Merge branch 'for-4.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[sfrench/cifs-2.6.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
45 #include <linux/io.h>
46 #include <linux/uaccess.h>
47
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
53 #include <scsi/sg.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <scsi/scsi_request.h>
56 #include <linux/cdrom.h>
57 #include <linux/scatterlist.h>
58 #include <linux/kthread.h>
59
60 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
61 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
62 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
63
64 /* Embedded module documentation macros - see modules.h */
65 MODULE_AUTHOR("Hewlett-Packard Company");
66 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
67 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
68 MODULE_VERSION("3.6.26");
69 MODULE_LICENSE("GPL");
70 static int cciss_tape_cmds = 6;
71 module_param(cciss_tape_cmds, int, 0644);
72 MODULE_PARM_DESC(cciss_tape_cmds,
73         "number of commands to allocate for tape devices (default: 6)");
74 static int cciss_simple_mode;
75 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(cciss_simple_mode,
77         "Use 'simple mode' rather than 'performant mode'");
78
79 static int cciss_allow_hpsa;
80 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(cciss_allow_hpsa,
82         "Prevent cciss driver from accessing hardware known to be "
83         " supported by the hpsa driver");
84
85 static DEFINE_MUTEX(cciss_mutex);
86 static struct proc_dir_entry *proc_cciss;
87
88 #include "cciss_cmd.h"
89 #include "cciss.h"
90 #include <linux/cciss_ioctl.h>
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id cciss_pci_device_id[] = {
94         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
95         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
96         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
97         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
98         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
99         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
100         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
101         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
102         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
114         {0,}
115 };
116
117 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
118
119 /*  board_id = Subsystem Device ID & Vendor ID
120  *  product = Marketing Name for the board
121  *  access = Address of the struct of function pointers
122  */
123 static struct board_type products[] = {
124         {0x40700E11, "Smart Array 5300", &SA5_access},
125         {0x40800E11, "Smart Array 5i", &SA5B_access},
126         {0x40820E11, "Smart Array 532", &SA5B_access},
127         {0x40830E11, "Smart Array 5312", &SA5B_access},
128         {0x409A0E11, "Smart Array 641", &SA5_access},
129         {0x409B0E11, "Smart Array 642", &SA5_access},
130         {0x409C0E11, "Smart Array 6400", &SA5_access},
131         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
132         {0x40910E11, "Smart Array 6i", &SA5_access},
133         {0x3225103C, "Smart Array P600", &SA5_access},
134         {0x3223103C, "Smart Array P800", &SA5_access},
135         {0x3234103C, "Smart Array P400", &SA5_access},
136         {0x3235103C, "Smart Array P400i", &SA5_access},
137         {0x3211103C, "Smart Array E200i", &SA5_access},
138         {0x3212103C, "Smart Array E200", &SA5_access},
139         {0x3213103C, "Smart Array E200i", &SA5_access},
140         {0x3214103C, "Smart Array E200i", &SA5_access},
141         {0x3215103C, "Smart Array E200i", &SA5_access},
142         {0x3237103C, "Smart Array E500", &SA5_access},
143         {0x323D103C, "Smart Array P700m", &SA5_access},
144 };
145
146 /* How long to wait (in milliseconds) for board to go into simple mode */
147 #define MAX_CONFIG_WAIT 30000
148 #define MAX_IOCTL_CONFIG_WAIT 1000
149
150 /*define how many times we will try a command because of bus resets */
151 #define MAX_CMD_RETRIES 3
152
153 #define MAX_CTLR        32
154
155 /* Originally cciss driver only supports 8 major numbers */
156 #define MAX_CTLR_ORIG   8
157
158 static ctlr_info_t *hba[MAX_CTLR];
159
160 static struct task_struct *cciss_scan_thread;
161 static DEFINE_MUTEX(scan_mutex);
162 static LIST_HEAD(scan_q);
163
164 static void do_cciss_request(struct request_queue *q);
165 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
166 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
167 static int cciss_open(struct block_device *bdev, fmode_t mode);
168 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
169 static void cciss_release(struct gendisk *disk, fmode_t mode);
170 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
171                        unsigned int cmd, unsigned long arg);
172 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
173
174 static int cciss_revalidate(struct gendisk *disk);
175 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
176 static int deregister_disk(ctlr_info_t *h, int drv_index,
177                            int clear_all, int via_ioctl);
178
179 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
180                         sector_t *total_size, unsigned int *block_size);
181 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
182                         sector_t *total_size, unsigned int *block_size);
183 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
184                         sector_t total_size,
185                         unsigned int block_size, InquiryData_struct *inq_buff,
186                                    drive_info_struct *drv);
187 static void cciss_interrupt_mode(ctlr_info_t *);
188 static int cciss_enter_simple_mode(struct ctlr_info *h);
189 static void start_io(ctlr_info_t *h);
190 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
191                         __u8 page_code, unsigned char scsi3addr[],
192                         int cmd_type);
193 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194         int attempt_retry);
195 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197 static int add_to_scan_list(struct ctlr_info *h);
198 static int scan_thread(void *data);
199 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
200 static void cciss_hba_release(struct device *dev);
201 static void cciss_device_release(struct device *dev);
202 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
203 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
204 static inline u32 next_command(ctlr_info_t *h);
205 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
206                                 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
207                                 u64 *cfg_offset);
208 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
209                                      unsigned long *memory_bar);
210 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
211 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
212
213 /* performant mode helper functions */
214 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
215                                 int *bucket_map);
216 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
217
218 #ifdef CONFIG_PROC_FS
219 static void cciss_procinit(ctlr_info_t *h);
220 #else
221 static void cciss_procinit(ctlr_info_t *h)
222 {
223 }
224 #endif                          /* CONFIG_PROC_FS */
225
226 #ifdef CONFIG_COMPAT
227 static int cciss_compat_ioctl(struct block_device *, fmode_t,
228                               unsigned, unsigned long);
229 #endif
230
231 static const struct block_device_operations cciss_fops = {
232         .owner = THIS_MODULE,
233         .open = cciss_unlocked_open,
234         .release = cciss_release,
235         .ioctl = cciss_ioctl,
236         .getgeo = cciss_getgeo,
237 #ifdef CONFIG_COMPAT
238         .compat_ioctl = cciss_compat_ioctl,
239 #endif
240         .revalidate_disk = cciss_revalidate,
241 };
242
243 /* set_performant_mode: Modify the tag for cciss performant
244  * set bit 0 for pull model, bits 3-1 for block fetch
245  * register number
246  */
247 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
248 {
249         if (likely(h->transMethod & CFGTBL_Trans_Performant))
250                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
251 }
252
253 /*
254  * Enqueuing and dequeuing functions for cmdlists.
255  */
256 static inline void addQ(struct list_head *list, CommandList_struct *c)
257 {
258         list_add_tail(&c->list, list);
259 }
260
261 static inline void removeQ(CommandList_struct *c)
262 {
263         /*
264          * After kexec/dump some commands might still
265          * be in flight, which the firmware will try
266          * to complete. Resetting the firmware doesn't work
267          * with old fw revisions, so we have to mark
268          * them off as 'stale' to prevent the driver from
269          * falling over.
270          */
271         if (WARN_ON(list_empty(&c->list))) {
272                 c->cmd_type = CMD_MSG_STALE;
273                 return;
274         }
275
276         list_del_init(&c->list);
277 }
278
279 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
280         CommandList_struct *c)
281 {
282         unsigned long flags;
283         set_performant_mode(h, c);
284         spin_lock_irqsave(&h->lock, flags);
285         addQ(&h->reqQ, c);
286         h->Qdepth++;
287         if (h->Qdepth > h->maxQsinceinit)
288                 h->maxQsinceinit = h->Qdepth;
289         start_io(h);
290         spin_unlock_irqrestore(&h->lock, flags);
291 }
292
293 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
294         int nr_cmds)
295 {
296         int i;
297
298         if (!cmd_sg_list)
299                 return;
300         for (i = 0; i < nr_cmds; i++) {
301                 kfree(cmd_sg_list[i]);
302                 cmd_sg_list[i] = NULL;
303         }
304         kfree(cmd_sg_list);
305 }
306
307 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
308         ctlr_info_t *h, int chainsize, int nr_cmds)
309 {
310         int j;
311         SGDescriptor_struct **cmd_sg_list;
312
313         if (chainsize <= 0)
314                 return NULL;
315
316         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
317         if (!cmd_sg_list)
318                 return NULL;
319
320         /* Build up chain blocks for each command */
321         for (j = 0; j < nr_cmds; j++) {
322                 /* Need a block of chainsized s/g elements. */
323                 cmd_sg_list[j] = kmalloc((chainsize *
324                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
325                 if (!cmd_sg_list[j]) {
326                         dev_err(&h->pdev->dev, "Cannot get memory "
327                                 "for s/g chains.\n");
328                         goto clean;
329                 }
330         }
331         return cmd_sg_list;
332 clean:
333         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
334         return NULL;
335 }
336
337 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
338 {
339         SGDescriptor_struct *chain_sg;
340         u64bit temp64;
341
342         if (c->Header.SGTotal <= h->max_cmd_sgentries)
343                 return;
344
345         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
346         temp64.val32.lower = chain_sg->Addr.lower;
347         temp64.val32.upper = chain_sg->Addr.upper;
348         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
349 }
350
351 static int cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
352         SGDescriptor_struct *chain_block, int len)
353 {
354         SGDescriptor_struct *chain_sg;
355         u64bit temp64;
356
357         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
358         chain_sg->Ext = CCISS_SG_CHAIN;
359         chain_sg->Len = len;
360         temp64.val = pci_map_single(h->pdev, chain_block, len,
361                                 PCI_DMA_TODEVICE);
362         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
363                 dev_warn(&h->pdev->dev,
364                         "%s: error mapping chain block for DMA\n",
365                         __func__);
366                 return -1;
367         }
368         chain_sg->Addr.lower = temp64.val32.lower;
369         chain_sg->Addr.upper = temp64.val32.upper;
370
371         return 0;
372 }
373
374 #include "cciss_scsi.c"         /* For SCSI tape support */
375
376 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
377         "UNKNOWN"
378 };
379 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
380
381 #ifdef CONFIG_PROC_FS
382
383 /*
384  * Report information about this controller.
385  */
386 #define ENG_GIG 1000000000
387 #define ENG_GIG_FACTOR (ENG_GIG/512)
388 #define ENGAGE_SCSI     "engage scsi"
389
390 static void cciss_seq_show_header(struct seq_file *seq)
391 {
392         ctlr_info_t *h = seq->private;
393
394         seq_printf(seq, "%s: HP %s Controller\n"
395                 "Board ID: 0x%08lx\n"
396                 "Firmware Version: %c%c%c%c\n"
397                 "IRQ: %d\n"
398                 "Logical drives: %d\n"
399                 "Current Q depth: %d\n"
400                 "Current # commands on controller: %d\n"
401                 "Max Q depth since init: %d\n"
402                 "Max # commands on controller since init: %d\n"
403                 "Max SG entries since init: %d\n",
404                 h->devname,
405                 h->product_name,
406                 (unsigned long)h->board_id,
407                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
408                 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
409                 h->num_luns,
410                 h->Qdepth, h->commands_outstanding,
411                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
412
413 #ifdef CONFIG_CISS_SCSI_TAPE
414         cciss_seq_tape_report(seq, h);
415 #endif /* CONFIG_CISS_SCSI_TAPE */
416 }
417
418 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
419 {
420         ctlr_info_t *h = seq->private;
421         unsigned long flags;
422
423         /* prevent displaying bogus info during configuration
424          * or deconfiguration of a logical volume
425          */
426         spin_lock_irqsave(&h->lock, flags);
427         if (h->busy_configuring) {
428                 spin_unlock_irqrestore(&h->lock, flags);
429                 return ERR_PTR(-EBUSY);
430         }
431         h->busy_configuring = 1;
432         spin_unlock_irqrestore(&h->lock, flags);
433
434         if (*pos == 0)
435                 cciss_seq_show_header(seq);
436
437         return pos;
438 }
439
440 static int cciss_seq_show(struct seq_file *seq, void *v)
441 {
442         sector_t vol_sz, vol_sz_frac;
443         ctlr_info_t *h = seq->private;
444         unsigned ctlr = h->ctlr;
445         loff_t *pos = v;
446         drive_info_struct *drv = h->drv[*pos];
447
448         if (*pos > h->highest_lun)
449                 return 0;
450
451         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
452                 return 0;
453
454         if (drv->heads == 0)
455                 return 0;
456
457         vol_sz = drv->nr_blocks;
458         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
459         vol_sz_frac *= 100;
460         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
461
462         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
463                 drv->raid_level = RAID_UNKNOWN;
464         seq_printf(seq, "cciss/c%dd%d:"
465                         "\t%4u.%02uGB\tRAID %s\n",
466                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
467                         raid_label[drv->raid_level]);
468         return 0;
469 }
470
471 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
472 {
473         ctlr_info_t *h = seq->private;
474
475         if (*pos > h->highest_lun)
476                 return NULL;
477         *pos += 1;
478
479         return pos;
480 }
481
482 static void cciss_seq_stop(struct seq_file *seq, void *v)
483 {
484         ctlr_info_t *h = seq->private;
485
486         /* Only reset h->busy_configuring if we succeeded in setting
487          * it during cciss_seq_start. */
488         if (v == ERR_PTR(-EBUSY))
489                 return;
490
491         h->busy_configuring = 0;
492 }
493
494 static const struct seq_operations cciss_seq_ops = {
495         .start = cciss_seq_start,
496         .show  = cciss_seq_show,
497         .next  = cciss_seq_next,
498         .stop  = cciss_seq_stop,
499 };
500
501 static int cciss_seq_open(struct inode *inode, struct file *file)
502 {
503         int ret = seq_open(file, &cciss_seq_ops);
504         struct seq_file *seq = file->private_data;
505
506         if (!ret)
507                 seq->private = PDE_DATA(inode);
508
509         return ret;
510 }
511
512 static ssize_t
513 cciss_proc_write(struct file *file, const char __user *buf,
514                  size_t length, loff_t *ppos)
515 {
516         int err;
517         char *buffer;
518
519 #ifndef CONFIG_CISS_SCSI_TAPE
520         return -EINVAL;
521 #endif
522
523         if (!buf || length > PAGE_SIZE - 1)
524                 return -EINVAL;
525
526         buffer = memdup_user_nul(buf, length);
527         if (IS_ERR(buffer))
528                 return PTR_ERR(buffer);
529
530 #ifdef CONFIG_CISS_SCSI_TAPE
531         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
532                 struct seq_file *seq = file->private_data;
533                 ctlr_info_t *h = seq->private;
534
535                 err = cciss_engage_scsi(h);
536                 if (err == 0)
537                         err = length;
538         } else
539 #endif /* CONFIG_CISS_SCSI_TAPE */
540                 err = -EINVAL;
541         /* might be nice to have "disengage" too, but it's not
542            safely possible. (only 1 module use count, lock issues.) */
543
544         kfree(buffer);
545         return err;
546 }
547
548 static const struct file_operations cciss_proc_fops = {
549         .owner   = THIS_MODULE,
550         .open    = cciss_seq_open,
551         .read    = seq_read,
552         .llseek  = seq_lseek,
553         .release = seq_release,
554         .write   = cciss_proc_write,
555 };
556
557 static void cciss_procinit(ctlr_info_t *h)
558 {
559         struct proc_dir_entry *pde;
560
561         if (proc_cciss == NULL)
562                 proc_cciss = proc_mkdir("driver/cciss", NULL);
563         if (!proc_cciss)
564                 return;
565         pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
566                                         S_IROTH, proc_cciss,
567                                         &cciss_proc_fops, h);
568 }
569 #endif                          /* CONFIG_PROC_FS */
570
571 #define MAX_PRODUCT_NAME_LEN 19
572
573 #define to_hba(n) container_of(n, struct ctlr_info, dev)
574 #define to_drv(n) container_of(n, drive_info_struct, dev)
575
576 /* List of controllers which cannot be hard reset on kexec with reset_devices */
577 static u32 unresettable_controller[] = {
578         0x3223103C, /* Smart Array P800 */
579         0x3234103C, /* Smart Array P400 */
580         0x3235103C, /* Smart Array P400i */
581         0x3211103C, /* Smart Array E200i */
582         0x3212103C, /* Smart Array E200 */
583         0x3213103C, /* Smart Array E200i */
584         0x3214103C, /* Smart Array E200i */
585         0x3215103C, /* Smart Array E200i */
586         0x3237103C, /* Smart Array E500 */
587         0x323D103C, /* Smart Array P700m */
588         0x40800E11, /* Smart Array 5i */
589         0x409C0E11, /* Smart Array 6400 */
590         0x409D0E11, /* Smart Array 6400 EM */
591         0x40700E11, /* Smart Array 5300 */
592         0x40820E11, /* Smart Array 532 */
593         0x40830E11, /* Smart Array 5312 */
594         0x409A0E11, /* Smart Array 641 */
595         0x409B0E11, /* Smart Array 642 */
596         0x40910E11, /* Smart Array 6i */
597 };
598
599 /* List of controllers which cannot even be soft reset */
600 static u32 soft_unresettable_controller[] = {
601         0x40800E11, /* Smart Array 5i */
602         0x40700E11, /* Smart Array 5300 */
603         0x40820E11, /* Smart Array 532 */
604         0x40830E11, /* Smart Array 5312 */
605         0x409A0E11, /* Smart Array 641 */
606         0x409B0E11, /* Smart Array 642 */
607         0x40910E11, /* Smart Array 6i */
608         /* Exclude 640x boards.  These are two pci devices in one slot
609          * which share a battery backed cache module.  One controls the
610          * cache, the other accesses the cache through the one that controls
611          * it.  If we reset the one controlling the cache, the other will
612          * likely not be happy.  Just forbid resetting this conjoined mess.
613          */
614         0x409C0E11, /* Smart Array 6400 */
615         0x409D0E11, /* Smart Array 6400 EM */
616 };
617
618 static int ctlr_is_hard_resettable(u32 board_id)
619 {
620         int i;
621
622         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
623                 if (unresettable_controller[i] == board_id)
624                         return 0;
625         return 1;
626 }
627
628 static int ctlr_is_soft_resettable(u32 board_id)
629 {
630         int i;
631
632         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
633                 if (soft_unresettable_controller[i] == board_id)
634                         return 0;
635         return 1;
636 }
637
638 static int ctlr_is_resettable(u32 board_id)
639 {
640         return ctlr_is_hard_resettable(board_id) ||
641                 ctlr_is_soft_resettable(board_id);
642 }
643
644 static ssize_t host_show_resettable(struct device *dev,
645                                     struct device_attribute *attr,
646                                     char *buf)
647 {
648         struct ctlr_info *h = to_hba(dev);
649
650         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
651 }
652 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
653
654 static ssize_t host_store_rescan(struct device *dev,
655                                  struct device_attribute *attr,
656                                  const char *buf, size_t count)
657 {
658         struct ctlr_info *h = to_hba(dev);
659
660         add_to_scan_list(h);
661         wake_up_process(cciss_scan_thread);
662         wait_for_completion_interruptible(&h->scan_wait);
663
664         return count;
665 }
666 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
667
668 static ssize_t host_show_transport_mode(struct device *dev,
669                                  struct device_attribute *attr,
670                                  char *buf)
671 {
672         struct ctlr_info *h = to_hba(dev);
673
674         return snprintf(buf, 20, "%s\n",
675                 h->transMethod & CFGTBL_Trans_Performant ?
