Merge branch 'for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[sfrench/cifs-2.6.git] / drivers / base / power / main.c
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36
37 #include "../base.h"
38 #include "power.h"
39
40 typedef int (*pm_callback_t)(struct device *);
41
42 /*
43  * The entries in the dpm_list list are in a depth first order, simply
44  * because children are guaranteed to be discovered after parents, and
45  * are inserted at the back of the list on discovery.
46  *
47  * Since device_pm_add() may be called with a device lock held,
48  * we must never try to acquire a device lock while holding
49  * dpm_list_mutex.
50  */
51
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61
62 static int async_error;
63
64 static const char *pm_verb(int event)
65 {
66         switch (event) {
67         case PM_EVENT_SUSPEND:
68                 return "suspend";
69         case PM_EVENT_RESUME:
70                 return "resume";
71         case PM_EVENT_FREEZE:
72                 return "freeze";
73         case PM_EVENT_QUIESCE:
74                 return "quiesce";
75         case PM_EVENT_HIBERNATE:
76                 return "hibernate";
77         case PM_EVENT_THAW:
78                 return "thaw";
79         case PM_EVENT_RESTORE:
80                 return "restore";
81         case PM_EVENT_RECOVER:
82                 return "recover";
83         default:
84                 return "(unknown PM event)";
85         }
86 }
87
88 /**
89  * device_pm_sleep_init - Initialize system suspend-related device fields.
90  * @dev: Device object being initialized.
91  */
92 void device_pm_sleep_init(struct device *dev)
93 {
94         dev->power.is_prepared = false;
95         dev->power.is_suspended = false;
96         dev->power.is_noirq_suspended = false;
97         dev->power.is_late_suspended = false;
98         init_completion(&dev->power.completion);
99         complete_all(&dev->power.completion);
100         dev->power.wakeup = NULL;
101         INIT_LIST_HEAD(&dev->power.entry);
102 }
103
104 /**
105  * device_pm_lock - Lock the list of active devices used by the PM core.
106  */
107 void device_pm_lock(void)
108 {
109         mutex_lock(&dpm_list_mtx);
110 }
111
112 /**
113  * device_pm_unlock - Unlock the list of active devices used by the PM core.
114  */
115 void device_pm_unlock(void)
116 {
117         mutex_unlock(&dpm_list_mtx);
118 }
119
120 /**
121  * device_pm_add - Add a device to the PM core's list of active devices.
122  * @dev: Device to add to the list.
123  */
124 void device_pm_add(struct device *dev)
125 {
126         pr_debug("PM: Adding info for %s:%s\n",
127                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128         device_pm_check_callbacks(dev);
129         mutex_lock(&dpm_list_mtx);
130         if (dev->parent && dev->parent->power.is_prepared)
131                 dev_warn(dev, "parent %s should not be sleeping\n",
132                         dev_name(dev->parent));
133         list_add_tail(&dev->power.entry, &dpm_list);
134         dev->power.in_dpm_list = true;
135         mutex_unlock(&dpm_list_mtx);
136 }
137
138 /**
139  * device_pm_remove - Remove a device from the PM core's list of active devices.
140  * @dev: Device to be removed from the list.
141  */
142 void device_pm_remove(struct device *dev)
143 {
144         pr_debug("PM: Removing info for %s:%s\n",
145                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146         complete_all(&dev->power.completion);
147         mutex_lock(&dpm_list_mtx);
148         list_del_init(&dev->power.entry);
149         dev->power.in_dpm_list = false;
150         mutex_unlock(&dpm_list_mtx);
151         device_wakeup_disable(dev);
152         pm_runtime_remove(dev);
153         device_pm_check_callbacks(dev);
154 }
155
156 /**
157  * device_pm_move_before - Move device in the PM core's list of active devices.
158  * @deva: Device to move in dpm_list.
159  * @devb: Device @deva should come before.
160  */
161 void device_pm_move_before(struct device *deva, struct device *devb)
162 {
163         pr_debug("PM: Moving %s:%s before %s:%s\n",
164                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166         /* Delete deva from dpm_list and reinsert before devb. */
167         list_move_tail(&deva->power.entry, &devb->power.entry);
168 }
169
170 /**
171  * device_pm_move_after - Move device in the PM core's list of active devices.
172  * @deva: Device to move in dpm_list.
173  * @devb: Device @deva should come after.
174  */
175 void device_pm_move_after(struct device *deva, struct device *devb)
176 {
177         pr_debug("PM: Moving %s:%s after %s:%s\n",
178                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180         /* Delete deva from dpm_list and reinsert after devb. */
181         list_move(&deva->power.entry, &devb->power.entry);
182 }
183
184 /**
185  * device_pm_move_last - Move device to end of the PM core's list of devices.
186  * @dev: Device to move in dpm_list.
187  */
188 void device_pm_move_last(struct device *dev)
189 {
190         pr_debug("PM: Moving %s:%s to end of list\n",
191                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192         list_move_tail(&dev->power.entry, &dpm_list);
193 }
194
195 static ktime_t initcall_debug_start(struct device *dev)
196 {
197         ktime_t calltime = 0;
198
199         if (pm_print_times_enabled) {
200                 pr_info("calling  %s+ @ %i, parent: %s\n",
201                         dev_name(dev), task_pid_nr(current),
202                         dev->parent ? dev_name(dev->parent) : "none");
203                 calltime = ktime_get();
204         }
205
206         return calltime;
207 }
208
209 static void initcall_debug_report(struct device *dev, ktime_t calltime,
210                                   int error, pm_message_t state,
211                                   const char *info)
212 {
213         ktime_t rettime;
214         s64 nsecs;
215
216         rettime = ktime_get();
217         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219         if (pm_print_times_enabled) {
220                 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221                         error, (unsigned long long)nsecs >> 10);
222         }
223 }
224
225 /**
226  * dpm_wait - Wait for a PM operation to complete.
227  * @dev: Device to wait for.
228  * @async: If unset, wait only if the device's power.async_suspend flag is set.
229  */
230 static void dpm_wait(struct device *dev, bool async)
231 {
232         if (!dev)
233                 return;
234
235         if (async || (pm_async_enabled && dev->power.async_suspend))
236                 wait_for_completion(&dev->power.completion);
237 }
238
239 static int dpm_wait_fn(struct device *dev, void *async_ptr)
240 {
241         dpm_wait(dev, *((bool *)async_ptr));
242         return 0;
243 }
244
245 static void dpm_wait_for_children(struct device *dev, bool async)
246 {
247        device_for_each_child(dev, &async, dpm_wait_fn);
248 }
249
250 static void dpm_wait_for_suppliers(struct device *dev, bool async)
251 {
252         struct device_link *link;
253         int idx;
254
255         idx = device_links_read_lock();
256
257         /*
258          * If the supplier goes away right after we've checked the link to it,
259          * we'll wait for its completion to change the state, but that's fine,
260          * because the only things that will block as a result are the SRCU
261          * callbacks freeing the link objects for the links in the list we're
262          * walking.
263          */
264         list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266                         dpm_wait(link->supplier, async);
267
268         device_links_read_unlock(idx);
269 }
270
271 static void dpm_wait_for_superior(struct device *dev, bool async)
272 {
273         dpm_wait(dev->parent, async);
274         dpm_wait_for_suppliers(dev, async);
275 }
276
277 static void dpm_wait_for_consumers(struct device *dev, bool async)
278 {
279         struct device_link *link;
280         int idx;
281
282         idx = device_links_read_lock();
283
284         /*
285          * The status of a device link can only be changed from "dormant" by a
286          * probe, but that cannot happen during system suspend/resume.  In
287          * theory it can change to "dormant" at that time, but then it is
288          * reasonable to wait for the target device anyway (eg. if it goes
289          * away, it's better to wait for it to go away completely and then
290          * continue instead of trying to continue in parallel with its
291          * unregistration).
