Merge remote-tracking branches 'asoc/topic/inntel', 'asoc/topic/input', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / base / power / main.c
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36
37 #include "../base.h"
38 #include "power.h"
39
40 typedef int (*pm_callback_t)(struct device *);
41
42 /*
43  * The entries in the dpm_list list are in a depth first order, simply
44  * because children are guaranteed to be discovered after parents, and
45  * are inserted at the back of the list on discovery.
46  *
47  * Since device_pm_add() may be called with a device lock held,
48  * we must never try to acquire a device lock while holding
49  * dpm_list_mutex.
50  */
51
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61
62 static int async_error;
63
64 static char *pm_verb(int event)
65 {
66         switch (event) {
67         case PM_EVENT_SUSPEND:
68                 return "suspend";
69         case PM_EVENT_RESUME:
70                 return "resume";
71         case PM_EVENT_FREEZE:
72                 return "freeze";
73         case PM_EVENT_QUIESCE:
74                 return "quiesce";
75         case PM_EVENT_HIBERNATE:
76                 return "hibernate";
77         case PM_EVENT_THAW:
78                 return "thaw";
79         case PM_EVENT_RESTORE:
80                 return "restore";
81         case PM_EVENT_RECOVER:
82                 return "recover";
83         default:
84                 return "(unknown PM event)";
85         }
86 }
87
88 /**
89  * device_pm_sleep_init - Initialize system suspend-related device fields.
90  * @dev: Device object being initialized.
91  */
92 void device_pm_sleep_init(struct device *dev)
93 {
94         dev->power.is_prepared = false;
95         dev->power.is_suspended = false;
96         dev->power.is_noirq_suspended = false;
97         dev->power.is_late_suspended = false;
98         init_completion(&dev->power.completion);
99         complete_all(&dev->power.completion);
100         dev->power.wakeup = NULL;
101         INIT_LIST_HEAD(&dev->power.entry);
102 }
103
104 /**
105  * device_pm_lock - Lock the list of active devices used by the PM core.
106  */
107 void device_pm_lock(void)
108 {
109         mutex_lock(&dpm_list_mtx);
110 }
111
112 /**
113  * device_pm_unlock - Unlock the list of active devices used by the PM core.
114  */
115 void device_pm_unlock(void)
116 {
117         mutex_unlock(&dpm_list_mtx);
118 }
119
120 /**
121  * device_pm_add - Add a device to the PM core's list of active devices.
122  * @dev: Device to add to the list.
123  */
124 void device_pm_add(struct device *dev)
125 {
126         pr_debug("PM: Adding info for %s:%s\n",
127                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128         device_pm_check_callbacks(dev);
129         mutex_lock(&dpm_list_mtx);
130         if (dev->parent && dev->parent->power.is_prepared)
131                 dev_warn(dev, "parent %s should not be sleeping\n",
132                         dev_name(dev->parent));
133         list_add_tail(&dev->power.entry, &dpm_list);
134         mutex_unlock(&dpm_list_mtx);
135 }
136
137 /**
138  * device_pm_remove - Remove a device from the PM core's list of active devices.
139  * @dev: Device to be removed from the list.
140  */
141 void device_pm_remove(struct device *dev)
142 {
143         pr_debug("PM: Removing info for %s:%s\n",
144                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
145         complete_all(&dev->power.completion);
146         mutex_lock(&dpm_list_mtx);
147         list_del_init(&dev->power.entry);
148         mutex_unlock(&dpm_list_mtx);
149         device_wakeup_disable(dev);
150         pm_runtime_remove(dev);
151         device_pm_check_callbacks(dev);
152 }
153
154 /**
155  * device_pm_move_before - Move device in the PM core's list of active devices.
156  * @deva: Device to move in dpm_list.
157  * @devb: Device @deva should come before.
158  */
159 void device_pm_move_before(struct device *deva, struct device *devb)
160 {
161         pr_debug("PM: Moving %s:%s before %s:%s\n",
162                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
163                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
164         /* Delete deva from dpm_list and reinsert before devb. */
165         list_move_tail(&deva->power.entry, &devb->power.entry);
166 }
167
168 /**
169  * device_pm_move_after - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come after.
172  */
173 void device_pm_move_after(struct device *deva, struct device *devb)
174 {
175         pr_debug("PM: Moving %s:%s after %s:%s\n",
176                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178         /* Delete deva from dpm_list and reinsert after devb. */
179         list_move(&deva->power.entry, &devb->power.entry);
180 }
181
182 /**
183  * device_pm_move_last - Move device to end of the PM core's list of devices.
184  * @dev: Device to move in dpm_list.
185  */
186 void device_pm_move_last(struct device *dev)
187 {
188         pr_debug("PM: Moving %s:%s to end of list\n",
189                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
190         list_move_tail(&dev->power.entry, &dpm_list);
191 }
192
193 static ktime_t initcall_debug_start(struct device *dev)
194 {
195         ktime_t calltime = ktime_set(0, 0);
196
197         if (pm_print_times_enabled) {
198                 pr_info("calling  %s+ @ %i, parent: %s\n",
199                         dev_name(dev), task_pid_nr(current),
200                         dev->parent ? dev_name(dev->parent) : "none");
201                 calltime = ktime_get();
202         }
203
204         return calltime;
205 }
206
207 static void initcall_debug_report(struct device *dev, ktime_t calltime,
208                                   int error, pm_message_t state, char *info)
209 {
210         ktime_t rettime;
211         s64 nsecs;
212
213         rettime = ktime_get();
214         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
215
216         if (pm_print_times_enabled) {
217                 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
218                         error, (unsigned long long)nsecs >> 10);
219         }
220 }
221
222 /**
223  * dpm_wait - Wait for a PM operation to complete.
224  * @dev: Device to wait for.
225  * @async: If unset, wait only if the device's power.async_suspend flag is set.
226  */
227 static void dpm_wait(struct device *dev, bool async)
228 {
229         if (!dev)
230                 return;
231
232         if (async || (pm_async_enabled && dev->power.async_suspend))
233                 wait_for_completion(&dev->power.completion);
234 }
235
236 static int dpm_wait_fn(struct device *dev, void *async_ptr)
237 {
238         dpm_wait(dev, *((bool *)async_ptr));
239         return 0;
240 }
241
242 static void dpm_wait_for_children(struct device *dev, bool async)
243 {
244        device_for_each_child(dev, &async, dpm_wait_fn);
245 }
246
247 /**
248  * pm_op - Return the PM operation appropriate for given PM event.
249  * @ops: PM operations to choose from.