676                         "performant" : "simple");
677 }
678 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
679
680 static ssize_t dev_show_unique_id(struct device *dev,
681                                  struct device_attribute *attr,
682                                  char *buf)
683 {
684         drive_info_struct *drv = to_drv(dev);
685         struct ctlr_info *h = to_hba(drv->dev.parent);
686         __u8 sn[16];
687         unsigned long flags;
688         int ret = 0;
689
690         spin_lock_irqsave(&h->lock, flags);
691         if (h->busy_configuring)
692                 ret = -EBUSY;
693         else
694                 memcpy(sn, drv->serial_no, sizeof(sn));
695         spin_unlock_irqrestore(&h->lock, flags);
696
697         if (ret)
698                 return ret;
699         else
700                 return snprintf(buf, 16 * 2 + 2,
701                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
702                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
703                                 sn[0], sn[1], sn[2], sn[3],
704                                 sn[4], sn[5], sn[6], sn[7],
705                                 sn[8], sn[9], sn[10], sn[11],
706                                 sn[12], sn[13], sn[14], sn[15]);
707 }
708 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
709
710 static ssize_t dev_show_vendor(struct device *dev,
711                                struct device_attribute *attr,
712                                char *buf)
713 {
714         drive_info_struct *drv = to_drv(dev);
715         struct ctlr_info *h = to_hba(drv->dev.parent);
716         char vendor[VENDOR_LEN + 1];
717         unsigned long flags;
718         int ret = 0;
719
720         spin_lock_irqsave(&h->lock, flags);
721         if (h->busy_configuring)
722                 ret = -EBUSY;
723         else
724                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
725         spin_unlock_irqrestore(&h->lock, flags);
726
727         if (ret)
728                 return ret;
729         else
730                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
731 }
732 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
733
734 static ssize_t dev_show_model(struct device *dev,
735                               struct device_attribute *attr,
736                               char *buf)
737 {
738         drive_info_struct *drv = to_drv(dev);
739         struct ctlr_info *h = to_hba(drv->dev.parent);
740         char model[MODEL_LEN + 1];
741         unsigned long flags;
742         int ret = 0;
743
744         spin_lock_irqsave(&h->lock, flags);
745         if (h->busy_configuring)
746                 ret = -EBUSY;
747         else
748                 memcpy(model, drv->model, MODEL_LEN + 1);
749         spin_unlock_irqrestore(&h->lock, flags);
750
751         if (ret)
752                 return ret;
753         else
754                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
755 }
756 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
757
758 static ssize_t dev_show_rev(struct device *dev,
759                             struct device_attribute *attr,
760                             char *buf)
761 {
762         drive_info_struct *drv = to_drv(dev);
763         struct ctlr_info *h = to_hba(drv->dev.parent);
764         char rev[REV_LEN + 1];
765         unsigned long flags;
766         int ret = 0;
767
768         spin_lock_irqsave(&h->lock, flags);
769         if (h->busy_configuring)
770                 ret = -EBUSY;
771         else
772                 memcpy(rev, drv->rev, REV_LEN + 1);
773         spin_unlock_irqrestore(&h->lock, flags);
774
775         if (ret)
776                 return ret;
777         else
778                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
779 }
780 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
781
782 static ssize_t cciss_show_lunid(struct device *dev,
783                                 struct device_attribute *attr, char *buf)
784 {
785         drive_info_struct *drv = to_drv(dev);
786         struct ctlr_info *h = to_hba(drv->dev.parent);
787         unsigned long flags;
788         unsigned char lunid[8];
789
790         spin_lock_irqsave(&h->lock, flags);
791         if (h->busy_configuring) {
792                 spin_unlock_irqrestore(&h->lock, flags);
793                 return -EBUSY;
794         }
795         if (!drv->heads) {
796                 spin_unlock_irqrestore(&h->lock, flags);
797                 return -ENOTTY;
798         }
799         memcpy(lunid, drv->LunID, sizeof(lunid));
800         spin_unlock_irqrestore(&h->lock, flags);
801         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
802                 lunid[0], lunid[1], lunid[2], lunid[3],
803                 lunid[4], lunid[5], lunid[6], lunid[7]);
804 }
805 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
806
807 static ssize_t cciss_show_raid_level(struct device *dev,
808                                      struct device_attribute *attr, char *buf)
809 {
810         drive_info_struct *drv = to_drv(dev);
811         struct ctlr_info *h = to_hba(drv->dev.parent);
812         int raid;
813         unsigned long flags;
814
815         spin_lock_irqsave(&h->lock, flags);
816         if (h->busy_configuring) {
817                 spin_unlock_irqrestore(&h->lock, flags);
818                 return -EBUSY;
819         }
820         raid = drv->raid_level;
821         spin_unlock_irqrestore(&h->lock, flags);
822         if (raid < 0 || raid > RAID_UNKNOWN)
823                 raid = RAID_UNKNOWN;
824
825         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
826                         raid_label[raid]);
827 }
828 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
829
830 static ssize_t cciss_show_usage_count(struct device *dev,
831                                       struct device_attribute *attr, char *buf)
832 {
833         drive_info_struct *drv = to_drv(dev);
834         struct ctlr_info *h = to_hba(drv->dev.parent);
835         unsigned long flags;
836         int count;
837
838         spin_lock_irqsave(&h->lock, flags);
839         if (h->busy_configuring) {
840                 spin_unlock_irqrestore(&h->lock, flags);
841                 return -EBUSY;
842         }
843         count = drv->usage_count;
844         spin_unlock_irqrestore(&h->lock, flags);
845         return snprintf(buf, 20, "%d\n", count);
846 }
847 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
848
849 static struct attribute *cciss_host_attrs[] = {
850         &dev_attr_rescan.attr,
851         &dev_attr_resettable.attr,
852         &dev_attr_transport_mode.attr,
853         NULL
854 };
855
856 static struct attribute_group cciss_host_attr_group = {
857         .attrs = cciss_host_attrs,
858 };
859
860 static const struct attribute_group *cciss_host_attr_groups[] = {
861         &cciss_host_attr_group,
862         NULL
863 };
864
865 static struct device_type cciss_host_type = {
866         .name           = "cciss_host",
867         .groups         = cciss_host_attr_groups,
868         .release        = cciss_hba_release,
869 };
870
871 static struct attribute *cciss_dev_attrs[] = {
872         &dev_attr_unique_id.attr,
873         &dev_attr_model.attr,
874         &dev_attr_vendor.attr,
875         &dev_attr_rev.attr,
876         &dev_attr_lunid.attr,
877         &dev_attr_raid_level.attr,
878         &dev_attr_usage_count.attr,
879         NULL
880 };
881
882 static struct attribute_group cciss_dev_attr_group = {
883         .attrs = cciss_dev_attrs,
884 };
885
886 static const struct attribute_group *cciss_dev_attr_groups[] = {
887         &cciss_dev_attr_group,
888         NULL
889 };
890
891 static struct device_type cciss_dev_type = {
892         .name           = "cciss_device",
893         .groups         = cciss_dev_attr_groups,
894         .release        = cciss_device_release,
895 };
896
897 static struct bus_type cciss_bus_type = {
898         .name           = "cciss",
899 };
900
901 /*
902  * cciss_hba_release is called when the reference count
903  * of h->dev goes to zero.
904  */
905 static void cciss_hba_release(struct device *dev)
906 {
907         /*
908          * nothing to do, but need this to avoid a warning
909          * about not having a release handler from lib/kref.c.
910          */
911 }
912
913 /*
914  * Initialize sysfs entry for each controller.  This sets up and registers
915  * the 'cciss#' directory for each individual controller under
916  * /sys/bus/pci/devices/<dev>/.
917  */
918 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
919 {
920         device_initialize(&h->dev);
921         h->dev.type = &cciss_host_type;
922         h->dev.bus = &cciss_bus_type;
923         dev_set_name(&h->dev, "%s", h->devname);
924         h->dev.parent = &h->pdev->dev;
925
926         return device_add(&h->dev);
927 }
928
929 /*
930  * Remove sysfs entries for an hba.
931  */
932 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
933 {
934         device_del(&h->dev);
935         put_device(&h->dev); /* final put. */
936 }
937
938 /* cciss_device_release is called when the reference count
939  * of h->drv[x]dev goes to zero.
940  */
941 static void cciss_device_release(struct device *dev)
942 {
943         drive_info_struct *drv = to_drv(dev);
944         kfree(drv);
945 }
946
947 /*
948  * Initialize sysfs for each logical drive.  This sets up and registers
949  * the 'c#d#' directory for each individual logical drive under
950  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
951  * /sys/block/cciss!c#d# to this entry.
952  */
953 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
954                                        int drv_index)
955 {
956         struct device *dev;
957
958         if (h->drv[drv_index]->device_initialized)
959                 return 0;
960
961         dev = &h->drv[drv_index]->dev;
962         device_initialize(dev);
963         dev->type = &cciss_dev_type;
964         dev->bus = &cciss_bus_type;
965         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
966         dev->parent = &h->dev;
967         h->drv[drv_index]->device_initialized = 1;
968         return device_add(dev);
969 }
970
971 /*
972  * Remove sysfs entries for a logical drive.
973  */
974 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
975         int ctlr_exiting)
976 {
977         struct device *dev = &h->drv[drv_index]->dev;
978
979         /* special case for c*d0, we only destroy it on controller exit */
980         if (drv_index == 0 && !ctlr_exiting)
981                 return;
982
983         device_del(dev);
984         put_device(dev); /* the "final" put. */
985         h->drv[drv_index] = NULL;
986 }
987
988 /*
989  * For operations that cannot sleep, a command block is allocated at init,
990  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
991  * which ones are free or in use.
992  */
993 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
994 {
995         CommandList_struct *c;
996         int i;
997         u64bit temp64;
998         dma_addr_t cmd_dma_handle, err_dma_handle;
999
1000         do {
1001                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
1002                 if (i == h->nr_cmds)
1003                         return NULL;
1004         } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
1005         c = h->cmd_pool + i;
1006         memset(c, 0, sizeof(CommandList_struct));
1007         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
1008         c->err_info = h->errinfo_pool + i;
1009         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1010         err_dma_handle = h->errinfo_pool_dhandle
1011             + i * sizeof(ErrorInfo_struct);
1012         h->nr_allocs++;
1013
1014         c->cmdindex = i;
1015
1016         INIT_LIST_HEAD(&c->list);
1017         c->busaddr = (__u32) cmd_dma_handle;
1018         temp64.val = (__u64) err_dma_handle;
1019         c->ErrDesc.Addr.lower = temp64.val32.lower;
1020         c->ErrDesc.Addr.upper = temp64.val32.upper;
1021         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1022
1023         c->ctlr = h->ctlr;
1024         return c;
1025 }
1026
1027 /* allocate a command using pci_alloc_consistent, used for ioctls,
1028  * etc., not for the main i/o path.
1029  */
1030 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1031 {
1032         CommandList_struct *c;
1033         u64bit temp64;
1034         dma_addr_t cmd_dma_handle, err_dma_handle;
1035
1036         c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1037                                   &cmd_dma_handle);
1038         if (c == NULL)
1039                 return NULL;
1040
1041         c->cmdindex = -1;
1042
1043         c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1044                                             &err_dma_handle);
1045
1046         if (c->err_info == NULL) {
1047                 pci_free_consistent(h->pdev,
1048                         sizeof(CommandList_struct), c, cmd_dma_handle);
1049                 return NULL;
1050         }
1051
1052         INIT_LIST_HEAD(&c->list);
1053         c->busaddr = (__u32) cmd_dma_handle;
1054         temp64.val = (__u64) err_dma_handle;
1055         c->ErrDesc.Addr.lower = temp64.val32.lower;
1056         c->ErrDesc.Addr.upper = temp64.val32.upper;
1057         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1058
1059         c->ctlr = h->ctlr;
1060         return c;
1061 }
1062
1063 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1064 {
1065         int i;
1066
1067         i = c - h->cmd_pool;
1068         clear_bit(i, h->cmd_pool_bits);
1069         h->nr_frees++;
1070 }
1071
1072 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1073 {
1074         u64bit temp64;
1075
1076         temp64.val32.lower = c->ErrDesc.Addr.lower;
1077         temp64.val32.upper = c->ErrDesc.Addr.upper;
1078         pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1079                             c->err_info, (dma_addr_t) temp64.val);
1080         pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1081                 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1082 }
1083
1084 static inline ctlr_info_t *get_host(struct gendisk *disk)
1085 {
1086         return disk->queue->queuedata;
1087 }
1088
1089 static inline drive_info_struct *get_drv(struct gendisk *disk)
1090 {
1091         return disk->private_data;
1092 }
1093
1094 /*
1095  * Open.  Make sure the device is really there.
1096  */
1097 static int cciss_open(struct block_device *bdev, fmode_t mode)
1098 {
1099         ctlr_info_t *h = get_host(bdev->bd_disk);
1100         drive_info_struct *drv = get_drv(bdev->bd_disk);
1101
1102         dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1103         if (drv->busy_configuring)
1104                 return -EBUSY;
1105         /*
1106          * Root is allowed to open raw volume zero even if it's not configured
1107          * so array config can still work. Root is also allowed to open any
1108          * volume that has a LUN ID, so it can issue IOCTL to reread the
1109          * disk information.  I don't think I really like this
1110          * but I'm already using way to many device nodes to claim another one
1111          * for "raw controller".
1112          */
1113         if (drv->heads == 0) {
1114                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1115                         /* if not node 0 make sure it is a partition = 0 */
1116                         if (MINOR(bdev->bd_dev) & 0x0f) {
1117                                 return -ENXIO;
1118                                 /* if it is, make sure we have a LUN ID */
1119                         } else if (memcmp(drv->LunID, CTLR_LUNID,
1120                                 sizeof(drv->LunID))) {
1121                                 return -ENXIO;
1122                         }
1123                 }
1124                 if (!capable(CAP_SYS_ADMIN))
1125                         return -EPERM;
1126         }
1127         drv->usage_count++;
1128         h->usage_count++;
1129         return 0;
1130 }
1131
1132 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1133 {
1134         int ret;
1135
1136         mutex_lock(&cciss_mutex);
1137         ret = cciss_open(bdev, mode);
1138         mutex_unlock(&cciss_mutex);
1139
1140         return ret;
1141 }
1142
1143 /*
1144  * Close.  Sync first.
1145  */
1146 static void cciss_release(struct gendisk *disk, fmode_t mode)
1147 {
1148         ctlr_info_t *h;
1149         drive_info_struct *drv;
1150
1151         mutex_lock(&cciss_mutex);
1152         h = get_host(disk);
1153         drv = get_drv(disk);
1154         dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1155         drv->usage_count--;
1156         h->usage_count--;
1157         mutex_unlock(&cciss_mutex);
1158 }
1159
1160 #ifdef CONFIG_COMPAT
1161
1162 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1163                                   unsigned cmd, unsigned long arg);
1164 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1165                                       unsigned cmd, unsigned long arg);
1166
1167 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1168                               unsigned cmd, unsigned long arg)
1169 {
1170         switch (cmd) {
1171         case CCISS_GETPCIINFO:
1172         case CCISS_GETINTINFO:
1173         case CCISS_SETINTINFO:
1174         case CCISS_GETNODENAME:
1175         case CCISS_SETNODENAME:
1176         case CCISS_GETHEARTBEAT:
1177         case CCISS_GETBUSTYPES:
1178         case CCISS_GETFIRMVER:
1179         case CCISS_GETDRIVVER:
1180         case CCISS_REVALIDVOLS:
1181         case CCISS_DEREGDISK:
1182         case CCISS_REGNEWDISK:
1183         case CCISS_REGNEWD:
1184         case CCISS_RESCANDISK:
1185         case CCISS_GETLUNINFO:
1186                 return cciss_ioctl(bdev, mode, cmd, arg);
1187
1188         case CCISS_PASSTHRU32:
1189                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1190         case CCISS_BIG_PASSTHRU32:
1191                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1192
1193         default:
1194                 return -ENOIOCTLCMD;
1195         }
1196 }
1197
1198 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1199                                   unsigned cmd, unsigned long arg)
1200 {
1201         IOCTL32_Command_struct __user *arg32 =
1202             (IOCTL32_Command_struct __user *) arg;
1203         IOCTL_Command_struct arg64;
1204         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1205         int err;
1206         u32 cp;
1207
1208         memset(&arg64, 0, sizeof(arg64));
1209         err = 0;
1210         err |=
1211             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1212                            sizeof(arg64.LUN_info));
1213         err |=
1214             copy_from_user(&arg64.Request, &arg32->Request,
1215                            sizeof(arg64.Request));
1216         err |=
1217             copy_from_user(&arg64.error_info, &arg32->error_info,
1218                            sizeof(arg64.error_info));
1219         err |= get_user(arg64.buf_size, &arg32->buf_size);
1220         err |= get_user(cp, &arg32->buf);
1221         arg64.buf = compat_ptr(cp);
1222         err |= copy_to_user(p, &arg64, sizeof(arg64));
1223
1224         if (err)
1225                 return -EFAULT;
1226
1227         err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1228         if (err)
1229                 return err;
1230         err |=
1231             copy_in_user(&arg32->error_info, &p->error_info,
1232                          sizeof(arg32->error_info));
1233         if (err)
1234                 return -EFAULT;
1235         return err;
1236 }
1237
1238 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1239                                       unsigned cmd, unsigned long arg)
1240 {
1241         BIG_IOCTL32_Command_struct __user *arg32 =
1242             (BIG_IOCTL32_Command_struct __user *) arg;
1243         BIG_IOCTL_Command_struct arg64;
1244         BIG_IOCTL_Command_struct __user *p =
1245             compat_alloc_user_space(sizeof(arg64));
1246         int err;
1247         u32 cp;
1248
1249         memset(&arg64, 0, sizeof(arg64));
1250         err = 0;
1251         err |=
1252             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1253                            sizeof(arg64.LUN_info));
1254         err |=
1255             copy_from_user(&arg64.Request, &arg32->Request,
1256                            sizeof(arg64.Request));
1257         err |=
1258             copy_from_user(&arg64.error_info, &arg32->error_info,
1259                            sizeof(arg64.error_info));
1260         err |= get_user(arg64.buf_size, &arg32->buf_size);
1261         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1262         err |= get_user(cp, &arg32->buf);
1263         arg64.buf = compat_ptr(cp);
1264         err |= copy_to_user(p, &arg64, sizeof(arg64));
1265
1266         if (err)
1267                 return -EFAULT;
1268
1269         err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1270         if (err)
1271                 return err;
1272         err |=
1273             copy_in_user(&arg32->error_info, &p->error_info,
1274                          sizeof(arg32->error_info));
1275         if (err)
1276                 return -EFAULT;
1277         return err;
1278 }
1279 #endif
1280
1281 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1282 {
1283         drive_info_struct *drv = get_drv(bdev->bd_disk);
1284
1285         if (!drv->cylinders)
1286                 return -ENXIO;
1287
1288         geo->heads = drv->heads;
1289         geo->sectors = drv->sectors;
1290         geo->cylinders = drv->cylinders;
1291         return 0;
1292 }
1293
1294 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1295 {
1296         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1297                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1298                 (void)check_for_unit_attention(h, c);
1299 }
1300
1301 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1302 {
1303         cciss_pci_info_struct pciinfo;
1304
1305         if (!argp)
1306                 return -EINVAL;
1307         pciinfo.domain = pci_domain_nr(h->pdev->bus);
1308         pciinfo.bus = h->pdev->bus->number;
1309         pciinfo.dev_fn = h->pdev->devfn;
1310         pciinfo.board_id = h->board_id;
1311         if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1312                 return -EFAULT;
1313         return 0;
1314 }
1315
1316 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1317 {
1318         cciss_coalint_struct intinfo;
1319         unsigned long flags;
1320
1321         if (!argp)
1322                 return -EINVAL;
1323         spin_lock_irqsave(&h->lock, flags);
1324         intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1325         intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1326         spin_unlock_irqrestore(&h->lock, flags);
1327         if (copy_to_user
1328             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1329                 return -EFAULT;
1330         return 0;
1331 }
1332
1333 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1334 {
1335         cciss_coalint_struct intinfo;
1336         unsigned long flags;
1337         int i;
1338
1339         if (!argp)
1340                 return -EINVAL;
1341         if (!capable(CAP_SYS_ADMIN))
1342                 return -EPERM;
1343         if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1344                 return -EFAULT;
1345         if ((intinfo.delay == 0) && (intinfo.count == 0))
1346                 return -EINVAL;
1347         spin_lock_irqsave(&h->lock, flags);
1348         /* Update the field, and then ring the doorbell */
1349         writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1350         writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1351         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1352
1353         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1354                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1355                         break;
1356                 udelay(1000); /* delay and try again */
1357         }
1358         spin_unlock_irqrestore(&h->lock, flags);
1359         if (i >= MAX_IOCTL_CONFIG_WAIT)
1360                 return -EAGAIN;
1361         return 0;
1362 }
1363
1364 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1365 {
1366         NodeName_type NodeName;
1367         unsigned long flags;
1368         int i;
1369
1370         if (!argp)
1371                 return -EINVAL;
1372         spin_lock_irqsave(&h->lock, flags);
1373         for (i = 0; i < 16; i++)
1374                 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1375         spin_unlock_irqrestore(&h->lock, flags);
1376         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1377                 return -EFAULT;
1378         return 0;
1379 }
1380
1381 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1382 {
1383         NodeName_type NodeName;
1384         unsigned long flags;
1385         int i;
1386
1387         if (!argp)
1388                 return -EINVAL;
1389         if (!capable(CAP_SYS_ADMIN))
1390                 return -EPERM;
1391         if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1392                 return -EFAULT;
1393         spin_lock_irqsave(&h->lock, flags);
1394         /* Update the field, and then ring the doorbell */
1395         for (i = 0; i < 16; i++)
1396                 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1397         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1398         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1399                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1400                         break;
1401                 udelay(1000); /* delay and try again */
1402         }
1403         spin_unlock_irqrestore(&h->lock, flags);
1404         if (i >= MAX_IOCTL_CONFIG_WAIT)
1405                 return -EAGAIN;
1406         return 0;
1407 }
1408
1409 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1410 {
1411         Heartbeat_type heartbeat;
1412         unsigned long flags;
1413
1414         if (!argp)
1415                 return -EINVAL;
1416         spin_lock_irqsave(&h->lock, flags);
1417         heartbeat = readl(&h->cfgtable->HeartBeat);
1418         spin_unlock_irqrestore(&h->lock, flags);
1419         if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1420                 return -EFAULT;
1421         return 0;
1422 }
1423
1424 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1425 {
1426         BusTypes_type BusTypes;
1427         unsigned long flags;
1428
1429         if (!argp)
1430                 return -EINVAL;
1431         spin_lock_irqsave(&h->lock, flags);
1432         BusTypes = readl(&h->cfgtable->BusTypes);
1433         spin_unlock_irqrestore(&h->lock, flags);
1434         if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1435                 return -EFAULT;
1436         return 0;
1437 }
1438
1439 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1440 {
1441         FirmwareVer_type firmware;
1442
1443         if (!argp)
1444                 return -EINVAL;