292          */
293         list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295                         dpm_wait(link->consumer, async);
296
297         device_links_read_unlock(idx);
298 }
299
300 static void dpm_wait_for_subordinate(struct device *dev, bool async)
301 {
302         dpm_wait_for_children(dev, async);
303         dpm_wait_for_consumers(dev, async);
304 }
305
306 /**
307  * pm_op - Return the PM operation appropriate for given PM event.
308  * @ops: PM operations to choose from.
309  * @state: PM transition of the system being carried out.
310  */
311 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312 {
313         switch (state.event) {
314 #ifdef CONFIG_SUSPEND
315         case PM_EVENT_SUSPEND:
316                 return ops->suspend;
317         case PM_EVENT_RESUME:
318                 return ops->resume;
319 #endif /* CONFIG_SUSPEND */
320 #ifdef CONFIG_HIBERNATE_CALLBACKS
321         case PM_EVENT_FREEZE:
322         case PM_EVENT_QUIESCE:
323                 return ops->freeze;
324         case PM_EVENT_HIBERNATE:
325                 return ops->poweroff;
326         case PM_EVENT_THAW:
327         case PM_EVENT_RECOVER:
328                 return ops->thaw;
329                 break;
330         case PM_EVENT_RESTORE:
331                 return ops->restore;
332 #endif /* CONFIG_HIBERNATE_CALLBACKS */
333         }
334
335         return NULL;
336 }
337
338 /**
339  * pm_late_early_op - Return the PM operation appropriate for given PM event.
340  * @ops: PM operations to choose from.
341  * @state: PM transition of the system being carried out.
342  *
343  * Runtime PM is disabled for @dev while this function is being executed.
344  */
345 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346                                       pm_message_t state)
347 {
348         switch (state.event) {
349 #ifdef CONFIG_SUSPEND
350         case PM_EVENT_SUSPEND:
351                 return ops->suspend_late;
352         case PM_EVENT_RESUME:
353                 return ops->resume_early;
354 #endif /* CONFIG_SUSPEND */
355 #ifdef CONFIG_HIBERNATE_CALLBACKS
356         case PM_EVENT_FREEZE:
357         case PM_EVENT_QUIESCE:
358                 return ops->freeze_late;
359         case PM_EVENT_HIBERNATE:
360                 return ops->poweroff_late;
361         case PM_EVENT_THAW:
362         case PM_EVENT_RECOVER:
363                 return ops->thaw_early;
364         case PM_EVENT_RESTORE:
365                 return ops->restore_early;
366 #endif /* CONFIG_HIBERNATE_CALLBACKS */
367         }
368
369         return NULL;
370 }
371
372 /**
373  * pm_noirq_op - Return the PM operation appropriate for given PM event.
374  * @ops: PM operations to choose from.
375  * @state: PM transition of the system being carried out.
376  *
377  * The driver of @dev will not receive interrupts while this function is being
378  * executed.
379  */
380 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381 {
382         switch (state.event) {
383 #ifdef CONFIG_SUSPEND
384         case PM_EVENT_SUSPEND:
385                 return ops->suspend_noirq;
386         case PM_EVENT_RESUME:
387                 return ops->resume_noirq;
388 #endif /* CONFIG_SUSPEND */
389 #ifdef CONFIG_HIBERNATE_CALLBACKS
390         case PM_EVENT_FREEZE:
391         case PM_EVENT_QUIESCE:
392                 return ops->freeze_noirq;
393         case PM_EVENT_HIBERNATE:
394                 return ops->poweroff_noirq;
395         case PM_EVENT_THAW:
396         case PM_EVENT_RECOVER:
397                 return ops->thaw_noirq;
398         case PM_EVENT_RESTORE:
399                 return ops->restore_noirq;
400 #endif /* CONFIG_HIBERNATE_CALLBACKS */
401         }
402
403         return NULL;
404 }
405
406 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
407 {
408         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410                 ", may wakeup" : "");
411 }
412
413 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
414                         int error)
415 {
416         printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417                 dev_name(dev), pm_verb(state.event), info, error);
418 }
419
420 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
421                           const char *info)
422 {
423         ktime_t calltime;
424         u64 usecs64;
425         int usecs;
426
427         calltime = ktime_get();
428         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
429         do_div(usecs64, NSEC_PER_USEC);
430         usecs = usecs64;
431         if (usecs == 0)
432                 usecs = 1;
433
434         pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
435                   info ?: "", info ? " " : "", pm_verb(state.event),
436                   error ? "aborted" : "complete",
437                   usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
438 }
439
440 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
441                             pm_message_t state, const char *info)
442 {
443         ktime_t calltime;
444         int error;
445
446         if (!cb)
447                 return 0;
448
449         calltime = initcall_debug_start(dev);
450
451         pm_dev_dbg(dev, state, info);
452         trace_device_pm_callback_start(dev, info, state.event);
453         error = cb(dev);
454         trace_device_pm_callback_end(dev, error);
455         suspend_report_result(cb, error);
456
457         initcall_debug_report(dev, calltime, error, state, info);
458
459         return error;
460 }
461
462 #ifdef CONFIG_DPM_WATCHDOG
463 struct dpm_watchdog {
464         struct device           *dev;
465         struct task_struct      *tsk;
466         struct timer_list       timer;
467 };
468
469 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
470         struct dpm_watchdog wd
471
472 /**
473  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
474  * @data: Watchdog object address.
475  *
476  * Called when a driver has timed out suspending or resuming.
477  * There's not much we can do here to recover so panic() to
478  * capture a crash-dump in pstore.
479  */
480 static void dpm_watchdog_handler(struct timer_list *t)
481 {
482         struct dpm_watchdog *wd = from_timer(wd, t, timer);
483
484         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
485         show_stack(wd->tsk, NULL);
486         panic("%s %s: unrecoverable failure\n",
487                 dev_driver_string(wd->dev), dev_name(wd->dev));
488 }
489
490 /**
491  * dpm_watchdog_set - Enable pm watchdog for given device.
492  * @wd: Watchdog. Must be allocated on the stack.
493  * @dev: Device to handle.
494  */
495 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
496 {
497         struct timer_list *timer = &wd->timer;
498
499         wd->dev = dev;
500         wd->tsk = current;
501
502         timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
503         /* use same timeout value for both suspend and resume */
504         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
505         add_timer(timer);
506 }
507
508 /**
509  * dpm_watchdog_clear - Disable suspend/resume watchdog.
510  * @wd: Watchdog to disable.
511  */
512 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
513 {
514         struct timer_list *timer = &wd->timer;
515
516         del_timer_sync(timer);
517         destroy_timer_on_stack(timer);
518 }
519 #else
520 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
521 #define dpm_watchdog_set(x, y)
522 #define dpm_watchdog_clear(x)
523 #endif
524
525 /*------------------------- Resume routines -------------------------*/
526
527 /**
528  * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
529  * @dev: Target device.
530  *
531  * Make the core skip the "early resume" and "resume" phases for @dev.
532  *
533  * This function can be called by middle-layer code during the "noirq" phase of
534  * system resume if necessary, but not by device drivers.
535  */
536 void dev_pm_skip_next_resume_phases(struct device *dev)
537 {
538         dev->power.is_late_suspended = false;
539         dev->power.is_suspended = false;
540 }
541
542 /**
543  * suspend_event - Return a "suspend" message for given "resume" one.
544  * @resume_msg: PM message representing a system-wide resume transition.
