Merge tag 'platform-drivers-x86-v4.16-3' of git://github.com/dvhart/linux-pdx86
[sfrench/cifs-2.6.git] / drivers / atm / he.c
1 /*
2
3   he.c
4
5   ForeRunnerHE ATM Adapter driver for ATM on Linux
6   Copyright (C) 1999-2001  Naval Research Laboratory
7
8   This library is free software; you can redistribute it and/or
9   modify it under the terms of the GNU Lesser General Public
10   License as published by the Free Software Foundation; either
11   version 2.1 of the License, or (at your option) any later version.
12
13   This library is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16   Lesser General Public License for more details.
17
18   You should have received a copy of the GNU Lesser General Public
19   License along with this library; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21
22 */
23
24 /*
25
26   he.c
27
28   ForeRunnerHE ATM Adapter driver for ATM on Linux
29   Copyright (C) 1999-2001  Naval Research Laboratory
30
31   Permission to use, copy, modify and distribute this software and its
32   documentation is hereby granted, provided that both the copyright
33   notice and this permission notice appear in all copies of the software,
34   derivative works or modified versions, and any portions thereof, and
35   that both notices appear in supporting documentation.
36
37   NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38   DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39   RESULTING FROM THE USE OF THIS SOFTWARE.
40
41   This driver was written using the "Programmer's Reference Manual for
42   ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43
44   AUTHORS:
45         chas williams <chas@cmf.nrl.navy.mil>
46         eric kinzie <ekinzie@cmf.nrl.navy.mil>
47
48   NOTES:
49         4096 supported 'connections'
50         group 0 is used for all traffic
51         interrupt queue 0 is used for all interrupts
52         aal0 support (based on work from ulrich.u.muller@nokia.com)
53
54  */
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <linux/uaccess.h>
75
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW                  /* still confused about this */
82 /* #undef HE_DEBUG */
83
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87
88 #define hprintk(fmt,args...)    printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...)    printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...)    do { } while (0)
94 #endif /* HE_DEBUG */
95
96 /* declarations */
97
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111
112 /* globals */
113
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
121
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124         CS_HIGH | CLK_HIGH,
125         CS_LOW | CLK_LOW,
126         CLK_HIGH,               /* 0 */
127         CLK_LOW,
128         CLK_HIGH,               /* 0 */
129         CLK_LOW,
130         CLK_HIGH,               /* 0 */
131         CLK_LOW,
132         CLK_HIGH,               /* 0 */
133         CLK_LOW,
134         CLK_HIGH,               /* 0 */
135         CLK_LOW,
136         CLK_HIGH,               /* 0 */
137         CLK_LOW | SI_HIGH,
138         CLK_HIGH | SI_HIGH,     /* 1 */
139         CLK_LOW | SI_HIGH,
140         CLK_HIGH | SI_HIGH      /* 1 */
141 };     
142  
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145         CLK_LOW,
146         CLK_HIGH,
147         CLK_LOW,
148         CLK_HIGH,
149         CLK_LOW,
150         CLK_HIGH,
151         CLK_LOW,
152         CLK_HIGH,
153         CLK_LOW,
154         CLK_HIGH,
155         CLK_LOW,
156         CLK_HIGH,
157         CLK_LOW,
158         CLK_HIGH,
159         CLK_LOW,
160         CLK_HIGH,
161         CLK_LOW
162 };     
163
164 static const struct atmdev_ops he_ops =
165 {
166         .open =         he_open,
167         .close =        he_close,       
168         .ioctl =        he_ioctl,       
169         .send =         he_send,
170         .phy_put =      he_phy_put,
171         .phy_get =      he_phy_get,
172         .proc_read =    he_proc_read,
173         .owner =        THIS_MODULE
174 };
175
176 #define he_writel(dev, val, reg)        do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg)              readl((dev)->membase + (reg))
178
179 /* section 2.12 connection memory access */
180
181 static __inline__ void
182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183                                                                 unsigned flags)
184 {
185         he_writel(he_dev, val, CON_DAT);
186         (void) he_readl(he_dev, CON_DAT);               /* flush posted writes */
187         he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188         while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190
191 #define he_writel_rcm(dev, val, reg)                            \
192                         he_writel_internal(dev, val, reg, CON_CTL_RCM)
193
194 #define he_writel_tcm(dev, val, reg)                            \
195                         he_writel_internal(dev, val, reg, CON_CTL_TCM)
196
197 #define he_writel_mbox(dev, val, reg)                           \
198                         he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199
200 static unsigned
201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203         he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204         while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205         return he_readl(he_dev, CON_DAT);
206 }
207
208 #define he_readl_rcm(dev, reg) \
209                         he_readl_internal(dev, reg, CON_CTL_RCM)
210
211 #define he_readl_tcm(dev, reg) \
212                         he_readl_internal(dev, reg, CON_CTL_TCM)
213
214 #define he_readl_mbox(dev, reg) \
215                         he_readl_internal(dev, reg, CON_CTL_MBOX)
216
217
218 /* figure 2.2 connection id */
219
220 #define he_mkcid(dev, vpi, vci)         (((vpi << (dev)->vcibits) | vci) & 0x1fff)
221
222 /* 2.5.1 per connection transmit state registers */
223
224 #define he_writel_tsr0(dev, val, cid) \
225                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227                 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228
229 #define he_writel_tsr1(dev, val, cid) \
230                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231
232 #define he_writel_tsr2(dev, val, cid) \
233                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234
235 #define he_writel_tsr3(dev, val, cid) \
236                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237
238 #define he_writel_tsr4(dev, val, cid) \
239                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240
241         /* from page 2-20
242          *
243          * NOTE While the transmit connection is active, bits 23 through 0
244          *      of this register must not be written by the host.  Byte
245          *      enables should be used during normal operation when writing
246          *      the most significant byte.
247          */
248
249 #define he_writel_tsr4_upper(dev, val, cid) \
250                 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251                                                         CON_CTL_TCM \
252                                                         | CON_BYTE_DISABLE_2 \
253                                                         | CON_BYTE_DISABLE_1 \
254                                                         | CON_BYTE_DISABLE_0)
255
256 #define he_readl_tsr4(dev, cid) \
257                 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258
259 #define he_writel_tsr5(dev, val, cid) \
260                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261
262 #define he_writel_tsr6(dev, val, cid) \
263                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264
265 #define he_writel_tsr7(dev, val, cid) \
266                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267
268
269 #define he_writel_tsr8(dev, val, cid) \
270                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271
272 #define he_writel_tsr9(dev, val, cid) \
273                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274
275 #define he_writel_tsr10(dev, val, cid) \
276                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277
278 #define he_writel_tsr11(dev, val, cid) \
279                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280
281
282 #define he_writel_tsr12(dev, val, cid) \
283                 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284
285 #define he_writel_tsr13(dev, val, cid) \
286                 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287
288
289 #define he_writel_tsr14(dev, val, cid) \
290                 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291
292 #define he_writel_tsr14_upper(dev, val, cid) \
293                 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294                                                         CON_CTL_TCM \
295                                                         | CON_BYTE_DISABLE_2 \
296                                                         | CON_BYTE_DISABLE_1 \
297                                                         | CON_BYTE_DISABLE_0)
298
299 /* 2.7.1 per connection receive state registers */
300
301 #define he_writel_rsr0(dev, val, cid) \
302                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304                 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305
306 #define he_writel_rsr1(dev, val, cid) \
307                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308
309 #define he_writel_rsr2(dev, val, cid) \
310                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311
312 #define he_writel_rsr3(dev, val, cid) \
313                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314
315 #define he_writel_rsr4(dev, val, cid) \
316                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317
318 #define he_writel_rsr5(dev, val, cid) \
319                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320
321 #define he_writel_rsr6(dev, val, cid) \
322                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323
324 #define he_writel_rsr7(dev, val, cid) \
325                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326
327 static __inline__ struct atm_vcc*
328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330         struct hlist_head *head;
331         struct atm_vcc *vcc;
332         struct sock *s;
333         short vpi;
334         int vci;
335
336         vpi = cid >> he_dev->vcibits;
337         vci = cid & ((1 << he_dev->vcibits) - 1);
338         head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339
340         sk_for_each(s, head) {
341                 vcc = atm_sk(s);
342                 if (vcc->dev == he_dev->atm_dev &&
343                     vcc->vci == vci && vcc->vpi == vpi &&
344                     vcc->qos.rxtp.traffic_class != ATM_NONE) {
345                                 return vcc;
346                 }
347         }
348         return NULL;
349 }
350
351 static int he_init_one(struct pci_dev *pci_dev,
352                        const struct pci_device_id *pci_ent)
353 {
354         struct atm_dev *atm_dev = NULL;
355         struct he_dev *he_dev = NULL;
356         int err = 0;
357
358         printk(KERN_INFO "ATM he driver\n");
359
360         if (pci_enable_device(pci_dev))
361                 return -EIO;
362         if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363                 printk(KERN_WARNING "he: no suitable dma available\n");
364                 err = -EIO;
365                 goto init_one_failure;
366         }
367
368         atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369         if (!atm_dev) {
370                 err = -ENODEV;
371                 goto init_one_failure;
372         }
373         pci_set_drvdata(pci_dev, atm_dev);
374
375         he_dev = kzalloc(sizeof(struct he_dev),
376                                                         GFP_KERNEL);
377         if (!he_dev) {
378                 err = -ENOMEM;
379                 goto init_one_failure;
380         }
381         he_dev->pci_dev = pci_dev;
382         he_dev->atm_dev = atm_dev;
383         he_dev->atm_dev->dev_data = he_dev;
384         atm_dev->dev_data = he_dev;
385         he_dev->number = atm_dev->number;
386         tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387         spin_lock_init(&he_dev->global_lock);
388
389         if (he_start(atm_dev)) {
390                 he_stop(he_dev);
391                 err = -ENODEV;
392                 goto init_one_failure;
393         }
394         he_dev->next = NULL;
395         if (he_devs)
396                 he_dev->next = he_devs;
397         he_devs = he_dev;
398         return 0;
399
400 init_one_failure:
401         if (atm_dev)
402                 atm_dev_deregister(atm_dev);
403         kfree(he_dev);
404         pci_disable_device(pci_dev);
405         return err;
406 }
407
408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410         struct atm_dev *atm_dev;
411         struct he_dev *he_dev;
412
413         atm_dev = pci_get_drvdata(pci_dev);
414         he_dev = HE_DEV(atm_dev);
415
416         /* need to remove from he_devs */
417
418         he_stop(he_dev);
419         atm_dev_deregister(atm_dev);
420         kfree(he_dev);
421
422         pci_disable_device(pci_dev);
423 }
424
425
426 static unsigned
427 rate_to_atmf(unsigned rate)             /* cps to atm forum format */
428 {
429 #define NONZERO (1 << 14)
430
431         unsigned exp = 0;
432
433         if (rate == 0)
434                 return 0;
435
436         rate <<= 9;
437         while (rate > 0x3ff) {
438                 ++exp;
439                 rate >>= 1;
440         }
441
442         return (NONZERO | (exp << 9) | (rate & 0x1ff));
443 }
444
445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
446 {
447         unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448         unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449         unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450         unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
451         
452         lbufd_index = 0;
453         lbm_offset = he_readl(he_dev, RCMLBM_BA);
454
455         he_writel(he_dev, lbufd_index, RLBF0_H);
456
457         for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458                 lbufd_index += 2;
459                 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
460
461                 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462                 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
463
464                 if (++lbuf_count == lbufs_per_row) {
465                         lbuf_count = 0;
466                         row_offset += he_dev->bytes_per_row;
467                 }
468                 lbm_offset += 4;
469         }
470                 
471         he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472         he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
473 }
474
475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
476 {
477         unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478         unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479         unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480         unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
481         
482         lbufd_index = 1;
483         lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
484
485         he_writel(he_dev, lbufd_index, RLBF1_H);
486
487         for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488                 lbufd_index += 2;
489                 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
490
491                 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492                 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
493
494                 if (++lbuf_count == lbufs_per_row) {
495                         lbuf_count = 0;
496                         row_offset += he_dev->bytes_per_row;
497                 }
498                 lbm_offset += 4;
499         }
500                 
501         he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502         he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
503 }
504
505 static void he_init_tx_lbfp(struct he_dev *he_dev)
506 {
507         unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508         unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509         unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510         unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
511         