1445         memcpy(firmware, h->firm_ver, 4);
1446
1447         if (copy_to_user
1448             (argp, firmware, sizeof(FirmwareVer_type)))
1449                 return -EFAULT;
1450         return 0;
1451 }
1452
1453 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1454 {
1455         DriverVer_type DriverVer = DRIVER_VERSION;
1456
1457         if (!argp)
1458                 return -EINVAL;
1459         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1460                 return -EFAULT;
1461         return 0;
1462 }
1463
1464 static int cciss_getluninfo(ctlr_info_t *h,
1465         struct gendisk *disk, void __user *argp)
1466 {
1467         LogvolInfo_struct luninfo;
1468         drive_info_struct *drv = get_drv(disk);
1469
1470         if (!argp)
1471                 return -EINVAL;
1472         memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1473         luninfo.num_opens = drv->usage_count;
1474         luninfo.num_parts = 0;
1475         if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1476                 return -EFAULT;
1477         return 0;
1478 }
1479
1480 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1481 {
1482         IOCTL_Command_struct iocommand;
1483         CommandList_struct *c;
1484         char *buff = NULL;
1485         u64bit temp64;
1486         DECLARE_COMPLETION_ONSTACK(wait);
1487
1488         if (!argp)
1489                 return -EINVAL;
1490
1491         if (!capable(CAP_SYS_RAWIO))
1492                 return -EPERM;
1493
1494         if (copy_from_user
1495             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1496                 return -EFAULT;
1497         if ((iocommand.buf_size < 1) &&
1498             (iocommand.Request.Type.Direction != XFER_NONE)) {
1499                 return -EINVAL;
1500         }
1501         if (iocommand.buf_size > 0) {
1502                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1503                 if (buff == NULL)
1504                         return -EFAULT;
1505         }
1506         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1507                 /* Copy the data into the buffer we created */
1508                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1509                         kfree(buff);
1510                         return -EFAULT;
1511                 }
1512         } else {
1513                 memset(buff, 0, iocommand.buf_size);
1514         }
1515         c = cmd_special_alloc(h);
1516         if (!c) {
1517                 kfree(buff);
1518                 return -ENOMEM;
1519         }
1520         /* Fill in the command type */
1521         c->cmd_type = CMD_IOCTL_PEND;
1522         /* Fill in Command Header */
1523         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1524         if (iocommand.buf_size > 0) { /* buffer to fill */
1525                 c->Header.SGList = 1;
1526                 c->Header.SGTotal = 1;
1527         } else { /* no buffers to fill */
1528                 c->Header.SGList = 0;
1529                 c->Header.SGTotal = 0;
1530         }
1531         c->Header.LUN = iocommand.LUN_info;
1532         /* use the kernel address the cmd block for tag */
1533         c->Header.Tag.lower = c->busaddr;
1534
1535         /* Fill in Request block */
1536         c->Request = iocommand.Request;
1537
1538         /* Fill in the scatter gather information */
1539         if (iocommand.buf_size > 0) {
1540                 temp64.val = pci_map_single(h->pdev, buff,
1541                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1542                 c->SG[0].Addr.lower = temp64.val32.lower;
1543                 c->SG[0].Addr.upper = temp64.val32.upper;
1544                 c->SG[0].Len = iocommand.buf_size;
1545                 c->SG[0].Ext = 0;  /* we are not chaining */
1546         }
1547         c->waiting = &wait;
1548
1549         enqueue_cmd_and_start_io(h, c);
1550         wait_for_completion(&wait);
1551
1552         /* unlock the buffers from DMA */
1553         temp64.val32.lower = c->SG[0].Addr.lower;
1554         temp64.val32.upper = c->SG[0].Addr.upper;
1555         pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1556                          PCI_DMA_BIDIRECTIONAL);
1557         check_ioctl_unit_attention(h, c);
1558
1559         /* Copy the error information out */
1560         iocommand.error_info = *(c->err_info);
1561         if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1562                 kfree(buff);
1563                 cmd_special_free(h, c);
1564                 return -EFAULT;
1565         }
1566
1567         if (iocommand.Request.Type.Direction == XFER_READ) {
1568                 /* Copy the data out of the buffer we created */
1569                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1570                         kfree(buff);
1571                         cmd_special_free(h, c);
1572                         return -EFAULT;
1573                 }
1574         }
1575         kfree(buff);
1576         cmd_special_free(h, c);
1577         return 0;
1578 }
1579
1580 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1581 {
1582         BIG_IOCTL_Command_struct *ioc;
1583         CommandList_struct *c;
1584         unsigned char **buff = NULL;
1585         int *buff_size = NULL;
1586         u64bit temp64;
1587         BYTE sg_used = 0;
1588         int status = 0;
1589         int i;
1590         DECLARE_COMPLETION_ONSTACK(wait);
1591         __u32 left;
1592         __u32 sz;
1593         BYTE __user *data_ptr;
1594
1595         if (!argp)
1596                 return -EINVAL;
1597         if (!capable(CAP_SYS_RAWIO))
1598                 return -EPERM;
1599         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1600         if (!ioc) {
1601                 status = -ENOMEM;
1602                 goto cleanup1;
1603         }
1604         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1605                 status = -EFAULT;
1606                 goto cleanup1;
1607         }
1608         if ((ioc->buf_size < 1) &&
1609             (ioc->Request.Type.Direction != XFER_NONE)) {
1610                 status = -EINVAL;
1611                 goto cleanup1;
1612         }
1613         /* Check kmalloc limits  using all SGs */
1614         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1615                 status = -EINVAL;
1616                 goto cleanup1;
1617         }
1618         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1619                 status = -EINVAL;
1620                 goto cleanup1;
1621         }
1622         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1623         if (!buff) {
1624                 status = -ENOMEM;
1625                 goto cleanup1;
1626         }
1627         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1628         if (!buff_size) {
1629                 status = -ENOMEM;
1630                 goto cleanup1;
1631         }
1632         left = ioc->buf_size;
1633         data_ptr = ioc->buf;
1634         while (left) {
1635                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1636                 buff_size[sg_used] = sz;
1637                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1638                 if (buff[sg_used] == NULL) {
1639                         status = -ENOMEM;
1640                         goto cleanup1;
1641                 }
1642                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1643                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1644                                 status = -EFAULT;
1645                                 goto cleanup1;
1646                         }
1647                 } else {
1648                         memset(buff[sg_used], 0, sz);
1649                 }
1650                 left -= sz;
1651                 data_ptr += sz;
1652                 sg_used++;
1653         }
1654         c = cmd_special_alloc(h);
1655         if (!c) {
1656                 status = -ENOMEM;
1657                 goto cleanup1;
1658         }
1659         c->cmd_type = CMD_IOCTL_PEND;
1660         c->Header.ReplyQueue = 0;
1661         c->Header.SGList = sg_used;
1662         c->Header.SGTotal = sg_used;
1663         c->Header.LUN = ioc->LUN_info;
1664         c->Header.Tag.lower = c->busaddr;
1665
1666         c->Request = ioc->Request;
1667         for (i = 0; i < sg_used; i++) {
1668                 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1669                                     PCI_DMA_BIDIRECTIONAL);
1670                 c->SG[i].Addr.lower = temp64.val32.lower;
1671                 c->SG[i].Addr.upper = temp64.val32.upper;
1672                 c->SG[i].Len = buff_size[i];
1673                 c->SG[i].Ext = 0;       /* we are not chaining */
1674         }
1675         c->waiting = &wait;
1676         enqueue_cmd_and_start_io(h, c);
1677         wait_for_completion(&wait);
1678         /* unlock the buffers from DMA */
1679         for (i = 0; i < sg_used; i++) {
1680                 temp64.val32.lower = c->SG[i].Addr.lower;
1681                 temp64.val32.upper = c->SG[i].Addr.upper;
1682                 pci_unmap_single(h->pdev,
1683                         (dma_addr_t) temp64.val, buff_size[i],
1684                         PCI_DMA_BIDIRECTIONAL);
1685         }
1686         check_ioctl_unit_attention(h, c);
1687         /* Copy the error information out */
1688         ioc->error_info = *(c->err_info);
1689         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1690                 cmd_special_free(h, c);
1691                 status = -EFAULT;
1692                 goto cleanup1;
1693         }
1694         if (ioc->Request.Type.Direction == XFER_READ) {
1695                 /* Copy the data out of the buffer we created */
1696                 BYTE __user *ptr = ioc->buf;
1697                 for (i = 0; i < sg_used; i++) {
1698                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
1699                                 cmd_special_free(h, c);
1700                                 status = -EFAULT;
1701                                 goto cleanup1;
1702                         }
1703                         ptr += buff_size[i];
1704                 }
1705         }
1706         cmd_special_free(h, c);
1707         status = 0;
1708 cleanup1:
1709         if (buff) {
1710                 for (i = 0; i < sg_used; i++)
1711                         kfree(buff[i]);
1712                 kfree(buff);
1713         }
1714         kfree(buff_size);
1715         kfree(ioc);
1716         return status;
1717 }
1718
1719 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1720         unsigned int cmd, unsigned long arg)
1721 {
1722         struct gendisk *disk = bdev->bd_disk;
1723         ctlr_info_t *h = get_host(disk);
1724         void __user *argp = (void __user *)arg;
1725
1726         dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1727                 cmd, arg);
1728         switch (cmd) {
1729         case CCISS_GETPCIINFO:
1730                 return cciss_getpciinfo(h, argp);
1731         case CCISS_GETINTINFO:
1732                 return cciss_getintinfo(h, argp);
1733         case CCISS_SETINTINFO:
1734                 return cciss_setintinfo(h, argp);
1735         case CCISS_GETNODENAME:
1736                 return cciss_getnodename(h, argp);
1737         case CCISS_SETNODENAME:
1738                 return cciss_setnodename(h, argp);
1739         case CCISS_GETHEARTBEAT:
1740                 return cciss_getheartbeat(h, argp);
1741         case CCISS_GETBUSTYPES:
1742                 return cciss_getbustypes(h, argp);
1743         case CCISS_GETFIRMVER:
1744                 return cciss_getfirmver(h, argp);
1745         case CCISS_GETDRIVVER:
1746                 return cciss_getdrivver(h, argp);
1747         case CCISS_DEREGDISK:
1748         case CCISS_REGNEWD:
1749         case CCISS_REVALIDVOLS:
1750                 return rebuild_lun_table(h, 0, 1);
1751         case CCISS_GETLUNINFO:
1752                 return cciss_getluninfo(h, disk, argp);
1753         case CCISS_PASSTHRU:
1754                 return cciss_passthru(h, argp);
1755         case CCISS_BIG_PASSTHRU:
1756                 return cciss_bigpassthru(h, argp);
1757
1758         /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1759         /* very meaningful for cciss.  SG_IO is the main one people want. */
1760
1761         case SG_GET_VERSION_NUM:
1762         case SG_SET_TIMEOUT:
1763         case SG_GET_TIMEOUT:
1764         case SG_GET_RESERVED_SIZE:
1765         case SG_SET_RESERVED_SIZE:
1766         case SG_EMULATED_HOST:
1767         case SG_IO:
1768         case SCSI_IOCTL_SEND_COMMAND:
1769                 return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1770
1771         /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1772         /* they aren't a good fit for cciss, as CD-ROMs are */
1773         /* not supported, and we don't have any bus/target/lun */
1774         /* which we present to the kernel. */
1775
1776         case CDROM_SEND_PACKET:
1777         case CDROMCLOSETRAY:
1778         case CDROMEJECT:
1779         case SCSI_IOCTL_GET_IDLUN:
1780         case SCSI_IOCTL_GET_BUS_NUMBER:
1781         default:
1782                 return -ENOTTY;
1783         }
1784 }
1785
1786 static void cciss_check_queues(ctlr_info_t *h)
1787 {
1788         int start_queue = h->next_to_run;
1789         int i;
1790
1791         /* check to see if we have maxed out the number of commands that can
1792          * be placed on the queue.  If so then exit.  We do this check here
1793          * in case the interrupt we serviced was from an ioctl and did not
1794          * free any new commands.
1795          */
1796         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1797                 return;
1798
1799         /* We have room on the queue for more commands.  Now we need to queue
1800          * them up.  We will also keep track of the next queue to run so
1801          * that every queue gets a chance to be started first.
1802          */
1803         for (i = 0; i < h->highest_lun + 1; i++) {
1804                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1805                 /* make sure the disk has been added and the drive is real
1806                  * because this can be called from the middle of init_one.
1807                  */
1808                 if (!h->drv[curr_queue])
1809                         continue;
1810                 if (!(h->drv[curr_queue]->queue) ||
1811                         !(h->drv[curr_queue]->heads))
1812                         continue;
1813                 blk_start_queue(h->gendisk[curr_queue]->queue);
1814
1815                 /* check to see if we have maxed out the number of commands
1816                  * that can be placed on the queue.
1817                  */
1818                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1819                         if (curr_queue == start_queue) {
1820                                 h->next_to_run =
1821                                     (start_queue + 1) % (h->highest_lun + 1);
1822                                 break;
1823                         } else {
1824                                 h->next_to_run = curr_queue;
1825                                 break;
1826                         }
1827                 }
1828         }
1829 }
1830
1831 static void cciss_softirq_done(struct request *rq)
1832 {
1833         CommandList_struct *c = rq->completion_data;
1834         ctlr_info_t *h = hba[c->ctlr];
1835         SGDescriptor_struct *curr_sg = c->SG;
1836         u64bit temp64;
1837         unsigned long flags;
1838         int i, ddir;
1839         int sg_index = 0;
1840
1841         if (c->Request.Type.Direction == XFER_READ)
1842                 ddir = PCI_DMA_FROMDEVICE;
1843         else
1844                 ddir = PCI_DMA_TODEVICE;
1845
1846         /* command did not need to be retried */
1847         /* unmap the DMA mapping for all the scatter gather elements */
1848         for (i = 0; i < c->Header.SGList; i++) {
1849                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1850                         cciss_unmap_sg_chain_block(h, c);
1851                         /* Point to the next block */
1852                         curr_sg = h->cmd_sg_list[c->cmdindex];
1853                         sg_index = 0;
1854                 }
1855                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1856                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1857                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1858                                 ddir);
1859                 ++sg_index;
1860         }
1861
1862         dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1863
1864         /* set the residual count for pc requests */
1865         if (blk_rq_is_passthrough(rq))
1866                 scsi_req(rq)->resid_len = c->err_info->ResidualCnt;
1867         blk_end_request_all(rq, scsi_req(rq)->result ?
1868                         BLK_STS_IOERR : BLK_STS_OK);
1869
1870         spin_lock_irqsave(&h->lock, flags);
1871         cmd_free(h, c);
1872         cciss_check_queues(h);
1873         spin_unlock_irqrestore(&h->lock, flags);
1874 }
1875
1876 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1877         unsigned char scsi3addr[], uint32_t log_unit)
1878 {
1879         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1880                 sizeof(h->drv[log_unit]->LunID));
1881 }
1882
1883 /* This function gets the SCSI vendor, model, and revision of a logical drive
1884  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1885  * they cannot be read.
1886  */
1887 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1888                                    char *vendor, char *model, char *rev)
1889 {
1890         int rc;
1891         InquiryData_struct *inq_buf;
1892         unsigned char scsi3addr[8];
1893
1894         *vendor = '\0';
1895         *model = '\0';
1896         *rev = '\0';
1897
1898         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1899         if (!inq_buf)
1900                 return;
1901
1902         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1903         rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1904                         scsi3addr, TYPE_CMD);
1905         if (rc == IO_OK) {
1906                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1907                 vendor[VENDOR_LEN] = '\0';
1908                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1909                 model[MODEL_LEN] = '\0';
1910                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1911                 rev[REV_LEN] = '\0';
1912         }
1913
1914         kfree(inq_buf);
1915         return;
1916 }
1917
1918 /* This function gets the serial number of a logical drive via
1919  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1920  * number cannot be had, for whatever reason, 16 bytes of 0xff
1921  * are returned instead.
1922  */
1923 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1924                                 unsigned char *serial_no, int buflen)
1925 {
1926 #define PAGE_83_INQ_BYTES 64
1927         int rc;
1928         unsigned char *buf;
1929         unsigned char scsi3addr[8];
1930
1931         if (buflen > 16)
1932                 buflen = 16;
1933         memset(serial_no, 0xff, buflen);
1934         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1935         if (!buf)
1936                 return;
1937         memset(serial_no, 0, buflen);
1938         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1939         rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1940                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1941         if (rc == IO_OK)
1942                 memcpy(serial_no, &buf[8], buflen);
1943         kfree(buf);
1944         return;
1945 }
1946
1947 static void cciss_initialize_rq(struct request *rq)
1948 {
1949         struct scsi_request *sreq = blk_mq_rq_to_pdu(rq);
1950
1951         scsi_req_init(sreq);
1952 }
1953
1954 /*
1955  * cciss_add_disk sets up the block device queue for a logical drive
1956  */
1957 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1958                                 int drv_index)
1959 {
1960         disk->queue = blk_alloc_queue(GFP_KERNEL);
1961         if (!disk->queue)
1962                 goto init_queue_failure;
1963
1964         disk->queue->cmd_size = sizeof(struct scsi_request);
1965         disk->queue->request_fn = do_cciss_request;
1966         disk->queue->initialize_rq_fn = cciss_initialize_rq;
1967         disk->queue->queue_lock = &h->lock;
1968         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, disk->queue);
1969         if (blk_init_allocated_queue(disk->queue) < 0)
1970                 goto cleanup_queue;
1971
1972         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1973         disk->major = h->major;
1974         disk->first_minor = drv_index << NWD_SHIFT;
1975         disk->fops = &cciss_fops;
1976         if (cciss_create_ld_sysfs_entry(h, drv_index))
1977                 goto cleanup_queue;
1978         disk->private_data = h->drv[drv_index];
1979
1980         /* Set up queue information */
1981         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1982
1983         /* This is a hardware imposed limit. */
1984         blk_queue_max_segments(disk->queue, h->maxsgentries);
1985
1986         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1987
1988         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1989
1990         disk->queue->queuedata = h;
1991
1992         blk_queue_logical_block_size(disk->queue,
1993                                      h->drv[drv_index]->block_size);
1994
1995         /* Make sure all queue data is written out before */
1996         /* setting h->drv[drv_index]->queue, as setting this */
1997         /* allows the interrupt handler to start the queue */
1998         wmb();
1999         h->drv[drv_index]->queue = disk->queue;
2000         device_add_disk(&h->drv[drv_index]->dev, disk);
2001         return 0;
2002
2003 cleanup_queue:
2004         blk_cleanup_queue(disk->queue);
2005         disk->queue = NULL;
2006 init_queue_failure:
2007         return -1;
2008 }
2009
2010 /* This function will check the usage_count of the drive to be updated/added.
2011  * If the usage_count is zero and it is a heretofore unknown drive, or,
2012  * the drive's capacity, geometry, or serial number has changed,
2013  * then the drive information will be updated and the disk will be
2014  * re-registered with the kernel.  If these conditions don't hold,
2015  * then it will be left alone for the next reboot.  The exception to this
2016  * is disk 0 which will always be left registered with the kernel since it
2017  * is also the controller node.  Any changes to disk 0 will show up on
2018  * the next reboot.
2019  */
2020 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
2021         int first_time, int via_ioctl)
2022 {
2023         struct gendisk *disk;
2024         InquiryData_struct *inq_buff = NULL;
2025         unsigned int block_size;
2026         sector_t total_size;
2027         unsigned long flags = 0;
2028         int ret = 0;
2029         drive_info_struct *drvinfo;
2030
2031         /* Get information about the disk and modify the driver structure */
2032         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2033         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2034         if (inq_buff == NULL || drvinfo == NULL)
2035                 goto mem_msg;
2036
2037         /* testing to see if 16-byte CDBs are already being used */
2038         if (h->cciss_read == CCISS_READ_16) {
2039                 cciss_read_capacity_16(h, drv_index,
2040                         &total_size, &block_size);
2041
2042         } else {
2043                 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2044                 /* if read_capacity returns all F's this volume is >2TB */
2045                 /* in size so we switch to 16-byte CDB's for all */
2046                 /* read/write ops */
2047                 if (total_size == 0xFFFFFFFFULL) {
2048                         cciss_read_capacity_16(h, drv_index,
2049                         &total_size, &block_size);
2050                         h->cciss_read = CCISS_READ_16;
2051                         h->cciss_write = CCISS_WRITE_16;
2052                 } else {
2053                         h->cciss_read = CCISS_READ_10;
2054                         h->cciss_write = CCISS_WRITE_10;
2055                 }
2056         }
2057
2058         cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2059                                inq_buff, drvinfo);
2060         drvinfo->block_size = block_size;
2061         drvinfo->nr_blocks = total_size + 1;
2062
2063         cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2064                                 drvinfo->model, drvinfo->rev);
2065         cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2066                         sizeof(drvinfo->serial_no));
2067         /* Save the lunid in case we deregister the disk, below. */
2068         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2069                 sizeof(drvinfo->LunID));
2070
2071         /* Is it the same disk we already know, and nothing's changed? */
2072         if (h->drv[drv_index]->raid_level != -1 &&
2073                 ((memcmp(drvinfo->serial_no,
2074                                 h->drv[drv_index]->serial_no, 16) == 0) &&
2075                 drvinfo->block_size == h->drv[drv_index]->block_size &&
2076                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2077                 drvinfo->heads == h->drv[drv_index]->heads &&
2078                 drvinfo->sectors == h->drv[drv_index]->sectors &&
2079                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2080                         /* The disk is unchanged, nothing to update */
2081                         goto freeret;
2082
2083         /* If we get here it's not the same disk, or something's changed,
2084          * so we need to * deregister it, and re-register it, if it's not
2085          * in use.
2086          * If the disk already exists then deregister it before proceeding
2087          * (unless it's the first disk (for the controller node).
2088          */
2089         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2090                 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2091                 spin_lock_irqsave(&h->lock, flags);
2092                 h->drv[drv_index]->busy_configuring = 1;
2093                 spin_unlock_irqrestore(&h->lock, flags);
2094
2095                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2096                  * which keeps the interrupt handler from starting
2097                  * the queue.
2098                  */
2099                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2100         }
2101
2102         /* If the disk is in use return */
2103         if (ret)
2104                 goto freeret;
2105
2106         /* Save the new information from cciss_geometry_inquiry
2107          * and serial number inquiry.  If the disk was deregistered
2108          * above, then h->drv[drv_index] will be NULL.