545  */
546 static pm_message_t suspend_event(pm_message_t resume_msg)
547 {
548         switch (resume_msg.event) {
549         case PM_EVENT_RESUME:
550                 return PMSG_SUSPEND;
551         case PM_EVENT_THAW:
552         case PM_EVENT_RESTORE:
553                 return PMSG_FREEZE;
554         case PM_EVENT_RECOVER:
555                 return PMSG_HIBERNATE;
556         }
557         return PMSG_ON;
558 }
559
560 /**
561  * dev_pm_may_skip_resume - System-wide device resume optimization check.
562  * @dev: Target device.
563  *
564  * Checks whether or not the device may be left in suspend after a system-wide
565  * transition to the working state.
566  */
567 bool dev_pm_may_skip_resume(struct device *dev)
568 {
569         return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
570 }
571
572 static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
573                                                 pm_message_t state,
574                                                 const char **info_p)
575 {
576         pm_callback_t callback;
577         const char *info;
578
579         if (dev->pm_domain) {
580                 info = "noirq power domain ";
581                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
582         } else if (dev->type && dev->type->pm) {
583                 info = "noirq type ";
584                 callback = pm_noirq_op(dev->type->pm, state);
585         } else if (dev->class && dev->class->pm) {
586                 info = "noirq class ";
587                 callback = pm_noirq_op(dev->class->pm, state);
588         } else if (dev->bus && dev->bus->pm) {
589                 info = "noirq bus ";
590                 callback = pm_noirq_op(dev->bus->pm, state);
591         } else {
592                 return NULL;
593         }
594
595         if (info_p)
596                 *info_p = info;
597
598         return callback;
599 }
600
601 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
602                                                  pm_message_t state,
603                                                  const char **info_p);
604
605 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
606                                                 pm_message_t state,
607                                                 const char **info_p);
608
609 /**
610  * device_resume_noirq - Execute a "noirq resume" callback for given device.
611  * @dev: Device to handle.
612  * @state: PM transition of the system being carried out.
613  * @async: If true, the device is being resumed asynchronously.
614  *
615  * The driver of @dev will not receive interrupts while this function is being
616  * executed.
617  */
618 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619 {
620         pm_callback_t callback;
621         const char *info;
622         bool skip_resume;
623         int error = 0;
624
625         TRACE_DEVICE(dev);
626         TRACE_RESUME(0);
627
628         if (dev->power.syscore || dev->power.direct_complete)
629                 goto Out;
630
631         if (!dev->power.is_noirq_suspended)
632                 goto Out;
633
634         dpm_wait_for_superior(dev, async);
635
636         skip_resume = dev_pm_may_skip_resume(dev);
637
638         callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
639         if (callback)
640                 goto Run;
641
642         if (skip_resume)
643                 goto Skip;
644
645         if (dev_pm_smart_suspend_and_suspended(dev)) {
646                 pm_message_t suspend_msg = suspend_event(state);
647
648                 /*
649                  * If "freeze" callbacks have been skipped during a transition
650                  * related to hibernation, the subsequent "thaw" callbacks must
651                  * be skipped too or bad things may happen.  Otherwise, resume
652                  * callbacks are going to be run for the device, so its runtime
653                  * PM status must be changed to reflect the new state after the
654                  * transition under way.
655                  */
656                 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
657                     !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
658                         if (state.event == PM_EVENT_THAW) {
659                                 skip_resume = true;
660                                 goto Skip;
661                         } else {
662                                 pm_runtime_set_active(dev);
663                         }
664                 }
665         }
666
667         if (dev->driver && dev->driver->pm) {
668                 info = "noirq driver ";
669                 callback = pm_noirq_op(dev->driver->pm, state);
670         }
671
672 Run:
673         error = dpm_run_callback(callback, dev, state, info);
674
675 Skip:
676         dev->power.is_noirq_suspended = false;
677
678         if (skip_resume) {
679                 /*
680                  * The device is going to be left in suspend, but it might not
681                  * have been in runtime suspend before the system suspended, so
682                  * its runtime PM status needs to be updated to avoid confusing
683                  * the runtime PM framework when runtime PM is enabled for the
684                  * device again.
685                  */
686                 pm_runtime_set_suspended(dev);
687                 dev_pm_skip_next_resume_phases(dev);
688         }
689
690 Out:
691         complete_all(&dev->power.completion);
692         TRACE_RESUME(error);
693         return error;
694 }
695
696 static bool is_async(struct device *dev)
697 {
698         return dev->power.async_suspend && pm_async_enabled
699                 && !pm_trace_is_enabled();
700 }
701
702 static void async_resume_noirq(void *data, async_cookie_t cookie)
703 {
704         struct device *dev = (struct device *)data;
705         int error;
706
707         error = device_resume_noirq(dev, pm_transition, true);
708         if (error)
709                 pm_dev_err(dev, pm_transition, " async", error);
710
711         put_device(dev);
712 }
713
714 void dpm_noirq_resume_devices(pm_message_t state)
715 {
716         struct device *dev;
717         ktime_t starttime = ktime_get();
718
719         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
720         mutex_lock(&dpm_list_mtx);
721         pm_transition = state;
722
723         /*
724          * Advanced the async threads upfront,
725          * in case the starting of async threads is
726          * delayed by non-async resuming devices.
727          */
728         list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
729                 reinit_completion(&dev->power.completion);
730                 if (is_async(dev)) {
731                         get_device(dev);
732                         async_schedule(async_resume_noirq, dev);
733                 }
734         }
735
736         while (!list_empty(&dpm_noirq_list)) {
737                 dev = to_device(dpm_noirq_list.next);
738                 get_device(dev);
739                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
740                 mutex_unlock(&dpm_list_mtx);
741
742                 if (!is_async(dev)) {
743                         int error;
744
745                         error = device_resume_noirq(dev, state, false);
746                         if (error) {
747                                 suspend_stats.failed_resume_noirq++;
748                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749                                 dpm_save_failed_dev(dev_name(dev));
750                                 pm_dev_err(dev, state, " noirq", error);
751                         }
752                 }
753
754                 mutex_lock(&dpm_list_mtx);
755                 put_device(dev);
756         }
757         mutex_unlock(&dpm_list_mtx);
758         async_synchronize_full();
759         dpm_show_time(starttime, state, 0, "noirq");
760         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
761 }
762
763 void dpm_noirq_end(void)
764 {
765         resume_device_irqs();
766         device_wakeup_disarm_wake_irqs();
767         cpuidle_resume();
768 }
769
770 /**
771  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
772  * @state: PM transition of the system being carried out.
773  *
774  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
775  * allow device drivers' interrupt handlers to be called.
776  */
777 void dpm_resume_noirq(pm_message_t state)
778 {
779         dpm_noirq_resume_devices(state);
780         dpm_noirq_end();
781 }
782
783 static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
784                                                 pm_message_t state,
785                                                 const char **info_p)
786 {
787         pm_callback_t callback;
788         const char *info;
789
790         if (dev->pm_domain) {
791                 info = "early power domain ";
792                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
793         } else if (dev->type && dev->type->pm) {
794                 info = "early type ";
795                 callback = pm_late_early_op(dev->type->pm, state);
796         } else if (dev->class && dev->class->pm) {
797                 info = "early class ";
798                 callback = pm_late_early_op(dev->class->pm, state);
799         } else if (dev->bus && dev->bus->pm) {
800                 info = "early bus ";
801                 callback = pm_late_early_op(dev->bus->pm, state);
802         } else {
803                 return NULL;
804         }
805
806         if (info_p)
807                 *info_p = info;
808
809         return callback;
810 }
811
812 /**
813  * device_resume_early - Execute an "early resume" callback for given device.
814  * @dev: Device to handle.
815  * @state: PM transition of the system being carried out.
816  * @async: If true, the device is being resumed asynchronously.
817  *
818  * Runtime PM is disabled for @dev while this function is being executed.
