
2131
2132         /* position of logical sector 1 on this track */
2133         n = (track_shift * format_req.track + head_shift * format_req.head)
2134             % F_SECT_PER_TRACK;
2135
2136         /* determine interleave */
2137         il = 1;
2138         if (_floppy->fmt_gap < 0x22)
2139                 il++;
2140
2141         /* initialize field */
2142         for (count = 0; count < F_SECT_PER_TRACK; ++count) {
2143                 here[count].track = format_req.track;
2144                 here[count].head = format_req.head;
2145                 here[count].sect = 0;
2146                 here[count].size = F_SIZECODE;
2147         }
2148         /* place logical sectors */
2149         for (count = 1; count <= F_SECT_PER_TRACK; ++count) {
2150                 here[n].sect = count;
2151                 n = (n + il) % F_SECT_PER_TRACK;
2152                 if (here[n].sect) {     /* sector busy, find next free sector */
2153                         ++n;
2154                         if (n >= F_SECT_PER_TRACK) {
2155                                 n -= F_SECT_PER_TRACK;
2156                                 while (here[n].sect)
2157                                         ++n;
2158                         }
2159                 }
2160         }
2161         if (_floppy->stretch & FD_SECTBASEMASK) {
2162                 for (count = 0; count < F_SECT_PER_TRACK; count++)
2163                         here[count].sect += FD_SECTBASE(_floppy) - 1;
2164         }
2165 }
2166
2167 static void redo_format(void)
2168 {
2169         buffer_track = -1;
2170         setup_format_params(format_req.track << STRETCH(_floppy));
2171         floppy_start();
2172         debugt(__func__, "queue format request");
2173 }
2174
2175 static const struct cont_t format_cont = {
2176         .interrupt      = format_interrupt,
2177         .redo           = redo_format,
2178         .error          = bad_flp_intr,
2179         .done           = generic_done
2180 };
2181
2182 static int do_format(int drive, struct format_descr *tmp_format_req)
2183 {
2184         int ret;
2185
2186         if (lock_fdc(drive))
2187                 return -EINTR;
2188
2189         set_floppy(drive);
2190         if (!_floppy ||
2191             _floppy->track > DP->tracks ||
2192             tmp_format_req->track >= _floppy->track ||
2193             tmp_format_req->head >= _floppy->head ||
2194             (_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) ||
2195             !_floppy->fmt_gap) {
2196                 process_fd_request();
2197                 return -EINVAL;
2198         }
2199         format_req = *tmp_format_req;
2200         format_errors = 0;
2201         cont = &format_cont;
2202         errors = &format_errors;
2203         ret = wait_til_done(redo_format, true);
2204         if (ret == -EINTR)
2205                 return -EINTR;
2206         process_fd_request();
2207         return ret;
2208 }
2209
2210 /*
2211  * Buffer read/write and support
2212  * =============================
2213  */
2214
2215 static void floppy_end_request(struct request *req, blk_status_t error)
2216 {
2217         unsigned int nr_sectors = current_count_sectors;
2218         unsigned int drive = (unsigned long)req->rq_disk->private_data;
2219
2220         /* current_count_sectors can be zero if transfer failed */
2221         if (error)
2222                 nr_sectors = blk_rq_cur_sectors(req);
2223         if (blk_update_request(req, error, nr_sectors << 9))
2224                 return;
2225         __blk_mq_end_request(req, error);
2226
2227         /* We're done with the request */
2228         floppy_off(drive);
2229         current_req = NULL;
2230 }
2231
2232 /* new request_done. Can handle physical sectors which are smaller than a
2233  * logical buffer */
2234 static void request_done(int uptodate)
2235 {
2236         struct request *req = current_req;
2237         int block;
2238         char msg[sizeof("request done ") + sizeof(int) * 3];
2239
2240         probing = 0;
2241         snprintf(msg, sizeof(msg), "request done %d", uptodate);
2242         reschedule_timeout(MAXTIMEOUT, msg);
2243
2244         if (!req) {
2245                 pr_info("floppy.c: no request in request_done\n");
2246                 return;
2247         }
2248
2249         if (uptodate) {
2250                 /* maintain values for invalidation on geometry
2251                  * change */
2252                 block = current_count_sectors + blk_rq_pos(req);
2253                 INFBOUND(DRS->maxblock, block);
2254                 if (block > _floppy->sect)
2255                         DRS->maxtrack = 1;
2256
2257                 floppy_end_request(req, 0);
2258         } else {
2259                 if (rq_data_dir(req) == WRITE) {
2260                         /* record write error information */
2261                         DRWE->write_errors++;
2262                         if (DRWE->write_errors == 1) {
2263                                 DRWE->first_error_sector = blk_rq_pos(req);