250  * @state: PM transition of the system being carried out.
251  */
252 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253 {
254         switch (state.event) {
255 #ifdef CONFIG_SUSPEND
256         case PM_EVENT_SUSPEND:
257                 return ops->suspend;
258         case PM_EVENT_RESUME:
259                 return ops->resume;
260 #endif /* CONFIG_SUSPEND */
261 #ifdef CONFIG_HIBERNATE_CALLBACKS
262         case PM_EVENT_FREEZE:
263         case PM_EVENT_QUIESCE:
264                 return ops->freeze;
265         case PM_EVENT_HIBERNATE:
266                 return ops->poweroff;
267         case PM_EVENT_THAW:
268         case PM_EVENT_RECOVER:
269                 return ops->thaw;
270                 break;
271         case PM_EVENT_RESTORE:
272                 return ops->restore;
273 #endif /* CONFIG_HIBERNATE_CALLBACKS */
274         }
275
276         return NULL;
277 }
278
279 /**
280  * pm_late_early_op - Return the PM operation appropriate for given PM event.
281  * @ops: PM operations to choose from.
282  * @state: PM transition of the system being carried out.
283  *
284  * Runtime PM is disabled for @dev while this function is being executed.
285  */
286 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287                                       pm_message_t state)
288 {
289         switch (state.event) {
290 #ifdef CONFIG_SUSPEND
291         case PM_EVENT_SUSPEND:
292                 return ops->suspend_late;
293         case PM_EVENT_RESUME:
294                 return ops->resume_early;
295 #endif /* CONFIG_SUSPEND */
296 #ifdef CONFIG_HIBERNATE_CALLBACKS
297         case PM_EVENT_FREEZE:
298         case PM_EVENT_QUIESCE:
299                 return ops->freeze_late;
300         case PM_EVENT_HIBERNATE:
301                 return ops->poweroff_late;
302         case PM_EVENT_THAW:
303         case PM_EVENT_RECOVER:
304                 return ops->thaw_early;
305         case PM_EVENT_RESTORE:
306                 return ops->restore_early;
307 #endif /* CONFIG_HIBERNATE_CALLBACKS */
308         }
309
310         return NULL;
311 }
312
313 /**
314  * pm_noirq_op - Return the PM operation appropriate for given PM event.
315  * @ops: PM operations to choose from.
316  * @state: PM transition of the system being carried out.
317  *
318  * The driver of @dev will not receive interrupts while this function is being
319  * executed.
320  */
321 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322 {
323         switch (state.event) {
324 #ifdef CONFIG_SUSPEND
325         case PM_EVENT_SUSPEND:
326                 return ops->suspend_noirq;
327         case PM_EVENT_RESUME:
328                 return ops->resume_noirq;
329 #endif /* CONFIG_SUSPEND */
330 #ifdef CONFIG_HIBERNATE_CALLBACKS
331         case PM_EVENT_FREEZE:
332         case PM_EVENT_QUIESCE:
333                 return ops->freeze_noirq;
334         case PM_EVENT_HIBERNATE:
335                 return ops->poweroff_noirq;
336         case PM_EVENT_THAW:
337         case PM_EVENT_RECOVER:
338                 return ops->thaw_noirq;
339         case PM_EVENT_RESTORE:
340                 return ops->restore_noirq;
341 #endif /* CONFIG_HIBERNATE_CALLBACKS */
342         }
343
344         return NULL;
345 }
346
347 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348 {
349         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351                 ", may wakeup" : "");
352 }
353
354 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355                         int error)
356 {
357         printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358                 dev_name(dev), pm_verb(state.event), info, error);
359 }
360
361 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362 {
363         ktime_t calltime;
364         u64 usecs64;
365         int usecs;
366
367         calltime = ktime_get();
368         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369         do_div(usecs64, NSEC_PER_USEC);
370         usecs = usecs64;
371         if (usecs == 0)
372                 usecs = 1;
373         pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374                 info ?: "", info ? " " : "", pm_verb(state.event),
375                 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376 }
377
378 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379                             pm_message_t state, char *info)
380 {
381         ktime_t calltime;
382         int error;
383
384         if (!cb)
385                 return 0;
386
387         calltime = initcall_debug_start(dev);
388
389         pm_dev_dbg(dev, state, info);
390         trace_device_pm_callback_start(dev, info, state.event);
391         error = cb(dev);
392         trace_device_pm_callback_end(dev, error);
393         suspend_report_result(cb, error);
394
395         initcall_debug_report(dev, calltime, error, state, info);
396
397         return error;
398 }
399
400 #ifdef CONFIG_DPM_WATCHDOG
401 struct dpm_watchdog {
402         struct device           *dev;
403         struct task_struct      *tsk;
404         struct timer_list       timer;
405 };
406
407 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
408         struct dpm_watchdog wd
409
410 /**
411  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
412  * @data: Watchdog object address.
413  *
414  * Called when a driver has timed out suspending or resuming.
415  * There's not much we can do here to recover so panic() to
416  * capture a crash-dump in pstore.
417  */
418 static void dpm_watchdog_handler(unsigned long data)
419 {
420         struct dpm_watchdog *wd = (void *)data;
421
422         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
423         show_stack(wd->tsk, NULL);
424         panic("%s %s: unrecoverable failure\n",
425                 dev_driver_string(wd->dev), dev_name(wd->dev));
426 }
427
428 /**
429  * dpm_watchdog_set - Enable pm watchdog for given device.
430  * @wd: Watchdog. Must be allocated on the stack.
431  * @dev: Device to handle.
432  */
433 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
434 {
435         struct timer_list *timer = &wd->timer;
436
437         wd->dev = dev;
438         wd->tsk = current;
439
440         init_timer_on_stack(timer);
441         /* use same timeout value for both suspend and resume */
442         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
443         timer->function = dpm_watchdog_handler;
444         timer->data = (unsigned long)wd;
445         add_timer(timer);
446 }
447
448 /**
449  * dpm_watchdog_clear - Disable suspend/resume watchdog.
450  * @wd: Watchdog to disable.
451  */
452 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
453 {
454         struct timer_list *timer = &wd->timer;
455
456         del_timer_sync(timer);
457         destroy_timer_on_stack(timer);
458 }
459 #else
460 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
461 #define dpm_watchdog_set(x, y)
462 #define dpm_watchdog_clear(x)
463 #endif
464
465 /*------------------------- Resume routines -------------------------*/
466
467 /**
468  * device_resume_noirq - Execute an "early resume" callback for given device.
469  * @dev: Device to handle.