2109          */
2110         if (h->drv[drv_index] == NULL) {
2111                 drvinfo->device_initialized = 0;
2112                 h->drv[drv_index] = drvinfo;
2113                 drvinfo = NULL; /* so it won't be freed below. */
2114         } else {
2115                 /* special case for cxd0 */
2116                 h->drv[drv_index]->block_size = drvinfo->block_size;
2117                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2118                 h->drv[drv_index]->heads = drvinfo->heads;
2119                 h->drv[drv_index]->sectors = drvinfo->sectors;
2120                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2121                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2122                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2123                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2124                         VENDOR_LEN + 1);
2125                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2126                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2127         }
2128
2129         ++h->num_luns;
2130         disk = h->gendisk[drv_index];
2131         set_capacity(disk, h->drv[drv_index]->nr_blocks);
2132
2133         /* If it's not disk 0 (drv_index != 0)
2134          * or if it was disk 0, but there was previously
2135          * no actual corresponding configured logical drive
2136          * (raid_leve == -1) then we want to update the
2137          * logical drive's information.
2138          */
2139         if (drv_index || first_time) {
2140                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2141                         cciss_free_gendisk(h, drv_index);
2142                         cciss_free_drive_info(h, drv_index);
2143                         dev_warn(&h->pdev->dev, "could not update disk %d\n",
2144                                 drv_index);
2145                         --h->num_luns;
2146                 }
2147         }
2148
2149 freeret:
2150         kfree(inq_buff);
2151         kfree(drvinfo);
2152         return;
2153 mem_msg:
2154         dev_err(&h->pdev->dev, "out of memory\n");
2155         goto freeret;
2156 }
2157
2158 /* This function will find the first index of the controllers drive array
2159  * that has a null drv pointer and allocate the drive info struct and
2160  * will return that index   This is where new drives will be added.
2161  * If the index to be returned is greater than the highest_lun index for
2162  * the controller then highest_lun is set * to this new index.
2163  * If there are no available indexes or if tha allocation fails, then -1
2164  * is returned.  * "controller_node" is used to know if this is a real
2165  * logical drive, or just the controller node, which determines if this
2166  * counts towards highest_lun.
2167  */
2168 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2169 {
2170         int i;
2171         drive_info_struct *drv;
2172
2173         /* Search for an empty slot for our drive info */
2174         for (i = 0; i < CISS_MAX_LUN; i++) {
2175
2176                 /* if not cxd0 case, and it's occupied, skip it. */
2177                 if (h->drv[i] && i != 0)
2178                         continue;
2179                 /*
2180                  * If it's cxd0 case, and drv is alloc'ed already, and a
2181                  * disk is configured there, skip it.
2182                  */
2183                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2184                         continue;
2185
2186                 /*
2187                  * We've found an empty slot.  Update highest_lun
2188                  * provided this isn't just the fake cxd0 controller node.
2189                  */
2190                 if (i > h->highest_lun && !controller_node)
2191                         h->highest_lun = i;
2192
2193                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2194                 if (i == 0 && h->drv[i] != NULL)
2195                         return i;
2196
2197                 /*
2198                  * Found an empty slot, not already alloc'ed.  Allocate it.
2199                  * Mark it with raid_level == -1, so we know it's new later on.
2200                  */
2201                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2202                 if (!drv)
2203                         return -1;
2204                 drv->raid_level = -1; /* so we know it's new */
2205                 h->drv[i] = drv;
2206                 return i;
2207         }
2208         return -1;
2209 }
2210
2211 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2212 {
2213         kfree(h->drv[drv_index]);
2214         h->drv[drv_index] = NULL;
2215 }
2216
2217 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2218 {
2219         put_disk(h->gendisk[drv_index]);
2220         h->gendisk[drv_index] = NULL;
2221 }
2222
2223 /* cciss_add_gendisk finds a free hba[]->drv structure
2224  * and allocates a gendisk if needed, and sets the lunid
2225  * in the drvinfo structure.   It returns the index into
2226  * the ->drv[] array, or -1 if none are free.
2227  * is_controller_node indicates whether highest_lun should
2228  * count this disk, or if it's only being added to provide
2229  * a means to talk to the controller in case no logical
2230  * drives have yet been configured.
2231  */
2232 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2233         int controller_node)
2234 {
2235         int drv_index;
2236
2237         drv_index = cciss_alloc_drive_info(h, controller_node);
2238         if (drv_index == -1)
2239                 return -1;
2240
2241         /*Check if the gendisk needs to be allocated */
2242         if (!h->gendisk[drv_index]) {
2243                 h->gendisk[drv_index] =
2244                         alloc_disk(1 << NWD_SHIFT);
2245                 if (!h->gendisk[drv_index]) {
2246                         dev_err(&h->pdev->dev,
2247                                 "could not allocate a new disk %d\n",
2248                                 drv_index);
2249                         goto err_free_drive_info;
2250                 }
2251         }
2252         memcpy(h->drv[drv_index]->LunID, lunid,
2253                 sizeof(h->drv[drv_index]->LunID));
2254         if (cciss_create_ld_sysfs_entry(h, drv_index))
2255                 goto err_free_disk;
2256         /* Don't need to mark this busy because nobody */
2257         /* else knows about this disk yet to contend */
2258         /* for access to it. */
2259         h->drv[drv_index]->busy_configuring = 0;
2260         wmb();
2261         return drv_index;
2262
2263 err_free_disk:
2264         cciss_free_gendisk(h, drv_index);
2265 err_free_drive_info:
2266         cciss_free_drive_info(h, drv_index);
2267         return -1;
2268 }
2269
2270 /* This is for the special case of a controller which
2271  * has no logical drives.  In this case, we still need
2272  * to register a disk so the controller can be accessed
2273  * by the Array Config Utility.
2274  */
2275 static void cciss_add_controller_node(ctlr_info_t *h)
2276 {
2277         struct gendisk *disk;
2278         int drv_index;
2279
2280         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2281                 return;
2282
2283         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2284         if (drv_index == -1)
2285                 goto error;
2286         h->drv[drv_index]->block_size = 512;
2287         h->drv[drv_index]->nr_blocks = 0;
2288         h->drv[drv_index]->heads = 0;
2289         h->drv[drv_index]->sectors = 0;
2290         h->drv[drv_index]->cylinders = 0;
2291         h->drv[drv_index]->raid_level = -1;
2292         memset(h->drv[drv_index]->serial_no, 0, 16);
2293         disk = h->gendisk[drv_index];
2294         if (cciss_add_disk(h, disk, drv_index) == 0)
2295                 return;
2296         cciss_free_gendisk(h, drv_index);
2297         cciss_free_drive_info(h, drv_index);
2298 error:
2299         dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2300         return;
2301 }
2302
2303 /* This function will add and remove logical drives from the Logical
2304  * drive array of the controller and maintain persistency of ordering
2305  * so that mount points are preserved until the next reboot.  This allows
2306  * for the removal of logical drives in the middle of the drive array
2307  * without a re-ordering of those drives.
2308  * INPUT
2309  * h            = The controller to perform the operations on
2310  */
2311 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2312         int via_ioctl)
2313 {
2314         int num_luns;
2315         ReportLunData_struct *ld_buff = NULL;
2316         int return_code;
2317         int listlength = 0;
2318         int i;
2319         int drv_found;
2320         int drv_index = 0;
2321         unsigned char lunid[8] = CTLR_LUNID;
2322         unsigned long flags;
2323
2324         if (!capable(CAP_SYS_RAWIO))
2325                 return -EPERM;
2326
2327         /* Set busy_configuring flag for this operation */
2328         spin_lock_irqsave(&h->lock, flags);
2329         if (h->busy_configuring) {
2330                 spin_unlock_irqrestore(&h->lock, flags);
2331                 return -EBUSY;
2332         }
2333         h->busy_configuring = 1;
2334         spin_unlock_irqrestore(&h->lock, flags);
2335
2336         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2337         if (ld_buff == NULL)
2338                 goto mem_msg;
2339
2340         return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2341                                       sizeof(ReportLunData_struct),
2342                                       0, CTLR_LUNID, TYPE_CMD);
2343
2344         if (return_code == IO_OK)
2345                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2346         else {  /* reading number of logical volumes failed */
2347                 dev_warn(&h->pdev->dev,
2348                         "report logical volume command failed\n");
2349                 listlength = 0;
2350                 goto freeret;
2351         }
2352
2353         num_luns = listlength / 8;      /* 8 bytes per entry */
2354         if (num_luns > CISS_MAX_LUN) {
2355                 num_luns = CISS_MAX_LUN;
2356                 dev_warn(&h->pdev->dev, "more luns configured"
2357                        " on controller than can be handled by"
2358                        " this driver.\n");
2359         }
2360
2361         if (num_luns == 0)
2362                 cciss_add_controller_node(h);
2363
2364         /* Compare controller drive array to driver's drive array
2365          * to see if any drives are missing on the controller due
2366          * to action of Array Config Utility (user deletes drive)
2367          * and deregister logical drives which have disappeared.
2368          */
2369         for (i = 0; i <= h->highest_lun; i++) {
2370                 int j;
2371                 drv_found = 0;
2372
2373                 /* skip holes in the array from already deleted drives */
2374                 if (h->drv[i] == NULL)
2375                         continue;
2376
2377                 for (j = 0; j < num_luns; j++) {
2378                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2379                         if (memcmp(h->drv[i]->LunID, lunid,
2380                                 sizeof(lunid)) == 0) {
2381                                 drv_found = 1;
2382                                 break;
2383                         }
2384                 }
2385                 if (!drv_found) {
2386                         /* Deregister it from the OS, it's gone. */
2387                         spin_lock_irqsave(&h->lock, flags);
2388                         h->drv[i]->busy_configuring = 1;
2389                         spin_unlock_irqrestore(&h->lock, flags);
2390                         return_code = deregister_disk(h, i, 1, via_ioctl);
2391                         if (h->drv[i] != NULL)
2392                                 h->drv[i]->busy_configuring = 0;
2393                 }
2394         }
2395
2396         /* Compare controller drive array to driver's drive array.
2397          * Check for updates in the drive information and any new drives
2398          * on the controller due to ACU adding logical drives, or changing
2399          * a logical drive's size, etc.  Reregister any new/changed drives
2400          */
2401         for (i = 0; i < num_luns; i++) {
2402                 int j;
2403
2404                 drv_found = 0;
2405
2406                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2407                 /* Find if the LUN is already in the drive array
2408                  * of the driver.  If so then update its info
2409                  * if not in use.  If it does not exist then find
2410                  * the first free index and add it.
2411                  */
2412                 for (j = 0; j <= h->highest_lun; j++) {
2413                         if (h->drv[j] != NULL &&
2414                                 memcmp(h->drv[j]->LunID, lunid,
2415                                         sizeof(h->drv[j]->LunID)) == 0) {
2416                                 drv_index = j;
2417                                 drv_found = 1;
2418                                 break;
2419                         }
2420                 }
2421
2422                 /* check if the drive was found already in the array */
2423                 if (!drv_found) {
2424                         drv_index = cciss_add_gendisk(h, lunid, 0);
2425                         if (drv_index == -1)
2426                                 goto freeret;
2427                 }
2428                 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2429         }               /* end for */
2430
2431 freeret:
2432         kfree(ld_buff);
2433         h->busy_configuring = 0;
2434         /* We return -1 here to tell the ACU that we have registered/updated
2435          * all of the drives that we can and to keep it from calling us
2436          * additional times.
2437          */
2438         return -1;
2439 mem_msg:
2440         dev_err(&h->pdev->dev, "out of memory\n");
2441         h->busy_configuring = 0;
2442         goto freeret;
2443 }
2444
2445 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2446 {
2447         /* zero out the disk size info */
2448         drive_info->nr_blocks = 0;
2449         drive_info->block_size = 0;
2450         drive_info->heads = 0;
2451         drive_info->sectors = 0;
2452         drive_info->cylinders = 0;
2453         drive_info->raid_level = -1;
2454         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2455         memset(drive_info->model, 0, sizeof(drive_info->model));
2456         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2457         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2458         /*
2459          * don't clear the LUNID though, we need to remember which
2460          * one this one is.
2461          */
2462 }
2463
2464 /* This function will deregister the disk and it's queue from the
2465  * kernel.  It must be called with the controller lock held and the
2466  * drv structures busy_configuring flag set.  It's parameters are:
2467  *
2468  * disk = This is the disk to be deregistered
2469  * drv  = This is the drive_info_struct associated with the disk to be
2470  *        deregistered.  It contains information about the disk used
2471  *        by the driver.
2472  * clear_all = This flag determines whether or not the disk information
2473  *             is going to be completely cleared out and the highest_lun
2474  *             reset.  Sometimes we want to clear out information about
2475  *             the disk in preparation for re-adding it.  In this case
2476  *             the highest_lun should be left unchanged and the LunID
2477  *             should not be cleared.
2478  * via_ioctl
2479  *    This indicates whether we've reached this path via ioctl.
2480  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2481  *    If this path is reached via ioctl(), then the max_usage_count will
2482  *    be 1, as the process calling ioctl() has got to have the device open.
2483  *    If we get here via sysfs, then the max usage count will be zero.
2484 */
2485 static int deregister_disk(ctlr_info_t *h, int drv_index,
2486                            int clear_all, int via_ioctl)
2487 {
2488         int i;
2489         struct gendisk *disk;
2490         drive_info_struct *drv;
2491         int recalculate_highest_lun;
2492
2493         if (!capable(CAP_SYS_RAWIO))
2494                 return -EPERM;
2495
2496         drv = h->drv[drv_index];
2497         disk = h->gendisk[drv_index];
2498
2499         /* make sure logical volume is NOT is use */
2500         if (clear_all || (h->gendisk[0] == disk)) {
2501                 if (drv->usage_count > via_ioctl)
2502                         return -EBUSY;
2503         } else if (drv->usage_count > 0)
2504                 return -EBUSY;
2505
2506         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2507
2508         /* invalidate the devices and deregister the disk.  If it is disk
2509          * zero do not deregister it but just zero out it's values.  This
2510          * allows us to delete disk zero but keep the controller registered.
2511          */
2512         if (h->gendisk[0] != disk) {
2513                 struct request_queue *q = disk->queue;
2514                 if (disk->flags & GENHD_FL_UP) {
2515                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2516                         del_gendisk(disk);
2517                 }
2518                 if (q)
2519                         blk_cleanup_queue(q);
2520                 /* If clear_all is set then we are deleting the logical
2521                  * drive, not just refreshing its info.  For drives
2522                  * other than disk 0 we will call put_disk.  We do not
2523                  * do this for disk 0 as we need it to be able to
2524                  * configure the controller.
2525                  */
2526                 if (clear_all){
2527                         /* This isn't pretty, but we need to find the
2528                          * disk in our array and NULL our the pointer.
2529                          * This is so that we will call alloc_disk if
2530                          * this index is used again later.
2531                          */
2532                         for (i=0; i < CISS_MAX_LUN; i++){
2533                                 if (h->gendisk[i] == disk) {
2534                                         h->gendisk[i] = NULL;
2535                                         break;
2536                                 }
2537                         }
2538                         put_disk(disk);
2539                 }
2540         } else {
2541                 set_capacity(disk, 0);
2542                 cciss_clear_drive_info(drv);
2543         }
2544
2545         --h->num_luns;
2546
2547         /* if it was the last disk, find the new hightest lun */
2548         if (clear_all && recalculate_highest_lun) {
2549                 int newhighest = -1;
2550                 for (i = 0; i <= h->highest_lun; i++) {
2551                         /* if the disk has size > 0, it is available */
2552                         if (h->drv[i] && h->drv[i]->heads)
2553                                 newhighest = i;
2554                 }
2555                 h->highest_lun = newhighest;
2556         }
2557         return 0;
2558 }
2559
2560 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2561                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2562                 int cmd_type)
2563 {
2564         u64bit buff_dma_handle;
2565         int status = IO_OK;
2566
2567         c->cmd_type = CMD_IOCTL_PEND;
2568         c->Header.ReplyQueue = 0;
2569         if (buff != NULL) {
2570                 c->Header.SGList = 1;
2571                 c->Header.SGTotal = 1;
2572         } else {
2573                 c->Header.SGList = 0;
2574                 c->Header.SGTotal = 0;
2575         }
2576         c->Header.Tag.lower = c->busaddr;
2577         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2578
2579         c->Request.Type.Type = cmd_type;
2580         if (cmd_type == TYPE_CMD) {
2581                 switch (cmd) {
2582                 case CISS_INQUIRY:
2583                         /* are we trying to read a vital product page */
2584                         if (page_code != 0) {
2585                                 c->Request.CDB[1] = 0x01;
2586                                 c->Request.CDB[2] = page_code;
2587                         }
2588                         c->Request.CDBLen = 6;
2589                         c->Request.Type.Attribute = ATTR_SIMPLE;
2590                         c->Request.Type.Direction = XFER_READ;
2591                         c->Request.Timeout = 0;
2592                         c->Request.CDB[0] = CISS_INQUIRY;
2593                         c->Request.CDB[4] = size & 0xFF;
2594                         break;
2595                 case CISS_REPORT_LOG:
2596                 case CISS_REPORT_PHYS:
2597                         /* Talking to controller so It's a physical command
2598                            mode = 00 target = 0.  Nothing to write.
2599                          */
2600                         c->Request.CDBLen = 12;
2601                         c->Request.Type.Attribute = ATTR_SIMPLE;
2602                         c->Request.Type.Direction = XFER_READ;
2603                         c->Request.Timeout = 0;
2604                         c->Request.CDB[0] = cmd;
2605                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2606                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2607                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2608                         c->Request.CDB[9] = size & 0xFF;
2609                         break;
2610
2611                 case CCISS_READ_CAPACITY:
2612                         c->Request.CDBLen = 10;
2613                         c->Request.Type.Attribute = ATTR_SIMPLE;
2614                         c->Request.Type.Direction = XFER_READ;
2615                         c->Request.Timeout = 0;
2616                         c->Request.CDB[0] = cmd;
2617                         break;
2618                 case CCISS_READ_CAPACITY_16:
2619                         c->Request.CDBLen = 16;
2620                         c->Request.Type.Attribute = ATTR_SIMPLE;
2621                         c->Request.Type.Direction = XFER_READ;
2622                         c->Request.Timeout = 0;
2623                         c->Request.CDB[0] = cmd;
2624                         c->Request.CDB[1] = 0x10;
2625                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2626                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2627                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2628                         c->Request.CDB[13] = size & 0xFF;
2629                         c->Request.Timeout = 0;
2630                         c->Request.CDB[0] = cmd;
2631                         break;
2632                 case CCISS_CACHE_FLUSH:
2633                         c->Request.CDBLen = 12;
2634                         c->Request.Type.Attribute = ATTR_SIMPLE;
2635                         c->Request.Type.Direction = XFER_WRITE;
2636                         c->Request.Timeout = 0;
2637                         c->Request.CDB[0] = BMIC_WRITE;
2638                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2639                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2640                         c->Request.CDB[8] = size & 0xFF;
2641                         break;
2642                 case TEST_UNIT_READY:
2643                         c->Request.CDBLen = 6;
2644                         c->Request.Type.Attribute = ATTR_SIMPLE;
2645                         c->Request.Type.Direction = XFER_NONE;
2646                         c->Request.Timeout = 0;
2647                         break;
2648                 default:
2649                         dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2650                         return IO_ERROR;
2651                 }
2652         } else if (cmd_type == TYPE_MSG) {
2653                 switch (cmd) {
2654                 case CCISS_ABORT_MSG:
2655                         c->Request.CDBLen = 12;
2656                         c->Request.Type.Attribute = ATTR_SIMPLE;
2657                         c->Request.Type.Direction = XFER_WRITE;
2658                         c->Request.Timeout = 0;
2659                         c->Request.CDB[0] = cmd;        /* abort */
2660                         c->Request.CDB[1] = 0;  /* abort a command */
2661                         /* buff contains the tag of the command to abort */
2662                         memcpy(&c->Request.CDB[4], buff, 8);
2663                         break;
2664                 case CCISS_RESET_MSG:
2665                         c->Request.CDBLen = 16;
2666                         c->Request.Type.Attribute = ATTR_SIMPLE;
2667                         c->Request.Type.Direction = XFER_NONE;
2668                         c->Request.Timeout = 0;
2669                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2670                         c->Request.CDB[0] = cmd;        /* reset */
2671                         c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2672                         break;
2673                 case CCISS_NOOP_MSG:
2674                         c->Request.CDBLen = 1;
2675                         c->Request.Type.Attribute = ATTR_SIMPLE;
2676                         c->Request.Type.Direction = XFER_WRITE;
2677                         c->Request.Timeout = 0;
2678                         c->Request.CDB[0] = cmd;
2679                         break;
2680                 default:
2681                         dev_warn(&h->pdev->dev,
2682                                 "unknown message type %d\n", cmd);
2683                         return IO_ERROR;
2684                 }
2685         } else {
2686                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2687                 return IO_ERROR;
2688         }
2689         /* Fill in the scatter gather information */
2690         if (size > 0) {
2691                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2692                                                              buff, size,
2693                                                              PCI_DMA_BIDIRECTIONAL);
2694                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2695                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2696                 c->SG[0].Len = size;
2697                 c->SG[0].Ext = 0;       /* we are not chaining */
2698         }
2699         return status;
2700 }
2701
2702 static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2703                             u8 reset_type)
2704 {
2705         CommandList_struct *c;
2706         int return_status;
2707
2708         c = cmd_alloc(h);
2709         if (!c)
2710                 return -ENOMEM;
2711         return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2712                 CTLR_LUNID, TYPE_MSG);
2713         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2714         if (return_status != IO_OK) {
2715                 cmd_special_free(h, c);
2716                 return return_status;
2717         }
2718         c->waiting = NULL;
2719         enqueue_cmd_and_start_io(h, c);
2720         /* Don't wait for completion, the reset won't complete.  Don't free
2721          * the command either.  This is the last command we will send before
2722          * re-initializing everything, so it doesn't matter and won't leak.