2264                                 DRWE->first_error_generation = DRS->generation;
2265                         }
2266                         DRWE->last_error_sector = blk_rq_pos(req);
2267                         DRWE->last_error_generation = DRS->generation;
2268                 }
2269                 floppy_end_request(req, BLK_STS_IOERR);
2270         }
2271 }
2272
2273 /* Interrupt handler evaluating the result of the r/w operation */
2274 static void rw_interrupt(void)
2275 {
2276         int eoc;
2277         int ssize;
2278         int heads;
2279         int nr_sectors;
2280
2281         if (R_HEAD >= 2) {
2282                 /* some Toshiba floppy controllers occasionnally seem to
2283                  * return bogus interrupts after read/write operations, which
2284                  * can be recognized by a bad head number (>= 2) */
2285                 return;
2286         }
2287
2288         if (!DRS->first_read_date)
2289                 DRS->first_read_date = jiffies;
2290
2291         nr_sectors = 0;
2292         ssize = DIV_ROUND_UP(1 << SIZECODE, 4);
2293
2294         if (ST1 & ST1_EOC)
2295                 eoc = 1;
2296         else
2297                 eoc = 0;
2298
2299         if (COMMAND & 0x80)
2300                 heads = 2;
2301         else
2302                 heads = 1;
2303
2304         nr_sectors = (((R_TRACK - TRACK) * heads +
2305                        R_HEAD - HEAD) * SECT_PER_TRACK +
2306                       R_SECTOR - SECTOR + eoc) << SIZECODE >> 2;
2307
2308         if (nr_sectors / ssize >
2309             DIV_ROUND_UP(in_sector_offset + current_count_sectors, ssize)) {
2310                 DPRINT("long rw: %x instead of %lx\n",
2311                        nr_sectors, current_count_sectors);
2312                 pr_info("rs=%d s=%d\n", R_SECTOR, SECTOR);
2313                 pr_info("rh=%d h=%d\n", R_HEAD, HEAD);
2314                 pr_info("rt=%d t=%d\n", R_TRACK, TRACK);
2315                 pr_info("heads=%d eoc=%d\n", heads, eoc);
2316                 pr_info("spt=%d st=%d ss=%d\n",
2317                         SECT_PER_TRACK, fsector_t, ssize);
2318                 pr_info("in_sector_offset=%d\n", in_sector_offset);
2319         }
2320
2321         nr_sectors -= in_sector_offset;
2322         INFBOUND(nr_sectors, 0);
2323         SUPBOUND(current_count_sectors, nr_sectors);
2324
2325         switch (interpret_errors()) {
2326         case 2:
2327                 cont->redo();
2328                 return;
2329         case 1:
2330                 if (!current_count_sectors) {
2331                         cont->error();
2332                         cont->redo();
2333                         return;
2334                 }
2335                 break;
2336         case 0:
2337                 if (!current_count_sectors) {
2338                         cont->redo();
2339                         return;
2340                 }
2341                 current_type[current_drive] = _floppy;
2342                 floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
2343                 break;
2344         }
2345
2346         if (probing) {
2347                 if (DP->flags & FTD_MSG)
2348                         DPRINT("Auto-detected floppy type %s in fd%d\n",
2349                                _floppy->name, current_drive);
2350                 current_type[current_drive] = _floppy;
2351                 floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
2352                 probing = 0;
2353         }
2354
2355         if (CT(COMMAND) != FD_READ ||
2356             raw_cmd->kernel_data == bio_data(current_req->bio)) {
2357                 /* transfer directly from buffer */
2358                 cont->done(1);
2359         } else if (CT(COMMAND) == FD_READ) {
2360                 buffer_track = raw_cmd->track;
2361                 buffer_drive = current_drive;
2362                 INFBOUND(buffer_max, nr_sectors + fsector_t);
2363         }
2364         cont->redo();
2365 }
2366
2367 /* Compute maximal contiguous buffer size. */
2368 static int buffer_chain_size(void)
2369 {
2370         struct bio_vec bv;
2371         int size;
2372         struct req_iterator iter;
2373         char *base;
2374
2375         base = bio_data(current_req->bio);
2376         size = 0;
2377
2378         rq_for_each_segment(bv, current_req, iter) {
2379                 if (page_address(bv.bv_page) + bv.bv_offset != base + size)
2380                         break;
2381
2382                 size += bv.bv_len;
2383         }
2384
2385         return size >> 9;
2386 }
2387
2388 /* Compute the maximal transfer size */
2389 static int transfer_size(int ssize, int max_sector, int max_size)
2390 {
2391         SUPBOUND(max_sector, fsector_t + max_size);
2392
2393         /* alignment */
2394         max_sector -= (max_sector % _floppy->sect) % ssize;
2395
2396         /* transfer size, beginning not aligned */
2397         current_count_sectors = max_sector - fsector_t;
2398
2399         return max_sector;
2400 }
2401
2402 /*
2403  * Move data from/to the track buffer to/from the buffer cache.