470  * @state: PM transition of the system being carried out.
471  * @async: If true, the device is being resumed asynchronously.
472  *
473  * The driver of @dev will not receive interrupts while this function is being
474  * executed.
475  */
476 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
477 {
478         pm_callback_t callback = NULL;
479         char *info = NULL;
480         int error = 0;
481
482         TRACE_DEVICE(dev);
483         TRACE_RESUME(0);
484
485         if (dev->power.syscore || dev->power.direct_complete)
486                 goto Out;
487
488         if (!dev->power.is_noirq_suspended)
489                 goto Out;
490
491         dpm_wait(dev->parent, async);
492
493         if (dev->pm_domain) {
494                 info = "noirq power domain ";
495                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
496         } else if (dev->type && dev->type->pm) {
497                 info = "noirq type ";
498                 callback = pm_noirq_op(dev->type->pm, state);
499         } else if (dev->class && dev->class->pm) {
500                 info = "noirq class ";
501                 callback = pm_noirq_op(dev->class->pm, state);
502         } else if (dev->bus && dev->bus->pm) {
503                 info = "noirq bus ";
504                 callback = pm_noirq_op(dev->bus->pm, state);
505         }
506
507         if (!callback && dev->driver && dev->driver->pm) {
508                 info = "noirq driver ";
509                 callback = pm_noirq_op(dev->driver->pm, state);
510         }
511
512         error = dpm_run_callback(callback, dev, state, info);
513         dev->power.is_noirq_suspended = false;
514
515  Out:
516         complete_all(&dev->power.completion);
517         TRACE_RESUME(error);
518         return error;
519 }
520
521 static bool is_async(struct device *dev)
522 {
523         return dev->power.async_suspend && pm_async_enabled
524                 && !pm_trace_is_enabled();
525 }
526
527 static void async_resume_noirq(void *data, async_cookie_t cookie)
528 {
529         struct device *dev = (struct device *)data;
530         int error;
531
532         error = device_resume_noirq(dev, pm_transition, true);
533         if (error)
534                 pm_dev_err(dev, pm_transition, " async", error);
535
536         put_device(dev);
537 }
538
539 /**
540  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
541  * @state: PM transition of the system being carried out.
542  *
543  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
544  * enable device drivers to receive interrupts.
545  */
546 void dpm_resume_noirq(pm_message_t state)
547 {
548         struct device *dev;
549         ktime_t starttime = ktime_get();
550
551         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
552         mutex_lock(&dpm_list_mtx);
553         pm_transition = state;
554
555         /*
556          * Advanced the async threads upfront,
557          * in case the starting of async threads is
558          * delayed by non-async resuming devices.
559          */
560         list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
561                 reinit_completion(&dev->power.completion);
562                 if (is_async(dev)) {
563                         get_device(dev);
564                         async_schedule(async_resume_noirq, dev);
565                 }
566         }
567
568         while (!list_empty(&dpm_noirq_list)) {
569                 dev = to_device(dpm_noirq_list.next);
570                 get_device(dev);
571                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
572                 mutex_unlock(&dpm_list_mtx);
573
574                 if (!is_async(dev)) {
575                         int error;
576
577                         error = device_resume_noirq(dev, state, false);
578                         if (error) {
579                                 suspend_stats.failed_resume_noirq++;
580                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
581                                 dpm_save_failed_dev(dev_name(dev));
582                                 pm_dev_err(dev, state, " noirq", error);
583                         }
584                 }
585
586                 mutex_lock(&dpm_list_mtx);
587                 put_device(dev);
588         }
589         mutex_unlock(&dpm_list_mtx);
590         async_synchronize_full();
591         dpm_show_time(starttime, state, "noirq");
592         resume_device_irqs();
593         device_wakeup_disarm_wake_irqs();
594         cpuidle_resume();
595         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
596 }
597
598 /**
599  * device_resume_early - Execute an "early resume" callback for given device.
600  * @dev: Device to handle.
601  * @state: PM transition of the system being carried out.
602  * @async: If true, the device is being resumed asynchronously.
603  *
604  * Runtime PM is disabled for @dev while this function is being executed.
605  */
606 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
607 {
608         pm_callback_t callback = NULL;
609         char *info = NULL;
610         int error = 0;
611
612         TRACE_DEVICE(dev);
613         TRACE_RESUME(0);
614
615         if (dev->power.syscore || dev->power.direct_complete)
616                 goto Out;
617
618         if (!dev->power.is_late_suspended)
619                 goto Out;
620
621         dpm_wait(dev->parent, async);
622
623         if (dev->pm_domain) {
624                 info = "early power domain ";
625                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
626         } else if (dev->type && dev->type->pm) {
627                 info = "early type ";
628                 callback = pm_late_early_op(dev->type->pm, state);
629         } else if (dev->class && dev->class->pm) {
630                 info = "early class ";
631                 callback = pm_late_early_op(dev->class->pm, state);
632         } else if (dev->bus && dev->bus->pm) {
633                 info = "early bus ";
634                 callback = pm_late_early_op(dev->bus->pm, state);
635         }
636
637         if (!callback && dev->driver && dev->driver->pm) {
638                 info = "early driver ";
639                 callback = pm_late_early_op(dev->driver->pm, state);
640         }
641
642         error = dpm_run_callback(callback, dev, state, info);
643         dev->power.is_late_suspended = false;
644
645  Out:
646         TRACE_RESUME(error);
647
648         pm_runtime_enable(dev);
649         complete_all(&dev->power.completion);
650         return error;
651 }
652
653 static void async_resume_early(void *data, async_cookie_t cookie)
654 {
655         struct device *dev = (struct device *)data;
656         int error;
657
658         error = device_resume_early(dev, pm_transition, true);
659         if (error)
660                 pm_dev_err(dev, pm_transition, " async", error);
661
662         put_device(dev);
663 }
664
665 /**
666  * dpm_resume_early - Execute "early resume" callbacks for all devices.
667  * @state: PM transition of the system being carried out.
668  */
669 void dpm_resume_early(pm_message_t state)
670 {
671         struct device *dev;
672         ktime_t starttime = ktime_get();
673
674         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
675         mutex_lock(&dpm_list_mtx);
676         pm_transition = state;
677
678         /*
679          * Advanced the async threads upfront,
680          * in case the starting of async threads is
681          * delayed by non-async resuming devices.
