Merge remote-tracking branch 'asoc/fix/mtk' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / atm / fore200e.c
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24
25
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69
70 #include "fore200e.h"
71 #include "suni.h"
72
73 #define FORE200E_VERSION "0.3e"
74
75 #define FORE200E         "fore200e: "
76
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86
87
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100                                     __func__, __LINE__, #expr); \
101                              panic(FORE200E "%s", __func__); \
102                          }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106
107
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110
111 static LIST_HEAD(fore200e_boards);
112
113
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128
129
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133
134
135 #if 0 /* currently unused */
136 static int 
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144
145     return -EINVAL;
146 }
147 #endif
148
149
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160
161     return -EINVAL;
162 }
163
164
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172
173
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181
182     if (alignment <= sizeof(int))
183         alignment = 0;
184
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191         return -ENOMEM;
192
193     if (alignment > 0)
194         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
195     
196     chunk->align_addr = chunk->alloc_addr + offset;
197
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199     
200     return 0;
201 }
202
203
204 /* free a chunk of memory */
205
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211     kfree(chunk->alloc_addr);
212 }
213
214
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221
222
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228
229     mb();
230     do {
231         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232             break;
233
234     } while (time_before(jiffies, timeout));
235
236 #if 1
237     if (!ok) {
238         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239                *addr, val);
240     }
241 #endif
242
243     return ok;
244 }
245
246
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252
253     do {
254         if ((ok = (fore200e->bus->read(addr) == val)))
255             break;
256
257     } while (time_before(jiffies, timeout));
258
259 #if 1
260     if (!ok) {
261         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262                fore200e->bus->read(addr), val);
263     }
264 #endif
265
266     return ok;
267 }
268
269
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283                     struct chunk* data = &buffer[ nbr ].data;
284
285                     if (data->alloc_addr != NULL)
286                         fore200e_chunk_free(fore200e, data);
287                 }
288             }
289         }
290     }
291 }
292
293
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298     
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304             
305             if (status->alloc_addr)
306                 fore200e->bus->dma_chunk_free(fore200e, status);
307             
308             if (rbd_block->alloc_addr)
309                 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310         }
311     }
312 }
313
314
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321     
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324     fore200e->bus->reset(fore200e);
325
326     if (diag) {
327         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328         if (ok == 0) {
329             
330             printk(FORE200E "device %s self-test failed\n", fore200e->name);
331             return -ENODEV;
332         }
333
334         printk(FORE200E "device %s self-test passed\n", fore200e->name);
335         
336         fore200e->state = FORE200E_STATE_RESET;
337     }
338
339     return 0;
340 }
341
342
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347            fore200e->name, fore200e->phys_base, 
348            fore200e_irq_itoa(fore200e->irq));
349     
350     if (fore200e->state > FORE200E_STATE_RESET) {
351         /* first, reset the board to prevent further interrupts or data transfers */
352         fore200e_reset(fore200e, 0);
353     }
354     
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357
358     case FORE200E_STATE_COMPLETE:
359         kfree(fore200e->stats);
360
361         /* fall through */
362     case FORE200E_STATE_IRQ:
363         free_irq(fore200e->irq, fore200e->atm_dev);
364
365         /* fall through */
366     case FORE200E_STATE_ALLOC_BUF:
367         fore200e_free_rx_buf(fore200e);
368
369         /* fall through */
370     case FORE200E_STATE_INIT_BSQ:
371         fore200e_uninit_bs_queue(fore200e);
372
373         /* fall through */
374     case FORE200E_STATE_INIT_RXQ:
375         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
376         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
377
378         /* fall through */
379     case FORE200E_STATE_INIT_TXQ:
380         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
381         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
382
383         /* fall through */
384     case FORE200E_STATE_INIT_CMDQ:
385         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
386
387         /* fall through */
388     case FORE200E_STATE_INITIALIZE:
389         /* nothing to do for that state */
390
391     case FORE200E_STATE_START_FW:
392         /* nothing to do for that state */
393
394     case FORE200E_STATE_RESET:
395         /* nothing to do for that state */
396
397     case FORE200E_STATE_MAP:
398         fore200e->bus->unmap(fore200e);
399
400         /* fall through */
401     case FORE200E_STATE_CONFIGURE:
402         /* nothing to do for that state */
403
404     case FORE200E_STATE_REGISTER:
405         /* XXX shouldn't we *start* by deregistering the device? */
406         atm_dev_deregister(fore200e->atm_dev);
407
408     case FORE200E_STATE_BLANK:
409         /* nothing to do for that state */
410         break;
411     }
412 }
413
414
415 #ifdef CONFIG_PCI
416
417 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     return le32_to_cpu(readl(addr));
422 }
423
424
425 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
426 {
427     /* on big-endian hosts, the board is configured to convert
428        the endianess of slave RAM accesses  */
429     writel(cpu_to_le32(val), addr);
430 }
431
432
433 static u32
434 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
435 {
436     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
437
438     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
439             virt_addr, size, direction, dma_addr);
440     
441     return dma_addr;
442 }
443
444
445 static void
446 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
447 {
448     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
449             dma_addr, size, direction);
450
451     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
452 }
453
454
455 static void
456 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462
463 static void
464 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
465 {
466     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
467
468     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
469 }
470
471
472 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
473    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
474
475 static int
476 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
477                              int size, int nbr, int alignment)
478 {
479     /* returned chunks are page-aligned */
480     chunk->alloc_size = size * nbr;
481     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
482                                            chunk->alloc_size,
483                                            &chunk->dma_addr,
484                                            GFP_KERNEL);
485     
486     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
487         return -ENOMEM;
488
489     chunk->align_addr = chunk->alloc_addr;
490     
491     return 0;
492 }
493
494
495 /* free a DMA consistent chunk of memory */
496
497 static void
498 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
499 {
500     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
501                         chunk->alloc_size,
502                         chunk->alloc_addr,
503                         chunk->dma_addr);
504 }
505
506
507 static int
508 fore200e_pca_irq_check(struct fore200e* fore200e)
509 {
510     /* this is a 1 bit register */
511     int irq_posted = readl(fore200e->regs.pca.psr);
512
513 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
514     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
515         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
516     }
517 #endif
518
519     return irq_posted;
520 }
521
522
523 static void
524 fore200e_pca_irq_ack(struct fore200e* fore200e)
525 {
526     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
527 }
528
529
530 static void
531 fore200e_pca_reset(struct fore200e* fore200e)
532 {
533     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
534     fore200e_spin(10);
535     writel(0, fore200e->regs.pca.hcr);
536 }
537
538
539 static int fore200e_pca_map(struct fore200e* fore200e)
540 {
541     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
542
543     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
544     
545     if (fore200e->virt_base == NULL) {
546         printk(FORE200E "can't map device %s\n", fore200e->name);
547         return -EFAULT;
548     }
549
550     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
551
552     /* gain access to the PCA specific registers  */
553     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
554     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
555     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
556
557     fore200e->state = FORE200E_STATE_MAP;
558     return 0;
559 }
560
561
562 static void
563 fore200e_pca_unmap(struct fore200e* fore200e)
564 {
565     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
566
567     if (fore200e->virt_base != NULL)
568         iounmap(fore200e->virt_base);
569 }
570
571
572 static int fore200e_pca_configure(struct fore200e *fore200e)
573 {
574     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
575     u8              master_ctrl, latency;
576
577     DPRINTK(2, "device %s being configured\n", fore200e->name);
578
579     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
580         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
581         return -EIO;
582     }
583
584     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
585
586     master_ctrl = master_ctrl
587 #if defined(__BIG_ENDIAN)
588         /* request the PCA board to convert the endianess of slave RAM accesses */
589         | PCA200E_CTRL_CONVERT_ENDIAN