512         lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513         lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
514
515         he_writel(he_dev, lbufd_index, TLBF_H);
516
517         for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518                 lbufd_index += 1;
519                 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
520
521                 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522                 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
523
524                 if (++lbuf_count == lbufs_per_row) {
525                         lbuf_count = 0;
526                         row_offset += he_dev->bytes_per_row;
527                 }
528                 lbm_offset += 2;
529         }
530                 
531         he_writel(he_dev, lbufd_index - 1, TLBF_T);
532 }
533
534 static int he_init_tpdrq(struct he_dev *he_dev)
535 {
536         he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
537                                                  CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538                                                  &he_dev->tpdrq_phys, GFP_KERNEL);
539         if (he_dev->tpdrq_base == NULL) {
540                 hprintk("failed to alloc tpdrq\n");
541                 return -ENOMEM;
542         }
543
544         he_dev->tpdrq_tail = he_dev->tpdrq_base;
545         he_dev->tpdrq_head = he_dev->tpdrq_base;
546
547         he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
548         he_writel(he_dev, 0, TPDRQ_T);  
549         he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
550
551         return 0;
552 }
553
554 static void he_init_cs_block(struct he_dev *he_dev)
555 {
556         unsigned clock, rate, delta;
557         int reg;
558
559         /* 5.1.7 cs block initialization */
560
561         for (reg = 0; reg < 0x20; ++reg)
562                 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
563
564         /* rate grid timer reload values */
565
566         clock = he_is622(he_dev) ? 66667000 : 50000000;
567         rate = he_dev->atm_dev->link_rate;
568         delta = rate / 16 / 2;
569
570         for (reg = 0; reg < 0x10; ++reg) {
571                 /* 2.4 internal transmit function
572                  *
573                  * we initialize the first row in the rate grid.
574                  * values are period (in clock cycles) of timer
575                  */
576                 unsigned period = clock / rate;
577
578                 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
579                 rate -= delta;
580         }
581
582         if (he_is622(he_dev)) {
583                 /* table 5.2 (4 cells per lbuf) */
584                 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
585                 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
586                 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
587                 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
588                 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
589
590                 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
591                 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
592                 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
593                 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
594                 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
595                 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
596                 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
597
598                 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
599
600                 /* table 5.8 */
601                 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
602                 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
603                 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
604                 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
605                 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
606                 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
607
608                 /* table 5.9 */
609                 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
610                 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
611         } else {
612                 /* table 5.1 (4 cells per lbuf) */
613                 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
614                 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
615                 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
616                 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
617                 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
618
619                 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
620                 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
621                 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
622                 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
623                 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
624                 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
625                 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
626
627                 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
628
629                 /* table 5.8 */
630                 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
631                 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
632                 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
633                 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
634                 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
635                 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
636
637                 /* table 5.9 */
638                 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
639                 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
640         }
641
642         he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
643
644         for (reg = 0; reg < 0x8; ++reg)
645                 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
646
647 }
648
649 static int he_init_cs_block_rcm(struct he_dev *he_dev)
650 {
651         unsigned (*rategrid)[16][16];
652         unsigned rate, delta;
653         int i, j, reg;
654
655         unsigned rate_atmf, exp, man;
656         unsigned long long rate_cps;
657         int mult, buf, buf_limit = 4;
658
659         rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
660         if (!rategrid)
661                 return -ENOMEM;
662
663         /* initialize rate grid group table */
664
665         for (reg = 0x0; reg < 0xff; ++reg)
666                 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
667
668         /* initialize rate controller groups */
669
670         for (reg = 0x100; reg < 0x1ff; ++reg)
671                 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
672         
673         /* initialize tNrm lookup table */
674
675         /* the manual makes reference to a routine in a sample driver
676            for proper configuration; fortunately, we only need this
677            in order to support abr connection */
678         
679         /* initialize rate to group table */
680
681         rate = he_dev->atm_dev->link_rate;
682         delta = rate / 32;
683
684         /*
685          * 2.4 transmit internal functions
686          * 
687          * we construct a copy of the rate grid used by the scheduler
688          * in order to construct the rate to group table below
689          */
690
691         for (j = 0; j < 16; j++) {
692                 (*rategrid)[0][j] = rate;
693                 rate -= delta;
694         }
695
696         for (i = 1; i < 16; i++)
697                 for (j = 0; j < 16; j++)
698                         if (i > 14)
699                                 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
700                         else
701                                 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
702
703         /*
704          * 2.4 transmit internal function
705          *
706          * this table maps the upper 5 bits of exponent and mantissa
707          * of the atm forum representation of the rate into an index
708          * on rate grid  
709          */
710
711         rate_atmf = 0;
712         while (rate_atmf < 0x400) {
713                 man = (rate_atmf & 0x1f) << 4;
714                 exp = rate_atmf >> 5;
715
716                 /* 
717                         instead of '/ 512', use '>> 9' to prevent a call
718                         to divdu3 on x86 platforms
719                 */
720                 rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9;
721
722                 if (rate_cps < 10)
723                         rate_cps = 10;  /* 2.2.1 minimum payload rate is 10 cps */
724
725                 for (i = 255; i > 0; i--)
726                         if ((*rategrid)[i/16][i%16] >= rate_cps)
727                                 break;   /* pick nearest rate instead? */
728
729                 /*
730                  * each table entry is 16 bits: (rate grid index (8 bits)
731                  * and a buffer limit (8 bits)
732                  * there are two table entries in each 32-bit register
733                  */
734
735 #ifdef notdef
736                 buf = rate_cps * he_dev->tx_numbuffs /
737                                 (he_dev->atm_dev->link_rate * 2);
738 #else
739                 /* this is pretty, but avoids _divdu3 and is mostly correct */
740                 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
741                 if (rate_cps > (272ULL * mult))
742                         buf = 4;
743                 else if (rate_cps > (204ULL * mult))
744                         buf = 3;
745                 else if (rate_cps > (136ULL * mult))
746                         buf = 2;
747                 else if (rate_cps > (68ULL * mult))
748                         buf = 1;
749                 else
750                         buf = 0;
751 #endif
752                 if (buf > buf_limit)
753                         buf = buf_limit;
754                 reg = (reg << 16) | ((i << 8) | buf);
755
756 #define RTGTBL_OFFSET 0x400
757           
758                 if (rate_atmf & 0x1)
759                         he_writel_rcm(he_dev, reg,
760                                 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
761
762                 ++rate_atmf;
763         }
764
765         kfree(rategrid);
766         return 0;
767 }
768
769 static int he_init_group(struct he_dev *he_dev, int group)
770 {
771         struct he_buff *heb, *next;
772         dma_addr_t mapping;
773         int i;
774
775         he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
776         he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
777         he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
778         he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
779                   G0_RBPS_BS + (group * 32));
780
781         /* bitmap table */
782         he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE),
783                                            sizeof(*he_dev->rbpl_table),
784                                            GFP_KERNEL);
785         if (!he_dev->rbpl_table) {
786                 hprintk("unable to allocate rbpl bitmap table\n");
787                 return -ENOMEM;
788         }
789         bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
790
791         /* rbpl_virt 64-bit pointers */
792         he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
793                                           sizeof(*he_dev->rbpl_virt),
794                                           GFP_KERNEL);
795         if (!he_dev->rbpl_virt) {
796                 hprintk("unable to allocate rbpl virt table\n");
797                 goto out_free_rbpl_table;
798         }
799
800         /* large buffer pool */
801         he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
802                                             CONFIG_RBPL_BUFSIZE, 64, 0);
803         if (he_dev->rbpl_pool == NULL) {
804                 hprintk("unable to create rbpl pool\n");
805                 goto out_free_rbpl_virt;
806         }
807
808         he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
809                                                 CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
810                                                 &he_dev->rbpl_phys, GFP_KERNEL);
811         if (he_dev->rbpl_base == NULL) {
812                 hprintk("failed to alloc rbpl_base\n");
813                 goto out_destroy_rbpl_pool;
814         }
815
816         INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
817
818         for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
819
820                 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
821                 if (!heb)
822                         goto out_free_rbpl;
823                 heb->mapping = mapping;
824                 list_add(&heb->entry, &he_dev->rbpl_outstanding);
825
826                 set_bit(i, he_dev->rbpl_table);
827                 he_dev->rbpl_virt[i] = heb;
828                 he_dev->rbpl_hint = i + 1;
829                 he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
830                 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
831         }
832         he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
833
834         he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
835         he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
836                                                 G0_RBPL_T + (group * 32));
837         he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
838                                                 G0_RBPL_BS + (group * 32));
839         he_writel(he_dev,
840                         RBP_THRESH(CONFIG_RBPL_THRESH) |
841                         RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
842                         RBP_INT_ENB,
843                                                 G0_RBPL_QI + (group * 32));
844
845         /* rx buffer ready queue */
846
847         he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
848                                                 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
849                                                 &he_dev->rbrq_phys, GFP_KERNEL);
850         if (he_dev->rbrq_base == NULL) {
851                 hprintk("failed to allocate rbrq\n");
852                 goto out_free_rbpl;
853         }
854
855         he_dev->rbrq_head = he_dev->rbrq_base;
856         he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
857         he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
858         he_writel(he_dev,
859                 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
860                                                 G0_RBRQ_Q + (group * 16));
861         if (irq_coalesce) {
862                 hprintk("coalescing interrupts\n");
863                 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
864                                                 G0_RBRQ_I + (group * 16));
865         } else
866                 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
867                                                 G0_RBRQ_I + (group * 16));
868
869         /* tx buffer ready queue */
870
871         he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
872                                                 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
873                                                 &he_dev->tbrq_phys, GFP_KERNEL);
874         if (he_dev->tbrq_base == NULL) {
875                 hprintk("failed to allocate tbrq\n");
876                 goto out_free_rbpq_base;
877         }
878
879         he_dev->tbrq_head = he_dev->tbrq_base;
880
881         he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
882         he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
883         he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
884         he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
885
886         return 0;
887
888 out_free_rbpq_base:
889         dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
890                           sizeof(struct he_rbrq), he_dev->rbrq_base,
891                           he_dev->rbrq_phys);
892 out_free_rbpl:
893         list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
894                 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
895