682          */
683         list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
684                 reinit_completion(&dev->power.completion);
685                 if (is_async(dev)) {
686                         get_device(dev);
687                         async_schedule(async_resume_early, dev);
688                 }
689         }
690
691         while (!list_empty(&dpm_late_early_list)) {
692                 dev = to_device(dpm_late_early_list.next);
693                 get_device(dev);
694                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
695                 mutex_unlock(&dpm_list_mtx);
696
697                 if (!is_async(dev)) {
698                         int error;
699
700                         error = device_resume_early(dev, state, false);
701                         if (error) {
702                                 suspend_stats.failed_resume_early++;
703                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
704                                 dpm_save_failed_dev(dev_name(dev));
705                                 pm_dev_err(dev, state, " early", error);
706                         }
707                 }
708                 mutex_lock(&dpm_list_mtx);
709                 put_device(dev);
710         }
711         mutex_unlock(&dpm_list_mtx);
712         async_synchronize_full();
713         dpm_show_time(starttime, state, "early");
714         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
715 }
716
717 /**
718  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
719  * @state: PM transition of the system being carried out.
720  */
721 void dpm_resume_start(pm_message_t state)
722 {
723         dpm_resume_noirq(state);
724         dpm_resume_early(state);
725 }
726 EXPORT_SYMBOL_GPL(dpm_resume_start);
727
728 /**
729  * device_resume - Execute "resume" callbacks for given device.
730  * @dev: Device to handle.
731  * @state: PM transition of the system being carried out.
732  * @async: If true, the device is being resumed asynchronously.
733  */
734 static int device_resume(struct device *dev, pm_message_t state, bool async)
735 {
736         pm_callback_t callback = NULL;
737         char *info = NULL;
738         int error = 0;
739         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
740
741         TRACE_DEVICE(dev);
742         TRACE_RESUME(0);
743
744         if (dev->power.syscore)
745                 goto Complete;
746
747         if (dev->power.direct_complete) {
748                 /* Match the pm_runtime_disable() in __device_suspend(). */
749                 pm_runtime_enable(dev);
750                 goto Complete;
751         }
752
753         dpm_wait(dev->parent, async);
754         dpm_watchdog_set(&wd, dev);
755         device_lock(dev);
756
757         /*
758          * This is a fib.  But we'll allow new children to be added below
759          * a resumed device, even if the device hasn't been completed yet.
760          */
761         dev->power.is_prepared = false;
762
763         if (!dev->power.is_suspended)
764                 goto Unlock;
765
766         if (dev->pm_domain) {
767                 info = "power domain ";
768                 callback = pm_op(&dev->pm_domain->ops, state);
769                 goto Driver;
770         }
771
772         if (dev->type && dev->type->pm) {
773                 info = "type ";
774                 callback = pm_op(dev->type->pm, state);
775                 goto Driver;
776         }
777
778         if (dev->class) {
779                 if (dev->class->pm) {
780                         info = "class ";
781                         callback = pm_op(dev->class->pm, state);
782                         goto Driver;
783                 } else if (dev->class->resume) {
784                         info = "legacy class ";
785                         callback = dev->class->resume;
786                         goto End;
787                 }
788         }
789
790         if (dev->bus) {
791                 if (dev->bus->pm) {
792                         info = "bus ";
793                         callback = pm_op(dev->bus->pm, state);
794                 } else if (dev->bus->resume) {
795                         info = "legacy bus ";
796                         callback = dev->bus->resume;
797                         goto End;
798                 }
799         }
800
801  Driver:
802         if (!callback && dev->driver && dev->driver->pm) {
803                 info = "driver ";
804                 callback = pm_op(dev->driver->pm, state);
805         }
806
807  End:
808         error = dpm_run_callback(callback, dev, state, info);
809         dev->power.is_suspended = false;
810
811  Unlock:
812         device_unlock(dev);
813         dpm_watchdog_clear(&wd);
814
815  Complete:
816         complete_all(&dev->power.completion);
817
818         TRACE_RESUME(error);
819
820         return error;
821 }
822
823 static void async_resume(void *data, async_cookie_t cookie)
824 {
825         struct device *dev = (struct device *)data;
826         int error;
827
828         error = device_resume(dev, pm_transition, true);
829         if (error)
830                 pm_dev_err(dev, pm_transition, " async", error);
831         put_device(dev);
832 }
833
834 /**
835  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
836  * @state: PM transition of the system being carried out.
837  *
838  * Execute the appropriate "resume" callback for all devices whose status
839  * indicates that they are suspended.
840  */
841 void dpm_resume(pm_message_t state)
842 {
843         struct device *dev;
844         ktime_t starttime = ktime_get();
845
846         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
847         might_sleep();
848
849         mutex_lock(&dpm_list_mtx);
850         pm_transition = state;
851         async_error = 0;
852
853         list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
854                 reinit_completion(&dev->power.completion);
855                 if (is_async(dev)) {
856                         get_device(dev);
857                         async_schedule(async_resume, dev);
858                 }
859         }
860
861         while (!list_empty(&dpm_suspended_list)) {
862                 dev = to_device(dpm_suspended_list.next);
863                 get_device(dev);
864                 if (!is_async(dev)) {
865                         int error;
866
867                         mutex_unlock(&dpm_list_mtx);
868
869                         error = device_resume(dev, state, false);
870                         if (error) {
871                                 suspend_stats.failed_resume++;
872                                 dpm_save_failed_step(SUSPEND_RESUME);
873                                 dpm_save_failed_dev(dev_name(dev));
874                                 pm_dev_err(dev, state, "", error);
875                         }
876
877                         mutex_lock(&dpm_list_mtx);
878                 }
879                 if (!list_empty(&dev->power.entry))
880                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
881                 put_device(dev);
882         }
883         mutex_unlock(&dpm_list_mtx);
884         async_synchronize_full();
885         dpm_show_time(starttime, state, NULL);
886
887         cpufreq_resume();
888         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
889 }
890
891 /**
892  * device_complete - Complete a PM transition for given device.
893  * @dev: Device to handle.
894  * @state: PM transition of the system being carried out.
895  */
896 static void device_complete(struct device *dev, pm_message_t state)
897 {
898         void (*callback)(struct device *) = NULL;
899         char *info = NULL;
900
901         if (dev->power.syscore)
902                 return;
903
904         device_lock(dev);
905
906         if (dev->pm_domain) {
907                 info = "completing power domain ";
908                 callback = dev->pm_domain->ops.complete;
909         } else if (dev->type && dev->type->pm) {
910                 info = "completing type ";
911                 callback = dev->type->pm->complete;
912         } else if (dev->class && dev->class->pm) {
913                 info = "completing class ";
914                 callback = dev->class->pm->complete;
915         } else if (dev->bus && dev->bus->pm) {
916                 info = "completing bus ";
917                 callback = dev->bus->pm->complete;
918         }
919
920         if (!callback && dev->driver && dev->driver->pm) {
921                 info = "completing driver ";
922                 callback = dev->driver->pm->complete;
923         }
924
925         if (callback) {
926                 pm_dev_dbg(dev, state, info);
927                 callback(dev);
928         }
929
930         device_unlock(dev);
931
932         pm_runtime_put(dev);
933 }
934
935 /**
936  * dpm_complete - Complete a PM transition for all non-sysdev devices.