819  */
820 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
821 {
822         pm_callback_t callback;
823         const char *info;
824         int error = 0;
825
826         TRACE_DEVICE(dev);
827         TRACE_RESUME(0);
828
829         if (dev->power.syscore || dev->power.direct_complete)
830                 goto Out;
831
832         if (!dev->power.is_late_suspended)
833                 goto Out;
834
835         dpm_wait_for_superior(dev, async);
836
837         callback = dpm_subsys_resume_early_cb(dev, state, &info);
838
839         if (!callback && dev->driver && dev->driver->pm) {
840                 info = "early driver ";
841                 callback = pm_late_early_op(dev->driver->pm, state);
842         }
843
844         error = dpm_run_callback(callback, dev, state, info);
845         dev->power.is_late_suspended = false;
846
847  Out:
848         TRACE_RESUME(error);
849
850         pm_runtime_enable(dev);
851         complete_all(&dev->power.completion);
852         return error;
853 }
854
855 static void async_resume_early(void *data, async_cookie_t cookie)
856 {
857         struct device *dev = (struct device *)data;
858         int error;
859
860         error = device_resume_early(dev, pm_transition, true);
861         if (error)
862                 pm_dev_err(dev, pm_transition, " async", error);
863
864         put_device(dev);
865 }
866
867 /**
868  * dpm_resume_early - Execute "early resume" callbacks for all devices.
869  * @state: PM transition of the system being carried out.
870  */
871 void dpm_resume_early(pm_message_t state)
872 {
873         struct device *dev;
874         ktime_t starttime = ktime_get();
875
876         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
877         mutex_lock(&dpm_list_mtx);
878         pm_transition = state;
879
880         /*
881          * Advanced the async threads upfront,
882          * in case the starting of async threads is
883          * delayed by non-async resuming devices.
884          */
885         list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
886                 reinit_completion(&dev->power.completion);
887                 if (is_async(dev)) {
888                         get_device(dev);
889                         async_schedule(async_resume_early, dev);
890                 }
891         }
892
893         while (!list_empty(&dpm_late_early_list)) {
894                 dev = to_device(dpm_late_early_list.next);
895                 get_device(dev);
896                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
897                 mutex_unlock(&dpm_list_mtx);
898
899                 if (!is_async(dev)) {
900                         int error;
901
902                         error = device_resume_early(dev, state, false);
903                         if (error) {
904                                 suspend_stats.failed_resume_early++;
905                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
906                                 dpm_save_failed_dev(dev_name(dev));
907                                 pm_dev_err(dev, state, " early", error);
908                         }
909                 }
910                 mutex_lock(&dpm_list_mtx);
911                 put_device(dev);
912         }
913         mutex_unlock(&dpm_list_mtx);
914         async_synchronize_full();
915         dpm_show_time(starttime, state, 0, "early");
916         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
917 }
918
919 /**
920  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
921  * @state: PM transition of the system being carried out.
922  */
923 void dpm_resume_start(pm_message_t state)
924 {
925         dpm_resume_noirq(state);
926         dpm_resume_early(state);
927 }
928 EXPORT_SYMBOL_GPL(dpm_resume_start);
929
930 /**
931  * device_resume - Execute "resume" callbacks for given device.
932  * @dev: Device to handle.
933  * @state: PM transition of the system being carried out.
934  * @async: If true, the device is being resumed asynchronously.
935  */
936 static int device_resume(struct device *dev, pm_message_t state, bool async)
937 {
938         pm_callback_t callback = NULL;
939         const char *info = NULL;
940         int error = 0;
941         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
942
943         TRACE_DEVICE(dev);
944         TRACE_RESUME(0);
945
946         if (dev->power.syscore)
947                 goto Complete;
948
949         if (dev->power.direct_complete) {
950                 /* Match the pm_runtime_disable() in __device_suspend(). */
951                 pm_runtime_enable(dev);
952                 goto Complete;
953         }
954
955         dpm_wait_for_superior(dev, async);
956         dpm_watchdog_set(&wd, dev);
957         device_lock(dev);
958
959         /*
960          * This is a fib.  But we'll allow new children to be added below
961          * a resumed device, even if the device hasn't been completed yet.
962          */
963         dev->power.is_prepared = false;
964
965         if (!dev->power.is_suspended)
966                 goto Unlock;
967
968         if (dev->pm_domain) {
969                 info = "power domain ";
970                 callback = pm_op(&dev->pm_domain->ops, state);
971                 goto Driver;
972         }
973
974         if (dev->type && dev->type->pm) {
975                 info = "type ";
976                 callback = pm_op(dev->type->pm, state);
977                 goto Driver;
978         }
979
980         if (dev->class && dev->class->pm) {
981                 info = "class ";
982                 callback = pm_op(dev->class->pm, state);
983                 goto Driver;
984         }
985
986         if (dev->bus) {
987                 if (dev->bus->pm) {
988                         info = "bus ";
989                         callback = pm_op(dev->bus->pm, state);
990                 } else if (dev->bus->resume) {
991                         info = "legacy bus ";
992                         callback = dev->bus->resume;
993                         goto End;
994                 }
995         }
996
997  Driver:
998         if (!callback && dev->driver && dev->driver->pm) {
999                 info = "driver ";
1000                 callback = pm_op(dev->driver->pm, state);
1001         }
1002
1003  End:
1004         error = dpm_run_callback(callback, dev, state, info);
1005         dev->power.is_suspended = false;
1006
1007  Unlock:
1008         device_unlock(dev);
1009         dpm_watchdog_clear(&wd);
1010
1011  Complete:
1012         complete_all(&dev->power.completion);
1013
1014         TRACE_RESUME(error);
1015
1016         return error;
1017 }
1018
1019 static void async_resume(void *data, async_cookie_t cookie)
1020 {
1021         struct device *dev = (struct device *)data;
1022         int error;
1023
1024         error = device_resume(dev, pm_transition, true);
1025         if (error)
1026                 pm_dev_err(dev, pm_transition, " async", error);
1027         put_device(dev);
1028 }
1029
1030 /**
1031  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032  * @state: PM transition of the system being carried out.
1033  *
1034  * Execute the appropriate "resume" callback for all devices whose status
1035  * indicates that they are suspended.
1036  */
1037 void dpm_resume(pm_message_t state)
1038 {
1039         struct device *dev;
1040         ktime_t starttime = ktime_get();
1041
1042         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043         might_sleep();
1044
1045         mutex_lock(&dpm_list_mtx);
1046         pm_transition = state;
1047         async_error = 0;
1048
1049         list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050                 reinit_completion(&dev->power.completion);
1051                 if (is_async(dev)) {
1052                         get_device(dev);
1053                         async_schedule(async_resume, dev);
1054                 }
1055         }
1056
1057         while (!list_empty(&dpm_suspended_list)) {
1058                 dev = to_device(dpm_suspended_list.next);
1059                 get_device(dev);
1060                 if (!is_async(dev)) {
1061                         int error;
1062
1063                         mutex_unlock(&dpm_list_mtx);
1064
1065                         error = device_resume(dev, state, false);
1066                         if (error) {
1067                                 suspend_stats.failed_resume++;
1068                                 dpm_save_failed_step(SUSPEND_RESUME);
1069                                 dpm_save_failed_dev(dev_name(dev));
1070                                 pm_dev_err(dev, state, "", error);
1071                         }
1072
1073                         mutex_lock(&dpm_list_mtx);
1074                 }
1075                 if (!list_empty(&dev->power.entry))
1076                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077                 put_device(dev);
1078         }
1079         mutex_unlock(&dpm_list_mtx);
1080         async_synchronize_full();
1081         dpm_show_time(starttime, state, 0, NULL);
1082
1083         cpufreq_resume();
1084         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085 }
1086
1087 /**
1088  * device_complete - Complete a PM transition for given device.