896         dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
897                           sizeof(struct he_rbp), he_dev->rbpl_base,
898                           he_dev->rbpl_phys);
899 out_destroy_rbpl_pool:
900         dma_pool_destroy(he_dev->rbpl_pool);
901 out_free_rbpl_virt:
902         kfree(he_dev->rbpl_virt);
903 out_free_rbpl_table:
904         kfree(he_dev->rbpl_table);
905
906         return -ENOMEM;
907 }
908
909 static int he_init_irq(struct he_dev *he_dev)
910 {
911         int i;
912
913         /* 2.9.3.5  tail offset for each interrupt queue is located after the
914                     end of the interrupt queue */
915
916         he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
917                                                (CONFIG_IRQ_SIZE + 1)
918                                                * sizeof(struct he_irq),
919                                                &he_dev->irq_phys,
920                                                GFP_KERNEL);
921         if (he_dev->irq_base == NULL) {
922                 hprintk("failed to allocate irq\n");
923                 return -ENOMEM;
924         }
925         he_dev->irq_tailoffset = (unsigned *)
926                                         &he_dev->irq_base[CONFIG_IRQ_SIZE];
927         *he_dev->irq_tailoffset = 0;
928         he_dev->irq_head = he_dev->irq_base;
929         he_dev->irq_tail = he_dev->irq_base;
930
931         for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
932                 he_dev->irq_base[i].isw = ITYPE_INVALID;
933
934         he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
935         he_writel(he_dev,
936                 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
937                                                                 IRQ0_HEAD);
938         he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
939         he_writel(he_dev, 0x0, IRQ0_DATA);
940
941         he_writel(he_dev, 0x0, IRQ1_BASE);
942         he_writel(he_dev, 0x0, IRQ1_HEAD);
943         he_writel(he_dev, 0x0, IRQ1_CNTL);
944         he_writel(he_dev, 0x0, IRQ1_DATA);
945
946         he_writel(he_dev, 0x0, IRQ2_BASE);
947         he_writel(he_dev, 0x0, IRQ2_HEAD);
948         he_writel(he_dev, 0x0, IRQ2_CNTL);
949         he_writel(he_dev, 0x0, IRQ2_DATA);
950
951         he_writel(he_dev, 0x0, IRQ3_BASE);
952         he_writel(he_dev, 0x0, IRQ3_HEAD);
953         he_writel(he_dev, 0x0, IRQ3_CNTL);
954         he_writel(he_dev, 0x0, IRQ3_DATA);
955
956         /* 2.9.3.2 interrupt queue mapping registers */
957
958         he_writel(he_dev, 0x0, GRP_10_MAP);
959         he_writel(he_dev, 0x0, GRP_32_MAP);
960         he_writel(he_dev, 0x0, GRP_54_MAP);
961         he_writel(he_dev, 0x0, GRP_76_MAP);
962
963         if (request_irq(he_dev->pci_dev->irq,
964                         he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
965                 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
966                 return -EINVAL;
967         }   
968
969         he_dev->irq = he_dev->pci_dev->irq;
970
971         return 0;
972 }
973
974 static int he_start(struct atm_dev *dev)
975 {
976         struct he_dev *he_dev;
977         struct pci_dev *pci_dev;
978         unsigned long membase;
979
980         u16 command;
981         u32 gen_cntl_0, host_cntl, lb_swap;
982         u8 cache_size, timer;
983         
984         unsigned err;
985         unsigned int status, reg;
986         int i, group;
987
988         he_dev = HE_DEV(dev);
989         pci_dev = he_dev->pci_dev;
990
991         membase = pci_resource_start(pci_dev, 0);
992         HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
993
994         /*
995          * pci bus controller initialization 
996          */
997
998         /* 4.3 pci bus controller-specific initialization */
999         if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
1000                 hprintk("can't read GEN_CNTL_0\n");
1001                 return -EINVAL;
1002         }
1003         gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1004         if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1005                 hprintk("can't write GEN_CNTL_0.\n");
1006                 return -EINVAL;
1007         }
1008
1009         if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1010                 hprintk("can't read PCI_COMMAND.\n");
1011                 return -EINVAL;
1012         }
1013
1014         command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1015         if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1016                 hprintk("can't enable memory.\n");
1017                 return -EINVAL;
1018         }
1019
1020         if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1021                 hprintk("can't read cache line size?\n");
1022                 return -EINVAL;
1023         }
1024
1025         if (cache_size < 16) {
1026                 cache_size = 16;
1027                 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1028                         hprintk("can't set cache line size to %d\n", cache_size);
1029         }
1030
1031         if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1032                 hprintk("can't read latency timer?\n");
1033                 return -EINVAL;
1034         }
1035
1036         /* from table 3.9
1037          *
1038          * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1039          * 
1040          * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1041          * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1042          *
1043          */ 
1044 #define LAT_TIMER 209
1045         if (timer < LAT_TIMER) {
1046                 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1047                 timer = LAT_TIMER;
1048                 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1049                         hprintk("can't set latency timer to %d\n", timer);
1050         }
1051
1052         if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1053                 hprintk("can't set up page mapping\n");
1054                 return -EINVAL;
1055         }
1056
1057         /* 4.4 card reset */
1058         he_writel(he_dev, 0x0, RESET_CNTL);
1059         he_writel(he_dev, 0xff, RESET_CNTL);
1060
1061         msleep(16);     /* 16 ms */
1062         status = he_readl(he_dev, RESET_CNTL);
1063         if ((status & BOARD_RST_STATUS) == 0) {
1064                 hprintk("reset failed\n");
1065                 return -EINVAL;
1066         }
1067
1068         /* 4.5 set bus width */
1069         host_cntl = he_readl(he_dev, HOST_CNTL);
1070         if (host_cntl & PCI_BUS_SIZE64)
1071                 gen_cntl_0 |= ENBL_64;
1072         else
1073                 gen_cntl_0 &= ~ENBL_64;
1074
1075         if (disable64 == 1) {
1076                 hprintk("disabling 64-bit pci bus transfers\n");
1077                 gen_cntl_0 &= ~ENBL_64;
1078         }
1079
1080         if (gen_cntl_0 & ENBL_64)
1081                 hprintk("64-bit transfers enabled\n");
1082
1083         pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1084
1085         /* 4.7 read prom contents */
1086         for (i = 0; i < PROD_ID_LEN; ++i)
1087                 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1088
1089         he_dev->media = read_prom_byte(he_dev, MEDIA);
1090
1091         for (i = 0; i < 6; ++i)
1092                 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1093
1094         hprintk("%s%s, %pM\n", he_dev->prod_id,
1095                 he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1096         he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1097                                                 ATM_OC12_PCR : ATM_OC3_PCR;
1098
1099         /* 4.6 set host endianess */
1100         lb_swap = he_readl(he_dev, LB_SWAP);
1101         if (he_is622(he_dev))
1102                 lb_swap &= ~XFER_SIZE;          /* 4 cells */
1103         else
1104                 lb_swap |= XFER_SIZE;           /* 8 cells */
1105 #ifdef __BIG_ENDIAN
1106         lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1107 #else
1108         lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1109                         DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1110 #endif /* __BIG_ENDIAN */
1111         he_writel(he_dev, lb_swap, LB_SWAP);
1112
1113         /* 4.8 sdram controller initialization */
1114         he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1115
1116         /* 4.9 initialize rnum value */
1117         lb_swap |= SWAP_RNUM_MAX(0xf);
1118         he_writel(he_dev, lb_swap, LB_SWAP);
1119
1120         /* 4.10 initialize the interrupt queues */
1121         if ((err = he_init_irq(he_dev)) != 0)
1122                 return err;
1123
1124         /* 4.11 enable pci bus controller state machines */
1125         host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1126                                 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1127         he_writel(he_dev, host_cntl, HOST_CNTL);
1128
1129         gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1130         pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1131
1132         /*
1133          * atm network controller initialization
1134          */
1135
1136         /* 5.1.1 generic configuration state */
1137
1138         /*
1139          *              local (cell) buffer memory map
1140          *                    
1141          *             HE155                          HE622
1142          *                                                      
1143          *        0 ____________1023 bytes  0 _______________________2047 bytes
1144          *         |            |            |                   |   |
1145          *         |  utility   |            |        rx0        |   |
1146          *        5|____________|         255|___________________| u |
1147          *        6|            |         256|                   | t |
1148          *         |            |            |                   | i |
1149          *         |    rx0     |     row    |        tx         | l |
1150          *         |            |            |                   | i |
1151          *         |            |         767|___________________| t |
1152          *      517|____________|         768|                   | y |
1153          * row  518|            |            |        rx1        |   |
1154          *         |            |        1023|___________________|___|
1155          *         |            |
1156          *         |    tx      |
1157          *         |            |
1158          *         |            |
1159          *     1535|____________|
1160          *     1536|            |
1161          *         |    rx1     |
1162          *     2047|____________|
1163          *
1164          */
1165
1166         /* total 4096 connections */
1167         he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1168         he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1169
1170         if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1171                 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1172                 return -ENODEV;
1173         }
1174
1175         if (nvpibits != -1) {
1176                 he_dev->vpibits = nvpibits;
1177                 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1178         }
1179
1180         if (nvcibits != -1) {
1181                 he_dev->vcibits = nvcibits;
1182                 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1183         }
1184
1185
1186         if (he_is622(he_dev)) {
1187                 he_dev->cells_per_row = 40;
1188                 he_dev->bytes_per_row = 2048;
1189                 he_dev->r0_numrows = 256;
1190                 he_dev->tx_numrows = 512;
1191                 he_dev->r1_numrows = 256;
1192                 he_dev->r0_startrow = 0;
1193                 he_dev->tx_startrow = 256;
1194                 he_dev->r1_startrow = 768;
1195         } else {
1196                 he_dev->cells_per_row = 20;
1197                 he_dev->bytes_per_row = 1024;
1198                 he_dev->r0_numrows = 512;
1199                 he_dev->tx_numrows = 1018;
1200                 he_dev->r1_numrows = 512;
1201                 he_dev->r0_startrow = 6;
1202                 he_dev->tx_startrow = 518;
1203                 he_dev->r1_startrow = 1536;
1204         }
1205
1206         he_dev->cells_per_lbuf = 4;
1207         he_dev->buffer_limit = 4;
1208         he_dev->r0_numbuffs = he_dev->r0_numrows *
1209                                 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1210         if (he_dev->r0_numbuffs > 2560)
1211                 he_dev->r0_numbuffs = 2560;
1212
1213         he_dev->r1_numbuffs = he_dev->r1_numrows *
1214                                 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1215         if (he_dev->r1_numbuffs > 2560)
1216                 he_dev->r1_numbuffs = 2560;
1217
1218         he_dev->tx_numbuffs = he_dev->tx_numrows *
1219                                 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1220         if (he_dev->tx_numbuffs > 5120)
1221                 he_dev->tx_numbuffs = 5120;
1222
1223         /* 5.1.2 configure hardware dependent registers */
1224
1225         he_writel(he_dev, 
1226                 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1227                 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1228                 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1229                 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1230                                                                 LBARB);
1231
1232         he_writel(he_dev, BANK_ON |
1233                 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1234                                                                 SDRAMCON);
1235
1236         he_writel(he_dev,
1237                 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1238                                                 RM_RW_WAIT(1), RCMCONFIG);
1239         he_writel(he_dev,
1240                 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1241                                                 TM_RW_WAIT(1), TCMCONFIG);
1242
1243         he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1244
1245         he_writel(he_dev, 
1246                 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1247                 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1248                 RX_VALVP(he_dev->vpibits) |
1249                 RX_VALVC(he_dev->vcibits),                       RC_CONFIG);
1250
1251         he_writel(he_dev, DRF_THRESH(0x20) |
1252                 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1253                 TX_VCI_MASK(he_dev->vcibits) |
1254                 LBFREE_CNT(he_dev->tx_numbuffs),                TX_CONFIG);
1255
1256         he_writel(he_dev, 0x0, TXAAL5_PROTO);
1257
1258         he_writel(he_dev, PHY_INT_ENB |
1259                 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1260                                                                 RH_CONFIG);
1261
1262         /* 5.1.3 initialize connection memory */
1263
1264         for (i = 0; i < TCM_MEM_SIZE; ++i)
1265                 he_writel_tcm(he_dev, 0, i);
1266
1267         for (i = 0; i < RCM_MEM_SIZE; ++i)
1268                 he_writel_rcm(he_dev, 0, i);
1269
1270         /*
1271          *      transmit connection memory map
1272          *
1273          *                  tx memory
1274          *          0x0 ___________________
1275          *             |                   |
1276          *             |                   |
1277          *             |       TSRa        |
1278          *             |                   |
1279          *             |                   |
1280          *       0x8000|___________________|
1281          *             |                   |
1282          *             |       TSRb        |
1283          *       0xc000|___________________|
1284          *             |                   |
1285          *             |       TSRc        |
1286          *       0xe000|___________________|
1287          *             |       TSRd        |
1288          *       0xf000|___________________|
1289          *             |       tmABR       |
1290          *      0x10000|___________________|
1291          *             |                   |
1292          *             |       tmTPD       |
1293          *             |___________________|
1294          *             |                   |
1295          *                      ....