590 #endif
591 #if 0
592         | PCA200E_CTRL_DIS_CACHE_RD
593         | PCA200E_CTRL_DIS_WRT_INVAL
594         | PCA200E_CTRL_ENA_CONT_REQ_MODE
595         | PCA200E_CTRL_2_CACHE_WRT_INVAL
596 #endif
597         | PCA200E_CTRL_LARGE_PCI_BURSTS;
598     
599     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
600
601     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
602        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
603        this may impact the performances of other PCI devices on the same bus, though */
604     latency = 192;
605     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
606
607     fore200e->state = FORE200E_STATE_CONFIGURE;
608     return 0;
609 }
610
611
612 static int __init
613 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
614 {
615     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
616     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
617     struct prom_opcode      opcode;
618     int                     ok;
619     u32                     prom_dma;
620
621     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
622
623     opcode.opcode = OPCODE_GET_PROM;
624     opcode.pad    = 0;
625
626     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
627
628     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
629     
630     *entry->status = STATUS_PENDING;
631
632     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
633
634     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
635
636     *entry->status = STATUS_FREE;
637
638     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
639
640     if (ok == 0) {
641         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
642         return -EIO;
643     }
644
645 #if defined(__BIG_ENDIAN)
646     
647 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
648
649     /* MAC address is stored as little-endian */
650     swap_here(&prom->mac_addr[0]);
651     swap_here(&prom->mac_addr[4]);
652 #endif
653     
654     return 0;
655 }
656
657
658 static int
659 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
660 {
661     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
662
663     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
664                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
665 }
666
667 #endif /* CONFIG_PCI */
668
669
670 #ifdef CONFIG_SBUS
671
672 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
673 {
674     return sbus_readl(addr);
675 }
676
677 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
678 {
679     sbus_writel(val, addr);
680 }
681
682 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
683 {
684         struct platform_device *op = fore200e->bus_dev;
685         u32 dma_addr;
686
687         dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
688
689         DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
690                 virt_addr, size, direction, dma_addr);
691     
692         return dma_addr;
693 }
694
695 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
696 {
697         struct platform_device *op = fore200e->bus_dev;
698
699         DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
700                 dma_addr, size, direction);
701
702         dma_unmap_single(&op->dev, dma_addr, size, direction);
703 }
704
705 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
706 {
707         struct platform_device *op = fore200e->bus_dev;
708
709         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
710     
711         dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
712 }
713
714 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
715 {
716         struct platform_device *op = fore200e->bus_dev;
717
718         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
719
720         dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
721 }
722
723 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
724  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
725  */
726 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
727                                         int size, int nbr, int alignment)
728 {
729         struct platform_device *op = fore200e->bus_dev;
730
731         chunk->alloc_size = chunk->align_size = size * nbr;
732
733         /* returned chunks are page-aligned */
734         chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
735                                                &chunk->dma_addr, GFP_ATOMIC);
736
737         if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
738                 return -ENOMEM;
739
740         chunk->align_addr = chunk->alloc_addr;
741     
742         return 0;
743 }
744
745 /* free a DVMA consistent chunk of memory */
746 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
747 {
748         struct platform_device *op = fore200e->bus_dev;
749
750         dma_free_coherent(&op->dev, chunk->alloc_size,
751                           chunk->alloc_addr, chunk->dma_addr);
752 }
753
754 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
755 {
756         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
757         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
758 }
759
760 static int fore200e_sba_irq_check(struct fore200e *fore200e)
761 {
762         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
763 }
764
765 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
766 {
767         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
768         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
769 }
770
771 static void fore200e_sba_reset(struct fore200e *fore200e)
772 {
773         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
774         fore200e_spin(10);
775         fore200e->bus->write(0, fore200e->regs.sba.hcr);
776 }
777
778 static int __init fore200e_sba_map(struct fore200e *fore200e)
779 {
780         struct platform_device *op = fore200e->bus_dev;
781         unsigned int bursts;
782
783         /* gain access to the SBA specific registers  */
784         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
785         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
786         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
787         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
788
789         if (!fore200e->virt_base) {
790                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
791                 return -EFAULT;
792         }
793
794         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
795     
796         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
797
798         /* get the supported DVMA burst sizes */
799         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
800
801         if (sbus_can_dma_64bit())
802                 sbus_set_sbus64(&op->dev, bursts);
803
804         fore200e->state = FORE200E_STATE_MAP;
805         return 0;
806 }
807
808 static void fore200e_sba_unmap(struct fore200e *fore200e)
809 {
810         struct platform_device *op = fore200e->bus_dev;
811
812         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
813         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
814         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
815         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
816 }
817
818 static int __init fore200e_sba_configure(struct fore200e *fore200e)
819 {
820         fore200e->state = FORE200E_STATE_CONFIGURE;
821         return 0;
822 }
823
824 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
825 {
826         struct platform_device *op = fore200e->bus_dev;
827         const u8 *prop;
828         int len;
829
830         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
831         if (!prop)
832                 return -ENODEV;
833         memcpy(&prom->mac_addr[4], prop, 4);
834
835         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
836         if (!prop)
837                 return -ENODEV;
838         memcpy(&prom->mac_addr[2], prop, 4);
839
840         prom->serial_number = of_getintprop_default(op->dev.of_node,
841                                                     "serialnumber", 0);
842         prom->hw_revision = of_getintprop_default(op->dev.of_node,
843                                                   "promversion", 0);
844     
845         return 0;
846 }
847
848 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
849 {
850         struct platform_device *op = fore200e->bus_dev;
851         const struct linux_prom_registers *regs;
852
853         regs = of_get_property(op->dev.of_node, "reg", NULL);
854
855         return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
856                        (regs ? regs->which_io : 0), op->dev.of_node->name);
857 }
858 #endif /* CONFIG_SBUS */
859
860
861 static void
862 fore200e_tx_irq(struct fore200e* fore200e)
863 {
864     struct host_txq*        txq = &fore200e->host_txq;
865     struct host_txq_entry*  entry;
866     struct atm_vcc*         vcc;
867     struct fore200e_vc_map* vc_map;
868
869     if (fore200e->host_txq.txing == 0)
870         return;
871
872     for (;;) {
873         
874         entry = &txq->host_entry[ txq->tail ];
875
876         if ((*entry->status & STATUS_COMPLETE) == 0) {
877             break;
878         }
879
880         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
881                 entry, txq->tail, entry->vc_map, entry->skb);
882
883         /* free copy of misaligned data */
884         kfree(entry->data);
885         
886         /* remove DMA mapping */
887         fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
888                                  DMA_TO_DEVICE);
889
890         vc_map = entry->vc_map;
891
892         /* vcc closed since the time the entry was submitted for tx? */
893         if ((vc_map->vcc == NULL) ||
894             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
895
896             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
897                     fore200e->atm_dev->number);
898
899             dev_kfree_skb_any(entry->skb);
900         }
901         else {
902             ASSERT(vc_map->vcc);
903
904             /* vcc closed then immediately re-opened? */
905             if (vc_map->incarn != entry->incarn) {
906
907                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
908                    if the same vcc is immediately re-opened, those pending PDUs must
909                    not be popped after the completion of their emission, as they refer
910                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
911                    would be decremented by the size of the (unrelated) skb, possibly
912                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
913                    we thus bind the tx entry to the current incarnation of the vcc
914                    when the entry is submitted for tx. When the tx later completes,
915                    if the incarnation number of the tx entry does not match the one
916                    of the vcc, then this implies that the vcc has been closed then re-opened.