937  * @state: PM transition of the system being carried out.
938  *
939  * Execute the ->complete() callbacks for all devices whose PM status is not
940  * DPM_ON (this allows new devices to be registered).
941  */
942 void dpm_complete(pm_message_t state)
943 {
944         struct list_head list;
945
946         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
947         might_sleep();
948
949         INIT_LIST_HEAD(&list);
950         mutex_lock(&dpm_list_mtx);
951         while (!list_empty(&dpm_prepared_list)) {
952                 struct device *dev = to_device(dpm_prepared_list.prev);
953
954                 get_device(dev);
955                 dev->power.is_prepared = false;
956                 list_move(&dev->power.entry, &list);
957                 mutex_unlock(&dpm_list_mtx);
958
959                 trace_device_pm_callback_start(dev, "", state.event);
960                 device_complete(dev, state);
961                 trace_device_pm_callback_end(dev, 0);
962
963                 mutex_lock(&dpm_list_mtx);
964                 put_device(dev);
965         }
966         list_splice(&list, &dpm_list);
967         mutex_unlock(&dpm_list_mtx);
968
969         /* Allow device probing and trigger re-probing of deferred devices */
970         device_unblock_probing();
971         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
972 }
973
974 /**
975  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
976  * @state: PM transition of the system being carried out.
977  *
978  * Execute "resume" callbacks for all devices and complete the PM transition of
979  * the system.
980  */
981 void dpm_resume_end(pm_message_t state)
982 {
983         dpm_resume(state);
984         dpm_complete(state);
985 }
986 EXPORT_SYMBOL_GPL(dpm_resume_end);
987
988
989 /*------------------------- Suspend routines -------------------------*/
990
991 /**
992  * resume_event - Return a "resume" message for given "suspend" sleep state.
993  * @sleep_state: PM message representing a sleep state.
994  *
995  * Return a PM message representing the resume event corresponding to given
996  * sleep state.
997  */
998 static pm_message_t resume_event(pm_message_t sleep_state)
999 {
1000         switch (sleep_state.event) {
1001         case PM_EVENT_SUSPEND:
1002                 return PMSG_RESUME;
1003         case PM_EVENT_FREEZE:
1004         case PM_EVENT_QUIESCE:
1005                 return PMSG_RECOVER;
1006         case PM_EVENT_HIBERNATE:
1007                 return PMSG_RESTORE;
1008         }
1009         return PMSG_ON;
1010 }
1011
1012 /**
1013  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1014  * @dev: Device to handle.
1015  * @state: PM transition of the system being carried out.
1016  * @async: If true, the device is being suspended asynchronously.
1017  *
1018  * The driver of @dev will not receive interrupts while this function is being
1019  * executed.
1020  */
1021 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1022 {
1023         pm_callback_t callback = NULL;
1024         char *info = NULL;
1025         int error = 0;
1026
1027         TRACE_DEVICE(dev);
1028         TRACE_SUSPEND(0);
1029
1030         dpm_wait_for_children(dev, async);
1031
1032         if (async_error)
1033                 goto Complete;
1034
1035         if (pm_wakeup_pending()) {
1036                 async_error = -EBUSY;
1037                 goto Complete;
1038         }
1039
1040         if (dev->power.syscore || dev->power.direct_complete)
1041                 goto Complete;
1042
1043         if (dev->pm_domain) {
1044                 info = "noirq power domain ";
1045                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1046         } else if (dev->type && dev->type->pm) {
1047                 info = "noirq type ";
1048                 callback = pm_noirq_op(dev->type->pm, state);
1049         } else if (dev->class && dev->class->pm) {
1050                 info = "noirq class ";
1051                 callback = pm_noirq_op(dev->class->pm, state);
1052         } else if (dev->bus && dev->bus->pm) {
1053                 info = "noirq bus ";
1054                 callback = pm_noirq_op(dev->bus->pm, state);
1055         }
1056
1057         if (!callback && dev->driver && dev->driver->pm) {
1058                 info = "noirq driver ";
1059                 callback = pm_noirq_op(dev->driver->pm, state);
1060         }
1061
1062         error = dpm_run_callback(callback, dev, state, info);
1063         if (!error)
1064                 dev->power.is_noirq_suspended = true;
1065         else
1066                 async_error = error;
1067
1068 Complete:
1069         complete_all(&dev->power.completion);
1070         TRACE_SUSPEND(error);
1071         return error;
1072 }
1073
1074 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1075 {
1076         struct device *dev = (struct device *)data;
1077         int error;
1078
1079         error = __device_suspend_noirq(dev, pm_transition, true);
1080         if (error) {
1081                 dpm_save_failed_dev(dev_name(dev));
1082                 pm_dev_err(dev, pm_transition, " async", error);
1083         }
1084
1085         put_device(dev);
1086 }
1087
1088 static int device_suspend_noirq(struct device *dev)
1089 {
1090         reinit_completion(&dev->power.completion);
1091
1092         if (is_async(dev)) {
1093                 get_device(dev);
1094                 async_schedule(async_suspend_noirq, dev);
1095                 return 0;
1096         }
1097         return __device_suspend_noirq(dev, pm_transition, false);
1098 }
1099
1100 /**
1101  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1102  * @state: PM transition of the system being carried out.
1103  *
1104  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1105  * handlers for all non-sysdev devices.