2404  */
2405 static void copy_buffer(int ssize, int max_sector, int max_sector_2)
2406 {
2407         int remaining;          /* number of transferred 512-byte sectors */
2408         struct bio_vec bv;
2409         char *buffer;
2410         char *dma_buffer;
2411         int size;
2412         struct req_iterator iter;
2413
2414         max_sector = transfer_size(ssize,
2415                                    min(max_sector, max_sector_2),
2416                                    blk_rq_sectors(current_req));
2417
2418         if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE &&
2419             buffer_max > fsector_t + blk_rq_sectors(current_req))
2420                 current_count_sectors = min_t(int, buffer_max - fsector_t,
2421                                               blk_rq_sectors(current_req));
2422
2423         remaining = current_count_sectors << 9;
2424         if (remaining > blk_rq_bytes(current_req) && CT(COMMAND) == FD_WRITE) {
2425                 DPRINT("in copy buffer\n");
2426                 pr_info("current_count_sectors=%ld\n", current_count_sectors);
2427                 pr_info("remaining=%d\n", remaining >> 9);
2428                 pr_info("current_req->nr_sectors=%u\n",
2429                         blk_rq_sectors(current_req));
2430                 pr_info("current_req->current_nr_sectors=%u\n",
2431                         blk_rq_cur_sectors(current_req));
2432                 pr_info("max_sector=%d\n", max_sector);
2433                 pr_info("ssize=%d\n", ssize);
2434         }
2435
2436         buffer_max = max(max_sector, buffer_max);
2437
2438         dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9);
2439
2440         size = blk_rq_cur_bytes(current_req);
2441
2442         rq_for_each_segment(bv, current_req, iter) {
2443                 if (!remaining)
2444                         break;
2445
2446                 size = bv.bv_len;
2447                 SUPBOUND(size, remaining);
2448
2449                 buffer = page_address(bv.bv_page) + bv.bv_offset;
2450                 if (dma_buffer + size >
2451                     floppy_track_buffer + (max_buffer_sectors << 10) ||
2452                     dma_buffer < floppy_track_buffer) {
2453                         DPRINT("buffer overrun in copy buffer %d\n",
2454                                (int)((floppy_track_buffer - dma_buffer) >> 9));
2455                         pr_info("fsector_t=%d buffer_min=%d\n",
2456                                 fsector_t, buffer_min);
2457                         pr_info("current_count_sectors=%ld\n",
2458                                 current_count_sectors);
2459                         if (CT(COMMAND) == FD_READ)
2460                                 pr_info("read\n");
2461                         if (CT(COMMAND) == FD_WRITE)
2462                                 pr_info("write\n");
2463                         break;
2464                 }
2465                 if (((unsigned long)buffer) % 512)
2466                         DPRINT("%p buffer not aligned\n", buffer);
2467
2468                 if (CT(COMMAND) == FD_READ)
2469                         memcpy(buffer, dma_buffer, size);
2470                 else
2471                         memcpy(dma_buffer, buffer, size);
2472
2473                 remaining -= size;
2474                 dma_buffer += size;
2475         }
2476         if (remaining) {
2477                 if (remaining > 0)
2478                         max_sector -= remaining >> 9;
2479                 DPRINT("weirdness: remaining %d\n", remaining >> 9);
2480         }
2481 }
2482
2483 /* work around a bug in pseudo DMA
2484  * (on some FDCs) pseudo DMA does not stop when the CPU stops
2485  * sending data.  Hence we need a different way to signal the
2486  * transfer length:  We use SECT_PER_TRACK.  Unfortunately, this
2487  * does not work with MT, hence we can only transfer one head at
2488  * a time
2489  */
2490 static void virtualdmabug_workaround(void)
2491 {
2492         int hard_sectors;
2493         int end_sector;
2494
2495         if (CT(COMMAND) == FD_WRITE) {
2496                 COMMAND &= ~0x80;       /* switch off multiple track mode */
2497
2498                 hard_sectors = raw_cmd->length >> (7 + SIZECODE);
2499                 end_sector = SECTOR + hard_sectors - 1;
2500                 if (end_sector > SECT_PER_TRACK) {
2501                         pr_info("too many sectors %d > %d\n",
2502                                 end_sector, SECT_PER_TRACK);
2503                         return;
2504                 }
2505                 SECT_PER_TRACK = end_sector;
2506                                         /* make sure SECT_PER_TRACK
2507                                          * points to end of transfer */
2508         }
2509 }
2510
2511 /*
2512  * Formulate a read/write request.
2513  * this routine decides where to load the data (directly to buffer, or to
2514  * tmp floppy area), how much data to load (the size of the buffer, the whole
2515  * track, or a single sector)
2516  * All floppy_track_buffer handling goes in here. If we ever add track buffer
2517  * allocation on the fly, it should be done here. No other part should need
2518  * modification.
2519  */
2520
2521 static int make_raw_rw_request(void)
2522 {
2523         int aligned_sector_t;
2524         int max_sector;
2525         int max_size;
2526         int tracksize;
2527         int ssize;
2528
2529         if (WARN(max_buffer_sectors == 0, "VFS: Block I/O scheduled on unopened device\n"))
2530                 return 0;
2531
2532         set_fdc((long)current_req->rq_disk->private_data);
2533
2534         raw_cmd = &default_raw_cmd;
2535         raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK;
2536         raw_cmd->cmd_count = NR_RW;
2537         if (rq_data_dir(current_req) == READ) {
2538                 raw_cmd->flags |= FD_RAW_READ;
2539                 COMMAND = FM_MODE(_floppy, FD_READ);
2540         } else if (rq_data_dir(current_req) == WRITE) {
2541                 raw_cmd->flags |= FD_RAW_WRITE;
2542                 COMMAND = FM_MODE(_floppy, FD_WRITE);
2543         } else {
2544                 DPRINT("%s: unknown command\n", __func__);
2545                 return 0;
2546         }
2547
2548         max_sector = _floppy->sect * _floppy->head;
2549
2550         TRACK = (int)blk_rq_pos(current_req) / max_sector;
2551         fsector_t = (int)blk_rq_pos(current_req) % max_sector;
2552         if (_floppy->track && TRACK >= _floppy->track) {
2553                 if (blk_rq_cur_sectors(current_req) & 1) {
2554                         current_count_sectors = 1;
2555                         return 1;
2556                 } else
2557                         return 0;
2558         }
2559         HEAD = fsector_t / _floppy->sect;
2560
2561         if (((_floppy->stretch & (FD_SWAPSIDES | FD_SECTBASEMASK)) ||
2562              test_bit(FD_NEED_TWADDLE_BIT, &DRS->flags)) &&
2563             fsector_t < _floppy->sect)
2564                 max_sector = _floppy->sect;
2565
2566         /* 2M disks have phantom sectors on the first track */
2567         if ((_floppy->rate & FD_2M) && (!TRACK) && (!HEAD)) {
2568                 max_sector = 2 * _floppy->sect / 3;
2569                 if (fsector_t >= max_sector) {
2570                         current_count_sectors =
2571                             min_t(int, _floppy->sect - fsector_t,
2572                                   blk_rq_sectors(current_req));
2573                         return 1;
2574                 }
2575                 SIZECODE = 2;
2576         } else
2577                 SIZECODE = FD_SIZECODE(_floppy);
2578         raw_cmd->rate = _floppy->rate & 0x43;
2579         if ((_floppy->rate & FD_2M) && (TRACK || HEAD) && raw_cmd->rate == 2)
2580                 raw_cmd->rate = 1;
2581
2582         if (SIZECODE)
2583                 SIZECODE2 = 0xff;
2584         else
2585                 SIZECODE2 = 0x80;
2586         raw_cmd->track = TRACK << STRETCH(_floppy);
2587         DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy, HEAD);
2588         GAP = _floppy->gap;
2589         ssize = DIV_ROUND_UP(1 << SIZECODE, 4);
2590         SECT_PER_TRACK = _floppy->sect << 2 >> SIZECODE;
2591         SECTOR = ((fsector_t % _floppy->sect) << 2 >> SIZECODE) +
2592             FD_SECTBASE(_floppy);
2593
2594         /* tracksize describes the size which can be filled up with sectors
2595          * of size ssize.