917                    we thus just drop the skb here. */
918
919                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
920                         fore200e->atm_dev->number);
921
922                 dev_kfree_skb_any(entry->skb);
923             }
924             else {
925                 vcc = vc_map->vcc;
926                 ASSERT(vcc);
927
928                 /* notify tx completion */
929                 if (vcc->pop) {
930                     vcc->pop(vcc, entry->skb);
931                 }
932                 else {
933                     dev_kfree_skb_any(entry->skb);
934                 }
935
936                 /* check error condition */
937                 if (*entry->status & STATUS_ERROR)
938                     atomic_inc(&vcc->stats->tx_err);
939                 else
940                     atomic_inc(&vcc->stats->tx);
941             }
942         }
943
944         *entry->status = STATUS_FREE;
945
946         fore200e->host_txq.txing--;
947
948         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
949     }
950 }
951
952
953 #ifdef FORE200E_BSQ_DEBUG
954 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
955 {
956     struct buffer* buffer;
957     int count = 0;
958
959     buffer = bsq->freebuf;
960     while (buffer) {
961
962         if (buffer->supplied) {
963             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
964                    where, scheme, magn, buffer->index);
965         }
966
967         if (buffer->magn != magn) {
968             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
969                    where, scheme, magn, buffer->index, buffer->magn);
970         }
971
972         if (buffer->scheme != scheme) {
973             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
974                    where, scheme, magn, buffer->index, buffer->scheme);
975         }
976
977         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
978             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
979                    where, scheme, magn, buffer->index);
980         }
981
982         count++;
983         buffer = buffer->next;
984     }
985
986     if (count != bsq->freebuf_count) {
987         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
988                where, scheme, magn, count, bsq->freebuf_count);
989     }
990     return 0;
991 }
992 #endif
993
994
995 static void
996 fore200e_supply(struct fore200e* fore200e)
997 {
998     int  scheme, magn, i;
999
1000     struct host_bsq*       bsq;
1001     struct host_bsq_entry* entry;
1002     struct buffer*         buffer;
1003
1004     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006
1007             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008
1009 #ifdef FORE200E_BSQ_DEBUG
1010             bsq_audit(1, bsq, scheme, magn);
1011 #endif
1012             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013
1014                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016
1017                 entry = &bsq->host_entry[ bsq->head ];
1018
1019                 for (i = 0; i < RBD_BLK_SIZE; i++) {
1020
1021                     /* take the first buffer in the free buffer list */
1022                     buffer = bsq->freebuf;
1023                     if (!buffer) {
1024                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025                                scheme, magn, bsq->freebuf_count);
1026                         return;
1027                     }
1028                     bsq->freebuf = buffer->next;
1029                     
1030 #ifdef FORE200E_BSQ_DEBUG
1031                     if (buffer->supplied)
1032                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033                                scheme, magn, buffer->index);
1034                     buffer->supplied = 1;
1035 #endif
1036                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1038                 }
1039
1040                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041
1042                 /* decrease accordingly the number of free rx buffers */
1043                 bsq->freebuf_count -= RBD_BLK_SIZE;
1044
1045                 *entry->status = STATUS_PENDING;
1046                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047             }
1048         }
1049     }
1050 }
1051
1052
1053 static int
1054 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055 {
1056     struct sk_buff*      skb;
1057     struct buffer*       buffer;
1058     struct fore200e_vcc* fore200e_vcc;
1059     int                  i, pdu_len = 0;
1060 #ifdef FORE200E_52BYTE_AAL0_SDU
1061     u32                  cell_header = 0;
1062 #endif
1063
1064     ASSERT(vcc);
1065     
1066     fore200e_vcc = FORE200E_VCC(vcc);
1067     ASSERT(fore200e_vcc);
1068
1069 #ifdef FORE200E_52BYTE_AAL0_SDU
1070     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071
1072         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1076                        rpd->atm_header.clp;
1077         pdu_len = 4;
1078     }
1079 #endif
1080     
1081     /* compute total PDU length */
1082     for (i = 0; i < rpd->nseg; i++)
1083         pdu_len += rpd->rsd[ i ].length;
1084     
1085     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086     if (skb == NULL) {
1087         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088
1089         atomic_inc(&vcc->stats->rx_drop);
1090         return -ENOMEM;
1091     } 
1092
1093     __net_timestamp(skb);
1094     
1095 #ifdef FORE200E_52BYTE_AAL0_SDU
1096     if (cell_header) {
1097         *((u32*)skb_put(skb, 4)) = cell_header;
1098     }
1099 #endif
1100
1101     /* reassemble segments */
1102     for (i = 0; i < rpd->nseg; i++) {
1103         
1104         /* rebuild rx buffer address from rsd handle */
1105         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106         
1107         /* Make device DMA transfer visible to CPU.  */
1108         fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1109         
1110         skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1111
1112         /* Now let the device get at it again.  */
1113         fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1114     }
1115
1116     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117     
1118     if (pdu_len < fore200e_vcc->rx_min_pdu)
1119         fore200e_vcc->rx_min_pdu = pdu_len;
1120     if (pdu_len > fore200e_vcc->rx_max_pdu)
1121         fore200e_vcc->rx_max_pdu = pdu_len;
1122     fore200e_vcc->rx_pdu++;
1123
1124     /* push PDU */
1125     if (atm_charge(vcc, skb->truesize) == 0) {
1126
1127         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128                 vcc->itf, vcc->vpi, vcc->vci);
1129
1130         dev_kfree_skb_any(skb);
1131
1132         atomic_inc(&vcc->stats->rx_drop);
1133         return -ENOMEM;
1134     }
1135
1136     vcc->push(vcc, skb);
1137     atomic_inc(&vcc->stats->rx);
1138
1139     return 0;
1140 }
1141
1142
1143 static void
1144 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145 {
1146     struct host_bsq* bsq;
1147     struct buffer*   buffer;
1148     int              i;
1149     
1150     for (i = 0; i < rpd->nseg; i++) {
1151
1152         /* rebuild rx buffer address from rsd handle */
1153         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157 #ifdef FORE200E_BSQ_DEBUG
1158         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160         if (buffer->supplied == 0)
1161             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162                    buffer->scheme, buffer->magn, buffer->index);
1163         buffer->supplied = 0;
1164 #endif
1165
1166         /* re-insert the buffer into the free buffer list */
1167         buffer->next = bsq->freebuf;
1168         bsq->freebuf = buffer;
1169
1170         /* then increment the number of free rx buffers */
1171         bsq->freebuf_count++;
1172     }
1173 }
1174
1175
1176 static void
1177 fore200e_rx_irq(struct fore200e* fore200e)
1178 {
1179     struct host_rxq*        rxq = &fore200e->host_rxq;
1180     struct host_rxq_entry*  entry;
1181     struct atm_vcc*         vcc;
1182     struct fore200e_vc_map* vc_map;
1183
1184     for (;;) {
1185         
1186         entry = &rxq->host_entry[ rxq->head ];
1187
1188         /* no more received PDUs */
1189         if ((*entry->status & STATUS_COMPLETE) == 0)
1190             break;
1191
1192         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194         if ((vc_map->vcc == NULL) ||
1195             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198                     fore200e->atm_dev->number,
1199                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200         }
1201         else {
1202             vcc = vc_map->vcc;
1203             ASSERT(vcc);
1204
1205             if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208             }
1209             else {
1210                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211                         fore200e->atm_dev->number,
1212                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213                 atomic_inc(&vcc->stats->rx_err);
1214             }
1215         }
1216
1217         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219         fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221         /* rewrite the rpd address to ack the received PDU */
1222         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223         *entry->status = STATUS_FREE;
1224
1225         fore200e_supply(fore200e);
1226     }
1227 }
1228
1229
1230 #ifndef FORE200E_USE_TASKLET
1231 static void
1232 fore200e_irq(struct fore200e* fore200e)
1233 {
1234     unsigned long flags;
1235
1236     spin_lock_irqsave(&fore200e->q_lock, flags);
1237     fore200e_rx_irq(fore200e);
1238     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240     spin_lock_irqsave(&fore200e->q_lock, flags);