1106  */
1107 int dpm_suspend_noirq(pm_message_t state)
1108 {
1109         ktime_t starttime = ktime_get();
1110         int error = 0;
1111
1112         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1113         cpuidle_pause();
1114         device_wakeup_arm_wake_irqs();
1115         suspend_device_irqs();
1116         mutex_lock(&dpm_list_mtx);
1117         pm_transition = state;
1118         async_error = 0;
1119
1120         while (!list_empty(&dpm_late_early_list)) {
1121                 struct device *dev = to_device(dpm_late_early_list.prev);
1122
1123                 get_device(dev);
1124                 mutex_unlock(&dpm_list_mtx);
1125
1126                 error = device_suspend_noirq(dev);
1127
1128                 mutex_lock(&dpm_list_mtx);
1129                 if (error) {
1130                         pm_dev_err(dev, state, " noirq", error);
1131                         dpm_save_failed_dev(dev_name(dev));
1132                         put_device(dev);
1133                         break;
1134                 }
1135                 if (!list_empty(&dev->power.entry))
1136                         list_move(&dev->power.entry, &dpm_noirq_list);
1137                 put_device(dev);
1138
1139                 if (async_error)
1140                         break;
1141         }
1142         mutex_unlock(&dpm_list_mtx);
1143         async_synchronize_full();
1144         if (!error)
1145                 error = async_error;
1146
1147         if (error) {
1148                 suspend_stats.failed_suspend_noirq++;
1149                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1150                 dpm_resume_noirq(resume_event(state));
1151         } else {
1152                 dpm_show_time(starttime, state, "noirq");
1153         }
1154         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1155         return error;
1156 }
1157
1158 /**
1159  * device_suspend_late - Execute a "late suspend" callback for given device.
1160  * @dev: Device to handle.
1161  * @state: PM transition of the system being carried out.
1162  * @async: If true, the device is being suspended asynchronously.
1163  *
1164  * Runtime PM is disabled for @dev while this function is being executed.
1165  */
1166 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1167 {
1168         pm_callback_t callback = NULL;
1169         char *info = NULL;
1170         int error = 0;
1171
1172         TRACE_DEVICE(dev);
1173         TRACE_SUSPEND(0);
1174
1175         __pm_runtime_disable(dev, false);
1176
1177         dpm_wait_for_children(dev, async);
1178
1179         if (async_error)
1180                 goto Complete;
1181
1182         if (pm_wakeup_pending()) {
1183                 async_error = -EBUSY;
1184                 goto Complete;
1185         }
1186
1187         if (dev->power.syscore || dev->power.direct_complete)
1188                 goto Complete;
1189
1190         if (dev->pm_domain) {
1191                 info = "late power domain ";
1192                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1193         } else if (dev->type && dev->type->pm) {
1194                 info = "late type ";
1195                 callback = pm_late_early_op(dev->type->pm, state);
1196         } else if (dev->class && dev->class->pm) {
1197                 info = "late class ";
1198                 callback = pm_late_early_op(dev->class->pm, state);
1199         } else if (dev->bus && dev->bus->pm) {
1200                 info = "late bus ";
1201                 callback = pm_late_early_op(dev->bus->pm, state);
1202         }
1203
1204         if (!callback && dev->driver && dev->driver->pm) {
1205                 info = "late driver ";
1206                 callback = pm_late_early_op(dev->driver->pm, state);
1207         }
1208
1209         error = dpm_run_callback(callback, dev, state, info);
1210         if (!error)
1211                 dev->power.is_late_suspended = true;
1212         else
1213                 async_error = error;
1214
1215 Complete:
1216         TRACE_SUSPEND(error);
1217         complete_all(&dev->power.completion);
1218         return error;
1219 }
1220
1221 static void async_suspend_late(void *data, async_cookie_t cookie)
1222 {
1223         struct device *dev = (struct device *)data;
1224         int error;
1225
1226         error = __device_suspend_late(dev, pm_transition, true);
1227         if (error) {
1228                 dpm_save_failed_dev(dev_name(dev));
1229                 pm_dev_err(dev, pm_transition, " async", error);
1230         }
1231         put_device(dev);
1232 }
1233
1234 static int device_suspend_late(struct device *dev)
1235 {
1236         reinit_completion(&dev->power.completion);
1237
1238         if (is_async(dev)) {
1239                 get_device(dev);
1240                 async_schedule(async_suspend_late, dev);
1241                 return 0;
1242         }
1243
1244         return __device_suspend_late(dev, pm_transition, false);
1245 }
1246
1247 /**
1248  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1249  * @state: PM transition of the system being carried out.
1250  */
1251 int dpm_suspend_late(pm_message_t state)
1252 {
1253         ktime_t starttime = ktime_get();
1254         int error = 0;
1255
1256         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1257         mutex_lock(&dpm_list_mtx);
1258         pm_transition = state;
1259         async_error = 0;
1260
1261         while (!list_empty(&dpm_suspended_list)) {
1262                 struct device *dev = to_device(dpm_suspended_list.prev);
1263
1264                 get_device(dev);
1265                 mutex_unlock(&dpm_list_mtx);
1266
1267                 error = device_suspend_late(dev);
1268
1269                 mutex_lock(&dpm_list_mtx);
1270                 if (!list_empty(&dev->power.entry))
1271                         list_move(&dev->power.entry, &dpm_late_early_list);
1272
1273                 if (error) {
1274                         pm_dev_err(dev, state, " late", error);
1275                         dpm_save_failed_dev(dev_name(dev));
1276                         put_device(dev);
1277                         break;
1278                 }
1279                 put_device(dev);
1280
1281                 if (async_error)
1282                         break;
1283         }
1284         mutex_unlock(&dpm_list_mtx);
1285         async_synchronize_full();
1286         if (!error)
1287                 error = async_error;
1288         if (error) {
1289                 suspend_stats.failed_suspend_late++;
1290                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1291                 dpm_resume_early(resume_event(state));
1292         } else {
1293                 dpm_show_time(starttime, state, "late");
1294         }
1295         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1296         return error;
1297 }
1298
1299 /**
1300  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1301  * @state: PM transition of the system being carried out.
1302  */
1303 int dpm_suspend_end(pm_message_t state)
1304 {
1305         int error = dpm_suspend_late(state);
1306         if (error)
1307                 return error;
1308
1309         error = dpm_suspend_noirq(state);
1310         if (error) {
1311                 dpm_resume_early(resume_event(state));
1312                 return error;
1313         }
1314
1315         return 0;
1316 }
1317 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1318
1319 /**
1320  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1321  * @dev: Device to suspend.
1322  * @state: PM transition of the system being carried out.
1323  * @cb: Suspend callback to execute.
1324  * @info: string description of caller.
1325  */
1326 static int legacy_suspend(struct device *dev, pm_message_t state,
1327                           int (*cb)(struct device *dev, pm_message_t state),
1328                           char *info)
1329 {
1330         int error;
1331         ktime_t calltime;
1332
1333         calltime = initcall_debug_start(dev);
1334
1335         trace_device_pm_callback_start(dev, info, state.event);
1336         error = cb(dev, state);
1337         trace_device_pm_callback_end(dev, error);
1338         suspend_report_result(cb, error);
1339
1340         initcall_debug_report(dev, calltime, error, state, info);
1341
1342         return error;
1343 }
1344
1345 /**
1346  * device_suspend - Execute "suspend" callbacks for given device.