2723          */
2724         return 0;
2725 }
2726
2727 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2728 {
2729         switch (c->err_info->ScsiStatus) {
2730         case SAM_STAT_GOOD:
2731                 return IO_OK;
2732         case SAM_STAT_CHECK_CONDITION:
2733                 switch (0xf & c->err_info->SenseInfo[2]) {
2734                 case 0: return IO_OK; /* no sense */
2735                 case 1: return IO_OK; /* recovered error */
2736                 default:
2737                         if (check_for_unit_attention(h, c))
2738                                 return IO_NEEDS_RETRY;
2739                         dev_warn(&h->pdev->dev, "cmd 0x%02x "
2740                                 "check condition, sense key = 0x%02x\n",
2741                                 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2742                 }
2743                 break;
2744         default:
2745                 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2746                         "scsi status = 0x%02x\n",
2747                         c->Request.CDB[0], c->err_info->ScsiStatus);
2748                 break;
2749         }
2750         return IO_ERROR;
2751 }
2752
2753 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2754 {
2755         int return_status = IO_OK;
2756
2757         if (c->err_info->CommandStatus == CMD_SUCCESS)
2758                 return IO_OK;
2759
2760         switch (c->err_info->CommandStatus) {
2761         case CMD_TARGET_STATUS:
2762                 return_status = check_target_status(h, c);
2763                 break;
2764         case CMD_DATA_UNDERRUN:
2765         case CMD_DATA_OVERRUN:
2766                 /* expected for inquiry and report lun commands */
2767                 break;
2768         case CMD_INVALID:
2769                 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2770                        "reported invalid\n", c->Request.CDB[0]);
2771                 return_status = IO_ERROR;
2772                 break;
2773         case CMD_PROTOCOL_ERR:
2774                 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2775                        "protocol error\n", c->Request.CDB[0]);
2776                 return_status = IO_ERROR;
2777                 break;
2778         case CMD_HARDWARE_ERR:
2779                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2780                        " hardware error\n", c->Request.CDB[0]);
2781                 return_status = IO_ERROR;
2782                 break;
2783         case CMD_CONNECTION_LOST:
2784                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2785                        "connection lost\n", c->Request.CDB[0]);
2786                 return_status = IO_ERROR;
2787                 break;
2788         case CMD_ABORTED:
2789                 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2790                        "aborted\n", c->Request.CDB[0]);
2791                 return_status = IO_ERROR;
2792                 break;
2793         case CMD_ABORT_FAILED:
2794                 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2795                        "abort failed\n", c->Request.CDB[0]);
2796                 return_status = IO_ERROR;
2797                 break;
2798         case CMD_UNSOLICITED_ABORT:
2799                 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2800                         c->Request.CDB[0]);
2801                 return_status = IO_NEEDS_RETRY;
2802                 break;
2803         case CMD_UNABORTABLE:
2804                 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2805                 return_status = IO_ERROR;
2806                 break;
2807         default:
2808                 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2809                        "unknown status %x\n", c->Request.CDB[0],
2810                        c->err_info->CommandStatus);
2811                 return_status = IO_ERROR;
2812         }
2813         return return_status;
2814 }
2815
2816 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2817         int attempt_retry)
2818 {
2819         DECLARE_COMPLETION_ONSTACK(wait);
2820         u64bit buff_dma_handle;
2821         int return_status = IO_OK;
2822
2823 resend_cmd2:
2824         c->waiting = &wait;
2825         enqueue_cmd_and_start_io(h, c);
2826
2827         wait_for_completion(&wait);
2828
2829         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2830                 goto command_done;
2831
2832         return_status = process_sendcmd_error(h, c);
2833
2834         if (return_status == IO_NEEDS_RETRY &&
2835                 c->retry_count < MAX_CMD_RETRIES) {
2836                 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2837                         c->Request.CDB[0]);
2838                 c->retry_count++;
2839                 /* erase the old error information */
2840                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2841                 return_status = IO_OK;
2842                 reinit_completion(&wait);
2843                 goto resend_cmd2;
2844         }
2845
2846 command_done:
2847         /* unlock the buffers from DMA */
2848         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2849         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2850         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2851                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2852         return return_status;
2853 }
2854
2855 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2856                            __u8 page_code, unsigned char scsi3addr[],
2857                         int cmd_type)
2858 {
2859         CommandList_struct *c;
2860         int return_status;
2861
2862         c = cmd_special_alloc(h);
2863         if (!c)
2864                 return -ENOMEM;
2865         return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2866                 scsi3addr, cmd_type);
2867         if (return_status == IO_OK)
2868                 return_status = sendcmd_withirq_core(h, c, 1);
2869
2870         cmd_special_free(h, c);
2871         return return_status;
2872 }
2873
2874 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2875                                    sector_t total_size,
2876                                    unsigned int block_size,
2877                                    InquiryData_struct *inq_buff,
2878                                    drive_info_struct *drv)
2879 {
2880         int return_code;
2881         unsigned long t;
2882         unsigned char scsi3addr[8];
2883
2884         memset(inq_buff, 0, sizeof(InquiryData_struct));
2885         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2886         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2887                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2888         if (return_code == IO_OK) {
2889                 if (inq_buff->data_byte[8] == 0xFF) {
2890                         dev_warn(&h->pdev->dev,
2891                                "reading geometry failed, volume "
2892                                "does not support reading geometry\n");
2893                         drv->heads = 255;
2894                         drv->sectors = 32;      /* Sectors per track */
2895                         drv->cylinders = total_size + 1;
2896                         drv->raid_level = RAID_UNKNOWN;
2897                 } else {
2898                         drv->heads = inq_buff->data_byte[6];
2899                         drv->sectors = inq_buff->data_byte[7];
2900                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2901                         drv->cylinders += inq_buff->data_byte[5];
2902                         drv->raid_level = inq_buff->data_byte[8];
2903                 }
2904                 drv->block_size = block_size;
2905                 drv->nr_blocks = total_size + 1;
2906                 t = drv->heads * drv->sectors;
2907                 if (t > 1) {
2908                         sector_t real_size = total_size + 1;
2909                         unsigned long rem = sector_div(real_size, t);
2910                         if (rem)
2911                                 real_size++;
2912                         drv->cylinders = real_size;
2913                 }
2914         } else {                /* Get geometry failed */
2915                 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2916         }
2917 }
2918
2919 static void
2920 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2921                     unsigned int *block_size)
2922 {
2923         ReadCapdata_struct *buf;
2924         int return_code;
2925         unsigned char scsi3addr[8];
2926
2927         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2928         if (!buf) {
2929                 dev_warn(&h->pdev->dev, "out of memory\n");
2930                 return;
2931         }
2932
2933         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2934         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2935                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2936         if (return_code == IO_OK) {
2937                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2938                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2939         } else {                /* read capacity command failed */
2940                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2941                 *total_size = 0;
2942                 *block_size = BLOCK_SIZE;
2943         }
2944         kfree(buf);
2945 }
2946
2947 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2948         sector_t *total_size, unsigned int *block_size)
2949 {
2950         ReadCapdata_struct_16 *buf;
2951         int return_code;
2952         unsigned char scsi3addr[8];
2953
2954         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2955         if (!buf) {
2956                 dev_warn(&h->pdev->dev, "out of memory\n");
2957                 return;
2958         }
2959
2960         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2961         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2962                 buf, sizeof(ReadCapdata_struct_16),
2963                         0, scsi3addr, TYPE_CMD);
2964         if (return_code == IO_OK) {
2965                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2966                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2967         } else {                /* read capacity command failed */
2968                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2969                 *total_size = 0;
2970                 *block_size = BLOCK_SIZE;
2971         }
2972         dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2973                (unsigned long long)*total_size+1, *block_size);
2974         kfree(buf);
2975 }
2976
2977 static int cciss_revalidate(struct gendisk *disk)
2978 {
2979         ctlr_info_t *h = get_host(disk);
2980         drive_info_struct *drv = get_drv(disk);
2981         int logvol;
2982         int FOUND = 0;
2983         unsigned int block_size;
2984         sector_t total_size;
2985         InquiryData_struct *inq_buff = NULL;
2986
2987         for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2988                 if (!h->drv[logvol])
2989                         continue;
2990                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2991                         sizeof(drv->LunID)) == 0) {
2992                         FOUND = 1;
2993                         break;
2994                 }
2995         }
2996
2997         if (!FOUND)
2998                 return 1;
2999
3000         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3001         if (inq_buff == NULL) {
3002                 dev_warn(&h->pdev->dev, "out of memory\n");
3003                 return 1;
3004         }
3005         if (h->cciss_read == CCISS_READ_10) {
3006                 cciss_read_capacity(h, logvol,
3007                                         &total_size, &block_size);
3008         } else {
3009                 cciss_read_capacity_16(h, logvol,
3010                                         &total_size, &block_size);
3011         }
3012         cciss_geometry_inquiry(h, logvol, total_size, block_size,
3013                                inq_buff, drv);
3014
3015         blk_queue_logical_block_size(drv->queue, drv->block_size);
3016         set_capacity(disk, drv->nr_blocks);
3017
3018         kfree(inq_buff);
3019         return 0;
3020 }
3021
3022 /*
3023  * Map (physical) PCI mem into (virtual) kernel space
3024  */
3025 static void __iomem *remap_pci_mem(ulong base, ulong size)
3026 {
3027         ulong page_base = ((ulong) base) & PAGE_MASK;
3028         ulong page_offs = ((ulong) base) - page_base;
3029         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3030
3031         return page_remapped ? (page_remapped + page_offs) : NULL;
3032 }
3033
3034 /*
3035  * Takes jobs of the Q and sends them to the hardware, then puts it on
3036  * the Q to wait for completion.
3037  */
3038 static void start_io(ctlr_info_t *h)
3039 {
3040         CommandList_struct *c;
3041
3042         while (!list_empty(&h->reqQ)) {
3043                 c = list_entry(h->reqQ.next, CommandList_struct, list);
3044                 /* can't do anything if fifo is full */
3045                 if ((h->access.fifo_full(h))) {
3046                         dev_warn(&h->pdev->dev, "fifo full\n");
3047                         break;
3048                 }
3049
3050                 /* Get the first entry from the Request Q */
3051                 removeQ(c);
3052                 h->Qdepth--;
3053
3054                 /* Tell the controller execute command */
3055                 h->access.submit_command(h, c);
3056
3057                 /* Put job onto the completed Q */
3058                 addQ(&h->cmpQ, c);
3059         }
3060 }
3061
3062 /* Assumes that h->lock is held. */
3063 /* Zeros out the error record and then resends the command back */
3064 /* to the controller */
3065 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3066 {
3067         /* erase the old error information */
3068         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3069
3070         /* add it to software queue and then send it to the controller */
3071         addQ(&h->reqQ, c);
3072         h->Qdepth++;
3073         if (h->Qdepth > h->maxQsinceinit)
3074                 h->maxQsinceinit = h->Qdepth;
3075
3076         start_io(h);
3077 }
3078
3079 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3080         unsigned int msg_byte, unsigned int host_byte,
3081         unsigned int driver_byte)
3082 {
3083         /* inverse of macros in scsi.h */
3084         return (scsi_status_byte & 0xff) |
3085                 ((msg_byte & 0xff) << 8) |
3086                 ((host_byte & 0xff) << 16) |
3087                 ((driver_byte & 0xff) << 24);
3088 }
3089
3090 static inline int evaluate_target_status(ctlr_info_t *h,
3091                         CommandList_struct *cmd, int *retry_cmd)
3092 {
3093         unsigned char sense_key;
3094         unsigned char status_byte, msg_byte, host_byte, driver_byte;
3095         int error_value;
3096
3097         *retry_cmd = 0;
3098         /* If we get in here, it means we got "target status", that is, scsi status */
3099         status_byte = cmd->err_info->ScsiStatus;
3100         driver_byte = DRIVER_OK;
3101         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3102
3103         if (blk_rq_is_passthrough(cmd->rq))
3104                 host_byte = DID_PASSTHROUGH;
3105         else
3106                 host_byte = DID_OK;
3107
3108         error_value = make_status_bytes(status_byte, msg_byte,
3109                 host_byte, driver_byte);
3110
3111         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3112                 if (!blk_rq_is_passthrough(cmd->rq))
3113                         dev_warn(&h->pdev->dev, "cmd %p "
3114                                "has SCSI Status 0x%x\n",
3115                                cmd, cmd->err_info->ScsiStatus);
3116                 return error_value;
3117         }
3118
3119         /* check the sense key */
3120         sense_key = 0xf & cmd->err_info->SenseInfo[2];
3121         /* no status or recovered error */
3122         if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3123             !blk_rq_is_passthrough(cmd->rq))
3124                 error_value = 0;
3125
3126         if (check_for_unit_attention(h, cmd)) {
3127                 *retry_cmd = !blk_rq_is_passthrough(cmd->rq);
3128                 return 0;
3129         }
3130
3131         /* Not SG_IO or similar? */
3132         if (!blk_rq_is_passthrough(cmd->rq)) {
3133                 if (error_value != 0)
3134                         dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3135                                " sense key = 0x%x\n", cmd, sense_key);
3136                 return error_value;
3137         }
3138
3139         scsi_req(cmd->rq)->sense_len = cmd->err_info->SenseLen;
3140         return error_value;
3141 }
3142
3143 /* checks the status of the job and calls complete buffers to mark all
3144  * buffers for the completed job. Note that this function does not need
3145  * to hold the hba/queue lock.
3146  */
3147 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3148                                     int timeout)
3149 {
3150         int retry_cmd = 0;
3151         struct request *rq = cmd->rq;
3152         struct scsi_request *sreq = scsi_req(rq);
3153
3154         sreq->result = 0;
3155
3156         if (timeout)
3157                 sreq->result = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3158
3159         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3160                 goto after_error_processing;
3161
3162         switch (cmd->err_info->CommandStatus) {
3163         case CMD_TARGET_STATUS:
3164                 sreq->result = evaluate_target_status(h, cmd, &retry_cmd);
3165                 break;
3166         case CMD_DATA_UNDERRUN:
3167                 if (!blk_rq_is_passthrough(cmd->rq)) {
3168                         dev_warn(&h->pdev->dev, "cmd %p has"
3169                                " completed with data underrun "
3170                                "reported\n", cmd);
3171                 }
3172                 break;
3173         case CMD_DATA_OVERRUN:
3174                 if (!blk_rq_is_passthrough(cmd->rq))
3175                         dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3176                                " completed with data overrun "
3177                                "reported\n", cmd);
3178                 break;
3179         case CMD_INVALID:
3180                 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3181                        "reported invalid\n", cmd);
3182                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3183                         cmd->err_info->CommandStatus, DRIVER_OK,
3184                         blk_rq_is_passthrough(cmd->rq) ?
3185                                 DID_PASSTHROUGH : DID_ERROR);
3186                 break;
3187         case CMD_PROTOCOL_ERR:
3188                 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3189                        "protocol error\n", cmd);
3190                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3191                         cmd->err_info->CommandStatus, DRIVER_OK,
3192                         blk_rq_is_passthrough(cmd->rq) ?
3193                                 DID_PASSTHROUGH : DID_ERROR);
3194                 break;
3195         case CMD_HARDWARE_ERR:
3196                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3197                        " hardware error\n", cmd);
3198                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3199                         cmd->err_info->CommandStatus, DRIVER_OK,
3200                         blk_rq_is_passthrough(cmd->rq) ?
3201                                 DID_PASSTHROUGH : DID_ERROR);
3202                 break;
3203         case CMD_CONNECTION_LOST:
3204                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3205                        "connection lost\n", cmd);
3206                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3207                         cmd->err_info->CommandStatus, DRIVER_OK,
3208                         blk_rq_is_passthrough(cmd->rq) ?
3209                                 DID_PASSTHROUGH : DID_ERROR);
3210                 break;
3211         case CMD_ABORTED:
3212                 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3213                        "aborted\n", cmd);
3214                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3215                         cmd->err_info->CommandStatus, DRIVER_OK,
3216                         blk_rq_is_passthrough(cmd->rq) ?
3217                                 DID_PASSTHROUGH : DID_ABORT);
3218                 break;
3219         case CMD_ABORT_FAILED:
3220                 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3221                        "abort failed\n", cmd);
3222                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3223                         cmd->err_info->CommandStatus, DRIVER_OK,
3224                         blk_rq_is_passthrough(cmd->rq) ?
3225                                 DID_PASSTHROUGH : DID_ERROR);
3226                 break;
3227         case CMD_UNSOLICITED_ABORT:
3228                 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3229                        "abort %p\n", h->ctlr, cmd);
3230                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3231                         retry_cmd = 1;
3232                         dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3233                         cmd->retry_count++;
3234                 } else
3235                         dev_warn(&h->pdev->dev,
3236                                 "%p retried too many times\n", cmd);
3237                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3238                         cmd->err_info->CommandStatus, DRIVER_OK,
3239                         blk_rq_is_passthrough(cmd->rq) ?
3240                                 DID_PASSTHROUGH : DID_ABORT);
3241                 break;
3242         case CMD_TIMEOUT:
3243                 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3244                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3245                         cmd->err_info->CommandStatus, DRIVER_OK,
3246                         blk_rq_is_passthrough(cmd->rq) ?
3247                                 DID_PASSTHROUGH : DID_ERROR);
3248                 break;
3249         case CMD_UNABORTABLE:
3250                 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3251                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3252                         cmd->err_info->CommandStatus, DRIVER_OK,
3253                         blk_rq_is_passthrough(cmd->rq) ?
3254                                 DID_PASSTHROUGH : DID_ERROR);
3255                 break;
3256         default:
3257                 dev_warn(&h->pdev->dev, "cmd %p returned "
3258                        "unknown status %x\n", cmd,
3259                        cmd->err_info->CommandStatus);
3260                 sreq->result = make_status_bytes(SAM_STAT_GOOD,
3261                         cmd->err_info->CommandStatus, DRIVER_OK,
3262                         blk_rq_is_passthrough(cmd->rq) ?
3263                                 DID_PASSTHROUGH : DID_ERROR);
3264         }
3265
3266 after_error_processing:
3267
3268         /* We need to return this command */
3269         if (retry_cmd) {
3270                 resend_cciss_cmd(h, cmd);
3271                 return;
3272         }
3273         cmd->rq->completion_data = cmd;
3274         blk_complete_request(cmd->rq);
3275 }
3276
3277 static inline u32 cciss_tag_contains_index(u32 tag)
3278 {
3279 #define DIRECT_LOOKUP_BIT 0x10
3280         return tag & DIRECT_LOOKUP_BIT;
3281 }
3282
3283 static inline u32 cciss_tag_to_index(u32 tag)
3284 {
3285 #define DIRECT_LOOKUP_SHIFT 5
3286         return tag >> DIRECT_LOOKUP_SHIFT;
3287 }
3288
3289 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3290 {
3291 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3292 #define CCISS_SIMPLE_ERROR_BITS 0x03
3293         if (likely(h->transMethod & CFGTBL_Trans_Performant))
3294                 return tag & ~CCISS_PERF_ERROR_BITS;
3295         return tag & ~CCISS_SIMPLE_ERROR_BITS;
3296 }
3297
3298 static inline void cciss_mark_tag_indexed(u32 *tag)
3299 {
3300         *tag |= DIRECT_LOOKUP_BIT;
3301 }
3302
3303 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3304 {
3305         *tag |= (index << DIRECT_LOOKUP_SHIFT);
3306 }
3307
3308 /*
3309  * Get a request and submit it to the controller.