1241     fore200e_tx_irq(fore200e);
1242     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243 }
1244 #endif
1245
1246
1247 static irqreturn_t
1248 fore200e_interrupt(int irq, void* dev)
1249 {
1250     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252     if (fore200e->bus->irq_check(fore200e) == 0) {
1253         
1254         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255         return IRQ_NONE;
1256     }
1257     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259 #ifdef FORE200E_USE_TASKLET
1260     tasklet_schedule(&fore200e->tx_tasklet);
1261     tasklet_schedule(&fore200e->rx_tasklet);
1262 #else
1263     fore200e_irq(fore200e);
1264 #endif
1265     
1266     fore200e->bus->irq_ack(fore200e);
1267     return IRQ_HANDLED;
1268 }
1269
1270
1271 #ifdef FORE200E_USE_TASKLET
1272 static void
1273 fore200e_tx_tasklet(unsigned long data)
1274 {
1275     struct fore200e* fore200e = (struct fore200e*) data;
1276     unsigned long flags;
1277
1278     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280     spin_lock_irqsave(&fore200e->q_lock, flags);
1281     fore200e_tx_irq(fore200e);
1282     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283 }
1284
1285
1286 static void
1287 fore200e_rx_tasklet(unsigned long data)
1288 {
1289     struct fore200e* fore200e = (struct fore200e*) data;
1290     unsigned long    flags;
1291
1292     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294     spin_lock_irqsave(&fore200e->q_lock, flags);
1295     fore200e_rx_irq((struct fore200e*) data);
1296     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297 }
1298 #endif
1299
1300
1301 static int
1302 fore200e_select_scheme(struct atm_vcc* vcc)
1303 {
1304     /* fairly balance the VCs over (identical) buffer schemes */
1305     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308             vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310     return scheme;
1311 }
1312
1313
1314 static int 
1315 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316 {
1317     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319     struct activate_opcode   activ_opcode;
1320     struct deactivate_opcode deactiv_opcode;
1321     struct vpvc              vpvc;
1322     int                      ok;
1323     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326     
1327     if (activate) {
1328         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329         
1330         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331         activ_opcode.aal    = aal;
1332         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333         activ_opcode.pad    = 0;
1334     }
1335     else {
1336         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337         deactiv_opcode.pad    = 0;
1338     }
1339
1340     vpvc.vci = vcc->vci;
1341     vpvc.vpi = vcc->vpi;
1342
1343     *entry->status = STATUS_PENDING;
1344
1345     if (activate) {
1346
1347 #ifdef FORE200E_52BYTE_AAL0_SDU
1348         mtu = 48;
1349 #endif
1350         /* the MTU is not used by the cp, except in the case of AAL0 */
1351         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354     }
1355     else {
1356         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358     }
1359
1360     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362     *entry->status = STATUS_FREE;
1363
1364     if (ok == 0) {
1365         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367         return -EIO;
1368     }
1369
1370     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1371             activate ? "open" : "clos");
1372
1373     return 0;
1374 }
1375
1376
1377 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378
1379 static void
1380 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381 {
1382     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383     
1384         /* compute the data cells to idle cells ratio from the tx PCR */
1385         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387     }
1388     else {
1389         /* disable rate control */
1390         rate->data_cells = rate->idle_cells = 0;
1391     }
1392 }
1393
1394
1395 static int
1396 fore200e_open(struct atm_vcc *vcc)
1397 {
1398     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399     struct fore200e_vcc*    fore200e_vcc;
1400     struct fore200e_vc_map* vc_map;
1401     unsigned long           flags;
1402     int                     vci = vcc->vci;
1403     short                   vpi = vcc->vpi;
1404
1405     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408     spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411     if (vc_map->vcc) {
1412
1413         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415         printk(FORE200E "VC %d.%d.%d already in use\n",
1416                fore200e->atm_dev->number, vpi, vci);
1417
1418         return -EINVAL;
1419     }
1420
1421     vc_map->vcc = vcc;
1422
1423     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426     if (fore200e_vcc == NULL) {
1427         vc_map->vcc = NULL;
1428         return -ENOMEM;
1429     }
1430
1431     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438     
1439     /* pseudo-CBR bandwidth requested? */
1440     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441         
1442         mutex_lock(&fore200e->rate_mtx);
1443         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444             mutex_unlock(&fore200e->rate_mtx);
1445
1446             kfree(fore200e_vcc);
1447             vc_map->vcc = NULL;
1448             return -EAGAIN;
1449         }
1450
1451         /* reserve bandwidth */
1452         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453         mutex_unlock(&fore200e->rate_mtx);
1454     }
1455     
1456     vcc->itf = vcc->dev->number;
1457
1458     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459     set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461     vcc->dev_data = fore200e_vcc;
1462     
1463     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465         vc_map->vcc = NULL;
1466
1467         clear_bit(ATM_VF_ADDR, &vcc->flags);
1468         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470         vcc->dev_data = NULL;
1471
1472         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474         kfree(fore200e_vcc);
1475         return -EINVAL;
1476     }
1477     
1478     /* compute rate control parameters */
1479     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480         
1481         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482         set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1487                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488     }
1489     
1490     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493
1494     /* new incarnation of the vcc */
1495     vc_map->incarn = ++fore200e->incarn_count;
1496
1497     /* VC unusable before this flag is set */
1498     set_bit(ATM_VF_READY, &vcc->flags);
1499
1500     return 0;
1501 }
1502
1503
1504 static void
1505 fore200e_close(struct atm_vcc* vcc)
1506 {
1507     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508     struct fore200e_vcc*    fore200e_vcc;
1509     struct fore200e_vc_map* vc_map;
1510     unsigned long           flags;
1511
1512     ASSERT(vcc);
1513     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518     clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522     spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526     /* the vc is no longer considered as "in use" by fore200e_open() */
1527     vc_map->vcc = NULL;
1528
1529     vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531     fore200e_vcc = FORE200E_VCC(vcc);
1532     vcc->dev_data = NULL;
1533
1534     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536     /* release reserved bandwidth, if any */
1537     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
1539         mutex_lock(&fore200e->rate_mtx);
1540         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541         mutex_unlock(&fore200e->rate_mtx);
1542
1543         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544     }
1545
1546     clear_bit(ATM_VF_ADDR, &vcc->flags);
1547     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549     ASSERT(fore200e_vcc);
1550     kfree(fore200e_vcc);
1551 }
1552
1553
1554 static int
1555 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556 {
1557     struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558     struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559     struct fore200e_vc_map* vc_map;
1560     struct host_txq*        txq          = &fore200e->host_txq;
1561     struct host_txq_entry*  entry;
1562     struct tpd*             tpd;
1563     struct tpd_haddr        tpd_haddr;
1564     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565     int                     tx_copy      = 0;
1566     int                     tx_len       = skb->len;
1567     u32*                    cell_header  = NULL;
1568     unsigned char*          skb_data;
1569     int                     skb_len;
1570     unsigned char*          data;
1571     unsigned long           flags;
1572
1573     ASSERT(vcc);
1574     ASSERT(fore200e);
1575     ASSERT(fore200e_vcc);
1576
1577     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1578         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1579         dev_kfree_skb_any(skb);
1580         return -EINVAL;
1581     }
1582
1583 #ifdef FORE200E_52BYTE_AAL0_SDU
1584     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1585         cell_header = (u32*) skb->data;
1586         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1587         skb_len     = tx_len = skb->len  - 4;
1588
1589         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1590     }
1591     else 
1592 #endif
1593     {
1594         skb_data = skb->data;