1347  * @dev: Device to handle.
1348  * @state: PM transition of the system being carried out.
1349  * @async: If true, the device is being suspended asynchronously.
1350  */
1351 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1352 {
1353         pm_callback_t callback = NULL;
1354         char *info = NULL;
1355         int error = 0;
1356         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1357
1358         TRACE_DEVICE(dev);
1359         TRACE_SUSPEND(0);
1360
1361         dpm_wait_for_children(dev, async);
1362
1363         if (async_error)
1364                 goto Complete;
1365
1366         /*
1367          * If a device configured to wake up the system from sleep states
1368          * has been suspended at run time and there's a resume request pending
1369          * for it, this is equivalent to the device signaling wakeup, so the
1370          * system suspend operation should be aborted.
1371          */
1372         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1373                 pm_wakeup_event(dev, 0);
1374
1375         if (pm_wakeup_pending()) {
1376                 async_error = -EBUSY;
1377                 goto Complete;
1378         }
1379
1380         if (dev->power.syscore)
1381                 goto Complete;
1382
1383         if (dev->power.direct_complete) {
1384                 if (pm_runtime_status_suspended(dev)) {
1385                         pm_runtime_disable(dev);
1386                         if (pm_runtime_status_suspended(dev))
1387                                 goto Complete;
1388
1389                         pm_runtime_enable(dev);
1390                 }
1391                 dev->power.direct_complete = false;
1392         }
1393
1394         dpm_watchdog_set(&wd, dev);
1395         device_lock(dev);
1396
1397         if (dev->pm_domain) {
1398                 info = "power domain ";
1399                 callback = pm_op(&dev->pm_domain->ops, state);
1400                 goto Run;
1401         }
1402
1403         if (dev->type && dev->type->pm) {
1404                 info = "type ";
1405                 callback = pm_op(dev->type->pm, state);
1406                 goto Run;
1407         }
1408
1409         if (dev->class) {
1410                 if (dev->class->pm) {
1411                         info = "class ";
1412                         callback = pm_op(dev->class->pm, state);
1413                         goto Run;
1414                 } else if (dev->class->suspend) {
1415                         pm_dev_dbg(dev, state, "legacy class ");
1416                         error = legacy_suspend(dev, state, dev->class->suspend,
1417                                                 "legacy class ");
1418                         goto End;
1419                 }
1420         }
1421
1422         if (dev->bus) {
1423                 if (dev->bus->pm) {
1424                         info = "bus ";
1425                         callback = pm_op(dev->bus->pm, state);
1426                 } else if (dev->bus->suspend) {
1427                         pm_dev_dbg(dev, state, "legacy bus ");
1428                         error = legacy_suspend(dev, state, dev->bus->suspend,
1429                                                 "legacy bus ");
1430                         goto End;
1431                 }
1432         }
1433
1434  Run:
1435         if (!callback && dev->driver && dev->driver->pm) {
1436                 info = "driver ";
1437                 callback = pm_op(dev->driver->pm, state);
1438         }
1439
1440         error = dpm_run_callback(callback, dev, state, info);
1441
1442  End:
1443         if (!error) {
1444                 struct device *parent = dev->parent;
1445
1446                 dev->power.is_suspended = true;
1447                 if (parent) {
1448                         spin_lock_irq(&parent->power.lock);
1449
1450                         dev->parent->power.direct_complete = false;
1451                         if (dev->power.wakeup_path
1452                             && !dev->parent->power.ignore_children)
1453                                 dev->parent->power.wakeup_path = true;
1454
1455                         spin_unlock_irq(&parent->power.lock);
1456                 }
1457         }
1458
1459         device_unlock(dev);
1460         dpm_watchdog_clear(&wd);
1461
1462  Complete:
1463         complete_all(&dev->power.completion);
1464         if (error)
1465                 async_error = error;
1466
1467         TRACE_SUSPEND(error);
1468         return error;
1469 }
1470
1471 static void async_suspend(void *data, async_cookie_t cookie)
1472 {
1473         struct device *dev = (struct device *)data;
1474         int error;
1475
1476         error = __device_suspend(dev, pm_transition, true);
1477         if (error) {
1478                 dpm_save_failed_dev(dev_name(dev));
1479                 pm_dev_err(dev, pm_transition, " async", error);
1480         }
1481
1482         put_device(dev);
1483 }
1484
1485 static int device_suspend(struct device *dev)
1486 {
1487         reinit_completion(&dev->power.completion);
1488
1489         if (is_async(dev)) {
1490                 get_device(dev);
1491                 async_schedule(async_suspend, dev);
1492                 return 0;
1493         }
1494
1495         return __device_suspend(dev, pm_transition, false);
1496 }
1497
1498 /**
1499  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1500  * @state: PM transition of the system being carried out.
1501  */
1502 int dpm_suspend(pm_message_t state)
1503 {
1504         ktime_t starttime = ktime_get();
1505         int error = 0;
1506
1507         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1508         might_sleep();
1509
1510         cpufreq_suspend();
1511
1512         mutex_lock(&dpm_list_mtx);
1513         pm_transition = state;
1514         async_error = 0;
1515         while (!list_empty(&dpm_prepared_list)) {
1516                 struct device *dev = to_device(dpm_prepared_list.prev);
1517
1518                 get_device(dev);
1519                 mutex_unlock(&dpm_list_mtx);
1520
1521                 error = device_suspend(dev);
1522
1523                 mutex_lock(&dpm_list_mtx);
1524                 if (error) {
1525                         pm_dev_err(dev, state, "", error);
1526                         dpm_save_failed_dev(dev_name(dev));
1527                         put_device(dev);
1528                         break;
1529                 }
1530                 if (!list_empty(&dev->power.entry))
1531                         list_move(&dev->power.entry, &dpm_suspended_list);
1532                 put_device(dev);
1533                 if (async_error)
1534                         break;
1535         }
1536         mutex_unlock(&dpm_list_mtx);
1537         async_synchronize_full();
1538         if (!error)
1539                 error = async_error;
1540         if (error) {
1541                 suspend_stats.failed_suspend++;
1542                 dpm_save_failed_step(SUSPEND_SUSPEND);
1543         } else
1544                 dpm_show_time(starttime, state, NULL);
1545         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1546         return error;
1547 }
1548
1549 /**
1550  * device_prepare - Prepare a device for system power transition.
1551  * @dev: Device to handle.