1296          *      0x1ffff|___________________|
1297          *
1298          *
1299          */
1300
1301         he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1302         he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1303         he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1304         he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1305         he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1306
1307
1308         /*
1309          *      receive connection memory map
1310          *
1311          *          0x0 ___________________
1312          *             |                   |
1313          *             |                   |
1314          *             |       RSRa        |
1315          *             |                   |
1316          *             |                   |
1317          *       0x8000|___________________|
1318          *             |                   |
1319          *             |             rx0/1 |
1320          *             |       LBM         |   link lists of local
1321          *             |             tx    |   buffer memory 
1322          *             |                   |
1323          *       0xd000|___________________|
1324          *             |                   |
1325          *             |      rmABR        |
1326          *       0xe000|___________________|
1327          *             |                   |
1328          *             |       RSRb        |
1329          *             |___________________|
1330          *             |                   |
1331          *                      ....
1332          *       0xffff|___________________|
1333          */
1334
1335         he_writel(he_dev, 0x08000, RCMLBM_BA);
1336         he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1337         he_writel(he_dev, 0x0d800, RCMABR_BA);
1338
1339         /* 5.1.4 initialize local buffer free pools linked lists */
1340
1341         he_init_rx_lbfp0(he_dev);
1342         he_init_rx_lbfp1(he_dev);
1343
1344         he_writel(he_dev, 0x0, RLBC_H);
1345         he_writel(he_dev, 0x0, RLBC_T);
1346         he_writel(he_dev, 0x0, RLBC_H2);
1347
1348         he_writel(he_dev, 512, RXTHRSH);        /* 10% of r0+r1 buffers */
1349         he_writel(he_dev, 256, LITHRSH);        /* 5% of r0+r1 buffers */
1350
1351         he_init_tx_lbfp(he_dev);
1352
1353         he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1354
1355         /* 5.1.5 initialize intermediate receive queues */
1356
1357         if (he_is622(he_dev)) {
1358                 he_writel(he_dev, 0x000f, G0_INMQ_S);
1359                 he_writel(he_dev, 0x200f, G0_INMQ_L);
1360
1361                 he_writel(he_dev, 0x001f, G1_INMQ_S);
1362                 he_writel(he_dev, 0x201f, G1_INMQ_L);
1363
1364                 he_writel(he_dev, 0x002f, G2_INMQ_S);
1365                 he_writel(he_dev, 0x202f, G2_INMQ_L);
1366
1367                 he_writel(he_dev, 0x003f, G3_INMQ_S);
1368                 he_writel(he_dev, 0x203f, G3_INMQ_L);
1369
1370                 he_writel(he_dev, 0x004f, G4_INMQ_S);
1371                 he_writel(he_dev, 0x204f, G4_INMQ_L);
1372
1373                 he_writel(he_dev, 0x005f, G5_INMQ_S);
1374                 he_writel(he_dev, 0x205f, G5_INMQ_L);
1375
1376                 he_writel(he_dev, 0x006f, G6_INMQ_S);
1377                 he_writel(he_dev, 0x206f, G6_INMQ_L);
1378
1379                 he_writel(he_dev, 0x007f, G7_INMQ_S);
1380                 he_writel(he_dev, 0x207f, G7_INMQ_L);
1381         } else {
1382                 he_writel(he_dev, 0x0000, G0_INMQ_S);
1383                 he_writel(he_dev, 0x0008, G0_INMQ_L);
1384
1385                 he_writel(he_dev, 0x0001, G1_INMQ_S);
1386                 he_writel(he_dev, 0x0009, G1_INMQ_L);
1387
1388                 he_writel(he_dev, 0x0002, G2_INMQ_S);
1389                 he_writel(he_dev, 0x000a, G2_INMQ_L);
1390
1391                 he_writel(he_dev, 0x0003, G3_INMQ_S);
1392                 he_writel(he_dev, 0x000b, G3_INMQ_L);
1393
1394                 he_writel(he_dev, 0x0004, G4_INMQ_S);
1395                 he_writel(he_dev, 0x000c, G4_INMQ_L);
1396
1397                 he_writel(he_dev, 0x0005, G5_INMQ_S);
1398                 he_writel(he_dev, 0x000d, G5_INMQ_L);
1399
1400                 he_writel(he_dev, 0x0006, G6_INMQ_S);
1401                 he_writel(he_dev, 0x000e, G6_INMQ_L);
1402
1403                 he_writel(he_dev, 0x0007, G7_INMQ_S);
1404                 he_writel(he_dev, 0x000f, G7_INMQ_L);
1405         }
1406
1407         /* 5.1.6 application tunable parameters */
1408
1409         he_writel(he_dev, 0x0, MCC);
1410         he_writel(he_dev, 0x0, OEC);
1411         he_writel(he_dev, 0x0, DCC);
1412         he_writel(he_dev, 0x0, CEC);
1413         
1414         /* 5.1.7 cs block initialization */
1415
1416         he_init_cs_block(he_dev);
1417
1418         /* 5.1.8 cs block connection memory initialization */
1419         
1420         if (he_init_cs_block_rcm(he_dev) < 0)
1421                 return -ENOMEM;
1422
1423         /* 5.1.10 initialize host structures */
1424
1425         he_init_tpdrq(he_dev);
1426
1427         he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1428                                            sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1429         if (he_dev->tpd_pool == NULL) {
1430                 hprintk("unable to create tpd dma_pool\n");
1431                 return -ENOMEM;         
1432         }
1433
1434         INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1435
1436         if (he_init_group(he_dev, 0) != 0)
1437                 return -ENOMEM;
1438
1439         for (group = 1; group < HE_NUM_GROUPS; ++group) {
1440                 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1441                 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1442                 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1443                 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1444                                                 G0_RBPS_BS + (group * 32));
1445
1446                 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1447                 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1448                 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1449                                                 G0_RBPL_QI + (group * 32));
1450                 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1451
1452                 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1453                 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1454                 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1455                                                 G0_RBRQ_Q + (group * 16));
1456                 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1457
1458                 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1459                 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1460                 he_writel(he_dev, TBRQ_THRESH(0x1),
1461                                                 G0_TBRQ_THRESH + (group * 16));
1462                 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1463         }
1464
1465         /* host status page */
1466
1467         he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev,
1468                                           sizeof(struct he_hsp),
1469                                           &he_dev->hsp_phys, GFP_KERNEL);
1470         if (he_dev->hsp == NULL) {
1471                 hprintk("failed to allocate host status page\n");
1472                 return -ENOMEM;
1473         }
1474         he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1475
1476         /* initialize framer */
1477
1478 #ifdef CONFIG_ATM_HE_USE_SUNI
1479         if (he_isMM(he_dev))
1480                 suni_init(he_dev->atm_dev);
1481         if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1482                 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1483 #endif /* CONFIG_ATM_HE_USE_SUNI */
1484
1485         if (sdh) {
1486                 /* this really should be in suni.c but for now... */
1487                 int val;
1488
1489                 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1490                 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1491                 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1492                 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1493         }
1494
1495         /* 5.1.12 enable transmit and receive */
1496
1497         reg = he_readl_mbox(he_dev, CS_ERCTL0);
1498         reg |= TX_ENABLE|ER_ENABLE;
1499         he_writel_mbox(he_dev, reg, CS_ERCTL0);
1500
1501         reg = he_readl(he_dev, RC_CONFIG);
1502         reg |= RX_ENABLE;
1503         he_writel(he_dev, reg, RC_CONFIG);
1504
1505         for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1506                 he_dev->cs_stper[i].inuse = 0;
1507                 he_dev->cs_stper[i].pcr = -1;
1508         }
1509         he_dev->total_bw = 0;
1510
1511
1512         /* atm linux initialization */
1513
1514         he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1515         he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1516
1517         he_dev->irq_peak = 0;
1518         he_dev->rbrq_peak = 0;
1519         he_dev->rbpl_peak = 0;
1520         he_dev->tbrq_peak = 0;
1521
1522         HPRINTK("hell bent for leather!\n");
1523
1524         return 0;
1525 }
1526
1527 static void
1528 he_stop(struct he_dev *he_dev)
1529 {
1530         struct he_buff *heb, *next;
1531         struct pci_dev *pci_dev;
1532         u32 gen_cntl_0, reg;
1533         u16 command;
1534
1535         pci_dev = he_dev->pci_dev;
1536
1537         /* disable interrupts */
1538
1539         if (he_dev->membase) {
1540                 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1541                 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1542                 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1543
1544                 tasklet_disable(&he_dev->tasklet);
1545
1546                 /* disable recv and transmit */
1547
1548                 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1549                 reg &= ~(TX_ENABLE|ER_ENABLE);
1550                 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1551
1552                 reg = he_readl(he_dev, RC_CONFIG);
1553                 reg &= ~(RX_ENABLE);
1554                 he_writel(he_dev, reg, RC_CONFIG);
1555         }
1556
1557 #ifdef CONFIG_ATM_HE_USE_SUNI
1558         if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1559                 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1560 #endif /* CONFIG_ATM_HE_USE_SUNI */
1561
1562         if (he_dev->irq)
1563                 free_irq(he_dev->irq, he_dev);
1564
1565         if (he_dev->irq_base)
1566                 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1567                                   * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1568
1569         if (he_dev->hsp)
1570                 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1571                                   he_dev->hsp, he_dev->hsp_phys);
1572
1573         if (he_dev->rbpl_base) {
1574                 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1575                         dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1576
1577                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1578                                   * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1579         }
1580
1581         kfree(he_dev->rbpl_virt);
1582         kfree(he_dev->rbpl_table);
1583         dma_pool_destroy(he_dev->rbpl_pool);
1584
1585         if (he_dev->rbrq_base)
1586                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1587                                   he_dev->rbrq_base, he_dev->rbrq_phys);
1588
1589         if (he_dev->tbrq_base)
1590                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1591                                   he_dev->tbrq_base, he_dev->tbrq_phys);
1592
1593         if (he_dev->tpdrq_base)
1594                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1595                                   he_dev->tpdrq_base, he_dev->tpdrq_phys);
1596
1597         dma_pool_destroy(he_dev->tpd_pool);
1598
1599         if (he_dev->pci_dev) {
1600                 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1601                 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1602                 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1603         }
1604         
1605         if (he_dev->membase)
1606                 iounmap(he_dev->membase);
1607 }
1608
1609 static struct he_tpd *
1610 __alloc_tpd(struct he_dev *he_dev)
1611 {
1612         struct he_tpd *tpd;
1613         dma_addr_t mapping;
1614
1615         tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1616         if (tpd == NULL)
1617                 return NULL;
1618                         
1619         tpd->status = TPD_ADDR(mapping);
1620         tpd->reserved = 0; 
1621         tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1622         tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1623         tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1624
1625         return tpd;
1626 }
1627
1628 #define AAL5_LEN(buf,len)                                               \