1089  * @dev: Device to handle.
1090  * @state: PM transition of the system being carried out.
1091  */
1092 static void device_complete(struct device *dev, pm_message_t state)
1093 {
1094         void (*callback)(struct device *) = NULL;
1095         const char *info = NULL;
1096
1097         if (dev->power.syscore)
1098                 return;
1099
1100         device_lock(dev);
1101
1102         if (dev->pm_domain) {
1103                 info = "completing power domain ";
1104                 callback = dev->pm_domain->ops.complete;
1105         } else if (dev->type && dev->type->pm) {
1106                 info = "completing type ";
1107                 callback = dev->type->pm->complete;
1108         } else if (dev->class && dev->class->pm) {
1109                 info = "completing class ";
1110                 callback = dev->class->pm->complete;
1111         } else if (dev->bus && dev->bus->pm) {
1112                 info = "completing bus ";
1113                 callback = dev->bus->pm->complete;
1114         }
1115
1116         if (!callback && dev->driver && dev->driver->pm) {
1117                 info = "completing driver ";
1118                 callback = dev->driver->pm->complete;
1119         }
1120
1121         if (callback) {
1122                 pm_dev_dbg(dev, state, info);
1123                 callback(dev);
1124         }
1125
1126         device_unlock(dev);
1127
1128         pm_runtime_put(dev);
1129 }
1130
1131 /**
1132  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133  * @state: PM transition of the system being carried out.
1134  *
1135  * Execute the ->complete() callbacks for all devices whose PM status is not
1136  * DPM_ON (this allows new devices to be registered).
1137  */
1138 void dpm_complete(pm_message_t state)
1139 {
1140         struct list_head list;
1141
1142         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143         might_sleep();
1144
1145         INIT_LIST_HEAD(&list);
1146         mutex_lock(&dpm_list_mtx);
1147         while (!list_empty(&dpm_prepared_list)) {
1148                 struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150                 get_device(dev);
1151                 dev->power.is_prepared = false;
1152                 list_move(&dev->power.entry, &list);
1153                 mutex_unlock(&dpm_list_mtx);
1154
1155                 trace_device_pm_callback_start(dev, "", state.event);
1156                 device_complete(dev, state);
1157                 trace_device_pm_callback_end(dev, 0);
1158
1159                 mutex_lock(&dpm_list_mtx);
1160                 put_device(dev);
1161         }
1162         list_splice(&list, &dpm_list);
1163         mutex_unlock(&dpm_list_mtx);
1164
1165         /* Allow device probing and trigger re-probing of deferred devices */
1166         device_unblock_probing();
1167         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168 }
1169
1170 /**
1171  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172  * @state: PM transition of the system being carried out.
1173  *
1174  * Execute "resume" callbacks for all devices and complete the PM transition of
1175  * the system.
1176  */
1177 void dpm_resume_end(pm_message_t state)
1178 {
1179         dpm_resume(state);
1180         dpm_complete(state);
1181 }
1182 EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185 /*------------------------- Suspend routines -------------------------*/
1186
1187 /**
1188  * resume_event - Return a "resume" message for given "suspend" sleep state.
1189  * @sleep_state: PM message representing a sleep state.
1190  *
1191  * Return a PM message representing the resume event corresponding to given
1192  * sleep state.
1193  */
1194 static pm_message_t resume_event(pm_message_t sleep_state)
1195 {
1196         switch (sleep_state.event) {
1197         case PM_EVENT_SUSPEND:
1198                 return PMSG_RESUME;
1199         case PM_EVENT_FREEZE:
1200         case PM_EVENT_QUIESCE:
1201                 return PMSG_RECOVER;
1202         case PM_EVENT_HIBERNATE:
1203                 return PMSG_RESTORE;
1204         }
1205         return PMSG_ON;
1206 }
1207
1208 static void dpm_superior_set_must_resume(struct device *dev)
1209 {
1210         struct device_link *link;
1211         int idx;
1212
1213         if (dev->parent)
1214                 dev->parent->power.must_resume = true;
1215
1216         idx = device_links_read_lock();
1217
1218         list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219                 link->supplier->power.must_resume = true;
1220
1221         device_links_read_unlock(idx);
1222 }
1223
1224 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225                                                  pm_message_t state,
1226                                                  const char **info_p)
1227 {
1228         pm_callback_t callback;
1229         const char *info;
1230
1231         if (dev->pm_domain) {
1232                 info = "noirq power domain ";
1233                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234         } else if (dev->type && dev->type->pm) {
1235                 info = "noirq type ";
1236                 callback = pm_noirq_op(dev->type->pm, state);
1237         } else if (dev->class && dev->class->pm) {
1238                 info = "noirq class ";
1239                 callback = pm_noirq_op(dev->class->pm, state);
1240         } else if (dev->bus && dev->bus->pm) {
1241                 info = "noirq bus ";
1242                 callback = pm_noirq_op(dev->bus->pm, state);
1243         } else {
1244                 return NULL;
1245         }
1246
1247         if (info_p)
1248                 *info_p = info;
1249
1250         return callback;
1251 }
1252
1253 static bool device_must_resume(struct device *dev, pm_message_t state,
1254                                bool no_subsys_suspend_noirq)
1255 {
1256         pm_message_t resume_msg = resume_event(state);
1257
1258         /*
1259          * If all of the device driver's "noirq", "late" and "early" callbacks
1260          * are invoked directly by the core, the decision to allow the device to
1261          * stay in suspend can be based on its current runtime PM status and its
1262          * wakeup settings.
1263          */
1264         if (no_subsys_suspend_noirq &&
1265             !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266             !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267             !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268                 return !pm_runtime_status_suspended(dev) &&
1269                         (resume_msg.event != PM_EVENT_RESUME ||
1270                          (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272         /*
1273          * The only safe strategy here is to require that if the device may not
1274          * be left in suspend, resume callbacks must be invoked for it.
1275          */
1276         return !dev->power.may_skip_resume;
1277 }
1278
1279 /**
1280  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281  * @dev: Device to handle.
1282  * @state: PM transition of the system being carried out.
1283  * @async: If true, the device is being suspended asynchronously.
1284  *
1285  * The driver of @dev will not receive interrupts while this function is being
1286  * executed.