3310  */
3311 static void do_cciss_request(struct request_queue *q)
3312 {
3313         ctlr_info_t *h = q->queuedata;
3314         CommandList_struct *c;
3315         sector_t start_blk;
3316         int seg;
3317         struct request *creq;
3318         u64bit temp64;
3319         struct scatterlist *tmp_sg;
3320         SGDescriptor_struct *curr_sg;
3321         drive_info_struct *drv;
3322         int i, dir;
3323         int sg_index = 0;
3324         int chained = 0;
3325
3326       queue:
3327         creq = blk_peek_request(q);
3328         if (!creq)
3329                 goto startio;
3330
3331         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3332
3333         c = cmd_alloc(h);
3334         if (!c)
3335                 goto full;
3336
3337         blk_start_request(creq);
3338
3339         tmp_sg = h->scatter_list[c->cmdindex];
3340         spin_unlock_irq(q->queue_lock);
3341
3342         c->cmd_type = CMD_RWREQ;
3343         c->rq = creq;
3344
3345         /* fill in the request */
3346         drv = creq->rq_disk->private_data;
3347         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3348         /* got command from pool, so use the command block index instead */
3349         /* for direct lookups. */
3350         /* The first 2 bits are reserved for controller error reporting. */
3351         cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3352         cciss_mark_tag_indexed(&c->Header.Tag.lower);
3353         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3354         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3355         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3356         c->Request.Type.Attribute = ATTR_SIMPLE;
3357         c->Request.Type.Direction =
3358             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3359         c->Request.Timeout = 0; /* Don't time out */
3360         c->Request.CDB[0] =
3361             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3362         start_blk = blk_rq_pos(creq);
3363         dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3364                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3365         sg_init_table(tmp_sg, h->maxsgentries);
3366         seg = blk_rq_map_sg(q, creq, tmp_sg);
3367
3368         /* get the DMA records for the setup */
3369         if (c->Request.Type.Direction == XFER_READ)
3370                 dir = PCI_DMA_FROMDEVICE;
3371         else
3372                 dir = PCI_DMA_TODEVICE;
3373
3374         curr_sg = c->SG;
3375         sg_index = 0;
3376         chained = 0;
3377
3378         for (i = 0; i < seg; i++) {
3379                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3380                         !chained && ((seg - i) > 1)) {
3381                         /* Point to next chain block. */
3382                         curr_sg = h->cmd_sg_list[c->cmdindex];
3383                         sg_index = 0;
3384                         chained = 1;
3385                 }
3386                 curr_sg[sg_index].Len = tmp_sg[i].length;
3387                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3388                                                 tmp_sg[i].offset,
3389                                                 tmp_sg[i].length, dir);
3390                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3391                         dev_warn(&h->pdev->dev,
3392                                 "%s: error mapping page for DMA\n", __func__);
3393                         scsi_req(creq)->result =
3394                                 make_status_bytes(SAM_STAT_GOOD, 0, DRIVER_OK,
3395                                                   DID_SOFT_ERROR);
3396                         cmd_free(h, c);
3397                         return;
3398                 }
3399                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3400                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3401                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3402                 ++sg_index;
3403         }
3404         if (chained) {
3405                 if (cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3406                         (seg - (h->max_cmd_sgentries - 1)) *
3407                                 sizeof(SGDescriptor_struct))) {
3408                         scsi_req(creq)->result =
3409                                 make_status_bytes(SAM_STAT_GOOD, 0, DRIVER_OK,
3410                                                   DID_SOFT_ERROR);
3411                         cmd_free(h, c);
3412                         return;
3413                 }
3414         }
3415
3416         /* track how many SG entries we are using */
3417         if (seg > h->maxSG)
3418                 h->maxSG = seg;
3419
3420         dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3421                         "chained[%d]\n",
3422                         blk_rq_sectors(creq), seg, chained);
3423
3424         c->Header.SGTotal = seg + chained;
3425         if (seg <= h->max_cmd_sgentries)
3426                 c->Header.SGList = c->Header.SGTotal;
3427         else
3428                 c->Header.SGList = h->max_cmd_sgentries;
3429         set_performant_mode(h, c);
3430
3431         switch (req_op(creq)) {
3432         case REQ_OP_READ:
3433         case REQ_OP_WRITE:
3434                 if(h->cciss_read == CCISS_READ_10) {
3435                         c->Request.CDB[1] = 0;
3436                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3437                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3438                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3439                         c->Request.CDB[5] = start_blk & 0xff;
3440                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3441                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3442                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3443                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3444                 } else {
3445                         u32 upper32 = upper_32_bits(start_blk);
3446
3447                         c->Request.CDBLen = 16;
3448                         c->Request.CDB[1]= 0;
3449                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3450                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3451                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3452                         c->Request.CDB[5]= upper32 & 0xff;
3453                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3454                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3455                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3456                         c->Request.CDB[9]= start_blk & 0xff;
3457                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3458                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3459                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3460                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3461                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3462                 }
3463                 break;
3464         case REQ_OP_SCSI_IN:
3465         case REQ_OP_SCSI_OUT:
3466                 c->Request.CDBLen = scsi_req(creq)->cmd_len;
3467                 memcpy(c->Request.CDB, scsi_req(creq)->cmd, BLK_MAX_CDB);
3468                 scsi_req(creq)->sense = c->err_info->SenseInfo;
3469                 break;
3470         default:
3471                 dev_warn(&h->pdev->dev, "bad request type %d\n",
3472                         creq->cmd_flags);
3473                 BUG();
3474         }
3475
3476         spin_lock_irq(q->queue_lock);
3477
3478         addQ(&h->reqQ, c);
3479         h->Qdepth++;
3480         if (h->Qdepth > h->maxQsinceinit)
3481                 h->maxQsinceinit = h->Qdepth;
3482
3483         goto queue;
3484 full:
3485         blk_stop_queue(q);
3486 startio:
3487         /* We will already have the driver lock here so not need
3488          * to lock it.
3489          */
3490         start_io(h);
3491 }
3492
3493 static inline unsigned long get_next_completion(ctlr_info_t *h)
3494 {
3495         return h->access.command_completed(h);
3496 }
3497
3498 static inline int interrupt_pending(ctlr_info_t *h)
3499 {
3500         return h->access.intr_pending(h);
3501 }
3502
3503 static inline long interrupt_not_for_us(ctlr_info_t *h)
3504 {
3505         return ((h->access.intr_pending(h) == 0) ||
3506                 (h->interrupts_enabled == 0));
3507 }
3508
3509 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3510                         u32 raw_tag)
3511 {
3512         if (unlikely(tag_index >= h->nr_cmds)) {
3513                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3514                 return 1;
3515         }
3516         return 0;
3517 }
3518
3519 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3520                                 u32 raw_tag)
3521 {
3522         removeQ(c);
3523         if (likely(c->cmd_type == CMD_RWREQ))
3524                 complete_command(h, c, 0);
3525         else if (c->cmd_type == CMD_IOCTL_PEND)
3526                 complete(c->waiting);
3527 #ifdef CONFIG_CISS_SCSI_TAPE
3528         else if (c->cmd_type == CMD_SCSI)
3529                 complete_scsi_command(c, 0, raw_tag);
3530 #endif
3531 }
3532
3533 static inline u32 next_command(ctlr_info_t *h)
3534 {
3535         u32 a;
3536
3537         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3538                 return h->access.command_completed(h);
3539
3540         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3541                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3542                 (h->reply_pool_head)++;
3543                 h->commands_outstanding--;
3544         } else {
3545                 a = FIFO_EMPTY;
3546         }
3547         /* Check for wraparound */
3548         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3549                 h->reply_pool_head = h->reply_pool;
3550                 h->reply_pool_wraparound ^= 1;
3551         }
3552         return a;
3553 }
3554
3555 /* process completion of an indexed ("direct lookup") command */
3556 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3557 {
3558         u32 tag_index;
3559         CommandList_struct *c;
3560
3561         tag_index = cciss_tag_to_index(raw_tag);
3562         if (bad_tag(h, tag_index, raw_tag))
3563                 return next_command(h);
3564         c = h->cmd_pool + tag_index;
3565         finish_cmd(h, c, raw_tag);
3566         return next_command(h);
3567 }
3568
3569 /* process completion of a non-indexed command */
3570 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3571 {
3572         CommandList_struct *c = NULL;
3573         __u32 busaddr_masked, tag_masked;
3574
3575         tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3576         list_for_each_entry(c, &h->cmpQ, list) {
3577                 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3578                 if (busaddr_masked == tag_masked) {
3579                         finish_cmd(h, c, raw_tag);
3580                         return next_command(h);
3581                 }
3582         }
3583         bad_tag(h, h->nr_cmds + 1, raw_tag);
3584         return next_command(h);
3585 }
3586
3587 /* Some controllers, like p400, will give us one interrupt
3588  * after a soft reset, even if we turned interrupts off.
3589  * Only need to check for this in the cciss_xxx_discard_completions
3590  * functions.
3591  */
3592 static int ignore_bogus_interrupt(ctlr_info_t *h)
3593 {
3594         if (likely(!reset_devices))
3595                 return 0;
3596
3597         if (likely(h->interrupts_enabled))
3598                 return 0;
3599
3600         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3601                 "(known firmware bug.)  Ignoring.\n");
3602
3603         return 1;
3604 }
3605
3606 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3607 {
3608         ctlr_info_t *h = dev_id;
3609         unsigned long flags;
3610         u32 raw_tag;
3611
3612         if (ignore_bogus_interrupt(h))
3613                 return IRQ_NONE;
3614
3615         if (interrupt_not_for_us(h))
3616                 return IRQ_NONE;
3617         spin_lock_irqsave(&h->lock, flags);
3618         while (interrupt_pending(h)) {
3619                 raw_tag = get_next_completion(h);
3620                 while (raw_tag != FIFO_EMPTY)
3621                         raw_tag = next_command(h);
3622         }
3623         spin_unlock_irqrestore(&h->lock, flags);
3624         return IRQ_HANDLED;
3625 }
3626
3627 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3628 {
3629         ctlr_info_t *h = dev_id;
3630         unsigned long flags;
3631         u32 raw_tag;
3632
3633         if (ignore_bogus_interrupt(h))
3634                 return IRQ_NONE;
3635
3636         spin_lock_irqsave(&h->lock, flags);
3637         raw_tag = get_next_completion(h);
3638         while (raw_tag != FIFO_EMPTY)
3639                 raw_tag = next_command(h);
3640         spin_unlock_irqrestore(&h->lock, flags);
3641         return IRQ_HANDLED;
3642 }
3643
3644 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3645 {
3646         ctlr_info_t *h = dev_id;
3647         unsigned long flags;
3648         u32 raw_tag;
3649
3650         if (interrupt_not_for_us(h))
3651                 return IRQ_NONE;
3652         spin_lock_irqsave(&h->lock, flags);
3653         while (interrupt_pending(h)) {
3654                 raw_tag = get_next_completion(h);
3655                 while (raw_tag != FIFO_EMPTY) {
3656                         if (cciss_tag_contains_index(raw_tag))
3657                                 raw_tag = process_indexed_cmd(h, raw_tag);
3658                         else
3659                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3660                 }
3661         }
3662         spin_unlock_irqrestore(&h->lock, flags);
3663         return IRQ_HANDLED;
3664 }
3665
3666 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3667  * check the interrupt pending register because it is not set.
3668  */
3669 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3670 {
3671         ctlr_info_t *h = dev_id;
3672         unsigned long flags;
3673         u32 raw_tag;
3674
3675         spin_lock_irqsave(&h->lock, flags);
3676         raw_tag = get_next_completion(h);
3677         while (raw_tag != FIFO_EMPTY) {
3678                 if (cciss_tag_contains_index(raw_tag))
3679                         raw_tag = process_indexed_cmd(h, raw_tag);
3680                 else
3681                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3682         }
3683         spin_unlock_irqrestore(&h->lock, flags);
3684         return IRQ_HANDLED;
3685 }
3686
3687 /**
3688  * add_to_scan_list() - add controller to rescan queue
3689  * @h:                Pointer to the controller.
3690  *
3691  * Adds the controller to the rescan queue if not already on the queue.
3692  *
3693  * returns 1 if added to the queue, 0 if skipped (could be on the
3694  * queue already, or the controller could be initializing or shutting
3695  * down).
3696  **/
3697 static int add_to_scan_list(struct ctlr_info *h)
3698 {
3699         struct ctlr_info *test_h;
3700         int found = 0;
3701         int ret = 0;
3702
3703         if (h->busy_initializing)
3704                 return 0;
3705
3706         if (!mutex_trylock(&h->busy_shutting_down))
3707                 return 0;
3708
3709         mutex_lock(&scan_mutex);
3710         list_for_each_entry(test_h, &scan_q, scan_list) {
3711                 if (test_h == h) {
3712                         found = 1;
3713                         break;
3714                 }
3715         }
3716         if (!found && !h->busy_scanning) {
3717                 reinit_completion(&h->scan_wait);
3718                 list_add_tail(&h->scan_list, &scan_q);
3719                 ret = 1;
3720         }
3721         mutex_unlock(&scan_mutex);
3722         mutex_unlock(&h->busy_shutting_down);
3723
3724         return ret;
3725 }
3726
3727 /**
3728  * remove_from_scan_list() - remove controller from rescan queue
3729  * @h:                     Pointer to the controller.
3730  *
3731  * Removes the controller from the rescan queue if present. Blocks if
3732  * the controller is currently conducting a rescan.  The controller
3733  * can be in one of three states:
3734  * 1. Doesn't need a scan
3735  * 2. On the scan list, but not scanning yet (we remove it)
3736  * 3. Busy scanning (and not on the list). In this case we want to wait for
3737  *    the scan to complete to make sure the scanning thread for this
3738  *    controller is completely idle.
3739  **/
3740 static void remove_from_scan_list(struct ctlr_info *h)
3741 {
3742         struct ctlr_info *test_h, *tmp_h;
3743
3744         mutex_lock(&scan_mutex);
3745         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3746                 if (test_h == h) { /* state 2. */
3747                         list_del(&h->scan_list);
3748                         complete_all(&h->scan_wait);
3749                         mutex_unlock(&scan_mutex);
3750                         return;
3751                 }
3752         }
3753         if (h->busy_scanning) { /* state 3. */
3754                 mutex_unlock(&scan_mutex);
3755                 wait_for_completion(&h->scan_wait);
3756         } else { /* state 1, nothing to do. */
3757                 mutex_unlock(&scan_mutex);
3758         }
3759 }
3760
3761 /**
3762  * scan_thread() - kernel thread used to rescan controllers
3763  * @data:        Ignored.
3764  *
3765  * A kernel thread used scan for drive topology changes on
3766  * controllers. The thread processes only one controller at a time
3767  * using a queue.  Controllers are added to the queue using
3768  * add_to_scan_list() and removed from the queue either after done
3769  * processing or using remove_from_scan_list().
3770  *
3771  * returns 0.
3772  **/
3773 static int scan_thread(void *data)
3774 {
3775         struct ctlr_info *h;
3776
3777         while (1) {
3778                 set_current_state(TASK_INTERRUPTIBLE);
3779                 schedule();
3780                 if (kthread_should_stop())
3781                         break;
3782
3783                 while (1) {
3784                         mutex_lock(&scan_mutex);
3785                         if (list_empty(&scan_q)) {
3786                                 mutex_unlock(&scan_mutex);
3787                                 break;
3788                         }
3789
3790                         h = list_entry(scan_q.next,
3791                                        struct ctlr_info,
3792                                        scan_list);
3793                         list_del(&h->scan_list);
3794                         h->busy_scanning = 1;
3795                         mutex_unlock(&scan_mutex);
3796
3797                         rebuild_lun_table(h, 0, 0);
3798                         complete_all(&h->scan_wait);
3799                         mutex_lock(&scan_mutex);
3800                         h->busy_scanning = 0;
3801                         mutex_unlock(&scan_mutex);
3802                 }
3803         }
3804
3805         return 0;
3806 }
3807
3808 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3809 {
3810         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3811                 return 0;
3812
3813         switch (c->err_info->SenseInfo[12]) {
3814         case STATE_CHANGED:
3815                 dev_warn(&h->pdev->dev, "a state change "
3816                         "detected, command retried\n");
3817                 return 1;
3818         break;
3819         case LUN_FAILED:
3820                 dev_warn(&h->pdev->dev, "LUN failure "
3821                         "detected, action required\n");
3822                 return 1;
3823         break;
3824         case REPORT_LUNS_CHANGED:
3825                 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3826         /*
3827          * Here, we could call add_to_scan_list and wake up the scan thread,
3828          * except that it's quite likely that we will get more than one
3829          * REPORT_LUNS_CHANGED condition in quick succession, which means
3830          * that those which occur after the first one will likely happen
3831          * *during* the scan_thread's rescan.  And the rescan code is not
3832          * robust enough to restart in the middle, undoing what it has already
3833          * done, and it's not clear that it's even possible to do this, since
3834          * part of what it does is notify the block layer, which starts
3835          * doing it's own i/o to read partition tables and so on, and the
3836          * driver doesn't have visibility to know what might need undoing.
3837          * In any event, if possible, it is horribly complicated to get right
3838          * so we just don't do it for now.
3839          *
3840          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3841          */
3842                 return 1;
3843         break;
3844         case POWER_OR_RESET:
3845                 dev_warn(&h->pdev->dev,
3846                         "a power on or device reset detected\n");
3847                 return 1;
3848         break;
3849         case UNIT_ATTENTION_CLEARED:
3850                 dev_warn(&h->pdev->dev,
3851                         "unit attention cleared by another initiator\n");
3852                 return 1;
3853         break;
3854         default:
3855                 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3856                 return 1;
3857         }
3858 }
3859
3860 /*
3861  *  We cannot read the structure directly, for portability we must use
3862  *   the io functions.
3863  *   This is for debug only.
3864  */
3865 static void print_cfg_table(ctlr_info_t *h)
3866 {
3867         int i;
3868         char temp_name[17];
3869         CfgTable_struct *tb = h->cfgtable;
3870
3871         dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3872         dev_dbg(&h->pdev->dev, "------------------------------------\n");
3873         for (i = 0; i < 4; i++)
3874                 temp_name[i] = readb(&(tb->Signature[i]));
3875         temp_name[4] = '\0';
3876         dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3877         dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3878                 readl(&(tb->SpecValence)));
3879         dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3880                readl(&(tb->TransportSupport)));
3881         dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3882                readl(&(tb->TransportActive)));
3883         dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3884                readl(&(tb->HostWrite.TransportRequest)));
3885         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3886                readl(&(tb->HostWrite.CoalIntDelay)));
3887         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3888                readl(&(tb->HostWrite.CoalIntCount)));
3889         dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%x\n",
3890                readl(&(tb->CmdsOutMax)));
3891         dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3892                 readl(&(tb->BusTypes)));
3893         for (i = 0; i < 16; i++)
3894                 temp_name[i] = readb(&(tb->ServerName[i]));
3895         temp_name[16] = '\0';
3896         dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3897         dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3898                 readl(&(tb->HeartBeat)));
3899 }
3900
3901 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3902 {
3903         int i, offset, mem_type, bar_type;
3904         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3905                 return 0;
3906         offset = 0;
3907         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3908                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3909                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3910                         offset += 4;
3911                 else {
3912                         mem_type = pci_resource_flags(pdev, i) &
3913                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3914                         switch (mem_type) {
3915                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3916                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3917                                 offset += 4;    /* 32 bit */
3918                                 break;
3919                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3920                                 offset += 8;
3921                                 break;
3922                         default:        /* reserved in PCI 2.2 */
3923                                 dev_warn(&pdev->dev,
3924                                        "Base address is invalid\n");
3925                                 return -1;
3926                                 break;
3927                         }
3928                 }
3929                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3930                         return i + 1;
3931         }
3932         return -1;
3933 }
3934
3935 /* Fill in bucket_map[], given nsgs (the max number of
3936  * scatter gather elements supported) and bucket[],
3937  * which is an array of 8 integers.  The bucket[] array
3938  * contains 8 different DMA transfer sizes (in 16
3939  * byte increments) which the controller uses to fetch
3940  * commands.  This function fills in bucket_map[], which
3941  * maps a given number of scatter gather elements to one of
3942  * the 8 DMA transfer sizes.  The point of it is to allow the
3943  * controller to only do as much DMA as needed to fetch the
3944  * command, with the DMA transfer size encoded in the lower
3945  * bits of the command address.
3946  */
3947 static void  calc_bucket_map(int bucket[], int num_buckets,
3948         int nsgs, int *bucket_map)
3949 {
3950         int i, j, b, size;
3951
3952         /* even a command with 0 SGs requires 4 blocks */
3953 #define MINIMUM_TRANSFER_BLOCKS 4
3954 #define NUM_BUCKETS 8
3955         /* Note, bucket_map must have nsgs+1 entries. */
3956         for (i = 0; i <= nsgs; i++) {
3957                 /* Compute size of a command with i SG entries */
3958                 size = i + MINIMUM_TRANSFER_BLOCKS;
3959                 b = num_buckets; /* Assume the biggest bucket */
3960                 /* Find the bucket that is just big enough */
3961                 for (j = 0; j < 8; j++) {
3962                         if (bucket[j] >= size) {
3963                                 b = j;
3964                                 break;
3965                         }
3966                 }
3967                 /* for a command with i SG entries, use bucket b. */
3968                 bucket_map[i] = b;
3969         }
3970 }
3971
3972 static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3973 {
3974         int i;
3975
3976         /* under certain very rare conditions, this can take awhile.
3977          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3978          * as we enter this code.) */
3979         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3980                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3981                         break;
3982                 usleep_range(10000, 20000);
3983         }
3984 }
3985
3986 static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3987 {
3988         /* This is a bit complicated.  There are 8 registers on
3989          * the controller which we write to to tell it 8 different
3990          * sizes of commands which there may be.  It's a way of
3991          * reducing the DMA done to fetch each command.  Encoded into
3992          * each command's tag are 3 bits which communicate to the controller
3993          * which of the eight sizes that command fits within.  The size of
3994          * each command depends on how many scatter gather entries there are.
3995          * Each SG entry requires 16 bytes.  The eight registers are programmed
3996          * with the number of 16-byte blocks a command of that size requires.
3997          * The smallest command possible requires 5 such 16 byte blocks.
3998          * the largest command possible requires MAXSGENTRIES + 4 16-byte
3999          * blocks.  Note, this only extends to the SG entries contained
4000          * within the command block, and does not extend to chained blocks
4001          * of SG elements.   bft[] contains the eight values we write to
4002          * the registers.  They are not evenly distributed, but have more
4003          * sizes for small commands, and fewer sizes for larger commands.
4004          */
4005         __u32 trans_offset;
4006         int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4007                         /*
4008                          *  5 = 1 s/g entry or 4k
4009                          *  6 = 2 s/g entry or 8k
4010                          *  8 = 4 s/g entry or 16k
4011                          * 10 = 6 s/g entry or 24k
4012                          */
4013         unsigned long register_value;
4014         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4015
4016         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4017
4018         /* Controller spec: zero out this buffer. */
4019         memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
4020         h->reply_pool_head = h->reply_pool;
4021
4022         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
4023         calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
4024                                 h->blockFetchTable);
4025         writel(bft[0], &h->transtable->BlockFetch0);
4026         writel(bft[1], &h->transtable->BlockFetch1);
4027         writel(bft[2], &h->transtable->BlockFetch2);
4028         writel(bft[3], &h->transtable->BlockFetch3);
4029         writel(bft[4], &h->transtable->BlockFetch4);
4030         writel(bft[5], &h->transtable->BlockFetch5);
4031         writel(bft[6], &h->transtable->BlockFetch6);
4032         writel(bft[7], &h->transtable->BlockFetch7);
4033
4034         /* size of controller ring buffer */
4035         writel(h->max_commands, &h->transtable->RepQSize);
4036         writel(1, &h->transtable->RepQCount);
4037         writel(0, &h->transtable->RepQCtrAddrLow32);
4038         writel(0, &h->transtable->RepQCtrAddrHigh32);
4039         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4040         writel(0, &h->transtable->RepQAddr0High32);
4041         writel(CFGTBL_Trans_Performant | use_short_tags,
4042                         &(h->cfgtable->HostWrite.TransportRequest));
4043
4044         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4045         cciss_wait_for_mode_change_ack(h);
4046         register_value = readl(&(h->cfgtable->TransportActive));
4047         if (!(register_value & CFGTBL_Trans_Performant))
4048                 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4049                                         " performant mode\n");
4050 }
4051
4052 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4053 {
4054         __u32 trans_support;
4055
4056         if (cciss_simple_mode)
4057                 return;
4058
4059         dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4060         /* Attempt to put controller into performant mode if supported */
4061         /* Does board support performant mode? */
4062         trans_support = readl(&(h->cfgtable->TransportSupport));
4063         if (!(trans_support & PERFORMANT_MODE))
4064                 return;
4065
4066         dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4067         /* Performant mode demands commands on a 32 byte boundary
4068          * pci_alloc_consistent aligns on page boundarys already.