2596          */
2597         tracksize = _floppy->sect - _floppy->sect % ssize;
2598         if (tracksize < _floppy->sect) {
2599                 SECT_PER_TRACK++;
2600                 if (tracksize <= fsector_t % _floppy->sect)
2601                         SECTOR--;
2602
2603                 /* if we are beyond tracksize, fill up using smaller sectors */
2604                 while (tracksize <= fsector_t % _floppy->sect) {
2605                         while (tracksize + ssize > _floppy->sect) {
2606                                 SIZECODE--;
2607                                 ssize >>= 1;
2608                         }
2609                         SECTOR++;
2610                         SECT_PER_TRACK++;
2611                         tracksize += ssize;
2612                 }
2613                 max_sector = HEAD * _floppy->sect + tracksize;
2614         } else if (!TRACK && !HEAD && !(_floppy->rate & FD_2M) && probing) {
2615                 max_sector = _floppy->sect;
2616         } else if (!HEAD && CT(COMMAND) == FD_WRITE) {
2617                 /* for virtual DMA bug workaround */
2618                 max_sector = _floppy->sect;
2619         }
2620
2621         in_sector_offset = (fsector_t % _floppy->sect) % ssize;
2622         aligned_sector_t = fsector_t - in_sector_offset;
2623         max_size = blk_rq_sectors(current_req);
2624         if ((raw_cmd->track == buffer_track) &&
2625             (current_drive == buffer_drive) &&
2626             (fsector_t >= buffer_min) && (fsector_t < buffer_max)) {
2627                 /* data already in track buffer */
2628                 if (CT(COMMAND) == FD_READ) {
2629                         copy_buffer(1, max_sector, buffer_max);
2630                         return 1;
2631                 }
2632         } else if (in_sector_offset || blk_rq_sectors(current_req) < ssize) {
2633                 if (CT(COMMAND) == FD_WRITE) {
2634                         unsigned int sectors;
2635
2636                         sectors = fsector_t + blk_rq_sectors(current_req);
2637                         if (sectors > ssize && sectors < ssize + ssize)
2638                                 max_size = ssize + ssize;
2639                         else
2640                                 max_size = ssize;
2641                 }
2642                 raw_cmd->flags &= ~FD_RAW_WRITE;
2643                 raw_cmd->flags |= FD_RAW_READ;
2644                 COMMAND = FM_MODE(_floppy, FD_READ);
2645         } else if ((unsigned long)bio_data(current_req->bio) < MAX_DMA_ADDRESS) {
2646                 unsigned long dma_limit;
2647                 int direct, indirect;
2648
2649                 indirect =
2650                     transfer_size(ssize, max_sector,
2651                                   max_buffer_sectors * 2) - fsector_t;
2652
2653                 /*
2654                  * Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide
2655                  * on a 64 bit machine!
2656                  */
2657                 max_size = buffer_chain_size();
2658                 dma_limit = (MAX_DMA_ADDRESS -
2659                              ((unsigned long)bio_data(current_req->bio))) >> 9;
2660                 if ((unsigned long)max_size > dma_limit)
2661                         max_size = dma_limit;
2662                 /* 64 kb boundaries */
2663                 if (CROSS_64KB(bio_data(current_req->bio), max_size << 9))
2664                         max_size = (K_64 -
2665                                     ((unsigned long)bio_data(current_req->bio)) %
2666                                     K_64) >> 9;
2667                 direct = transfer_size(ssize, max_sector, max_size) - fsector_t;
2668                 /*
2669                  * We try to read tracks, but if we get too many errors, we
2670                  * go back to reading just one sector at a time.
2671                  *
2672                  * This means we should be able to read a sector even if there
2673                  * are other bad sectors on this track.