1552  * @state: PM transition of the system being carried out.
1553  *
1554  * Execute the ->prepare() callback(s) for given device.  No new children of the
1555  * device may be registered after this function has returned.
1556  */
1557 static int device_prepare(struct device *dev, pm_message_t state)
1558 {
1559         int (*callback)(struct device *) = NULL;
1560         int ret = 0;
1561
1562         if (dev->power.syscore)
1563                 return 0;
1564
1565         /*
1566          * If a device's parent goes into runtime suspend at the wrong time,
1567          * it won't be possible to resume the device.  To prevent this we
1568          * block runtime suspend here, during the prepare phase, and allow
1569          * it again during the complete phase.
1570          */
1571         pm_runtime_get_noresume(dev);
1572
1573         device_lock(dev);
1574
1575         dev->power.wakeup_path = device_may_wakeup(dev);
1576
1577         if (dev->power.no_pm_callbacks) {
1578                 ret = 1;        /* Let device go direct_complete */
1579                 goto unlock;
1580         }
1581
1582         if (dev->pm_domain)
1583                 callback = dev->pm_domain->ops.prepare;
1584         else if (dev->type && dev->type->pm)
1585                 callback = dev->type->pm->prepare;
1586         else if (dev->class && dev->class->pm)
1587                 callback = dev->class->pm->prepare;
1588         else if (dev->bus && dev->bus->pm)
1589                 callback = dev->bus->pm->prepare;
1590
1591         if (!callback && dev->driver && dev->driver->pm)
1592                 callback = dev->driver->pm->prepare;
1593
1594         if (callback)
1595                 ret = callback(dev);
1596
1597 unlock:
1598         device_unlock(dev);
1599
1600         if (ret < 0) {
1601                 suspend_report_result(callback, ret);
1602                 pm_runtime_put(dev);
1603                 return ret;
1604         }
1605         /*
1606          * A positive return value from ->prepare() means "this device appears
1607          * to be runtime-suspended and its state is fine, so if it really is
1608          * runtime-suspended, you can leave it in that state provided that you
1609          * will do the same thing with all of its descendants".  This only
1610          * applies to suspend transitions, however.
1611          */
1612         spin_lock_irq(&dev->power.lock);
1613         dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1614         spin_unlock_irq(&dev->power.lock);
1615         return 0;
1616 }
1617
1618 /**
1619  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1620  * @state: PM transition of the system being carried out.
1621  *
1622  * Execute the ->prepare() callback(s) for all devices.
1623  */
1624 int dpm_prepare(pm_message_t state)
1625 {
1626         int error = 0;
1627
1628         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1629         might_sleep();
1630
1631         /*
1632          * Give a chance for the known devices to complete their probes, before
1633          * disable probing of devices. This sync point is important at least
1634          * at boot time + hibernation restore.
1635          */
1636         wait_for_device_probe();
1637         /*
1638          * It is unsafe if probing of devices will happen during suspend or
1639          * hibernation and system behavior will be unpredictable in this case.
1640          * So, let's prohibit device's probing here and defer their probes
1641          * instead. The normal behavior will be restored in dpm_complete().
1642          */
1643         device_block_probing();
1644
1645         mutex_lock(&dpm_list_mtx);
1646         while (!list_empty(&dpm_list)) {
1647                 struct device *dev = to_device(dpm_list.next);
1648
1649                 get_device(dev);
1650                 mutex_unlock(&dpm_list_mtx);
1651
1652                 trace_device_pm_callback_start(dev, "", state.event);
1653                 error = device_prepare(dev, state);
1654                 trace_device_pm_callback_end(dev, error);
1655
1656                 mutex_lock(&dpm_list_mtx);
1657                 if (error) {
1658                         if (error == -EAGAIN) {
1659                                 put_device(dev);
1660                                 error = 0;
1661                                 continue;
1662                         }
1663                         printk(KERN_INFO "PM: Device %s not prepared "
1664                                 "for power transition: code %d\n",
1665                                 dev_name(dev), error);
1666                         put_device(dev);
1667                         break;
1668                 }
1669                 dev->power.is_prepared = true;
1670                 if (!list_empty(&dev->power.entry))
1671                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1672                 put_device(dev);
1673         }
1674         mutex_unlock(&dpm_list_mtx);
1675         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1676         return error;
1677 }
1678
1679 /**
1680  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1681  * @state: PM transition of the system being carried out.
1682  *
1683  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1684  * callbacks for them.
1685  */
1686 int dpm_suspend_start(pm_message_t state)
1687 {
1688         int error;
1689
1690         error = dpm_prepare(state);
1691         if (error) {
1692                 suspend_stats.failed_prepare++;
1693                 dpm_save_failed_step(SUSPEND_PREPARE);
1694         } else
1695                 error = dpm_suspend(state);
1696         return error;
1697 }
1698 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1699
1700 void __suspend_report_result(const char *function, void *fn, int ret)
1701 {
1702         if (ret)
1703                 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1704 }
1705 EXPORT_SYMBOL_GPL(__suspend_report_result);
1706
1707 /**
1708  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1709  * @dev: Device to wait for.
1710  * @subordinate: Device that needs to wait for @dev.
1711  */
1712 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1713 {
1714         dpm_wait(dev, subordinate->power.async_suspend);
1715         return async_error;
1716 }
1717 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1718
1719 /**
1720  * dpm_for_each_dev - device iterator.
1721  * @data: data for the callback.
1722  * @fn: function to be called for each device.
1723  *
1724  * Iterate over devices in dpm_list, and call @fn for each device,
1725  * passing it @data.
1726  */
1727 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1728 {
1729         struct device *dev;
1730
1731         if (!fn)
1732                 return;
1733
1734         device_pm_lock();
1735         list_for_each_entry(dev, &dpm_list, power.entry)
1736                 fn(dev, data);
1737         device_pm_unlock();
1738 }
1739 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1740
1741 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1742 {
1743         if (!ops)
1744                 return true;
1745
1746         return !ops->prepare &&
1747                !ops->suspend &&
1748                !ops->suspend_late &&
1749                !ops->suspend_noirq &&
1750                !ops->resume_noirq &&
1751                !ops->resume_early &&
1752                !ops->resume &&
1753                !ops->complete;
1754 }
1755
1756 void device_pm_check_callbacks(struct device *dev)
1757 {
1758         spin_lock_irq(&dev->power.lock);
1759         dev->power.no_pm_callbacks =
1760                 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1761                 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1762                 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1763                 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1764                 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1765         spin_unlock_irq(&dev->power.lock);
1766 }