4069          * Just need to check if divisible by 32
4070          */
4071         if ((sizeof(CommandList_struct) % 32) != 0) {
4072                 dev_warn(&h->pdev->dev, "%s %d %s\n",
4073                         "cciss info: command size[",
4074                         (int)sizeof(CommandList_struct),
4075                         "] not divisible by 32, no performant mode..\n");
4076                 return;
4077         }
4078
4079         /* Performant mode ring buffer and supporting data structures */
4080         h->reply_pool = (__u64 *)pci_alloc_consistent(
4081                 h->pdev, h->max_commands * sizeof(__u64),
4082                 &(h->reply_pool_dhandle));
4083
4084         /* Need a block fetch table for performant mode */
4085         h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4086                 sizeof(__u32)), GFP_KERNEL);
4087
4088         if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4089                 goto clean_up;
4090
4091         cciss_enter_performant_mode(h,
4092                 trans_support & CFGTBL_Trans_use_short_tags);
4093
4094         /* Change the access methods to the performant access methods */
4095         h->access = SA5_performant_access;
4096         h->transMethod = CFGTBL_Trans_Performant;
4097
4098         return;
4099 clean_up:
4100         kfree(h->blockFetchTable);
4101         if (h->reply_pool)
4102                 pci_free_consistent(h->pdev,
4103                                 h->max_commands * sizeof(__u64),
4104                                 h->reply_pool,
4105                                 h->reply_pool_dhandle);
4106         return;
4107
4108 } /* cciss_put_controller_into_performant_mode */
4109
4110 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4111  * controllers that are capable. If not, we use IO-APIC mode.
4112  */
4113
4114 static void cciss_interrupt_mode(ctlr_info_t *h)
4115 {
4116         int ret;
4117
4118         /* Some boards advertise MSI but don't really support it */
4119         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4120             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4121                 goto default_int_mode;
4122
4123         ret = pci_alloc_irq_vectors(h->pdev, 4, 4, PCI_IRQ_MSIX);
4124         if (ret >= 0)   {
4125                 h->intr[0] = pci_irq_vector(h->pdev, 0);
4126                 h->intr[1] = pci_irq_vector(h->pdev, 1);
4127                 h->intr[2] = pci_irq_vector(h->pdev, 2);
4128                 h->intr[3] = pci_irq_vector(h->pdev, 3);
4129                 return;
4130         }
4131
4132         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, PCI_IRQ_MSI);
4133
4134 default_int_mode:
4135         /* if we get here we're going to use the default interrupt mode */
4136         h->intr[h->intr_mode] = pci_irq_vector(h->pdev, 0);
4137         return;
4138 }
4139
4140 static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4141 {
4142         int i;
4143         u32 subsystem_vendor_id, subsystem_device_id;
4144
4145         subsystem_vendor_id = pdev->subsystem_vendor;
4146         subsystem_device_id = pdev->subsystem_device;
4147         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4148                         subsystem_vendor_id;
4149
4150         for (i = 0; i < ARRAY_SIZE(products); i++) {
4151                 /* Stand aside for hpsa driver on request */
4152                 if (cciss_allow_hpsa)
4153                         return -ENODEV;
4154                 if (*board_id == products[i].board_id)
4155                         return i;
4156         }
4157         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4158                 *board_id);
4159         return -ENODEV;
4160 }
4161
4162 static inline bool cciss_board_disabled(ctlr_info_t *h)
4163 {
4164         u16 command;
4165
4166         (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4167         return ((command & PCI_COMMAND_MEMORY) == 0);
4168 }
4169
4170 static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4171                                      unsigned long *memory_bar)
4172 {
4173         int i;
4174
4175         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4176                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4177                         /* addressing mode bits already removed */
4178                         *memory_bar = pci_resource_start(pdev, i);
4179                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4180                                 *memory_bar);
4181                         return 0;
4182                 }
4183         dev_warn(&pdev->dev, "no memory BAR found\n");
4184         return -ENODEV;
4185 }
4186
4187 static int cciss_wait_for_board_state(struct pci_dev *pdev,
4188                                       void __iomem *vaddr, int wait_for_ready)
4189 #define BOARD_READY 1
4190 #define BOARD_NOT_READY 0
4191 {
4192         int i, iterations;
4193         u32 scratchpad;
4194
4195         if (wait_for_ready)
4196                 iterations = CCISS_BOARD_READY_ITERATIONS;
4197         else
4198                 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4199
4200         for (i = 0; i < iterations; i++) {
4201                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4202                 if (wait_for_ready) {
4203                         if (scratchpad == CCISS_FIRMWARE_READY)
4204                                 return 0;
4205                 } else {
4206                         if (scratchpad != CCISS_FIRMWARE_READY)
4207                                 return 0;
4208                 }
4209                 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4210         }
4211         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4212         return -ENODEV;
4213 }
4214
4215 static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4216                                 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4217                                 u64 *cfg_offset)
4218 {
4219         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4220         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4221         *cfg_base_addr &= (u32) 0x0000ffff;
4222         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4223         if (*cfg_base_addr_index == -1) {
4224                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4225                         "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4226                 return -ENODEV;
4227         }
4228         return 0;
4229 }
4230
4231 static int cciss_find_cfgtables(ctlr_info_t *h)
4232 {
4233         u64 cfg_offset;
4234         u32 cfg_base_addr;
4235         u64 cfg_base_addr_index;
4236         u32 trans_offset;
4237         int rc;
4238
4239         rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4240                 &cfg_base_addr_index, &cfg_offset);
4241         if (rc)
4242                 return rc;
4243         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4244                 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4245         if (!h->cfgtable)
4246                 return -ENOMEM;
4247         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4248         if (rc)
4249                 return rc;
4250         /* Find performant mode table. */
4251         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4252         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4253                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4254                                 sizeof(*h->transtable));
4255         if (!h->transtable)
4256                 return -ENOMEM;
4257         return 0;
4258 }
4259
4260 static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4261 {
4262         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4263
4264         /* Limit commands in memory limited kdump scenario. */
4265         if (reset_devices && h->max_commands > 32)
4266                 h->max_commands = 32;
4267
4268         if (h->max_commands < 16) {
4269                 dev_warn(&h->pdev->dev, "Controller reports "
4270                         "max supported commands of %d, an obvious lie. "
4271                         "Using 16.  Ensure that firmware is up to date.\n",
4272                         h->max_commands);
4273                 h->max_commands = 16;
4274         }
4275 }
4276
4277 /* Interrogate the hardware for some limits:
4278  * max commands, max SG elements without chaining, and with chaining,
4279  * SG chain block size, etc.
4280  */
4281 static void cciss_find_board_params(ctlr_info_t *h)
4282 {
4283         cciss_get_max_perf_mode_cmds(h);
4284         h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4285         h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4286         /*
4287          * The P600 may exhibit poor performnace under some workloads
4288          * if we use the value in the configuration table. Limit this
4289          * controller to MAXSGENTRIES (32) instead.
4290          */
4291         if (h->board_id == 0x3225103C)
4292                 h->maxsgentries = MAXSGENTRIES;
4293         /*
4294          * Limit in-command s/g elements to 32 save dma'able memory.
4295          * Howvever spec says if 0, use 31
4296          */
4297         h->max_cmd_sgentries = 31;
4298         if (h->maxsgentries > 512) {
4299                 h->max_cmd_sgentries = 32;
4300                 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4301                 h->maxsgentries--; /* save one for chain pointer */
4302         } else {
4303                 h->maxsgentries = 31; /* default to traditional values */
4304                 h->chainsize = 0;
4305         }
4306 }
4307
4308 static inline bool CISS_signature_present(ctlr_info_t *h)
4309 {
4310         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4311                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4312                 return false;
4313         }
4314         return true;
4315 }
4316
4317 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4318 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4319 {
4320 #ifdef CONFIG_X86
4321         u32 prefetch;
4322
4323         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4324         prefetch |= 0x100;
4325         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4326 #endif
4327 }
4328
4329 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4330  * in a prefetch beyond physical memory.
4331  */
4332 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4333 {
4334         u32 dma_prefetch;
4335         __u32 dma_refetch;
4336
4337         if (h->board_id != 0x3225103C)
4338                 return;
4339         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4340         dma_prefetch |= 0x8000;
4341         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4342         pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4343         dma_refetch |= 0x1;
4344         pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4345 }
4346
4347 static int cciss_pci_init(ctlr_info_t *h)
4348 {
4349         int prod_index, err;
4350
4351         prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4352         if (prod_index < 0)
4353                 return -ENODEV;
4354         h->product_name = products[prod_index].product_name;
4355         h->access = *(products[prod_index].access);
4356
4357         if (cciss_board_disabled(h)) {
4358                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4359                 return -ENODEV;
4360         }
4361
4362         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4363                                 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4364
4365         err = pci_enable_device(h->pdev);
4366         if (err) {
4367                 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4368                 return err;
4369         }
4370
4371         err = pci_request_regions(h->pdev, "cciss");
4372         if (err) {
4373                 dev_warn(&h->pdev->dev,
4374                         "Cannot obtain PCI resources, aborting\n");
4375                 return err;
4376         }
4377
4378         dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4379         dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4380
4381 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4382  * else we use the IO-APIC interrupt assigned to us by system ROM.
4383  */
4384         cciss_interrupt_mode(h);
4385         err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4386         if (err)
4387                 goto err_out_free_res;
4388         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4389         if (!h->vaddr) {
4390                 err = -ENOMEM;
4391                 goto err_out_free_res;
4392         }
4393         err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4394         if (err)
4395                 goto err_out_free_res;
4396         err = cciss_find_cfgtables(h);
4397         if (err)
4398                 goto err_out_free_res;
4399         print_cfg_table(h);
4400         cciss_find_board_params(h);
4401
4402         if (!CISS_signature_present(h)) {
4403                 err = -ENODEV;
4404                 goto err_out_free_res;
4405         }
4406         cciss_enable_scsi_prefetch(h);
4407         cciss_p600_dma_prefetch_quirk(h);
4408         err = cciss_enter_simple_mode(h);
4409         if (err)
4410                 goto err_out_free_res;
4411         cciss_put_controller_into_performant_mode(h);
4412         return 0;
4413
4414 err_out_free_res:
4415         /*
4416          * Deliberately omit pci_disable_device(): it does something nasty to
4417          * Smart Array controllers that pci_enable_device does not undo
4418          */
4419         if (h->transtable)
4420                 iounmap(h->transtable);
4421         if (h->cfgtable)
4422                 iounmap(h->cfgtable);
4423         if (h->vaddr)
4424                 iounmap(h->vaddr);
4425         pci_release_regions(h->pdev);
4426         return err;
4427 }
4428
4429 /* Function to find the first free pointer into our hba[] array
4430  * Returns -1 if no free entries are left.
4431  */
4432 static int alloc_cciss_hba(struct pci_dev *pdev)
4433 {
4434         int i;
4435
4436         for (i = 0; i < MAX_CTLR; i++) {
4437                 if (!hba[i]) {
4438                         ctlr_info_t *h;
4439
4440                         h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4441                         if (!h)
4442                                 goto Enomem;
4443                         hba[i] = h;
4444                         return i;
4445                 }
4446         }
4447         dev_warn(&pdev->dev, "This driver supports a maximum"
4448                " of %d controllers.\n", MAX_CTLR);
4449         return -1;
4450 Enomem:
4451         dev_warn(&pdev->dev, "out of memory.\n");
4452         return -1;
4453 }
4454
4455 static void free_hba(ctlr_info_t *h)
4456 {
4457         int i;
4458
4459         hba[h->ctlr] = NULL;
4460         for (i = 0; i < h->highest_lun + 1; i++)
4461                 if (h->gendisk[i] != NULL)
4462                         put_disk(h->gendisk[i]);
4463         kfree(h);
4464 }
4465
4466 /* Send a message CDB to the firmware. */
4467 static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4468                          unsigned char type)
4469 {
4470         typedef struct {
4471                 CommandListHeader_struct CommandHeader;
4472                 RequestBlock_struct Request;
4473                 ErrDescriptor_struct ErrorDescriptor;
4474         } Command;
4475         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4476         Command *cmd;
4477         dma_addr_t paddr64;
4478         uint32_t paddr32, tag;
4479         void __iomem *vaddr;
4480         int i, err;
4481
4482         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4483         if (vaddr == NULL)
4484                 return -ENOMEM;
4485
4486         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4487            CCISS commands, so they must be allocated from the lower 4GiB of
4488            memory. */
4489         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4490         if (err) {
4491                 iounmap(vaddr);
4492                 return -ENOMEM;
4493         }
4494
4495         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4496         if (cmd == NULL) {
4497                 iounmap(vaddr);
4498                 return -ENOMEM;
4499         }
4500
4501         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
4502            although there's no guarantee, we assume that the address is at
4503            least 4-byte aligned (most likely, it's page-aligned). */
4504         paddr32 = paddr64;
4505
4506         cmd->CommandHeader.ReplyQueue = 0;
4507         cmd->CommandHeader.SGList = 0;
4508         cmd->CommandHeader.SGTotal = 0;
4509         cmd->CommandHeader.Tag.lower = paddr32;
4510         cmd->CommandHeader.Tag.upper = 0;
4511         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4512
4513         cmd->Request.CDBLen = 16;
4514         cmd->Request.Type.Type = TYPE_MSG;
4515         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4516         cmd->Request.Type.Direction = XFER_NONE;
4517         cmd->Request.Timeout = 0; /* Don't time out */
4518         cmd->Request.CDB[0] = opcode;
4519         cmd->Request.CDB[1] = type;
4520         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4521
4522         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4523         cmd->ErrorDescriptor.Addr.upper = 0;
4524         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4525
4526         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4527
4528         for (i = 0; i < 10; i++) {
4529                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4530                 if ((tag & ~3) == paddr32)
4531                         break;
4532                 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4533         }
4534
4535         iounmap(vaddr);
4536
4537         /* we leak the DMA buffer here ... no choice since the controller could
4538            still complete the command. */
4539         if (i == 10) {
4540                 dev_err(&pdev->dev,
4541                         "controller message %02x:%02x timed out\n",
4542                         opcode, type);
4543                 return -ETIMEDOUT;
4544         }
4545
4546         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4547
4548         if (tag & 2) {
4549                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4550                         opcode, type);
4551                 return -EIO;
4552         }
4553
4554         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4555                 opcode, type);
4556         return 0;
4557 }
4558
4559 #define cciss_noop(p) cciss_message(p, 3, 0)
4560
4561 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4562         void * __iomem vaddr, u32 use_doorbell)
4563 {
4564         u16 pmcsr;
4565         int pos;
4566
4567         if (use_doorbell) {
4568                 /* For everything after the P600, the PCI power state method
4569                  * of resetting the controller doesn't work, so we have this
4570                  * other way using the doorbell register.
4571                  */
4572                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4573                 writel(use_doorbell, vaddr + SA5_DOORBELL);
4574         } else { /* Try to do it the PCI power state way */
4575
4576                 /* Quoting from the Open CISS Specification: "The Power
4577                  * Management Control/Status Register (CSR) controls the power
4578                  * state of the device.  The normal operating state is D0,
4579                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4580                  * the controller, place the interface device in D3 then to D0,
4581                  * this causes a secondary PCI reset which will reset the
4582                  * controller." */
4583
4584                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4585                 if (pos == 0) {
4586                         dev_err(&pdev->dev,
4587                                 "cciss_controller_hard_reset: "
4588                                 "PCI PM not supported\n");
4589                         return -ENODEV;
4590                 }
4591                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4592                 /* enter the D3hot power management state */
4593                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4594                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4595                 pmcsr |= PCI_D3hot;
4596                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4597
4598                 msleep(500);
4599
4600                 /* enter the D0 power management state */
4601                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4602                 pmcsr |= PCI_D0;
4603                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4604
4605                 /*
4606                  * The P600 requires a small delay when changing states.
4607                  * Otherwise we may think the board did not reset and we bail.
4608                  * This for kdump only and is particular to the P600.
4609                  */
4610                 msleep(500);
4611         }
4612         return 0;
4613 }
4614
4615 static void init_driver_version(char *driver_version, int len)
4616 {
4617         memset(driver_version, 0, len);
4618         strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4619 }
4620
4621 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4622 {
4623         char *driver_version;
4624         int i, size = sizeof(cfgtable->driver_version);
4625
4626         driver_version = kmalloc(size, GFP_KERNEL);
4627         if (!driver_version)
4628                 return -ENOMEM;
4629
4630         init_driver_version(driver_version, size);
4631         for (i = 0; i < size; i++)
4632                 writeb(driver_version[i], &cfgtable->driver_version[i]);
4633         kfree(driver_version);
4634         return 0;
4635 }
4636
4637 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4638                                           unsigned char *driver_ver)
4639 {
4640         int i;
4641
4642         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4643                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4644 }
4645
4646 static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4647 {
4648
4649         char *driver_ver, *old_driver_ver;
4650         int rc, size = sizeof(cfgtable->driver_version);
4651
4652         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4653         if (!old_driver_ver)
4654                 return -ENOMEM;
4655         driver_ver = old_driver_ver + size;
4656
4657         /* After a reset, the 32 bytes of "driver version" in the cfgtable
4658          * should have been changed, otherwise we know the reset failed.
4659          */
4660         init_driver_version(old_driver_ver, size);
4661         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4662         rc = !memcmp(driver_ver, old_driver_ver, size);
4663         kfree(old_driver_ver);
4664         return rc;
4665 }
4666
4667 /* This does a hard reset of the controller using PCI power management
4668  * states or using the doorbell register. */
4669 static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4670 {
4671         u64 cfg_offset;
4672         u32 cfg_base_addr;
4673         u64 cfg_base_addr_index;
4674         void __iomem *vaddr;
4675         unsigned long paddr;
4676         u32 misc_fw_support;
4677         int rc;
4678         CfgTable_struct __iomem *cfgtable;
4679         u32 use_doorbell;
4680         u32 board_id;
4681         u16 command_register;
4682
4683         /* For controllers as old a the p600, this is very nearly
4684          * the same thing as
4685          *
4686          * pci_save_state(pci_dev);
4687          * pci_set_power_state(pci_dev, PCI_D3hot);
4688          * pci_set_power_state(pci_dev, PCI_D0);
4689          * pci_restore_state(pci_dev);
4690          *
4691          * For controllers newer than the P600, the pci power state
4692          * method of resetting doesn't work so we have another way
4693          * using the doorbell register.
4694          */
4695
4696         /* Exclude 640x boards.  These are two pci devices in one slot
4697          * which share a battery backed cache module.  One controls the
4698          * cache, the other accesses the cache through the one that controls
4699          * it.  If we reset the one controlling the cache, the other will
4700          * likely not be happy.  Just forbid resetting this conjoined mess.
4701          */
4702         cciss_lookup_board_id(pdev, &board_id);
4703         if (!ctlr_is_resettable(board_id)) {
4704                 dev_warn(&pdev->dev, "Controller not resettable\n");
4705                 return -ENODEV;
4706         }
4707
4708         /* if controller is soft- but not hard resettable... */
4709         if (!ctlr_is_hard_resettable(board_id))
4710                 return -ENOTSUPP; /* try soft reset later. */
4711
4712         /* Save the PCI command register */
4713         pci_read_config_word(pdev, 4, &command_register);
4714         /* Turn the board off.  This is so that later pci_restore_state()
4715          * won't turn the board on before the rest of config space is ready.
4716          */
4717         pci_disable_device(pdev);
4718         pci_save_state(pdev);
4719
4720         /* find the first memory BAR, so we can find the cfg table */
4721         rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4722         if (rc)
4723                 return rc;
4724         vaddr = remap_pci_mem(paddr, 0x250);
4725         if (!vaddr)
4726                 return -ENOMEM;
4727
4728         /* find cfgtable in order to check if reset via doorbell is supported */
4729         rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4730                                         &cfg_base_addr_index, &cfg_offset);
4731         if (rc)
4732                 goto unmap_vaddr;
4733         cfgtable = remap_pci_mem(pci_resource_start(pdev,
4734                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4735         if (!cfgtable) {
4736                 rc = -ENOMEM;
4737                 goto unmap_vaddr;
4738         }
4739         rc = write_driver_ver_to_cfgtable(cfgtable);
4740         if (rc)
4741                 goto unmap_vaddr;
4742
4743         /* If reset via doorbell register is supported, use that.
4744          * There are two such methods.  Favor the newest method.