2674                  */
2675                 if (!direct ||
2676                     (indirect * 2 > direct * 3 &&
2677                      *errors < DP->max_errors.read_track &&
2678                      ((!probing ||
2679                        (DP->read_track & (1 << DRS->probed_format)))))) {
2680                         max_size = blk_rq_sectors(current_req);
2681                 } else {
2682                         raw_cmd->kernel_data = bio_data(current_req->bio);
2683                         raw_cmd->length = current_count_sectors << 9;
2684                         if (raw_cmd->length == 0) {
2685                                 DPRINT("%s: zero dma transfer attempted\n", __func__);
2686                                 DPRINT("indirect=%d direct=%d fsector_t=%d\n",
2687                                        indirect, direct, fsector_t);
2688                                 return 0;
2689                         }
2690                         virtualdmabug_workaround();
2691                         return 2;
2692                 }
2693         }
2694
2695         if (CT(COMMAND) == FD_READ)
2696                 max_size = max_sector;  /* unbounded */
2697
2698         /* claim buffer track if needed */
2699         if (buffer_track != raw_cmd->track ||   /* bad track */
2700             buffer_drive != current_drive ||    /* bad drive */
2701             fsector_t > buffer_max ||
2702             fsector_t < buffer_min ||
2703             ((CT(COMMAND) == FD_READ ||
2704               (!in_sector_offset && blk_rq_sectors(current_req) >= ssize)) &&
2705              max_sector > 2 * max_buffer_sectors + buffer_min &&
2706              max_size + fsector_t > 2 * max_buffer_sectors + buffer_min)) {
2707                 /* not enough space */
2708                 buffer_track = -1;
2709                 buffer_drive = current_drive;
2710                 buffer_max = buffer_min = aligned_sector_t;
2711         }
2712         raw_cmd->kernel_data = floppy_track_buffer +
2713                 ((aligned_sector_t - buffer_min) << 9);
2714
2715         if (CT(COMMAND) == FD_WRITE) {
2716                 /* copy write buffer to track buffer.
2717                  * if we get here, we know that the write
2718                  * is either aligned or the data already in the buffer
2719                  * (buffer will be overwritten) */
2720                 if (in_sector_offset && buffer_track == -1)
2721                         DPRINT("internal error offset !=0 on write\n");
2722                 buffer_track = raw_cmd->track;
2723                 buffer_drive = current_drive;
2724                 copy_buffer(ssize, max_sector,
2725                             2 * max_buffer_sectors + buffer_min);
2726         } else
2727                 transfer_size(ssize, max_sector,
2728                               2 * max_buffer_sectors + buffer_min -
2729                               aligned_sector_t);
2730
2731         /* round up current_count_sectors to get dma xfer size */
2732         raw_cmd->length = in_sector_offset + current_count_sectors;
2733         raw_cmd->length = ((raw_cmd->length - 1) | (ssize - 1)) + 1;
2734         raw_cmd->length <<= 9;
2735         if ((raw_cmd->length < current_count_sectors << 9) ||
2736             (raw_cmd->kernel_data != bio_data(current_req->bio) &&
2737              CT(COMMAND) == FD_WRITE &&
2738              (aligned_sector_t + (raw_cmd->length >> 9) > buffer_max ||
2739               aligned_sector_t < buffer_min)) ||
2740             raw_cmd->length % (128 << SIZECODE) ||
2741             raw_cmd->length <= 0 || current_count_sectors <= 0) {
2742                 DPRINT("fractionary current count b=%lx s=%lx\n",
2743                        raw_cmd->length, current_count_sectors);
2744                 if (raw_cmd->kernel_data != bio_data(current_req->bio))
2745                         pr_info("addr=%d, length=%ld\n",
2746                                 (int)((raw_cmd->kernel_data -
2747                                        floppy_track_buffer) >> 9),
2748                                 current_count_sectors);
2749                 pr_info("st=%d ast=%d mse=%d msi=%d\n",
2750                         fsector_t, aligned_sector_t, max_sector, max_size);
2751                 pr_info("ssize=%x SIZECODE=%d\n", ssize, SIZECODE);
2752                 pr_info("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n",
2753                         COMMAND, SECTOR, HEAD, TRACK);
2754                 pr_info("buffer drive=%d\n", buffer_drive);
2755                 pr_info("buffer track=%d\n", buffer_track);
2756                 pr_info("buffer_min=%d\n", buffer_min);
2757                 pr_info("buffer_max=%d\n", buffer_max);
2758                 return 0;
2759         }
2760
2761         if (raw_cmd->kernel_data != bio_data(current_req->bio)) {
2762                 if (raw_cmd->kernel_data < floppy_track_buffer ||
2763                     current_count_sectors < 0 ||
2764                     raw_cmd->length < 0 ||
2765                     raw_cmd->kernel_data + raw_cmd->length >
2766                     floppy_track_buffer + (max_buffer_sectors << 10)) {
2767                         DPRINT("buffer overrun in schedule dma\n");
2768                         pr_info("fsector_t=%d buffer_min=%d current_count=%ld\n",
2769                                 fsector_t, buffer_min, raw_cmd->length >> 9);
2770                         pr_info("current_count_sectors=%ld\n",
2771                                 current_count_sectors);
2772                         if (CT(COMMAND) == FD_READ)
2773                                 pr_info("read\n");
2774                         if (CT(COMMAND) == FD_WRITE)
2775                                 pr_info("write\n");
2776                         return 0;
2777                 }
2778         } else if (raw_cmd->length > blk_rq_bytes(current_req) ||
2779                    current_count_sectors > blk_rq_sectors(current_req)) {
2780                 DPRINT("buffer overrun in direct transfer\n");
2781                 return 0;
2782         } else if (raw_cmd->length < current_count_sectors << 9) {
2783                 DPRINT("more sectors than bytes\n");
2784                 pr_info("bytes=%ld\n", raw_cmd->length >> 9);
2785                 pr_info("sectors=%ld\n", current_count_sectors);
2786         }
2787         if (raw_cmd->length == 0) {
2788                 DPRINT("zero dma transfer attempted from make_raw_request\n");