1287  */
1288 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289 {
1290         pm_callback_t callback;
1291         const char *info;
1292         bool no_subsys_cb = false;
1293         int error = 0;
1294
1295         TRACE_DEVICE(dev);
1296         TRACE_SUSPEND(0);
1297
1298         dpm_wait_for_subordinate(dev, async);
1299
1300         if (async_error)
1301                 goto Complete;
1302
1303         if (pm_wakeup_pending()) {
1304                 async_error = -EBUSY;
1305                 goto Complete;
1306         }
1307
1308         if (dev->power.syscore || dev->power.direct_complete)
1309                 goto Complete;
1310
1311         callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312         if (callback)
1313                 goto Run;
1314
1315         no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317         if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318                 goto Skip;
1319
1320         if (dev->driver && dev->driver->pm) {
1321                 info = "noirq driver ";
1322                 callback = pm_noirq_op(dev->driver->pm, state);
1323         }
1324
1325 Run:
1326         error = dpm_run_callback(callback, dev, state, info);
1327         if (error) {
1328                 async_error = error;
1329                 goto Complete;
1330         }
1331
1332 Skip:
1333         dev->power.is_noirq_suspended = true;
1334
1335         if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336                 dev->power.must_resume = dev->power.must_resume ||
1337                                 atomic_read(&dev->power.usage_count) > 1 ||
1338                                 device_must_resume(dev, state, no_subsys_cb);
1339         } else {
1340                 dev->power.must_resume = true;
1341         }
1342
1343         if (dev->power.must_resume)
1344                 dpm_superior_set_must_resume(dev);
1345
1346 Complete:
1347         complete_all(&dev->power.completion);
1348         TRACE_SUSPEND(error);
1349         return error;
1350 }
1351
1352 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353 {
1354         struct device *dev = (struct device *)data;
1355         int error;
1356
1357         error = __device_suspend_noirq(dev, pm_transition, true);
1358         if (error) {
1359                 dpm_save_failed_dev(dev_name(dev));
1360                 pm_dev_err(dev, pm_transition, " async", error);
1361         }
1362
1363         put_device(dev);
1364 }
1365
1366 static int device_suspend_noirq(struct device *dev)
1367 {
1368         reinit_completion(&dev->power.completion);
1369
1370         if (is_async(dev)) {
1371                 get_device(dev);
1372                 async_schedule(async_suspend_noirq, dev);
1373                 return 0;
1374         }
1375         return __device_suspend_noirq(dev, pm_transition, false);
1376 }
1377
1378 void dpm_noirq_begin(void)
1379 {
1380         cpuidle_pause();
1381         device_wakeup_arm_wake_irqs();
1382         suspend_device_irqs();
1383 }
1384
1385 int dpm_noirq_suspend_devices(pm_message_t state)
1386 {
1387         ktime_t starttime = ktime_get();
1388         int error = 0;
1389
1390         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391         mutex_lock(&dpm_list_mtx);
1392         pm_transition = state;
1393         async_error = 0;
1394
1395         while (!list_empty(&dpm_late_early_list)) {
1396                 struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398                 get_device(dev);
1399                 mutex_unlock(&dpm_list_mtx);
1400
1401                 error = device_suspend_noirq(dev);
1402
1403                 mutex_lock(&dpm_list_mtx);
1404                 if (error) {
1405                         pm_dev_err(dev, state, " noirq", error);
1406                         dpm_save_failed_dev(dev_name(dev));
1407                         put_device(dev);
1408                         break;
1409                 }
1410                 if (!list_empty(&dev->power.entry))
1411                         list_move(&dev->power.entry, &dpm_noirq_list);
1412                 put_device(dev);
1413
1414                 if (async_error)
1415                         break;
1416         }
1417         mutex_unlock(&dpm_list_mtx);
1418         async_synchronize_full();
1419         if (!error)
1420                 error = async_error;
1421
1422         if (error) {
1423                 suspend_stats.failed_suspend_noirq++;
1424                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425         }
1426         dpm_show_time(starttime, state, error, "noirq");
1427         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428         return error;
1429 }
1430
1431 /**
1432  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433  * @state: PM transition of the system being carried out.
1434  *
1435  * Prevent device drivers' interrupt handlers from being called and invoke
1436  * "noirq" suspend callbacks for all non-sysdev devices.
1437  */
1438 int dpm_suspend_noirq(pm_message_t state)
1439 {
1440         int ret;
1441
1442         dpm_noirq_begin();
1443         ret = dpm_noirq_suspend_devices(state);
1444         if (ret)
1445                 dpm_resume_noirq(resume_event(state));
1446
1447         return ret;
1448 }
1449
1450 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451 {
1452         struct device *parent = dev->parent;
1453
1454         if (!parent)
1455                 return;
1456
1457         spin_lock_irq(&parent->power.lock);
1458
1459         if (dev->power.wakeup_path && !parent->power.ignore_children)
1460                 parent->power.wakeup_path = true;
1461
1462         spin_unlock_irq(&parent->power.lock);
1463 }
1464
1465 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466                                                 pm_message_t state,
1467                                                 const char **info_p)
1468 {
1469         pm_callback_t callback;
1470         const char *info;
1471
1472         if (dev->pm_domain) {
1473                 info = "late power domain ";
1474                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475         } else if (dev->type && dev->type->pm) {
1476                 info = "late type ";
1477                 callback = pm_late_early_op(dev->type->pm, state);
1478         } else if (dev->class && dev->class->pm) {
1479                 info = "late class ";
1480                 callback = pm_late_early_op(dev->class->pm, state);
1481         } else if (dev->bus && dev->bus->pm) {
1482                 info = "late bus ";
1483                 callback = pm_late_early_op(dev->bus->pm, state);
1484         } else {
1485                 return NULL;
1486         }
1487
1488         if (info_p)
1489                 *info_p = info;
1490
1491         return callback;
1492 }
1493
1494 /**
1495  * __device_suspend_late - Execute a "late suspend" callback for given device.
1496  * @dev: Device to handle.
1497  * @state: PM transition of the system being carried out.
1498  * @async: If true, the device is being suspended asynchronously.
1499  *
1500  * Runtime PM is disabled for @dev while this function is being executed.
1501  */
1502 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503 {
1504         pm_callback_t callback;
1505         const char *info;
1506         int error = 0;
1507
1508         TRACE_DEVICE(dev);
1509         TRACE_SUSPEND(0);
1510
1511         __pm_runtime_disable(dev, false);
1512
1513         dpm_wait_for_subordinate(dev, async);
1514
1515         if (async_error)
1516                 goto Complete;
1517
1518         if (pm_wakeup_pending()) {
1519                 async_error = -EBUSY;
1520                 goto Complete;
1521         }
1522
1523         if (dev->power.syscore || dev->power.direct_complete)
1524                 goto Complete;
1525
1526         callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527         if (callback)
1528                 goto Run;
1529
1530         if (dev_pm_smart_suspend_and_suspended(dev) &&
1531             !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532                 goto Skip;
1533
1534         if (dev->driver && dev->driver->pm) {
1535                 info = "late driver ";
1536                 callback = pm_late_early_op(dev->driver->pm, state);
1537         }
1538
1539 Run:
1540         error = dpm_run_callback(callback, dev, state, info);
1541         if (error) {
1542                 async_error = error;
1543                 goto Complete;
1544         }
1545         dpm_propagate_wakeup_to_parent(dev);
1546
1547 Skip:
1548         dev->power.is_late_suspended = true;
1549
1550 Complete:
1551         TRACE_SUSPEND(error);
1552         complete_all(&dev->power.completion);
1553         return error;
1554 }
1555
1556 static void async_suspend_late(void *data, async_cookie_t cookie)
1557 {
1558         struct device *dev = (struct device *)data;
1559         int error;
1560
1561         error = __device_suspend_late(dev, pm_transition, true);
1562         if (error) {
1563                 dpm_save_failed_dev(dev_name(dev));
1564                 pm_dev_err(dev, pm_transition, " async", error);
1565         }
1566         put_device(dev);
1567 }
1568
1569 static int device_suspend_late(struct device *dev)
1570 {
1571         reinit_completion(&dev->power.completion);
1572
1573         if (is_async(dev)) {
1574                 get_device(dev);
1575                 async_schedule(async_suspend_late, dev);
1576                 return 0;
1577         }
1578
1579         return __device_suspend_late(dev, pm_transition, false);
1580 }
1581
1582 /**
1583  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584  * @state: PM transition of the system being carried out.
1585  */
1586 int dpm_suspend_late(pm_message_t state)
1587 {
1588         ktime_t starttime = ktime_get();
1589         int error = 0;
1590
1591         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592         mutex_lock(&dpm_list_mtx);
1593         pm_transition = state;
1594         async_error = 0;
1595
1596         while (!list_empty(&dpm_suspended_list)) {
1597                 struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599                 get_device(dev);
1600                 mutex_unlock(&dpm_list_mtx);
1601
1602                 error = device_suspend_late(dev);
1603
1604                 mutex_lock(&dpm_list_mtx);
1605                 if (!list_empty(&dev->power.entry))
1606                         list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608                 if (error) {
1609                         pm_dev_err(dev, state, " late", error);
1610                         dpm_save_failed_dev(dev_name(dev));
1611                         put_device(dev);
1612                         break;
1613                 }
1614                 put_device(dev);
1615
1616                 if (async_error)
1617                         break;
1618         }
1619         mutex_unlock(&dpm_list_mtx);
1620         async_synchronize_full();
1621         if (!error)
1622                 error = async_error;
1623         if (error) {
1624                 suspend_stats.failed_suspend_late++;
1625                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626                 dpm_resume_early(resume_event(state));
1627         }
1628         dpm_show_time(starttime, state, error, "late");
1629         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630         return error;
1631 }
1632
1633 /**
1634  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635  * @state: PM transition of the system being carried out.