1595         skb_len  = skb->len;
1596     }
1597     
1598     if (((unsigned long)skb_data) & 0x3) {
1599
1600         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1601         tx_copy = 1;
1602         tx_len  = skb_len;
1603     }
1604
1605     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1606
1607         /* this simply NUKES the PCA board */
1608         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1609         tx_copy = 1;
1610         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1611     }
1612     
1613     if (tx_copy) {
1614         data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1615         if (data == NULL) {
1616             if (vcc->pop) {
1617                 vcc->pop(vcc, skb);
1618             }
1619             else {
1620                 dev_kfree_skb_any(skb);
1621             }
1622             return -ENOMEM;
1623         }
1624
1625         memcpy(data, skb_data, skb_len);
1626         if (skb_len < tx_len)
1627             memset(data + skb_len, 0x00, tx_len - skb_len);
1628     }
1629     else {
1630         data = skb_data;
1631     }
1632
1633     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1634     ASSERT(vc_map->vcc == vcc);
1635
1636   retry_here:
1637
1638     spin_lock_irqsave(&fore200e->q_lock, flags);
1639
1640     entry = &txq->host_entry[ txq->head ];
1641
1642     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1643
1644         /* try to free completed tx queue entries */
1645         fore200e_tx_irq(fore200e);
1646
1647         if (*entry->status != STATUS_FREE) {
1648
1649             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1650
1651             /* retry once again? */
1652             if (--retry > 0) {
1653                 udelay(50);
1654                 goto retry_here;
1655             }
1656
1657             atomic_inc(&vcc->stats->tx_err);
1658
1659             fore200e->tx_sat++;
1660             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1661                     fore200e->name, fore200e->cp_queues->heartbeat);
1662             if (vcc->pop) {
1663                 vcc->pop(vcc, skb);
1664             }
1665             else {
1666                 dev_kfree_skb_any(skb);
1667             }
1668
1669             if (tx_copy)
1670                 kfree(data);
1671
1672             return -ENOBUFS;
1673         }
1674     }
1675
1676     entry->incarn = vc_map->incarn;
1677     entry->vc_map = vc_map;
1678     entry->skb    = skb;
1679     entry->data   = tx_copy ? data : NULL;
1680
1681     tpd = entry->tpd;
1682     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1683     tpd->tsd[ 0 ].length = tx_len;
1684
1685     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1686     txq->txing++;
1687
1688     /* The dma_map call above implies a dma_sync so the device can use it,
1689      * thus no explicit dma_sync call is necessary here.
1690      */
1691     
1692     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1693             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1694             tpd->tsd[0].length, skb_len);
1695
1696     if (skb_len < fore200e_vcc->tx_min_pdu)
1697         fore200e_vcc->tx_min_pdu = skb_len;
1698     if (skb_len > fore200e_vcc->tx_max_pdu)
1699         fore200e_vcc->tx_max_pdu = skb_len;
1700     fore200e_vcc->tx_pdu++;
1701
1702     /* set tx rate control information */
1703     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1704     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1705
1706     if (cell_header) {
1707         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1708         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1709         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1710         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1711         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1712     }
1713     else {
1714         /* set the ATM header, common to all cells conveying the PDU */
1715         tpd->atm_header.clp = 0;
1716         tpd->atm_header.plt = 0;
1717         tpd->atm_header.vci = vcc->vci;
1718         tpd->atm_header.vpi = vcc->vpi;
1719         tpd->atm_header.gfc = 0;
1720     }
1721
1722     tpd->spec.length = tx_len;
1723     tpd->spec.nseg   = 1;
1724     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1725     tpd->spec.intr   = 1;
1726
1727     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1728     tpd_haddr.pad   = 0;
1729     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1730
1731     *entry->status = STATUS_PENDING;
1732     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1733
1734     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1735
1736     return 0;
1737 }
1738
1739
1740 static int
1741 fore200e_getstats(struct fore200e* fore200e)
1742 {
1743     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1744     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1745     struct stats_opcode     opcode;
1746     int                     ok;
1747     u32                     stats_dma_addr;
1748
1749     if (fore200e->stats == NULL) {
1750         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1751         if (fore200e->stats == NULL)
1752             return -ENOMEM;
1753     }
1754     
1755     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1756                                             sizeof(struct stats), DMA_FROM_DEVICE);
1757     
1758     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1759
1760     opcode.opcode = OPCODE_GET_STATS;
1761     opcode.pad    = 0;
1762
1763     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1764     
1765     *entry->status = STATUS_PENDING;
1766
1767     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1768
1769     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1770
1771     *entry->status = STATUS_FREE;
1772
1773     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1774     
1775     if (ok == 0) {
1776         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1777         return -EIO;
1778     }
1779
1780     return 0;
1781 }
1782
1783
1784 static int
1785 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1786 {
1787     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1788
1789     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1790             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1791
1792     return -EINVAL;
1793 }
1794
1795
1796 static int
1797 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1798 {
1799     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1800     
1801     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1802             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1803     
1804     return -EINVAL;
1805 }
1806
1807
1808 #if 0 /* currently unused */
1809 static int
1810 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1811 {
1812     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1813     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1814     struct oc3_opcode       opcode;
1815     int                     ok;
1816     u32                     oc3_regs_dma_addr;
1817
1818     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1819
1820     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1821
1822     opcode.opcode = OPCODE_GET_OC3;
1823     opcode.reg    = 0;
1824     opcode.value  = 0;
1825     opcode.mask   = 0;
1826
1827     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1828     
1829     *entry->status = STATUS_PENDING;
1830
1831     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1832
1833     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1834
1835     *entry->status = STATUS_FREE;
1836
1837     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1838     
1839     if (ok == 0) {
1840         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1841         return -EIO;
1842     }
1843
1844     return 0;
1845 }
1846 #endif
1847
1848
1849 static int
1850 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1851 {
1852     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1853     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1854     struct oc3_opcode       opcode;
1855     int                     ok;
1856
1857     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1858
1859     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1860
1861     opcode.opcode = OPCODE_SET_OC3;
1862     opcode.reg    = reg;
1863     opcode.value  = value;
1864     opcode.mask   = mask;
1865
1866     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1867     
1868     *entry->status = STATUS_PENDING;
1869
1870     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1871
1872     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1873
1874     *entry->status = STATUS_FREE;
1875
1876     if (ok == 0) {
1877         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1878         return -EIO;
1879     }
1880
1881     return 0;
1882 }
1883
1884
1885 static int
1886 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1887 {
1888     u32 mct_value, mct_mask;
1889     int error;
1890
1891     if (!capable(CAP_NET_ADMIN))
1892         return -EPERM;
1893     
1894     switch (loop_mode) {
1895
1896     case ATM_LM_NONE:
1897         mct_value = 0; 
1898         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1899         break;
1900         
1901     case ATM_LM_LOC_PHY:
1902         mct_value = mct_mask = SUNI_MCT_DLE;
1903         break;
1904
1905     case ATM_LM_RMT_PHY:
1906         mct_value = mct_mask = SUNI_MCT_LLE;
1907         break;
1908
1909     default:
1910         return -EINVAL;
1911     }
1912
1913     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1914     if (error == 0)
1915         fore200e->loop_mode = loop_mode;
1916
1917     return error;
1918 }
1919
1920
1921 static int
1922 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1923 {