2789                 return 0;
2790         }
2791
2792         virtualdmabug_workaround();
2793         return 2;
2794 }
2795
2796 static int set_next_request(void)
2797 {
2798         current_req = list_first_entry_or_null(&floppy_reqs, struct request,
2799                                                queuelist);
2800         if (current_req) {
2801                 current_req->error_count = 0;
2802                 list_del_init(&current_req->queuelist);
2803         }
2804         return current_req != NULL;
2805 }
2806
2807 static void redo_fd_request(void)
2808 {
2809         int drive;
2810         int tmp;
2811
2812         lastredo = jiffies;
2813         if (current_drive < N_DRIVE)
2814                 floppy_off(current_drive);
2815
2816 do_request:
2817         if (!current_req) {
2818                 int pending;
2819
2820                 spin_lock_irq(&floppy_lock);
2821                 pending = set_next_request();
2822                 spin_unlock_irq(&floppy_lock);
2823                 if (!pending) {
2824                         do_floppy = NULL;
2825                         unlock_fdc();
2826                         return;
2827                 }
2828         }
2829         drive = (long)current_req->rq_disk->private_data;
2830         set_fdc(drive);
2831         reschedule_timeout(current_reqD, "redo fd request");
2832
2833         set_floppy(drive);
2834         raw_cmd = &default_raw_cmd;
2835         raw_cmd->flags = 0;
2836         if (start_motor(redo_fd_request))
2837                 return;
2838
2839         disk_change(current_drive);
2840         if (test_bit(current_drive, &fake_change) ||
2841             test_bit(FD_DISK_CHANGED_BIT, &DRS->flags)) {
2842                 DPRINT("disk absent or changed during operation\n");
2843                 request_done(0);
2844                 goto do_request;
2845         }
2846         if (!_floppy) { /* Autodetection */
2847                 if (!probing) {
2848                         DRS->probed_format = 0;
2849                         if (next_valid_format()) {
2850                                 DPRINT("no autodetectable formats\n");
2851                                 _floppy = NULL;
2852                                 request_done(0);
2853                                 goto do_request;
2854                         }
2855                 }
2856                 probing = 1;
2857                 _floppy = floppy_type + DP->autodetect[DRS->probed_format];
2858         } else
2859                 probing = 0;
2860         errors = &(current_req->error_count);
2861         tmp = make_raw_rw_request();
2862         if (tmp < 2) {
2863                 request_done(tmp);
2864                 goto do_request;
2865         }
2866
2867         if (test_bit(FD_NEED_TWADDLE_BIT, &DRS->flags))
2868                 twaddle();
2869         schedule_bh(floppy_start);
2870         debugt(__func__, "queue fd request");
2871         return;
2872 }
2873
2874 static const struct cont_t rw_cont = {
2875         .interrupt      = rw_interrupt,
2876         .redo           = redo_fd_request,
2877         .error          = bad_flp_intr,
2878         .done           = request_done
2879 };
2880
2881 static void process_fd_request(void)
2882 {
2883         cont = &rw_cont;
2884         schedule_bh(redo_fd_request);
2885 }
2886
2887 static blk_status_t floppy_queue_rq(struct blk_mq_hw_ctx *hctx,
2888                                     const struct blk_mq_queue_data *bd)
2889 {
2890         blk_mq_start_request(bd->rq);
2891
2892         if (WARN(max_buffer_sectors == 0,
2893                  "VFS: %s called on non-open device\n", __func__))
2894                 return BLK_STS_IOERR;
2895
2896         if (WARN(atomic_read(&usage_count) == 0,
2897                  "warning: usage count=0, current_req=%p sect=%ld flags=%llx\n",
2898                  current_req, (long)blk_rq_pos(current_req),
2899                  (unsigned long long) current_req->cmd_flags))
2900                 return BLK_STS_IOERR;
2901
2902         spin_lock_irq(&floppy_lock);
2903         list_add_tail(&bd->rq->queuelist, &floppy_reqs);
2904         spin_unlock_irq(&floppy_lock);
2905
2906         if (test_and_set_bit(0, &fdc_busy)) {
2907                 /* fdc busy, this new request will be treated when the
2908                    current one is done */
2909                 is_alive(__func__, "old request running");
2910                 return BLK_STS_OK;
2911         }
2912
2913         command_status = FD_COMMAND_NONE;
2914         __reschedule_timeout(MAXTIMEOUT, "fd_request");
2915         set_fdc(0);
2916         process_fd_request();
2917         is_alive(__func__, "");
2918         return BLK_STS_OK;
2919 }
2920
2921 static const struct cont_t poll_cont = {
2922         .interrupt      = success_and_wakeup,
2923         .redo           = floppy_ready,
2924         .error          = generic_failure,
2925         .done           = generic_done
2926 };
2927
2928 static int poll_drive(bool interruptible, int flag)
2929 {
2930         /* no auto-sense, just clear dcl */
2931         raw_cmd = &default_raw_cmd;
2932         raw_cmd->flags = flag;
2933         raw_cmd->track = 0;
2934         raw_cmd->cmd_count = 0;
2935         cont = &poll_cont;
2936         debug_dcl(DP->flags, "setting NEWCHANGE in poll_drive\n");
2937         set_bit(FD_DISK_NEWCHANGE_BIT, &DRS->flags);
2938
2939         return wait_til_done(floppy_ready, interruptible);
2940 }
2941
2942 /*
2943  * User triggered reset
2944  * ====================
2945  */
2946
2947 static void reset_intr(void)
2948 {
2949         pr_info("weird, reset interrupt called\n");
2950 }
2951
2952 static const struct cont_t reset_cont = {
2953         .interrupt      = reset_intr,
2954         .redo           = success_and_wakeup,
2955         .error          = generic_failure,
2956         .done           = generic_done
2957 };
2958
2959 static int user_reset_fdc(int drive, int arg, bool interruptible)
2960 {
2961         int ret;
2962
2963         if (lock_fdc(drive))
2964                 return -EINTR;
2965
2966         if (arg == FD_RESET_ALWAYS)
2967                 FDCS->reset = 1;
2968         if (FDCS->reset) {
2969                 cont = &reset_cont;
2970                 ret = wait_til_done(reset_fdc, interruptible);
2971                 if (ret == -EINTR)
2972                         return -EINTR;
2973         }
2974         process_fd_request();