1629                         ((((unsigned char *)(buf))[(len)-6] << 8) |     \
1630                                 (((unsigned char *)(buf))[(len)-5]))
1631
1632 /* 2.10.1.2 receive
1633  *
1634  * aal5 packets can optionally return the tcp checksum in the lower
1635  * 16 bits of the crc (RSR0_TCP_CKSUM)
1636  */
1637
1638 #define TCP_CKSUM(buf,len)                                              \
1639                         ((((unsigned char *)(buf))[(len)-2] << 8) |     \
1640                                 (((unsigned char *)(buf))[(len-1)]))
1641
1642 static int
1643 he_service_rbrq(struct he_dev *he_dev, int group)
1644 {
1645         struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1646                                 ((unsigned long)he_dev->rbrq_base |
1647                                         he_dev->hsp->group[group].rbrq_tail);
1648         unsigned cid, lastcid = -1;
1649         struct sk_buff *skb;
1650         struct atm_vcc *vcc = NULL;
1651         struct he_vcc *he_vcc;
1652         struct he_buff *heb, *next;
1653         int i;
1654         int pdus_assembled = 0;
1655         int updated = 0;
1656
1657         read_lock(&vcc_sklist_lock);
1658         while (he_dev->rbrq_head != rbrq_tail) {
1659                 ++updated;
1660
1661                 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1662                         he_dev->rbrq_head, group,
1663                         RBRQ_ADDR(he_dev->rbrq_head),
1664                         RBRQ_BUFLEN(he_dev->rbrq_head),
1665                         RBRQ_CID(he_dev->rbrq_head),
1666                         RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1667                         RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1668                         RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1669                         RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1670                         RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1671                         RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1672
1673                 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1674                 heb = he_dev->rbpl_virt[i];
1675
1676                 cid = RBRQ_CID(he_dev->rbrq_head);
1677                 if (cid != lastcid)
1678                         vcc = __find_vcc(he_dev, cid);
1679                 lastcid = cid;
1680
1681                 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1682                         hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1683                         if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1684                                 clear_bit(i, he_dev->rbpl_table);
1685                                 list_del(&heb->entry);
1686                                 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1687                         }
1688                                         
1689                         goto next_rbrq_entry;
1690                 }
1691
1692                 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1693                         hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1694                                 atomic_inc(&vcc->stats->rx_drop);
1695                         goto return_host_buffers;
1696                 }
1697
1698                 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1699                 clear_bit(i, he_dev->rbpl_table);
1700                 list_move_tail(&heb->entry, &he_vcc->buffers);
1701                 he_vcc->pdu_len += heb->len;
1702
1703                 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1704                         lastcid = -1;
1705                         HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1706                         wake_up(&he_vcc->rx_waitq);
1707                         goto return_host_buffers;
1708                 }
1709
1710                 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1711                         goto next_rbrq_entry;
1712
1713                 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1714                                 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1715                         HPRINTK("%s%s (%d.%d)\n",
1716                                 RBRQ_CRC_ERR(he_dev->rbrq_head)
1717                                                         ? "CRC_ERR " : "",
1718                                 RBRQ_LEN_ERR(he_dev->rbrq_head)
1719                                                         ? "LEN_ERR" : "",
1720                                                         vcc->vpi, vcc->vci);
1721                         atomic_inc(&vcc->stats->rx_err);
1722                         goto return_host_buffers;
1723                 }
1724
1725                 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1726                                                         GFP_ATOMIC);
1727                 if (!skb) {
1728                         HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1729                         goto return_host_buffers;
1730                 }
1731
1732                 if (rx_skb_reserve > 0)
1733                         skb_reserve(skb, rx_skb_reserve);
1734
1735                 __net_timestamp(skb);
1736
1737                 list_for_each_entry(heb, &he_vcc->buffers, entry)
1738                         skb_put_data(skb, &heb->data, heb->len);
1739
1740                 switch (vcc->qos.aal) {
1741                         case ATM_AAL0:
1742                                 /* 2.10.1.5 raw cell receive */
1743                                 skb->len = ATM_AAL0_SDU;
1744                                 skb_set_tail_pointer(skb, skb->len);
1745                                 break;
1746                         case ATM_AAL5:
1747                                 /* 2.10.1.2 aal5 receive */
1748
1749                                 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1750                                 skb_set_tail_pointer(skb, skb->len);
1751 #ifdef USE_CHECKSUM_HW
1752                                 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1753                                         skb->ip_summed = CHECKSUM_COMPLETE;
1754                                         skb->csum = TCP_CKSUM(skb->data,
1755                                                         he_vcc->pdu_len);
1756                                 }
1757 #endif
1758                                 break;
1759                 }
1760
1761 #ifdef should_never_happen
1762                 if (skb->len > vcc->qos.rxtp.max_sdu)
1763                         hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1764 #endif
1765
1766 #ifdef notdef
1767                 ATM_SKB(skb)->vcc = vcc;
1768 #endif
1769                 spin_unlock(&he_dev->global_lock);
1770                 vcc->push(vcc, skb);
1771                 spin_lock(&he_dev->global_lock);
1772
1773                 atomic_inc(&vcc->stats->rx);
1774
1775 return_host_buffers:
1776                 ++pdus_assembled;
1777
1778                 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1779                         dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1780                 INIT_LIST_HEAD(&he_vcc->buffers);
1781                 he_vcc->pdu_len = 0;
1782
1783 next_rbrq_entry:
1784                 he_dev->rbrq_head = (struct he_rbrq *)
1785                                 ((unsigned long) he_dev->rbrq_base |
1786                                         RBRQ_MASK(he_dev->rbrq_head + 1));
1787
1788         }
1789         read_unlock(&vcc_sklist_lock);
1790
1791         if (updated) {
1792                 if (updated > he_dev->rbrq_peak)
1793                         he_dev->rbrq_peak = updated;
1794
1795                 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1796                                                 G0_RBRQ_H + (group * 16));
1797         }
1798
1799         return pdus_assembled;
1800 }
1801
1802 static void
1803 he_service_tbrq(struct he_dev *he_dev, int group)
1804 {
1805         struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1806                                 ((unsigned long)he_dev->tbrq_base |
1807                                         he_dev->hsp->group[group].tbrq_tail);
1808         struct he_tpd *tpd;
1809         int slot, updated = 0;
1810         struct he_tpd *__tpd;
1811
1812         /* 2.1.6 transmit buffer return queue */
1813
1814         while (he_dev->tbrq_head != tbrq_tail) {
1815                 ++updated;
1816
1817                 HPRINTK("tbrq%d 0x%x%s%s\n",
1818                         group,
1819                         TBRQ_TPD(he_dev->tbrq_head), 
1820                         TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1821                         TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1822                 tpd = NULL;
1823                 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1824                         if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1825                                 tpd = __tpd;
1826                                 list_del(&__tpd->entry);
1827                                 break;
1828                         }
1829                 }
1830
1831                 if (tpd == NULL) {
1832                         hprintk("unable to locate tpd for dma buffer %x\n",
1833                                                 TBRQ_TPD(he_dev->tbrq_head));
1834                         goto next_tbrq_entry;
1835                 }
1836
1837                 if (TBRQ_EOS(he_dev->tbrq_head)) {
1838                         HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1839                                 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1840                         if (tpd->vcc)
1841                                 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1842
1843                         goto next_tbrq_entry;
1844                 }
1845
1846                 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1847                         if (tpd->iovec[slot].addr)
1848                                 dma_unmap_single(&he_dev->pci_dev->dev,
1849                                         tpd->iovec[slot].addr,
1850                                         tpd->iovec[slot].len & TPD_LEN_MASK,
1851                                                         DMA_TO_DEVICE);
1852                         if (tpd->iovec[slot].len & TPD_LST)
1853                                 break;
1854                                 
1855                 }
1856
1857                 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1858                         if (tpd->vcc && tpd->vcc->pop)
1859                                 tpd->vcc->pop(tpd->vcc, tpd->skb);
1860                         else
1861                                 dev_kfree_skb_any(tpd->skb);
1862                 }
1863
1864 next_tbrq_entry:
1865                 if (tpd)
1866                         dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1867                 he_dev->tbrq_head = (struct he_tbrq *)
1868                                 ((unsigned long) he_dev->tbrq_base |
1869                                         TBRQ_MASK(he_dev->tbrq_head + 1));
1870         }
1871
1872         if (updated) {
1873                 if (updated > he_dev->tbrq_peak)
1874                         he_dev->tbrq_peak = updated;
1875
1876                 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1877                                                 G0_TBRQ_H + (group * 16));
1878         }
1879 }
1880
1881 static void
1882 he_service_rbpl(struct he_dev *he_dev, int group)
1883 {
1884         struct he_rbp *new_tail;
1885         struct he_rbp *rbpl_head;
1886         struct he_buff *heb;
1887         dma_addr_t mapping;
1888         int i;
1889         int moved = 0;
1890
1891         rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1892                                         RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1893
1894         for (;;) {
1895                 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1896                                                 RBPL_MASK(he_dev->rbpl_tail+1));
1897
1898                 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1899                 if (new_tail == rbpl_head)
1900                         break;
1901
1902                 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1903                 if (i > (RBPL_TABLE_SIZE - 1)) {
1904                         i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1905                         if (i > (RBPL_TABLE_SIZE - 1))
1906                                 break;
1907                 }
1908                 he_dev->rbpl_hint = i + 1;
1909
1910                 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1911                 if (!heb)
1912                         break;
1913                 heb->mapping = mapping;
1914                 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1915                 he_dev->rbpl_virt[i] = heb;
1916                 set_bit(i, he_dev->rbpl_table);
1917                 new_tail->idx = i << RBP_IDX_OFFSET;
1918                 new_tail->phys = mapping + offsetof(struct he_buff, data);
1919
1920                 he_dev->rbpl_tail = new_tail;
1921                 ++moved;
1922         } 
1923
1924         if (moved)