4745          */
4746         misc_fw_support = readl(&cfgtable->misc_fw_support);
4747         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4748         if (use_doorbell) {
4749                 use_doorbell = DOORBELL_CTLR_RESET2;
4750         } else {
4751                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4752                 if (use_doorbell) {
4753                         dev_warn(&pdev->dev, "Controller claims that "
4754                                 "'Bit 2 doorbell reset' is "
4755                                 "supported, but not 'bit 5 doorbell reset'.  "
4756                                 "Firmware update is recommended.\n");
4757                         rc = -ENOTSUPP; /* use the soft reset */
4758                         goto unmap_cfgtable;
4759                 }
4760         }
4761
4762         rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4763         if (rc)
4764                 goto unmap_cfgtable;
4765         pci_restore_state(pdev);
4766         rc = pci_enable_device(pdev);
4767         if (rc) {
4768                 dev_warn(&pdev->dev, "failed to enable device.\n");
4769                 goto unmap_cfgtable;
4770         }
4771         pci_write_config_word(pdev, 4, command_register);
4772
4773         /* Some devices (notably the HP Smart Array 5i Controller)
4774            need a little pause here */
4775         msleep(CCISS_POST_RESET_PAUSE_MSECS);
4776
4777         /* Wait for board to become not ready, then ready. */
4778         dev_info(&pdev->dev, "Waiting for board to reset.\n");
4779         rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4780         if (rc) {
4781                 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4782                                 "  Will try soft reset.\n");
4783                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4784                 goto unmap_cfgtable;
4785         }
4786         rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4787         if (rc) {
4788                 dev_warn(&pdev->dev,
4789                         "failed waiting for board to become ready "
4790                         "after hard reset\n");
4791                 goto unmap_cfgtable;
4792         }
4793
4794         rc = controller_reset_failed(vaddr);
4795         if (rc < 0)
4796                 goto unmap_cfgtable;
4797         if (rc) {
4798                 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4799                         "controller. Will try soft reset.\n");
4800                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4801         } else {
4802                 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4803         }
4804
4805 unmap_cfgtable:
4806         iounmap(cfgtable);
4807
4808 unmap_vaddr:
4809         iounmap(vaddr);
4810         return rc;
4811 }
4812
4813 static int cciss_init_reset_devices(struct pci_dev *pdev)
4814 {
4815         int rc, i;
4816
4817         if (!reset_devices)
4818                 return 0;
4819
4820         /* Reset the controller with a PCI power-cycle or via doorbell */
4821         rc = cciss_kdump_hard_reset_controller(pdev);
4822
4823         /* -ENOTSUPP here means we cannot reset the controller
4824          * but it's already (and still) up and running in
4825          * "performant mode".  Or, it might be 640x, which can't reset
4826          * due to concerns about shared bbwc between 6402/6404 pair.
4827          */
4828         if (rc == -ENOTSUPP)
4829                 return rc; /* just try to do the kdump anyhow. */
4830         if (rc)
4831                 return -ENODEV;
4832
4833         /* Now try to get the controller to respond to a no-op */
4834         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4835         for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4836                 if (cciss_noop(pdev) == 0)
4837                         break;
4838                 else
4839                         dev_warn(&pdev->dev, "no-op failed%s\n",
4840                                 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4841                                         "; re-trying" : ""));
4842                 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4843         }
4844         return 0;
4845 }
4846
4847 static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4848 {
4849         h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4850                 sizeof(unsigned long), GFP_KERNEL);
4851         h->cmd_pool = pci_alloc_consistent(h->pdev,
4852                 h->nr_cmds * sizeof(CommandList_struct),
4853                 &(h->cmd_pool_dhandle));
4854         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4855                 h->nr_cmds * sizeof(ErrorInfo_struct),
4856                 &(h->errinfo_pool_dhandle));
4857         if ((h->cmd_pool_bits == NULL)
4858                 || (h->cmd_pool == NULL)
4859                 || (h->errinfo_pool == NULL)) {
4860                 dev_err(&h->pdev->dev, "out of memory");
4861                 return -ENOMEM;
4862         }
4863         return 0;
4864 }
4865
4866 static int cciss_allocate_scatterlists(ctlr_info_t *h)
4867 {
4868         int i;
4869
4870         /* zero it, so that on free we need not know how many were alloc'ed */
4871         h->scatter_list = kzalloc(h->max_commands *
4872                                 sizeof(struct scatterlist *), GFP_KERNEL);
4873         if (!h->scatter_list)
4874                 return -ENOMEM;
4875
4876         for (i = 0; i < h->nr_cmds; i++) {
4877                 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4878                                                 h->maxsgentries, GFP_KERNEL);
4879                 if (h->scatter_list[i] == NULL) {
4880                         dev_err(&h->pdev->dev, "could not allocate "
4881                                 "s/g lists\n");
4882                         return -ENOMEM;
4883                 }
4884         }
4885         return 0;
4886 }
4887
4888 static void cciss_free_scatterlists(ctlr_info_t *h)
4889 {
4890         int i;
4891
4892         if (h->scatter_list) {
4893                 for (i = 0; i < h->nr_cmds; i++)
4894                         kfree(h->scatter_list[i]);
4895                 kfree(h->scatter_list);
4896         }
4897 }
4898
4899 static void cciss_free_cmd_pool(ctlr_info_t *h)
4900 {
4901         kfree(h->cmd_pool_bits);
4902         if (h->cmd_pool)
4903                 pci_free_consistent(h->pdev,
4904                         h->nr_cmds * sizeof(CommandList_struct),
4905                         h->cmd_pool, h->cmd_pool_dhandle);
4906         if (h->errinfo_pool)
4907                 pci_free_consistent(h->pdev,
4908                         h->nr_cmds * sizeof(ErrorInfo_struct),
4909                         h->errinfo_pool, h->errinfo_pool_dhandle);
4910 }
4911
4912 static int cciss_request_irq(ctlr_info_t *h,
4913         irqreturn_t (*msixhandler)(int, void *),
4914         irqreturn_t (*intxhandler)(int, void *))
4915 {
4916         if (h->pdev->msi_enabled || h->pdev->msix_enabled) {
4917                 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4918                                 0, h->devname, h))
4919                         return 0;
4920                 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4921                         " for %s\n", h->intr[h->intr_mode],
4922                         h->devname);
4923                 return -1;
4924         }
4925
4926         if (!request_irq(h->intr[h->intr_mode], intxhandler,
4927                         IRQF_SHARED, h->devname, h))
4928                 return 0;
4929         dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4930                 h->intr[h->intr_mode], h->devname);
4931         return -1;
4932 }
4933
4934 static int cciss_kdump_soft_reset(ctlr_info_t *h)
4935 {
4936         if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4937                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4938                 return -EIO;
4939         }
4940
4941         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4942         if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4943                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4944                 return -1;
4945         }
4946
4947         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4948         if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4949                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4950                         "after soft reset.\n");
4951                 return -1;
4952         }
4953
4954         return 0;
4955 }
4956
4957 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4958 {
4959         int ctlr = h->ctlr;
4960
4961         free_irq(h->intr[h->intr_mode], h);
4962         pci_free_irq_vectors(h->pdev);
4963         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4964         cciss_free_scatterlists(h);
4965         cciss_free_cmd_pool(h);
4966         kfree(h->blockFetchTable);
4967         if (h->reply_pool)
4968                 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4969                                 h->reply_pool, h->reply_pool_dhandle);
4970         if (h->transtable)
4971                 iounmap(h->transtable);
4972         if (h->cfgtable)
4973                 iounmap(h->cfgtable);
4974         if (h->vaddr)
4975                 iounmap(h->vaddr);
4976         unregister_blkdev(h->major, h->devname);
4977         cciss_destroy_hba_sysfs_entry(h);
4978         pci_release_regions(h->pdev);
4979         kfree(h);
4980         hba[ctlr] = NULL;
4981 }
4982
4983 /*
4984  *  This is it.  Find all the controllers and register them.  I really hate
4985  *  stealing all these major device numbers.
4986  *  returns the number of block devices registered.
4987  */
4988 static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4989 {
4990         int i;
4991         int j = 0;
4992         int rc;
4993         int try_soft_reset = 0;
4994         int dac, return_code;
4995         InquiryData_struct *inq_buff;
4996         ctlr_info_t *h;
4997         unsigned long flags;
4998
4999         /*
5000          * By default the cciss driver is used for all older HP Smart Array
5001          * controllers. There are module paramaters that allow a user to
5002          * override this behavior and instead use the hpsa SCSI driver. If
5003          * this is the case cciss may be loaded first from the kdump initrd
5004          * image and cause a kernel panic. So if reset_devices is true and
5005          * cciss_allow_hpsa is set just bail.
5006          */
5007         if ((reset_devices) && (cciss_allow_hpsa == 1))
5008                 return -ENODEV;
5009         rc = cciss_init_reset_devices(pdev);
5010         if (rc) {
5011                 if (rc != -ENOTSUPP)
5012                         return rc;
5013                 /* If the reset fails in a particular way (it has no way to do
5014                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
5015                  * a soft reset once we get the controller configured up to the
5016                  * point that it can accept a command.
5017                  */
5018                 try_soft_reset = 1;
5019                 rc = 0;
5020         }
5021
5022 reinit_after_soft_reset:
5023
5024         i = alloc_cciss_hba(pdev);
5025         if (i < 0)
5026                 return -ENOMEM;
5027
5028         h = hba[i];
5029         h->pdev = pdev;
5030         h->busy_initializing = 1;
5031         h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5032         INIT_LIST_HEAD(&h->cmpQ);
5033         INIT_LIST_HEAD(&h->reqQ);
5034         mutex_init(&h->busy_shutting_down);
5035
5036         if (cciss_pci_init(h) != 0)
5037                 goto clean_no_release_regions;
5038
5039         sprintf(h->devname, "cciss%d", i);
5040         h->ctlr = i;
5041
5042         if (cciss_tape_cmds < 2)
5043                 cciss_tape_cmds = 2;
5044         if (cciss_tape_cmds > 16)
5045                 cciss_tape_cmds = 16;
5046
5047         init_completion(&h->scan_wait);
5048
5049         if (cciss_create_hba_sysfs_entry(h))
5050                 goto clean0;
5051
5052         /* configure PCI DMA stuff */
5053         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5054                 dac = 1;
5055         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5056                 dac = 0;
5057         else {
5058                 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5059                 goto clean1;
5060         }
5061
5062         /*
5063          * register with the major number, or get a dynamic major number
5064          * by passing 0 as argument.  This is done for greater than
5065          * 8 controller support.
5066          */
5067         if (i < MAX_CTLR_ORIG)
5068                 h->major = COMPAQ_CISS_MAJOR + i;
5069         rc = register_blkdev(h->major, h->devname);
5070         if (rc == -EBUSY || rc == -EINVAL) {
5071                 dev_err(&h->pdev->dev,
5072                        "Unable to get major number %d for %s "
5073                        "on hba %d\n", h->major, h->devname, i);
5074                 goto clean1;
5075         } else {
5076                 if (i >= MAX_CTLR_ORIG)
5077                         h->major = rc;
5078         }
5079
5080         /* make sure the board interrupts are off */
5081         h->access.set_intr_mask(h, CCISS_INTR_OFF);
5082         rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5083         if (rc)
5084                 goto clean2;
5085
5086         dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5087                h->devname, pdev->device, pci_name(pdev),
5088                h->intr[h->intr_mode], dac ? "" : " not");
5089
5090         if (cciss_allocate_cmd_pool(h))
5091                 goto clean4;
5092
5093         if (cciss_allocate_scatterlists(h))
5094                 goto clean4;
5095
5096         h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5097                 h->chainsize, h->nr_cmds);
5098         if (!h->cmd_sg_list && h->chainsize > 0)
5099                 goto clean4;
5100
5101         spin_lock_init(&h->lock);
5102
5103         /* Initialize the pdev driver private data.
5104            have it point to h.  */
5105         pci_set_drvdata(pdev, h);
5106         /* command and error info recs zeroed out before
5107            they are used */
5108         bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5109
5110         h->num_luns = 0;
5111         h->highest_lun = -1;
5112         for (j = 0; j < CISS_MAX_LUN; j++) {
5113                 h->drv[j] = NULL;
5114                 h->gendisk[j] = NULL;
5115         }
5116
5117         /* At this point, the controller is ready to take commands.
5118          * Now, if reset_devices and the hard reset didn't work, try
5119          * the soft reset and see if that works.
5120          */
5121         if (try_soft_reset) {
5122
5123                 /* This is kind of gross.  We may or may not get a completion
5124                  * from the soft reset command, and if we do, then the value
5125                  * from the fifo may or may not be valid.  So, we wait 10 secs
5126                  * after the reset throwing away any completions we get during
5127                  * that time.  Unregister the interrupt handler and register
5128                  * fake ones to scoop up any residual completions.
5129                  */
5130                 spin_lock_irqsave(&h->lock, flags);
5131                 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5132                 spin_unlock_irqrestore(&h->lock, flags);
5133                 free_irq(h->intr[h->intr_mode], h);
5134                 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5135                                         cciss_intx_discard_completions);
5136                 if (rc) {
5137                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
5138                                 "soft reset.\n");
5139                         goto clean4;
5140                 }
5141
5142                 rc = cciss_kdump_soft_reset(h);
5143                 if (rc) {
5144                         dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5145                         goto clean4;
5146                 }
5147
5148                 dev_info(&h->pdev->dev, "Board READY.\n");
5149                 dev_info(&h->pdev->dev,
5150                         "Waiting for stale completions to drain.\n");
5151                 h->access.set_intr_mask(h, CCISS_INTR_ON);
5152                 msleep(10000);
5153                 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5154
5155                 rc = controller_reset_failed(h->cfgtable);
5156                 if (rc)
5157                         dev_info(&h->pdev->dev,
5158                                 "Soft reset appears to have failed.\n");
5159
5160                 /* since the controller's reset, we have to go back and re-init
5161                  * everything.  Easiest to just forget what we've done and do it
5162                  * all over again.
5163                  */
5164                 cciss_undo_allocations_after_kdump_soft_reset(h);
5165                 try_soft_reset = 0;
5166                 if (rc)
5167                         /* don't go to clean4, we already unallocated */
5168                         return -ENODEV;
5169
5170                 goto reinit_after_soft_reset;
5171         }
5172
5173         cciss_scsi_setup(h);
5174
5175         /* Turn the interrupts on so we can service requests */
5176         h->access.set_intr_mask(h, CCISS_INTR_ON);
5177
5178         /* Get the firmware version */
5179         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5180         if (inq_buff == NULL) {
5181                 dev_err(&h->pdev->dev, "out of memory\n");
5182                 goto clean4;
5183         }
5184
5185         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5186                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5187         if (return_code == IO_OK) {
5188                 h->firm_ver[0] = inq_buff->data_byte[32];
5189                 h->firm_ver[1] = inq_buff->data_byte[33];
5190                 h->firm_ver[2] = inq_buff->data_byte[34];
5191                 h->firm_ver[3] = inq_buff->data_byte[35];
5192         } else {         /* send command failed */
5193                 dev_warn(&h->pdev->dev, "unable to determine firmware"
5194                         " version of controller\n");
5195         }
5196         kfree(inq_buff);
5197
5198         cciss_procinit(h);
5199
5200         h->cciss_max_sectors = 8192;
5201
5202         rebuild_lun_table(h, 1, 0);
5203         cciss_engage_scsi(h);
5204         h->busy_initializing = 0;
5205         return 0;
5206
5207 clean4:
5208         cciss_free_cmd_pool(h);
5209         cciss_free_scatterlists(h);
5210         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5211         free_irq(h->intr[h->intr_mode], h);
5212 clean2:
5213         unregister_blkdev(h->major, h->devname);
5214 clean1:
5215         cciss_destroy_hba_sysfs_entry(h);
5216 clean0:
5217         pci_release_regions(pdev);
5218 clean_no_release_regions:
5219         h->busy_initializing = 0;
5220
5221         /*
5222          * Deliberately omit pci_disable_device(): it does something nasty to
5223          * Smart Array controllers that pci_enable_device does not undo
5224          */
5225         pci_set_drvdata(pdev, NULL);
5226         free_hba(h);
5227         return -ENODEV;
5228 }
5229
5230 static void cciss_shutdown(struct pci_dev *pdev)
5231 {
5232         ctlr_info_t *h;
5233         char *flush_buf;
5234         int return_code;
5235
5236         h = pci_get_drvdata(pdev);
5237         flush_buf = kzalloc(4, GFP_KERNEL);
5238         if (!flush_buf) {
5239                 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5240                 return;
5241         }
5242         /* write all data in the battery backed cache to disk */
5243         return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5244                 4, 0, CTLR_LUNID, TYPE_CMD);
5245         kfree(flush_buf);
5246         if (return_code != IO_OK)
5247                 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5248         h->access.set_intr_mask(h, CCISS_INTR_OFF);
5249         free_irq(h->intr[h->intr_mode], h);
5250 }
5251
5252 static int cciss_enter_simple_mode(struct ctlr_info *h)
5253 {
5254         u32 trans_support;
5255
5256         trans_support = readl(&(h->cfgtable->TransportSupport));
5257         if (!(trans_support & SIMPLE_MODE))
5258                 return -ENOTSUPP;
5259
5260         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5261         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5262         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5263         cciss_wait_for_mode_change_ack(h);
5264         print_cfg_table(h);
5265         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5266                 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5267                 return -ENODEV;
5268         }
5269         h->transMethod = CFGTBL_Trans_Simple;
5270         return 0;
5271 }
5272
5273
5274 static void cciss_remove_one(struct pci_dev *pdev)
5275 {
5276         ctlr_info_t *h;
5277         int i, j;
5278
5279         if (pci_get_drvdata(pdev) == NULL) {
5280                 dev_err(&pdev->dev, "Unable to remove device\n");
5281                 return;
5282         }
5283
5284         h = pci_get_drvdata(pdev);
5285         i = h->ctlr;
5286         if (hba[i] == NULL) {
5287                 dev_err(&pdev->dev, "device appears to already be removed\n");
5288                 return;
5289         }
5290
5291         mutex_lock(&h->busy_shutting_down);
5292
5293         remove_from_scan_list(h);
5294         remove_proc_entry(h->devname, proc_cciss);
5295         unregister_blkdev(h->major, h->devname);
5296
5297         /* remove it from the disk list */
5298         for (j = 0; j < CISS_MAX_LUN; j++) {
5299                 struct gendisk *disk = h->gendisk[j];
5300                 if (disk) {
5301                         struct request_queue *q = disk->queue;
5302
5303                         if (disk->flags & GENHD_FL_UP) {
5304                                 cciss_destroy_ld_sysfs_entry(h, j, 1);
5305                                 del_gendisk(disk);
5306                         }
5307                         if (q)
5308                                 blk_cleanup_queue(q);
5309                 }
5310         }
5311
5312 #ifdef CONFIG_CISS_SCSI_TAPE
5313         cciss_unregister_scsi(h);       /* unhook from SCSI subsystem */
5314 #endif
5315
5316         cciss_shutdown(pdev);
5317
5318         pci_free_irq_vectors(h->pdev);
5319
5320         iounmap(h->transtable);
5321         iounmap(h->cfgtable);
5322         iounmap(h->vaddr);
5323
5324         cciss_free_cmd_pool(h);
5325         /* Free up sg elements */
5326         for (j = 0; j < h->nr_cmds; j++)
5327                 kfree(h->scatter_list[j]);
5328         kfree(h->scatter_list);
5329         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5330         kfree(h->blockFetchTable);
5331         if (h->reply_pool)
5332                 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5333                                 h->reply_pool, h->reply_pool_dhandle);
5334         /*
5335          * Deliberately omit pci_disable_device(): it does something nasty to
5336          * Smart Array controllers that pci_enable_device does not undo
5337          */
5338         pci_release_regions(pdev);
5339         pci_set_drvdata(pdev, NULL);
5340         cciss_destroy_hba_sysfs_entry(h);
5341         mutex_unlock(&h->busy_shutting_down);
5342         free_hba(h);
5343 }
5344
5345 static struct pci_driver cciss_pci_driver = {
5346         .name = "cciss",
5347         .probe = cciss_init_one,
5348         .remove = cciss_remove_one,
5349         .id_table = cciss_pci_device_id,        /* id_table */
5350         .shutdown = cciss_shutdown,
5351 };
5352
5353 /*
5354  *  This is it.  Register the PCI driver information for the cards we control
5355  *  the OS will call our registered routines when it finds one of our cards.
5356  */
5357 static int __init cciss_init(void)
5358 {
5359         int err;
5360
5361         /*
5362          * The hardware requires that commands are aligned on a 64-bit
5363          * boundary. Given that we use pci_alloc_consistent() to allocate an
5364          * array of them, the size must be a multiple of 8 bytes.
5365          */
5366         BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5367         printk(KERN_INFO DRIVER_NAME "\n");
5368
5369         err = bus_register(&cciss_bus_type);
5370         if (err)
5371                 return err;
5372
5373         /* Start the scan thread */
5374         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5375         if (IS_ERR(cciss_scan_thread)) {
5376                 err = PTR_ERR(cciss_scan_thread);
5377                 goto err_bus_unregister;
5378         }
5379
5380         /* Register for our PCI devices */
5381         err = pci_register_driver(&cciss_pci_driver);
5382         if (err)
5383                 goto err_thread_stop;
5384
5385         return err;
5386
5387 err_thread_stop:
5388         kthread_stop(cciss_scan_thread);
5389 err_bus_unregister:
5390         bus_unregister(&cciss_bus_type);
5391
5392         return err;
5393 }
5394
5395 static void __exit cciss_cleanup(void)
5396 {
5397         int i;
5398
5399         pci_unregister_driver(&cciss_pci_driver);
5400         /* double check that all controller entrys have been removed */
5401         for (i = 0; i < MAX_CTLR; i++) {
5402                 if (hba[i] != NULL) {
5403                         dev_warn(&hba[i]->pdev->dev,
5404                                 "had to remove controller\n");
5405                         cciss_remove_one(hba[i]->pdev);
5406                 }
5407         }
5408         kthread_stop(cciss_scan_thread);
5409         if (proc_cciss)
5410                 remove_proc_entry("driver/cciss", NULL);
5411         bus_unregister(&cciss_bus_type);
5412 }
5413
5414 module_init(cciss_init);
5415 module_exit(cciss_cleanup);