2975         return 0;
2976 }
2977
2978 /*
2979  * Misc Ioctl's and support
2980  * ========================
2981  */
2982 static inline int fd_copyout(void __user *param, const void *address,
2983                              unsigned long size)
2984 {
2985         return copy_to_user(param, address, size) ? -EFAULT : 0;
2986 }
2987
2988 static inline int fd_copyin(void __user *param, void *address,
2989                             unsigned long size)
2990 {
2991         return copy_from_user(address, param, size) ? -EFAULT : 0;
2992 }
2993
2994 static const char *drive_name(int type, int drive)
2995 {
2996         struct floppy_struct *floppy;
2997
2998         if (type)
2999                 floppy = floppy_type + type;
3000         else {
3001                 if (UDP->native_format)
3002                         floppy = floppy_type + UDP->native_format;
3003                 else
3004                         return "(null)";
3005         }
3006         if (floppy->name)
3007                 return floppy->name;
3008         else
3009                 return "(null)";
3010 }
3011
3012 /* raw commands */
3013 static void raw_cmd_done(int flag)
3014 {
3015         int i;
3016
3017         if (!flag) {
3018                 raw_cmd->flags |= FD_RAW_FAILURE;
3019                 raw_cmd->flags |= FD_RAW_HARDFAILURE;
3020         } else {
3021                 raw_cmd->reply_count = inr;
3022                 if (raw_cmd->reply_count > MAX_REPLIES)
3023                         raw_cmd->reply_count = 0;
3024                 for (i = 0; i < raw_cmd->reply_count; i++)
3025                         raw_cmd->reply[i] = reply_buffer[i];
3026
3027                 if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
3028                         unsigned long flags;
3029                         flags = claim_dma_lock();
3030                         raw_cmd->length = fd_get_dma_residue();
3031                         release_dma_lock(flags);
3032                 }
3033
3034                 if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) &&
3035                     (!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0)))
3036                         raw_cmd->flags |= FD_RAW_FAILURE;
3037
3038                 if (disk_change(current_drive))
3039                         raw_cmd->flags |= FD_RAW_DISK_CHANGE;
3040                 else
3041                         raw_cmd->flags &= ~FD_RAW_DISK_CHANGE;
3042                 if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER)
3043                         motor_off_callback(&motor_off_timer[current_drive]);
3044
3045                 if (raw_cmd->next &&
3046                     (!(raw_cmd->flags & FD_RAW_FAILURE) ||
3047                      !(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) &&
3048                     ((raw_cmd->flags & FD_RAW_FAILURE) ||
3049                      !(raw_cmd->flags & FD_RAW_STOP_IF_SUCCESS))) {
3050                         raw_cmd = raw_cmd->next;
3051                         return;
3052                 }
3053         }
3054         generic_done(flag);
3055 }
3056
3057 static const struct cont_t raw_cmd_cont = {
3058         .interrupt      = success_and_wakeup,
3059         .redo           = floppy_start,
3060         .error          = generic_failure,
3061         .done           = raw_cmd_done
3062 };
3063
3064 static int raw_cmd_copyout(int cmd, void __user *param,
3065                                   struct floppy_raw_cmd *ptr)
3066 {
3067         int ret;
3068
3069         while (ptr) {
3070                 struct floppy_raw_cmd cmd = *ptr;
3071                 cmd.next = NULL;
3072                 cmd.kernel_data = NULL;
3073                 ret = copy_to_user(param, &cmd, sizeof(cmd));
3074                 if (ret)
3075                         return -EFAULT;
3076                 param += sizeof(struct floppy_raw_cmd);
3077                 if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) {
3078                         if (ptr->length >= 0 &&
3079                             ptr->length <= ptr->buffer_length) {
3080                                 long length = ptr->buffer_length - ptr->length;
3081                                 ret = fd_copyout(ptr->data, ptr->kernel_data,
3082                                                  length);
3083                                 if (ret)
3084                                         return ret;
3085                         }
3086                 }
3087                 ptr = ptr->next;
3088         }
3089
3090         return 0;
3091 }
3092
3093 static void raw_cmd_free(struct floppy_raw_cmd **ptr)
3094 {
3095         struct floppy_raw_cmd *next;
3096         struct floppy_raw_cmd *this;
3097
3098         this = *ptr;
3099         *ptr = NULL;
3100         while (this) {
3101                 if (this->buffer_length) {
3102                         fd_dma_mem_free((unsigned long)this->kernel_data,
3103                                         this->buffer_length);
3104                         this->buffer_length = 0;
3105                 }
3106                 next = this->next;
3107                 kfree(this);
3108                 this = next;
3109         }
3110 }
3111
3112 static int raw_cmd_copyin(int cmd, void __user *param,
3113                                  struct floppy_raw_cmd **rcmd)
3114 {
3115         struct floppy_raw_cmd *ptr;
3116         int ret;
3117         int i;
3118
3119         *rcmd = NULL;
3120
3121 loop:
3122         ptr = kmalloc(sizeof(struct floppy_raw_cmd), GFP_KERNEL);
3123         if (!ptr)
3124                 return -ENOMEM;
3125         *rcmd = ptr;
3126         ret = copy_from_user(ptr, param, sizeof(*ptr));
3127         ptr->next = NULL;
3128         ptr->buffer_length = 0;
3129         ptr->kernel_data = NULL;
3130         if (ret)
3131                 return -EFAULT;
3132         param += sizeof(struct floppy_raw_cmd);
3133         if (ptr->cmd_count > 33)
3134                         /* the command may now also take up the space
3135                          * initially intended for the reply & the
3136                          * reply count. Needed for long 82078 commands
3137                          * such as RESTORE, which takes ... 17 command
3138                          * bytes. Murphy's law #137: When you reserve
3139                          * 16 bytes for a structure, you'll one day
3140                          * discover that you really need 17...