1925                 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1926 }
1927
1928 static void
1929 he_tasklet(unsigned long data)
1930 {
1931         unsigned long flags;
1932         struct he_dev *he_dev = (struct he_dev *) data;
1933         int group, type;
1934         int updated = 0;
1935
1936         HPRINTK("tasklet (0x%lx)\n", data);
1937         spin_lock_irqsave(&he_dev->global_lock, flags);
1938
1939         while (he_dev->irq_head != he_dev->irq_tail) {
1940                 ++updated;
1941
1942                 type = ITYPE_TYPE(he_dev->irq_head->isw);
1943                 group = ITYPE_GROUP(he_dev->irq_head->isw);
1944
1945                 switch (type) {
1946                         case ITYPE_RBRQ_THRESH:
1947                                 HPRINTK("rbrq%d threshold\n", group);
1948                                 /* fall through */
1949                         case ITYPE_RBRQ_TIMER:
1950                                 if (he_service_rbrq(he_dev, group))
1951                                         he_service_rbpl(he_dev, group);
1952                                 break;
1953                         case ITYPE_TBRQ_THRESH:
1954                                 HPRINTK("tbrq%d threshold\n", group);
1955                                 /* fall through */
1956                         case ITYPE_TPD_COMPLETE:
1957                                 he_service_tbrq(he_dev, group);
1958                                 break;
1959                         case ITYPE_RBPL_THRESH:
1960                                 he_service_rbpl(he_dev, group);
1961                                 break;
1962                         case ITYPE_RBPS_THRESH:
1963                                 /* shouldn't happen unless small buffers enabled */
1964                                 break;
1965                         case ITYPE_PHY:
1966                                 HPRINTK("phy interrupt\n");
1967 #ifdef CONFIG_ATM_HE_USE_SUNI
1968                                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1969                                 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1970                                         he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1971                                 spin_lock_irqsave(&he_dev->global_lock, flags);
1972 #endif
1973                                 break;
1974                         case ITYPE_OTHER:
1975                                 switch (type|group) {
1976                                         case ITYPE_PARITY:
1977                                                 hprintk("parity error\n");
1978                                                 break;
1979                                         case ITYPE_ABORT:
1980                                                 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1981                                                 break;
1982                                 }
1983                                 break;
1984                         case ITYPE_TYPE(ITYPE_INVALID):
1985                                 /* see 8.1.1 -- check all queues */
1986
1987                                 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1988
1989                                 he_service_rbrq(he_dev, 0);
1990                                 he_service_rbpl(he_dev, 0);
1991                                 he_service_tbrq(he_dev, 0);
1992                                 break;
1993                         default:
1994                                 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1995                 }
1996
1997                 he_dev->irq_head->isw = ITYPE_INVALID;
1998
1999                 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
2000         }
2001
2002         if (updated) {
2003                 if (updated > he_dev->irq_peak)
2004                         he_dev->irq_peak = updated;
2005
2006                 he_writel(he_dev,
2007                         IRQ_SIZE(CONFIG_IRQ_SIZE) |
2008                         IRQ_THRESH(CONFIG_IRQ_THRESH) |
2009                         IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2010                 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2011         }
2012         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2013 }
2014
2015 static irqreturn_t
2016 he_irq_handler(int irq, void *dev_id)
2017 {
2018         unsigned long flags;
2019         struct he_dev *he_dev = (struct he_dev * )dev_id;
2020         int handled = 0;
2021
2022         if (he_dev == NULL)
2023                 return IRQ_NONE;
2024
2025         spin_lock_irqsave(&he_dev->global_lock, flags);
2026
2027         he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2028                                                 (*he_dev->irq_tailoffset << 2));
2029
2030         if (he_dev->irq_tail == he_dev->irq_head) {
2031                 HPRINTK("tailoffset not updated?\n");
2032                 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2033                         ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2034                 (void) he_readl(he_dev, INT_FIFO);      /* 8.1.2 controller errata */
2035         }
2036
2037 #ifdef DEBUG
2038         if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2039                 hprintk("spurious (or shared) interrupt?\n");
2040 #endif
2041
2042         if (he_dev->irq_head != he_dev->irq_tail) {
2043                 handled = 1;
2044                 tasklet_schedule(&he_dev->tasklet);
2045                 he_writel(he_dev, INT_CLEAR_A, INT_FIFO);       /* clear interrupt */
2046                 (void) he_readl(he_dev, INT_FIFO);              /* flush posted writes */
2047         }
2048         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2049         return IRQ_RETVAL(handled);
2050
2051 }
2052
2053 static __inline__ void
2054 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2055 {
2056         struct he_tpdrq *new_tail;
2057
2058         HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2059                                         tpd, cid, he_dev->tpdrq_tail);
2060
2061         /* new_tail = he_dev->tpdrq_tail; */
2062         new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2063                                         TPDRQ_MASK(he_dev->tpdrq_tail+1));
2064
2065         /*
2066          * check to see if we are about to set the tail == head
2067          * if true, update the head pointer from the adapter
2068          * to see if this is really the case (reading the queue
2069          * head for every enqueue would be unnecessarily slow)
2070          */
2071
2072         if (new_tail == he_dev->tpdrq_head) {
2073                 he_dev->tpdrq_head = (struct he_tpdrq *)
2074                         (((unsigned long)he_dev->tpdrq_base) |
2075                                 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2076
2077                 if (new_tail == he_dev->tpdrq_head) {
2078                         int slot;
2079
2080                         hprintk("tpdrq full (cid 0x%x)\n", cid);
2081                         /*
2082                          * FIXME
2083                          * push tpd onto a transmit backlog queue
2084                          * after service_tbrq, service the backlog
2085                          * for now, we just drop the pdu
2086                          */
2087                         for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2088                                 if (tpd->iovec[slot].addr)
2089                                         dma_unmap_single(&he_dev->pci_dev->dev,
2090                                                 tpd->iovec[slot].addr,
2091                                                 tpd->iovec[slot].len & TPD_LEN_MASK,
2092                                                                 DMA_TO_DEVICE);
2093                         }
2094                         if (tpd->skb) {
2095                                 if (tpd->vcc->pop)
2096                                         tpd->vcc->pop(tpd->vcc, tpd->skb);
2097                                 else
2098                                         dev_kfree_skb_any(tpd->skb);
2099                                 atomic_inc(&tpd->vcc->stats->tx_err);
2100                         }
2101                         dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2102                         return;
2103                 }
2104         }
2105
2106         /* 2.1.5 transmit packet descriptor ready queue */
2107         list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2108         he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2109         he_dev->tpdrq_tail->cid = cid;
2110         wmb();
2111
2112         he_dev->tpdrq_tail = new_tail;
2113
2114         he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2115         (void) he_readl(he_dev, TPDRQ_T);               /* flush posted writes */
2116 }
2117
2118 static int
2119 he_open(struct atm_vcc *vcc)
2120 {
2121         unsigned long flags;
2122         struct he_dev *he_dev = HE_DEV(vcc->dev);
2123         struct he_vcc *he_vcc;
2124         int err = 0;
2125         unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2126         short vpi = vcc->vpi;
2127         int vci = vcc->vci;
2128
2129         if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2130                 return 0;
2131
2132         HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2133
2134         set_bit(ATM_VF_ADDR, &vcc->flags);
2135
2136         cid = he_mkcid(he_dev, vpi, vci);
2137
2138         he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2139         if (he_vcc == NULL) {
2140                 hprintk("unable to allocate he_vcc during open\n");
2141                 return -ENOMEM;
2142         }
2143
2144         INIT_LIST_HEAD(&he_vcc->buffers);
2145         he_vcc->pdu_len = 0;
2146         he_vcc->rc_index = -1;
2147
2148         init_waitqueue_head(&he_vcc->rx_waitq);
2149         init_waitqueue_head(&he_vcc->tx_waitq);
2150
2151         vcc->dev_data = he_vcc;
2152
2153         if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2154                 int pcr_goal;
2155
2156                 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2157                 if (pcr_goal == 0)
2158                         pcr_goal = he_dev->atm_dev->link_rate;
2159                 if (pcr_goal < 0)       /* means round down, technically */
2160                         pcr_goal = -pcr_goal;
2161
2162                 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2163
2164                 switch (vcc->qos.aal) {
2165                         case ATM_AAL5:
2166                                 tsr0_aal = TSR0_AAL5;
2167                                 tsr4 = TSR4_AAL5;
2168                                 break;
2169                         case ATM_AAL0:
2170                                 tsr0_aal = TSR0_AAL0_SDU;
2171                                 tsr4 = TSR4_AAL0_SDU;
2172                                 break;
2173                         default:
2174                                 err = -EINVAL;
2175                                 goto open_failed;
2176                 }
2177
2178                 spin_lock_irqsave(&he_dev->global_lock, flags);
2179                 tsr0 = he_readl_tsr0(he_dev, cid);
2180                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2181
2182                 if (TSR0_CONN_STATE(tsr0) != 0) {
2183                         hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2184                         err = -EBUSY;
2185                         goto open_failed;
2186                 }
2187
2188                 switch (vcc->qos.txtp.traffic_class) {
2189                         case ATM_UBR:
2190                                 /* 2.3.3.1 open connection ubr */
2191
2192                                 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2193                                         TSR0_USE_WMIN | TSR0_UPDATE_GER;
2194                                 break;
2195
2196                         case ATM_CBR:
2197                                 /* 2.3.3.2 open connection cbr */
2198
2199                                 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2200                                 if ((he_dev->total_bw + pcr_goal)
2201                                         > (he_dev->atm_dev->link_rate * 9 / 10))
2202                                 {
2203                                         err = -EBUSY;
2204                                         goto open_failed;
2205                                 }
2206
2207                                 spin_lock_irqsave(&he_dev->global_lock, flags);                 /* also protects he_dev->cs_stper[] */
2208
2209                                 /* find an unused cs_stper register */
2210                                 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2211                                         if (he_dev->cs_stper[reg].inuse == 0 || 
2212                                             he_dev->cs_stper[reg].pcr == pcr_goal)
2213                                                         break;
2214
2215                                 if (reg == HE_NUM_CS_STPER) {
2216                                         err = -EBUSY;
2217                                         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2218                                         goto open_failed;