1636  */
1637 int dpm_suspend_end(pm_message_t state)
1638 {
1639         int error = dpm_suspend_late(state);
1640         if (error)
1641                 return error;
1642
1643         error = dpm_suspend_noirq(state);
1644         if (error) {
1645                 dpm_resume_early(resume_event(state));
1646                 return error;
1647         }
1648
1649         return 0;
1650 }
1651 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653 /**
1654  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655  * @dev: Device to suspend.
1656  * @state: PM transition of the system being carried out.
1657  * @cb: Suspend callback to execute.
1658  * @info: string description of caller.
1659  */
1660 static int legacy_suspend(struct device *dev, pm_message_t state,
1661                           int (*cb)(struct device *dev, pm_message_t state),
1662                           const char *info)
1663 {
1664         int error;
1665         ktime_t calltime;
1666
1667         calltime = initcall_debug_start(dev);
1668
1669         trace_device_pm_callback_start(dev, info, state.event);
1670         error = cb(dev, state);
1671         trace_device_pm_callback_end(dev, error);
1672         suspend_report_result(cb, error);
1673
1674         initcall_debug_report(dev, calltime, error, state, info);
1675
1676         return error;
1677 }
1678
1679 static void dpm_clear_superiors_direct_complete(struct device *dev)
1680 {
1681         struct device_link *link;
1682         int idx;
1683
1684         if (dev->parent) {
1685                 spin_lock_irq(&dev->parent->power.lock);
1686                 dev->parent->power.direct_complete = false;
1687                 spin_unlock_irq(&dev->parent->power.lock);
1688         }
1689
1690         idx = device_links_read_lock();
1691
1692         list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693                 spin_lock_irq(&link->supplier->power.lock);
1694                 link->supplier->power.direct_complete = false;
1695                 spin_unlock_irq(&link->supplier->power.lock);
1696         }
1697
1698         device_links_read_unlock(idx);
1699 }
1700
1701 /**
1702  * __device_suspend - Execute "suspend" callbacks for given device.
1703  * @dev: Device to handle.
1704  * @state: PM transition of the system being carried out.
1705  * @async: If true, the device is being suspended asynchronously.
1706  */
1707 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708 {
1709         pm_callback_t callback = NULL;
1710         const char *info = NULL;
1711         int error = 0;
1712         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714         TRACE_DEVICE(dev);
1715         TRACE_SUSPEND(0);
1716
1717         dpm_wait_for_subordinate(dev, async);
1718
1719         if (async_error)
1720                 goto Complete;
1721
1722         /*
1723          * If a device configured to wake up the system from sleep states
1724          * has been suspended at run time and there's a resume request pending
1725          * for it, this is equivalent to the device signaling wakeup, so the
1726          * system suspend operation should be aborted.
1727          */
1728         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729                 pm_wakeup_event(dev, 0);
1730
1731         if (pm_wakeup_pending()) {
1732                 async_error = -EBUSY;
1733                 goto Complete;
1734         }
1735
1736         if (dev->power.syscore)
1737                 goto Complete;
1738
1739         if (dev->power.direct_complete) {
1740                 if (pm_runtime_status_suspended(dev)) {
1741                         pm_runtime_disable(dev);
1742                         if (pm_runtime_status_suspended(dev))
1743                                 goto Complete;
1744
1745                         pm_runtime_enable(dev);
1746                 }
1747                 dev->power.direct_complete = false;
1748         }
1749
1750         dev->power.may_skip_resume = false;
1751         dev->power.must_resume = false;
1752
1753         dpm_watchdog_set(&wd, dev);
1754         device_lock(dev);
1755
1756         if (dev->pm_domain) {
1757                 info = "power domain ";
1758                 callback = pm_op(&dev->pm_domain->ops, state);
1759                 goto Run;
1760         }
1761
1762         if (dev->type && dev->type->pm) {
1763                 info = "type ";
1764                 callback = pm_op(dev->type->pm, state);
1765                 goto Run;
1766         }
1767
1768         if (dev->class && dev->class->pm) {
1769                 info = "class ";
1770                 callback = pm_op(dev->class->pm, state);
1771                 goto Run;
1772         }
1773
1774         if (dev->bus) {
1775                 if (dev->bus->pm) {
1776                         info = "bus ";
1777                         callback = pm_op(dev->bus->pm, state);
1778                 } else if (dev->bus->suspend) {
1779                         pm_dev_dbg(dev, state, "legacy bus ");
1780                         error = legacy_suspend(dev, state, dev->bus->suspend,
1781                                                 "legacy bus ");
1782                         goto End;
1783                 }
1784         }
1785
1786  Run:
1787         if (!callback && dev->driver && dev->driver->pm) {
1788                 info = "driver ";
1789                 callback = pm_op(dev->driver->pm, state);
1790         }
1791
1792         error = dpm_run_callback(callback, dev, state, info);
1793
1794  End:
1795         if (!error) {
1796                 dev->power.is_suspended = true;
1797                 if (device_may_wakeup(dev))
1798                         dev->power.wakeup_path = true;
1799
1800                 dpm_propagate_wakeup_to_parent(dev);
1801                 dpm_clear_superiors_direct_complete(dev);
1802         }
1803
1804         device_unlock(dev);
1805         dpm_watchdog_clear(&wd);
1806
1807  Complete:
1808         if (error)
1809                 async_error = error;
1810
1811         complete_all(&dev->power.completion);
1812         TRACE_SUSPEND(error);
1813         return error;
1814 }
1815
1816 static void async_suspend(void *data, async_cookie_t cookie)
1817 {
1818         struct device *dev = (struct device *)data;
1819         int error;
1820
1821         error = __device_suspend(dev, pm_transition, true);
1822         if (error) {
1823                 dpm_save_failed_dev(dev_name(dev));
1824                 pm_dev_err(dev, pm_transition, " async", error);
1825         }
1826
1827         put_device(dev);
1828 }
1829
1830 static int device_suspend(struct device *dev)
1831 {
1832         reinit_completion(&dev->power.completion);
1833
1834         if (is_async(dev)) {
1835                 get_device(dev);
1836                 async_schedule(async_suspend, dev);
1837                 return 0;
1838         }
1839
1840         return __device_suspend(dev, pm_transition, false);
1841 }
1842
1843 /**
1844  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845  * @state: PM transition of the system being carried out.
1846  */
1847 int dpm_suspend(pm_message_t state)
1848 {
1849         ktime_t starttime = ktime_get();
1850         int error = 0;
1851
1852         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853         might_sleep();
1854
1855         cpufreq_suspend();
1856
1857         mutex_lock(&dpm_list_mtx);
1858         pm_transition = state;
1859         async_error = 0;
1860         while (!list_empty(&dpm_prepared_list)) {
1861                 struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863                 get_device(dev);
1864                 mutex_unlock(&dpm_list_mtx);
1865
1866                 error = device_suspend(dev);
1867
1868                 mutex_lock(&dpm_list_mtx);
1869                 if (error) {
1870                         pm_dev_err(dev, state, "", error);
1871                         dpm_save_failed_dev(dev_name(dev));
1872                         put_device(dev);
1873                         break;
1874                 }
1875                 if (!list_empty(&dev->power.entry))
1876                         list_move(&dev->power.entry, &dpm_suspended_list);
1877                 put_device(dev);
1878                 if (async_error)
1879                         break;
1880         }
1881         mutex_unlock(&dpm_list_mtx);
1882         async_synchronize_full();
1883         if (!error)
1884                 error = async_error;
1885         if (error) {
1886                 suspend_stats.failed_suspend++;
1887                 dpm_save_failed_step(SUSPEND_SUSPEND);
1888         }
1889         dpm_show_time(starttime, state, error, NULL);
1890         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891         return error;
1892 }
1893
1894 /**
1895  * device_prepare - Prepare a device for system power transition.