1924     struct sonet_stats tmp;
1925
1926     if (fore200e_getstats(fore200e) < 0)
1927         return -EIO;
1928
1929     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1930     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1931     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1932     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1933     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1934     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1935     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1936     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1937                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1938                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1939     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1940                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1941                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1942
1943     if (arg)
1944         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1945     
1946     return 0;
1947 }
1948
1949
1950 static int
1951 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1952 {
1953     struct fore200e* fore200e = FORE200E_DEV(dev);
1954     
1955     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1956
1957     switch (cmd) {
1958
1959     case SONET_GETSTAT:
1960         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1961
1962     case SONET_GETDIAG:
1963         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1964
1965     case ATM_SETLOOP:
1966         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1967
1968     case ATM_GETLOOP:
1969         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1970
1971     case ATM_QUERYLOOP:
1972         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1973     }
1974
1975     return -ENOSYS; /* not implemented */
1976 }
1977
1978
1979 static int
1980 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1981 {
1982     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1983     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1984
1985     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1986         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1987         return -EINVAL;
1988     }
1989
1990     DPRINTK(2, "change_qos %d.%d.%d, "
1991             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1992             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1993             "available_cell_rate = %u",
1994             vcc->itf, vcc->vpi, vcc->vci,
1995             fore200e_traffic_class[ qos->txtp.traffic_class ],
1996             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1997             fore200e_traffic_class[ qos->rxtp.traffic_class ],
1998             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1999             flags, fore200e->available_cell_rate);
2000
2001     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2002
2003         mutex_lock(&fore200e->rate_mtx);
2004         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2005             mutex_unlock(&fore200e->rate_mtx);
2006             return -EAGAIN;
2007         }
2008
2009         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2010         fore200e->available_cell_rate -= qos->txtp.max_pcr;
2011
2012         mutex_unlock(&fore200e->rate_mtx);
2013         
2014         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2015         
2016         /* update rate control parameters */
2017         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2018
2019         set_bit(ATM_VF_HASQOS, &vcc->flags);
2020
2021         return 0;
2022     }
2023     
2024     return -EINVAL;
2025 }
2026     
2027
2028 static int fore200e_irq_request(struct fore200e *fore200e)
2029 {
2030     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2031
2032         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2033                fore200e_irq_itoa(fore200e->irq), fore200e->name);
2034         return -EBUSY;
2035     }
2036
2037     printk(FORE200E "IRQ %s reserved for device %s\n",
2038            fore200e_irq_itoa(fore200e->irq), fore200e->name);
2039
2040 #ifdef FORE200E_USE_TASKLET
2041     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2042     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2043 #endif
2044
2045     fore200e->state = FORE200E_STATE_IRQ;
2046     return 0;
2047 }
2048
2049
2050 static int fore200e_get_esi(struct fore200e *fore200e)
2051 {
2052     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2053     int ok, i;
2054
2055     if (!prom)
2056         return -ENOMEM;
2057
2058     ok = fore200e->bus->prom_read(fore200e, prom);
2059     if (ok < 0) {
2060         kfree(prom);
2061         return -EBUSY;
2062     }
2063         
2064     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2065            fore200e->name, 
2066            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2067            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2068         
2069     for (i = 0; i < ESI_LEN; i++) {
2070         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2071     }
2072     
2073     kfree(prom);
2074
2075     return 0;
2076 }
2077
2078
2079 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2080 {
2081     int scheme, magn, nbr, size, i;
2082
2083     struct host_bsq* bsq;
2084     struct buffer*   buffer;
2085
2086     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2087         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2088
2089             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2090
2091             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2092             size = fore200e_rx_buf_size[ scheme ][ magn ];
2093
2094             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2095
2096             /* allocate the array of receive buffers */
2097             buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2098
2099             if (buffer == NULL)
2100                 return -ENOMEM;
2101
2102             bsq->freebuf = NULL;
2103
2104             for (i = 0; i < nbr; i++) {
2105
2106                 buffer[ i ].scheme = scheme;
2107                 buffer[ i ].magn   = magn;
2108 #ifdef FORE200E_BSQ_DEBUG
2109                 buffer[ i ].index  = i;
2110                 buffer[ i ].supplied = 0;
2111 #endif
2112
2113                 /* allocate the receive buffer body */
2114                 if (fore200e_chunk_alloc(fore200e,
2115                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2116                                          DMA_FROM_DEVICE) < 0) {
2117                     
2118                     while (i > 0)
2119                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2120                     kfree(buffer);
2121                     
2122                     return -ENOMEM;
2123                 }
2124
2125                 /* insert the buffer into the free buffer list */
2126                 buffer[ i ].next = bsq->freebuf;
2127                 bsq->freebuf = &buffer[ i ];
2128             }
2129             /* all the buffers are free, initially */
2130             bsq->freebuf_count = nbr;
2131
2132 #ifdef FORE200E_BSQ_DEBUG
2133             bsq_audit(3, bsq, scheme, magn);
2134 #endif
2135         }
2136     }
2137
2138     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2139     return 0;
2140 }
2141
2142
2143 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2144 {
2145     int scheme, magn, i;
2146
2147     struct host_bsq*     bsq;
2148     struct cp_bsq_entry __iomem * cp_entry;
2149
2150     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2151         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2152
2153             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2154
2155             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2156
2157             /* allocate and align the array of status words */
2158             if (fore200e->bus->dma_chunk_alloc(fore200e,
2159                                                &bsq->status,
2160                                                sizeof(enum status), 
2161                                                QUEUE_SIZE_BS,
2162                                                fore200e->bus->status_alignment) < 0) {
2163                 return -ENOMEM;
2164             }
2165
2166             /* allocate and align the array of receive buffer descriptors */
2167             if (fore200e->bus->dma_chunk_alloc(fore200e,
2168                                                &bsq->rbd_block,
2169                                                sizeof(struct rbd_block),
2170                                                QUEUE_SIZE_BS,
2171                                                fore200e->bus->descr_alignment) < 0) {
2172                 
2173                 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2174                 return -ENOMEM;
2175             }
2176             
2177             /* get the base address of the cp resident buffer supply queue entries */
2178             cp_entry = fore200e->virt_base + 
2179                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2180             
2181             /* fill the host resident and cp resident buffer supply queue entries */
2182             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2183                 
2184                 bsq->host_entry[ i ].status = 
2185                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2186                 bsq->host_entry[ i ].rbd_block =
2187                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2188                 bsq->host_entry[ i ].rbd_block_dma =
2189                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2190                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2191                 