3141                          */
3142                 return -EINVAL;
3143
3144         for (i = 0; i < 16; i++)
3145                 ptr->reply[i] = 0;
3146         ptr->resultcode = 0;
3147
3148         if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
3149                 if (ptr->length <= 0)
3150                         return -EINVAL;
3151                 ptr->kernel_data = (char *)fd_dma_mem_alloc(ptr->length);
3152                 fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length);
3153                 if (!ptr->kernel_data)
3154                         return -ENOMEM;
3155                 ptr->buffer_length = ptr->length;
3156         }
3157         if (ptr->flags & FD_RAW_WRITE) {
3158                 ret = fd_copyin(ptr->data, ptr->kernel_data, ptr->length);
3159                 if (ret)
3160                         return ret;
3161         }
3162
3163         if (ptr->flags & FD_RAW_MORE) {
3164                 rcmd = &(ptr->next);
3165                 ptr->rate &= 0x43;
3166                 goto loop;
3167         }
3168
3169         return 0;
3170 }
3171
3172 static int raw_cmd_ioctl(int cmd, void __user *param)
3173 {
3174         struct floppy_raw_cmd *my_raw_cmd;
3175         int drive;
3176         int ret2;
3177         int ret;
3178
3179         if (FDCS->rawcmd <= 1)
3180                 FDCS->rawcmd = 1;
3181         for (drive = 0; drive < N_DRIVE; drive++) {
3182                 if (FDC(drive) != fdc)
3183                         continue;
3184                 if (drive == current_drive) {
3185                         if (UDRS->fd_ref > 1) {
3186                                 FDCS->rawcmd = 2;
3187                                 break;
3188                         }
3189                 } else if (UDRS->fd_ref) {
3190                         FDCS->rawcmd = 2;
3191                         break;
3192                 }
3193         }
3194
3195         if (FDCS->reset)
3196                 return -EIO;
3197
3198         ret = raw_cmd_copyin(cmd, param, &my_raw_cmd);
3199         if (ret) {
3200                 raw_cmd_free(&my_raw_cmd);
3201                 return ret;
3202         }
3203
3204         raw_cmd = my_raw_cmd;
3205         cont = &raw_cmd_cont;
3206         ret = wait_til_done(floppy_start, true);
3207         debug_dcl(DP->flags, "calling disk change from raw_cmd ioctl\n");
3208
3209         if (ret != -EINTR && FDCS->reset)
3210                 ret = -EIO;
3211
3212         DRS->track = NO_TRACK;
3213
3214         ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd);
3215         if (!ret)
3216                 ret = ret2;
3217         raw_cmd_free(&my_raw_cmd);
3218         return ret;
3219 }
3220
3221 static int invalidate_drive(struct block_device *bdev)
3222 {
3223         /* invalidate the buffer track to force a reread */
3224         set_bit((long)bdev->bd_disk->private_data, &fake_change);
3225         process_fd_request();
3226         check_disk_change(bdev);
3227         return 0;
3228 }
3229
3230 static int set_geometry(unsigned int cmd, struct floppy_struct *g,
3231                                int drive, int type, struct block_device *bdev)
3232 {
3233         int cnt;
3234
3235         /* sanity checking for parameters. */
3236         if ((int)g->sect <= 0 ||
3237             (int)g->head <= 0 ||
3238             /* check for overflow in max_sector */
3239             (int)(g->sect * g->head) <= 0 ||
3240             /* check for zero in F_SECT_PER_TRACK */
3241             (unsigned char)((g->sect << 2) >> FD_SIZECODE(g)) == 0 ||
3242             g->track <= 0 || g->track > UDP->tracks >> STRETCH(g) ||
3243             /* check if reserved bits are set */
3244             (g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_SECTBASEMASK)) != 0)
3245                 return -EINVAL;
3246         if (type) {
3247                 if (!capable(CAP_SYS_ADMIN))
3248                         return -EPERM;
3249                 mutex_lock(&open_lock);
3250                 if (lock_fdc(drive)) {
3251                         mutex_unlock(&open_lock);
3252                         return -EINTR;
3253                 }
3254                 floppy_type[type] = *g;
3255                 floppy_type[type].name = "user format";
3256                 for (cnt = type << 2; cnt < (type << 2) + 4; cnt++)
3257                         floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] =