2219                                 }
2220
2221                                 he_dev->total_bw += pcr_goal;
2222
2223                                 he_vcc->rc_index = reg;
2224                                 ++he_dev->cs_stper[reg].inuse;
2225                                 he_dev->cs_stper[reg].pcr = pcr_goal;
2226
2227                                 clock = he_is622(he_dev) ? 66667000 : 50000000;
2228                                 period = clock / pcr_goal;
2229                                 
2230                                 HPRINTK("rc_index = %d period = %d\n",
2231                                                                 reg, period);
2232
2233                                 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2234                                                         CS_STPER0 + reg);
2235                                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2236
2237                                 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2238                                                         TSR0_RC_INDEX(reg);
2239
2240                                 break;
2241                         default:
2242                                 err = -EINVAL;
2243                                 goto open_failed;
2244                 }
2245
2246                 spin_lock_irqsave(&he_dev->global_lock, flags);
2247
2248                 he_writel_tsr0(he_dev, tsr0, cid);
2249                 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2250                 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2251                                         TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2252                 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2253                 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2254
2255                 he_writel_tsr3(he_dev, 0x0, cid);
2256                 he_writel_tsr5(he_dev, 0x0, cid);
2257                 he_writel_tsr6(he_dev, 0x0, cid);
2258                 he_writel_tsr7(he_dev, 0x0, cid);
2259                 he_writel_tsr8(he_dev, 0x0, cid);
2260                 he_writel_tsr10(he_dev, 0x0, cid);
2261                 he_writel_tsr11(he_dev, 0x0, cid);
2262                 he_writel_tsr12(he_dev, 0x0, cid);
2263                 he_writel_tsr13(he_dev, 0x0, cid);
2264                 he_writel_tsr14(he_dev, 0x0, cid);
2265                 (void) he_readl_tsr0(he_dev, cid);              /* flush posted writes */
2266                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2267         }
2268
2269         if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2270                 unsigned aal;
2271
2272                 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2273                                                 &HE_VCC(vcc)->rx_waitq);
2274
2275                 switch (vcc->qos.aal) {
2276                         case ATM_AAL5:
2277                                 aal = RSR0_AAL5;
2278                                 break;
2279                         case ATM_AAL0:
2280                                 aal = RSR0_RAWCELL;
2281                                 break;
2282                         default:
2283                                 err = -EINVAL;
2284                                 goto open_failed;
2285                 }
2286
2287                 spin_lock_irqsave(&he_dev->global_lock, flags);
2288
2289                 rsr0 = he_readl_rsr0(he_dev, cid);
2290                 if (rsr0 & RSR0_OPEN_CONN) {
2291                         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2292
2293                         hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2294                         err = -EBUSY;
2295                         goto open_failed;
2296                 }
2297
2298                 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2299                 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2300                 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2301                                 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2302
2303 #ifdef USE_CHECKSUM_HW
2304                 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2305                         rsr0 |= RSR0_TCP_CKSUM;
2306 #endif
2307
2308                 he_writel_rsr4(he_dev, rsr4, cid);
2309                 he_writel_rsr1(he_dev, rsr1, cid);
2310                 /* 5.1.11 last parameter initialized should be
2311                           the open/closed indication in rsr0 */
2312                 he_writel_rsr0(he_dev,
2313                         rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2314                 (void) he_readl_rsr0(he_dev, cid);              /* flush posted writes */
2315
2316                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2317         }
2318
2319 open_failed:
2320
2321         if (err) {
2322                 kfree(he_vcc);
2323                 clear_bit(ATM_VF_ADDR, &vcc->flags);
2324         }
2325         else
2326                 set_bit(ATM_VF_READY, &vcc->flags);
2327
2328         return err;
2329 }
2330
2331 static void
2332 he_close(struct atm_vcc *vcc)
2333 {
2334         unsigned long flags;
2335         DECLARE_WAITQUEUE(wait, current);
2336         struct he_dev *he_dev = HE_DEV(vcc->dev);
2337         struct he_tpd *tpd;
2338         unsigned cid;
2339         struct he_vcc *he_vcc = HE_VCC(vcc);
2340 #define MAX_RETRY 30
2341         int retry = 0, sleep = 1, tx_inuse;
2342
2343         HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2344
2345         clear_bit(ATM_VF_READY, &vcc->flags);
2346         cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2347
2348         if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2349                 int timeout;
2350
2351                 HPRINTK("close rx cid 0x%x\n", cid);
2352
2353                 /* 2.7.2.2 close receive operation */
2354
2355                 /* wait for previous close (if any) to finish */
2356
2357                 spin_lock_irqsave(&he_dev->global_lock, flags);
2358                 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2359                         HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2360                         udelay(250);
2361                 }
2362
2363                 set_current_state(TASK_UNINTERRUPTIBLE);
2364                 add_wait_queue(&he_vcc->rx_waitq, &wait);
2365
2366                 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2367                 (void) he_readl_rsr0(he_dev, cid);              /* flush posted writes */
2368                 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2369                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2370
2371                 timeout = schedule_timeout(30*HZ);
2372
2373                 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2374                 set_current_state(TASK_RUNNING);
2375
2376                 if (timeout == 0)
2377                         hprintk("close rx timeout cid 0x%x\n", cid);
2378
2379                 HPRINTK("close rx cid 0x%x complete\n", cid);
2380
2381         }
2382
2383         if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2384                 volatile unsigned tsr4, tsr0;
2385                 int timeout;
2386
2387                 HPRINTK("close tx cid 0x%x\n", cid);
2388                 
2389                 /* 2.1.2
2390                  *
2391                  * ... the host must first stop queueing packets to the TPDRQ
2392                  * on the connection to be closed, then wait for all outstanding
2393                  * packets to be transmitted and their buffers returned to the
2394                  * TBRQ. When the last packet on the connection arrives in the
2395                  * TBRQ, the host issues the close command to the adapter.
2396                  */
2397
2398                 while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2399                        (retry < MAX_RETRY)) {
2400                         msleep(sleep);
2401                         if (sleep < 250)
2402                                 sleep = sleep * 2;
2403
2404                         ++retry;
2405                 }
2406
2407                 if (tx_inuse > 1)
2408                         hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2409
2410                 /* 2.3.1.1 generic close operations with flush */
2411
2412                 spin_lock_irqsave(&he_dev->global_lock, flags);
2413                 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2414                                         /* also clears TSR4_SESSION_ENDED */
2415
2416                 switch (vcc->qos.txtp.traffic_class) {
2417                         case ATM_UBR:
2418                                 he_writel_tsr1(he_dev, 
2419                                         TSR1_MCR(rate_to_atmf(200000))
2420                                         | TSR1_PCR(0), cid);
2421                                 break;
2422                         case ATM_CBR:
2423                                 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2424                                 break;
2425                 }
2426                 (void) he_readl_tsr4(he_dev, cid);              /* flush posted writes */
2427
2428                 tpd = __alloc_tpd(he_dev);
2429                 if (tpd == NULL) {
2430                         hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2431                         goto close_tx_incomplete;
2432                 }
2433                 tpd->status |= TPD_EOS | TPD_INT;
2434                 tpd->skb = NULL;
2435                 tpd->vcc = vcc;
2436                 wmb();
2437
2438                 set_current_state(TASK_UNINTERRUPTIBLE);
2439                 add_wait_queue(&he_vcc->tx_waitq, &wait);
2440                 __enqueue_tpd(he_dev, tpd, cid);
2441                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2442
2443                 timeout = schedule_timeout(30*HZ);
2444
2445                 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2446                 set_current_state(TASK_RUNNING);
2447
2448                 spin_lock_irqsave(&he_dev->global_lock, flags);
2449
2450                 if (timeout == 0) {
2451                         hprintk("close tx timeout cid 0x%x\n", cid);
2452                         goto close_tx_incomplete;
2453                 }
2454
2455                 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2456                         HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2457                         udelay(250);
2458                 }
2459
2460                 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2461                         HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2462                         udelay(250);
2463                 }
2464
2465 close_tx_incomplete:
2466
2467                 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2468                         int reg = he_vcc->rc_index;
2469
2470                         HPRINTK("cs_stper reg = %d\n", reg);
2471
2472                         if (he_dev->cs_stper[reg].inuse == 0)
2473                                 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2474                         else
2475                                 --he_dev->cs_stper[reg].inuse;
2476
2477                         he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2478                 }
2479                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2480
2481                 HPRINTK("close tx cid 0x%x complete\n", cid);
2482         }
2483
2484         kfree(he_vcc);
2485
2486         clear_bit(ATM_VF_ADDR, &vcc->flags);
2487 }
2488
2489 static int
2490 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2491 {
2492         unsigned long flags;
2493         struct he_dev *he_dev = HE_DEV(vcc->dev);
2494         unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2495         struct he_tpd *tpd;
2496 #ifdef USE_SCATTERGATHER
2497         int i, slot = 0;
2498 #endif
2499
2500 #define HE_TPD_BUFSIZE 0xffff
2501
2502         HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2503
2504         if ((skb->len > HE_TPD_BUFSIZE) ||
2505             ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2506                 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2507                 if (vcc->pop)
2508                         vcc->pop(vcc, skb);
2509                 else
2510                         dev_kfree_skb_any(skb);
2511                 atomic_inc(&vcc->stats->tx_err);
2512                 return -EINVAL;
2513         }
2514
2515 #ifndef USE_SCATTERGATHER
2516         if (skb_shinfo(skb)->nr_frags) {
2517                 hprintk("no scatter/gather support\n");
2518                 if (vcc->pop)
2519                         vcc->pop(vcc, skb);
2520                 else
2521                         dev_kfree_skb_any(skb);
2522                 atomic_inc(&vcc->stats->tx_err);
2523                 return -EINVAL;
2524         }
2525 #endif
2526         spin_lock_irqsave(&he_dev->global_lock, flags);
2527
2528         tpd = __alloc_tpd(he_dev);
2529         if (tpd == NULL) {
2530                 if (vcc->pop)
2531                         vcc->pop(vcc, skb);
2532                 else
2533                         dev_kfree_skb_any(skb);
2534                 atomic_inc(&vcc->stats->tx_err);