2192                 *bsq->host_entry[ i ].status = STATUS_FREE;
2193                 
2194                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2195                                      &cp_entry[ i ].status_haddr);
2196             }
2197         }
2198     }
2199
2200     fore200e->state = FORE200E_STATE_INIT_BSQ;
2201     return 0;
2202 }
2203
2204
2205 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2206 {
2207     struct host_rxq*     rxq =  &fore200e->host_rxq;
2208     struct cp_rxq_entry __iomem * cp_entry;
2209     int i;
2210
2211     DPRINTK(2, "receive queue is being initialized\n");
2212
2213     /* allocate and align the array of status words */
2214     if (fore200e->bus->dma_chunk_alloc(fore200e,
2215                                        &rxq->status,
2216                                        sizeof(enum status), 
2217                                        QUEUE_SIZE_RX,
2218                                        fore200e->bus->status_alignment) < 0) {
2219         return -ENOMEM;
2220     }
2221
2222     /* allocate and align the array of receive PDU descriptors */
2223     if (fore200e->bus->dma_chunk_alloc(fore200e,
2224                                        &rxq->rpd,
2225                                        sizeof(struct rpd), 
2226                                        QUEUE_SIZE_RX,
2227                                        fore200e->bus->descr_alignment) < 0) {
2228         
2229         fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2230         return -ENOMEM;
2231     }
2232
2233     /* get the base address of the cp resident rx queue entries */
2234     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2235
2236     /* fill the host resident and cp resident rx entries */
2237     for (i=0; i < QUEUE_SIZE_RX; i++) {
2238         
2239         rxq->host_entry[ i ].status = 
2240                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2241         rxq->host_entry[ i ].rpd = 
2242                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2243         rxq->host_entry[ i ].rpd_dma = 
2244                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2245         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2246
2247         *rxq->host_entry[ i ].status = STATUS_FREE;
2248
2249         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2250                              &cp_entry[ i ].status_haddr);
2251
2252         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2253                              &cp_entry[ i ].rpd_haddr);
2254     }
2255
2256     /* set the head entry of the queue */
2257     rxq->head = 0;
2258
2259     fore200e->state = FORE200E_STATE_INIT_RXQ;
2260     return 0;
2261 }
2262
2263
2264 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2265 {
2266     struct host_txq*     txq =  &fore200e->host_txq;
2267     struct cp_txq_entry __iomem * cp_entry;
2268     int i;
2269
2270     DPRINTK(2, "transmit queue is being initialized\n");
2271
2272     /* allocate and align the array of status words */
2273     if (fore200e->bus->dma_chunk_alloc(fore200e,
2274                                        &txq->status,
2275                                        sizeof(enum status), 
2276                                        QUEUE_SIZE_TX,
2277                                        fore200e->bus->status_alignment) < 0) {
2278         return -ENOMEM;
2279     }
2280
2281     /* allocate and align the array of transmit PDU descriptors */
2282     if (fore200e->bus->dma_chunk_alloc(fore200e,
2283                                        &txq->tpd,
2284                                        sizeof(struct tpd), 
2285                                        QUEUE_SIZE_TX,
2286                                        fore200e->bus->descr_alignment) < 0) {
2287         
2288         fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2289         return -ENOMEM;
2290     }
2291
2292     /* get the base address of the cp resident tx queue entries */
2293     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2294
2295     /* fill the host resident and cp resident tx entries */
2296     for (i=0; i < QUEUE_SIZE_TX; i++) {
2297         
2298         txq->host_entry[ i ].status = 
2299                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2300         txq->host_entry[ i ].tpd = 
2301                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2302         txq->host_entry[ i ].tpd_dma  = 
2303                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2304         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2305
2306         *txq->host_entry[ i ].status = STATUS_FREE;
2307         
2308         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2309                              &cp_entry[ i ].status_haddr);
2310         
2311         /* although there is a one-to-one mapping of tx queue entries and tpds,
2312            we do not write here the DMA (physical) base address of each tpd into
2313            the related cp resident entry, because the cp relies on this write
2314            operation to detect that a new pdu has been submitted for tx */
2315     }
2316
2317     /* set the head and tail entries of the queue */
2318     txq->head = 0;
2319     txq->tail = 0;
2320
2321     fore200e->state = FORE200E_STATE_INIT_TXQ;
2322     return 0;
2323 }
2324
2325
2326 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2327 {
2328     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2329     struct cp_cmdq_entry __iomem * cp_entry;
2330     int i;
2331
2332     DPRINTK(2, "command queue is being initialized\n");
2333
2334     /* allocate and align the array of status words */
2335     if (fore200e->bus->dma_chunk_alloc(fore200e,
2336                                        &cmdq->status,
2337                                        sizeof(enum status), 
2338                                        QUEUE_SIZE_CMD,
2339                                        fore200e->bus->status_alignment) < 0) {
2340         return -ENOMEM;
2341     }
2342     
2343     /* get the base address of the cp resident cmd queue entries */
2344     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2345
2346     /* fill the host resident and cp resident cmd entries */
2347     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2348         
2349         cmdq->host_entry[ i ].status   = 
2350                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2351         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2352
2353         *cmdq->host_entry[ i ].status = STATUS_FREE;
2354
2355         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2356                              &cp_entry[ i ].status_haddr);
2357     }
2358
2359     /* set the head entry of the queue */
2360     cmdq->head = 0;
2361
2362     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2363     return 0;
2364 }
2365
2366
2367 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2368                                     enum buffer_scheme scheme,
2369                                     enum buffer_magn magn, int queue_length,
2370                                     int pool_size, int supply_blksize)
2371 {
2372     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2373
2374     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2375     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2376     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2377     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2378 }
2379
2380
2381 static int fore200e_initialize(struct fore200e *fore200e)
2382 {
2383     struct cp_queues __iomem * cpq;
2384     int               ok, scheme, magn;
2385
2386     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2387
2388     mutex_init(&fore200e->rate_mtx);
2389     spin_lock_init(&fore200e->q_lock);
2390
2391     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2392
2393     /* enable cp to host interrupts */
2394     fore200e->bus->write(1, &cpq->imask);
2395
2396     if (fore200e->bus->irq_enable)
2397         fore200e->bus->irq_enable(fore200e);
2398     
2399     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2400
2401     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2402     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2403     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2404
2405     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2406     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2407
2408     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2409         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2410             fore200e_param_bs_queue(fore200e, scheme, magn,
2411                                     QUEUE_SIZE_BS, 
2412                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2413                                     RBD_BLK_SIZE);
2414
2415     /* issue the initialize command */
2416     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2417     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2418
2419     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2420     if (ok == 0) {
2421         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2422         return -ENODEV;
2423     }
2424
2425     printk(FORE200E "device %s initialized\n", fore200e->name);
2426
2427     fore200e->state = FORE200E_STATE_INITIALIZE;
2428     return 0;
2429 }
2430
2431
2432 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2433 {
2434     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2435
2436 #if 0
2437     printk("%c", c);
2438 #endif
2439     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2440 }
2441
2442
2443 static int fore200e_monitor_getc(struct fore200e *fore200e)
2444 {
2445     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2446     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2447     int                c;