1896  * @dev: Device to handle.
1897  * @state: PM transition of the system being carried out.
1898  *
1899  * Execute the ->prepare() callback(s) for given device.  No new children of the
1900  * device may be registered after this function has returned.
1901  */
1902 static int device_prepare(struct device *dev, pm_message_t state)
1903 {
1904         int (*callback)(struct device *) = NULL;
1905         int ret = 0;
1906
1907         if (dev->power.syscore)
1908                 return 0;
1909
1910         WARN_ON(!pm_runtime_enabled(dev) &&
1911                 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912                                               DPM_FLAG_LEAVE_SUSPENDED));
1913
1914         /*
1915          * If a device's parent goes into runtime suspend at the wrong time,
1916          * it won't be possible to resume the device.  To prevent this we
1917          * block runtime suspend here, during the prepare phase, and allow
1918          * it again during the complete phase.
1919          */
1920         pm_runtime_get_noresume(dev);
1921
1922         device_lock(dev);
1923
1924         dev->power.wakeup_path = false;
1925
1926         if (dev->power.no_pm_callbacks) {
1927                 ret = 1;        /* Let device go direct_complete */
1928                 goto unlock;
1929         }
1930
1931         if (dev->pm_domain)
1932                 callback = dev->pm_domain->ops.prepare;
1933         else if (dev->type && dev->type->pm)
1934                 callback = dev->type->pm->prepare;
1935         else if (dev->class && dev->class->pm)
1936                 callback = dev->class->pm->prepare;
1937         else if (dev->bus && dev->bus->pm)
1938                 callback = dev->bus->pm->prepare;
1939
1940         if (!callback && dev->driver && dev->driver->pm)
1941                 callback = dev->driver->pm->prepare;
1942
1943         if (callback)
1944                 ret = callback(dev);
1945
1946 unlock:
1947         device_unlock(dev);
1948
1949         if (ret < 0) {
1950                 suspend_report_result(callback, ret);
1951                 pm_runtime_put(dev);
1952                 return ret;
1953         }
1954         /*
1955          * A positive return value from ->prepare() means "this device appears
1956          * to be runtime-suspended and its state is fine, so if it really is
1957          * runtime-suspended, you can leave it in that state provided that you
1958          * will do the same thing with all of its descendants".  This only
1959          * applies to suspend transitions, however.
1960          */
1961         spin_lock_irq(&dev->power.lock);
1962         dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1963                 pm_runtime_suspended(dev) && ret > 0 &&
1964                 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1965         spin_unlock_irq(&dev->power.lock);
1966         return 0;
1967 }
1968
1969 /**
1970  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1971  * @state: PM transition of the system being carried out.
1972  *
1973  * Execute the ->prepare() callback(s) for all devices.
1974  */
1975 int dpm_prepare(pm_message_t state)
1976 {
1977         int error = 0;
1978
1979         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1980         might_sleep();
1981
1982         /*
1983          * Give a chance for the known devices to complete their probes, before
1984          * disable probing of devices. This sync point is important at least
1985          * at boot time + hibernation restore.
1986          */
1987         wait_for_device_probe();
1988         /*
1989          * It is unsafe if probing of devices will happen during suspend or
1990          * hibernation and system behavior will be unpredictable in this case.
1991          * So, let's prohibit device's probing here and defer their probes
1992          * instead. The normal behavior will be restored in dpm_complete().
1993          */
1994         device_block_probing();
1995
1996         mutex_lock(&dpm_list_mtx);
1997         while (!list_empty(&dpm_list)) {
1998                 struct device *dev = to_device(dpm_list.next);
1999
2000                 get_device(dev);
2001                 mutex_unlock(&dpm_list_mtx);
2002
2003                 trace_device_pm_callback_start(dev, "", state.event);
2004                 error = device_prepare(dev, state);
2005                 trace_device_pm_callback_end(dev, error);
2006
2007                 mutex_lock(&dpm_list_mtx);
2008                 if (error) {
2009                         if (error == -EAGAIN) {
2010                                 put_device(dev);
2011                                 error = 0;
2012                                 continue;
2013                         }
2014                         printk(KERN_INFO "PM: Device %s not prepared "
2015                                 "for power transition: code %d\n",
2016                                 dev_name(dev), error);
2017                         put_device(dev);
2018                         break;
2019                 }
2020                 dev->power.is_prepared = true;
2021                 if (!list_empty(&dev->power.entry))
2022                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
2023                 put_device(dev);
2024         }
2025         mutex_unlock(&dpm_list_mtx);
2026         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2027         return error;
2028 }
2029
2030 /**
2031  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2032  * @state: PM transition of the system being carried out.
2033  *
2034  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2035  * callbacks for them.
2036  */
2037 int dpm_suspend_start(pm_message_t state)
2038 {
2039         int error;
2040
2041         error = dpm_prepare(state);
2042         if (error) {
2043                 suspend_stats.failed_prepare++;
2044                 dpm_save_failed_step(SUSPEND_PREPARE);
2045         } else
2046                 error = dpm_suspend(state);
2047         return error;
2048 }
2049 EXPORT_SYMBOL_GPL(dpm_suspend_start);
2050
2051 void __suspend_report_result(const char *function, void *fn, int ret)
2052 {
2053         if (ret)
2054                 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2055 }
2056 EXPORT_SYMBOL_GPL(__suspend_report_result);
2057
2058 /**
2059  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2060  * @dev: Device to wait for.
2061  * @subordinate: Device that needs to wait for @dev.
2062  */
2063 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2064 {
2065         dpm_wait(dev, subordinate->power.async_suspend);
2066         return async_error;
2067 }
2068 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2069
2070 /**
2071  * dpm_for_each_dev - device iterator.
2072  * @data: data for the callback.
2073  * @fn: function to be called for each device.
2074  *
2075  * Iterate over devices in dpm_list, and call @fn for each device,
2076  * passing it @data.
2077  */
2078 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2079 {
2080         struct device *dev;
2081
2082         if (!fn)
2083                 return;
2084
2085         device_pm_lock();
2086         list_for_each_entry(dev, &dpm_list, power.entry)
2087                 fn(dev, data);
2088         device_pm_unlock();
2089 }
2090 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2091
2092 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2093 {
2094         if (!ops)
2095                 return true;
2096
2097         return !ops->prepare &&
2098                !ops->suspend &&
2099                !ops->suspend_late &&
2100                !ops->suspend_noirq &&
2101                !ops->resume_noirq &&
2102                !ops->resume_early &&
2103                !ops->resume &&
2104                !ops->complete;
2105 }
2106
2107 void device_pm_check_callbacks(struct device *dev)
2108 {
2109         spin_lock_irq(&dev->power.lock);
2110         dev->power.no_pm_callbacks =
2111                 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2112                  !dev->bus->suspend && !dev->bus->resume)) &&
2113                 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2114                 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2115                 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2116                 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2117                  !dev->driver->suspend && !dev->driver->resume));
2118         spin_unlock_irq(&dev->power.lock);
2119 }
2120
2121 bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2122 {
2123         return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2124                 pm_runtime_status_suspended(dev);
2125 }