2535                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2536                 return -ENOMEM;
2537         }
2538
2539         if (vcc->qos.aal == ATM_AAL5)
2540                 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2541         else {
2542                 char *pti_clp = (void *) (skb->data + 3);
2543                 int clp, pti;
2544
2545                 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2546                 clp = (*pti_clp & ATM_HDR_CLP);
2547                 tpd->status |= TPD_CELLTYPE(pti);
2548                 if (clp)
2549                         tpd->status |= TPD_CLP;
2550
2551                 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2552         }
2553
2554 #ifdef USE_SCATTERGATHER
2555         tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2556                                 skb_headlen(skb), DMA_TO_DEVICE);
2557         tpd->iovec[slot].len = skb_headlen(skb);
2558         ++slot;
2559
2560         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2562
2563                 if (slot == TPD_MAXIOV) {       /* queue tpd; start new tpd */
2564                         tpd->vcc = vcc;
2565                         tpd->skb = NULL;        /* not the last fragment
2566                                                    so dont ->push() yet */
2567                         wmb();
2568
2569                         __enqueue_tpd(he_dev, tpd, cid);
2570                         tpd = __alloc_tpd(he_dev);
2571                         if (tpd == NULL) {
2572                                 if (vcc->pop)
2573                                         vcc->pop(vcc, skb);
2574                                 else
2575                                         dev_kfree_skb_any(skb);
2576                                 atomic_inc(&vcc->stats->tx_err);
2577                                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2578                                 return -ENOMEM;
2579                         }
2580                         tpd->status |= TPD_USERCELL;
2581                         slot = 0;
2582                 }
2583
2584                 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev,
2585                         (void *) page_address(frag->page) + frag->page_offset,
2586                                 frag->size, DMA_TO_DEVICE);
2587                 tpd->iovec[slot].len = frag->size;
2588                 ++slot;
2589
2590         }
2591
2592         tpd->iovec[slot - 1].len |= TPD_LST;
2593 #else
2594         tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2595         tpd->length0 = skb->len | TPD_LST;
2596 #endif
2597         tpd->status |= TPD_INT;
2598
2599         tpd->vcc = vcc;
2600         tpd->skb = skb;
2601         wmb();
2602         ATM_SKB(skb)->vcc = vcc;
2603
2604         __enqueue_tpd(he_dev, tpd, cid);
2605         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2606
2607         atomic_inc(&vcc->stats->tx);
2608
2609         return 0;
2610 }
2611
2612 static int
2613 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2614 {
2615         unsigned long flags;
2616         struct he_dev *he_dev = HE_DEV(atm_dev);
2617         struct he_ioctl_reg reg;
2618         int err = 0;
2619
2620         switch (cmd) {
2621                 case HE_GET_REG:
2622                         if (!capable(CAP_NET_ADMIN))
2623                                 return -EPERM;
2624
2625                         if (copy_from_user(&reg, arg,
2626                                            sizeof(struct he_ioctl_reg)))
2627                                 return -EFAULT;
2628
2629                         spin_lock_irqsave(&he_dev->global_lock, flags);
2630                         switch (reg.type) {
2631                                 case HE_REGTYPE_PCI:
2632                                         if (reg.addr >= HE_REGMAP_SIZE) {
2633                                                 err = -EINVAL;
2634                                                 break;
2635                                         }
2636
2637                                         reg.val = he_readl(he_dev, reg.addr);
2638                                         break;
2639                                 case HE_REGTYPE_RCM:
2640                                         reg.val =
2641                                                 he_readl_rcm(he_dev, reg.addr);
2642                                         break;
2643                                 case HE_REGTYPE_TCM:
2644                                         reg.val =
2645                                                 he_readl_tcm(he_dev, reg.addr);
2646                                         break;
2647                                 case HE_REGTYPE_MBOX:
2648                                         reg.val =
2649                                                 he_readl_mbox(he_dev, reg.addr);
2650                                         break;
2651                                 default:
2652                                         err = -EINVAL;
2653                                         break;
2654                         }
2655                         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2656                         if (err == 0)
2657                                 if (copy_to_user(arg, &reg,
2658                                                         sizeof(struct he_ioctl_reg)))
2659                                         return -EFAULT;
2660                         break;
2661                 default:
2662 #ifdef CONFIG_ATM_HE_USE_SUNI
2663                         if (atm_dev->phy && atm_dev->phy->ioctl)
2664                                 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2665 #else /* CONFIG_ATM_HE_USE_SUNI */
2666                         err = -EINVAL;
2667 #endif /* CONFIG_ATM_HE_USE_SUNI */
2668                         break;
2669         }
2670
2671         return err;
2672 }
2673
2674 static void
2675 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2676 {
2677         unsigned long flags;
2678         struct he_dev *he_dev = HE_DEV(atm_dev);
2679
2680         HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2681
2682         spin_lock_irqsave(&he_dev->global_lock, flags);
2683         he_writel(he_dev, val, FRAMER + (addr*4));
2684         (void) he_readl(he_dev, FRAMER + (addr*4));             /* flush posted writes */
2685         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2686 }
2687  
2688         
2689 static unsigned char
2690 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2691
2692         unsigned long flags;
2693         struct he_dev *he_dev = HE_DEV(atm_dev);
2694         unsigned reg;
2695
2696         spin_lock_irqsave(&he_dev->global_lock, flags);
2697         reg = he_readl(he_dev, FRAMER + (addr*4));
2698         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2699
2700         HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2701         return reg;
2702 }
2703
2704 static int
2705 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2706 {
2707         unsigned long flags;
2708         struct he_dev *he_dev = HE_DEV(dev);
2709         int left, i;
2710 #ifdef notdef
2711         struct he_rbrq *rbrq_tail;
2712         struct he_tpdrq *tpdrq_head;
2713         int rbpl_head, rbpl_tail;
2714 #endif
2715         static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2716
2717
2718         left = *pos;
2719         if (!left--)
2720                 return sprintf(page, "ATM he driver\n");
2721
2722         if (!left--)
2723                 return sprintf(page, "%s%s\n\n",
2724                         he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2725
2726         if (!left--)
2727                 return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2728
2729         spin_lock_irqsave(&he_dev->global_lock, flags);
2730         mcc += he_readl(he_dev, MCC);
2731         oec += he_readl(he_dev, OEC);
2732         dcc += he_readl(he_dev, DCC);
2733         cec += he_readl(he_dev, CEC);
2734         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2735
2736         if (!left--)
2737                 return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2738                                                         mcc, oec, dcc, cec);
2739
2740         if (!left--)
2741                 return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2742                                 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2743
2744         if (!left--)
2745                 return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2746                                                 CONFIG_TPDRQ_SIZE);
2747
2748         if (!left--)
2749                 return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2750                                 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2751
2752         if (!left--)
2753                 return sprintf(page, "tbrq_size = %d  peak = %d\n",
2754                                         CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2755
2756
2757 #ifdef notdef
2758         rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2759         rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2760
2761         inuse = rbpl_head - rbpl_tail;
2762         if (inuse < 0)
2763                 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2764         inuse /= sizeof(struct he_rbp);
2765
2766         if (!left--)
2767                 return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2768                                                 CONFIG_RBPL_SIZE, inuse);
2769 #endif
2770
2771         if (!left--)
2772                 return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2773
2774         for (i = 0; i < HE_NUM_CS_STPER; ++i)
2775                 if (!left--)
2776                         return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2777                                                 he_dev->cs_stper[i].pcr,
2778                                                 he_dev->cs_stper[i].inuse);
2779
2780         if (!left--)
2781                 return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2782                         he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2783
2784         return 0;
2785 }
2786
2787 /* eeprom routines  -- see 4.7 */
2788
2789 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2790 {
2791         u32 val = 0, tmp_read = 0;
2792         int i, j = 0;
2793         u8 byte_read = 0;
2794
2795         val = readl(he_dev->membase + HOST_CNTL);
2796         val &= 0xFFFFE0FF;
2797        
2798         /* Turn on write enable */
2799         val |= 0x800;
2800         he_writel(he_dev, val, HOST_CNTL);
2801        
2802         /* Send READ instruction */
2803         for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2804                 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2805                 udelay(EEPROM_DELAY);
2806         }
2807        
2808         /* Next, we need to send the byte address to read from */
2809         for (i = 7; i >= 0; i--) {
2810                 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811                 udelay(EEPROM_DELAY);
2812                 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2813                 udelay(EEPROM_DELAY);
2814         }
2815        
2816         j = 0;
2817
2818         val &= 0xFFFFF7FF;      /* Turn off write enable */
2819         he_writel(he_dev, val, HOST_CNTL);
2820        
2821         /* Now, we can read data from the EEPROM by clocking it in */
2822         for (i = 7; i >= 0; i--) {
2823                 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2824                 udelay(EEPROM_DELAY);
2825                 tmp_read = he_readl(he_dev, HOST_CNTL);
2826                 byte_read |= (unsigned char)
2827                            ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2828                 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2829                 udelay(EEPROM_DELAY);
2830         }
2831        
2832         he_writel(he_dev, val | ID_CS, HOST_CNTL);
2833         udelay(EEPROM_DELAY);
2834
2835         return byte_read;
2836 }
2837
2838 MODULE_LICENSE("GPL");
2839 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2840 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2841 module_param(disable64, bool, 0);
2842 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2843 module_param(nvpibits, short, 0);
2844 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2845 module_param(nvcibits, short, 0);
2846 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2847 module_param(rx_skb_reserve, short, 0);
2848 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2849 module_param(irq_coalesce, bool, 0);
2850 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2851 module_param(sdh, bool, 0);
2852 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2853
2854 static const struct pci_device_id he_pci_tbl[] = {
2855         { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2856         { 0, }
2857 };
2858
2859 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2860
2861 static struct pci_driver he_driver = {
2862         .name =         "he",
2863         .probe =        he_init_one,
2864         .remove =       he_remove_one,
2865         .id_table =     he_pci_tbl,
2866 };
2867
2868 module_pci_driver(he_driver);