2448
2449     while (time_before(jiffies, timeout)) {
2450
2451         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2452
2453         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2454
2455             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2456 #if 0
2457             printk("%c", c & 0xFF);
2458 #endif
2459             return c & 0xFF;
2460         }
2461     }
2462
2463     return -1;
2464 }
2465
2466
2467 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2468 {
2469     while (*str) {
2470
2471         /* the i960 monitor doesn't accept any new character if it has something to say */
2472         while (fore200e_monitor_getc(fore200e) >= 0);
2473         
2474         fore200e_monitor_putc(fore200e, *str++);
2475     }
2476
2477     while (fore200e_monitor_getc(fore200e) >= 0);
2478 }
2479
2480 #ifdef __LITTLE_ENDIAN
2481 #define FW_EXT ".bin"
2482 #else
2483 #define FW_EXT "_ecd.bin2"
2484 #endif
2485
2486 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2487 {
2488     const struct firmware *firmware;
2489     struct device *device;
2490     const struct fw_header *fw_header;
2491     const __le32 *fw_data;
2492     u32 fw_size;
2493     u32 __iomem *load_addr;
2494     char buf[48];
2495     int err = -ENODEV;
2496
2497     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2498         device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2499 #ifdef CONFIG_SBUS
2500     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2501         device = &((struct platform_device *) fore200e->bus_dev)->dev;
2502 #endif
2503     else
2504         return err;
2505
2506     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2507     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2508         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2509         return err;
2510     }
2511
2512     fw_data = (const __le32 *)firmware->data;
2513     fw_size = firmware->size / sizeof(u32);
2514     fw_header = (const struct fw_header *)firmware->data;
2515     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2516
2517     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2518             fore200e->name, load_addr, fw_size);
2519
2520     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2521         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2522         goto release;
2523     }
2524
2525     for (; fw_size--; fw_data++, load_addr++)
2526         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2527
2528     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2529
2530 #if defined(__sparc_v9__)
2531     /* reported to be required by SBA cards on some sparc64 hosts */
2532     fore200e_spin(100);
2533 #endif
2534
2535     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2536     fore200e_monitor_puts(fore200e, buf);
2537
2538     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2539         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2540         goto release;
2541     }
2542
2543     printk(FORE200E "device %s firmware started\n", fore200e->name);
2544
2545     fore200e->state = FORE200E_STATE_START_FW;
2546     err = 0;
2547
2548 release:
2549     release_firmware(firmware);
2550     return err;
2551 }
2552
2553
2554 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2555 {
2556     struct atm_dev* atm_dev;
2557
2558     DPRINTK(2, "device %s being registered\n", fore200e->name);
2559
2560     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2561                                -1, NULL);
2562     if (atm_dev == NULL) {
2563         printk(FORE200E "unable to register device %s\n", fore200e->name);
2564         return -ENODEV;
2565     }
2566
2567     atm_dev->dev_data = fore200e;
2568     fore200e->atm_dev = atm_dev;
2569
2570     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2571     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2572
2573     fore200e->available_cell_rate = ATM_OC3_PCR;
2574
2575     fore200e->state = FORE200E_STATE_REGISTER;
2576     return 0;
2577 }
2578
2579
2580 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2581 {
2582     if (fore200e_register(fore200e, parent) < 0)
2583         return -ENODEV;
2584     
2585     if (fore200e->bus->configure(fore200e) < 0)
2586         return -ENODEV;
2587
2588     if (fore200e->bus->map(fore200e) < 0)
2589         return -ENODEV;
2590
2591     if (fore200e_reset(fore200e, 1) < 0)
2592         return -ENODEV;
2593
2594     if (fore200e_load_and_start_fw(fore200e) < 0)
2595         return -ENODEV;
2596
2597     if (fore200e_initialize(fore200e) < 0)
2598         return -ENODEV;
2599
2600     if (fore200e_init_cmd_queue(fore200e) < 0)
2601         return -ENOMEM;
2602
2603     if (fore200e_init_tx_queue(fore200e) < 0)
2604         return -ENOMEM;
2605
2606     if (fore200e_init_rx_queue(fore200e) < 0)
2607         return -ENOMEM;
2608
2609     if (fore200e_init_bs_queue(fore200e) < 0)
2610         return -ENOMEM;
2611
2612     if (fore200e_alloc_rx_buf(fore200e) < 0)
2613         return -ENOMEM;
2614
2615     if (fore200e_get_esi(fore200e) < 0)
2616         return -EIO;
2617
2618     if (fore200e_irq_request(fore200e) < 0)
2619         return -EBUSY;
2620
2621     fore200e_supply(fore200e);
2622
2623     /* all done, board initialization is now complete */
2624     fore200e->state = FORE200E_STATE_COMPLETE;
2625     return 0;
2626 }
2627
2628 #ifdef CONFIG_SBUS
2629 static const struct of_device_id fore200e_sba_match[];
2630 static int fore200e_sba_probe(struct platform_device *op)
2631 {
2632         const struct of_device_id *match;
2633         const struct fore200e_bus *bus;
2634         struct fore200e *fore200e;
2635         static int index = 0;
2636         int err;
2637
2638         match = of_match_device(fore200e_sba_match, &op->dev);
2639         if (!match)
2640                 return -EINVAL;
2641         bus = match->data;
2642
2643         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2644         if (!fore200e)
2645                 return -ENOMEM;
2646
2647         fore200e->bus = bus;
2648         fore200e->bus_dev = op;
2649         fore200e->irq = op->archdata.irqs[0];
2650         fore200e->phys_base = op->resource[0].start;
2651
2652         sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2653
2654         err = fore200e_init(fore200e, &op->dev);
2655         if (err < 0) {
2656                 fore200e_shutdown(fore200e);
2657                 kfree(fore200e);
2658                 return err;
2659         }
2660
2661         index++;
2662         dev_set_drvdata(&op->dev, fore200e);
2663
2664         return 0;
2665 }
2666
2667 static int fore200e_sba_remove(struct platform_device *op)
2668 {
2669         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2670
2671         fore200e_shutdown(fore200e);
2672         kfree(fore200e);
2673
2674         return 0;
2675 }
2676
2677 static const struct of_device_id fore200e_sba_match[] = {
2678         {
2679                 .name = SBA200E_PROM_NAME,
2680                 .data = (void *) &fore200e_bus[1],
2681         },
2682         {},
2683 };
2684 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2685
2686 static struct platform_driver fore200e_sba_driver = {
2687         .driver = {
2688                 .name = "fore_200e",
2689                 .of_match_table = fore200e_sba_match,
2690         },
2691         .probe          = fore200e_sba_probe,
2692         .remove         = fore200e_sba_remove,
2693 };
2694 #endif
2695
2696 #ifdef CONFIG_PCI
2697 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2698                                const struct pci_device_id *pci_ent)
2699 {
2700     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2701     struct fore200e* fore200e;
2702     int err = 0;
2703     static int index = 0;
2704
2705     if (pci_enable_device(pci_dev)) {
2706         err = -EINVAL;
2707         goto out;
2708     }
2709
2710     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2711         err = -EINVAL;
2712         goto out;
2713     }
2714     
2715     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2716     if (fore200e == NULL) {
2717         err = -ENOMEM;
2718         goto out_disable;
2719     }
2720
2721     fore200e->bus       = bus;
2722     fore200e->bus_dev   = pci_dev;    
2723     fore200e->irq       = pci_dev->irq;
2724     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2725
2726     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2727
2728     pci_set_master(pci_dev);
2729
2730     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2731            fore200e->bus->model_name, 
2732            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2733
2734     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2735
2736     err = fore200e_init(fore200e, &pci_dev->dev);
2737     if (err < 0) {
2738         fore200e_shutdown(fore200e);
2739         goto out_free;
2740     }
2741
2742     ++index;
2743     pci_set_drvdata(pci_dev, fore200e);
2744
2745 out:
2746     return err;
2747
2748 out_free:
2749     kfree(fore200e);
2750 out_disable:
2751     pci_disable_device(pci_dev);
2752     goto out;
2753 }
2754
2755
2756 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2757 {
2758     struct fore200e *fore200e;
2759
2760     fore200e = pci_get_drvdata(pci_dev);
2761
2762     fore200e_shutdown(fore200e);
2763     kfree(fore200e);
2764     pci_disable_device(pci_dev);
2765 }
2766
2767
2768 static const struct pci_device_id fore200e_pca_tbl[] = {
2769     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2770       0, 0, (unsigned long) &fore200e_bus[0] },
2771     { 0, }
2772 };
2773
2774 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2775
2776 static struct pci_driver fore200e_pca_driver = {
2777     .name =     "fore_200e",
2778     .probe =    fore200e_pca_detect,
2779     .remove =   fore200e_pca_remove_one,
2780     .id_table = fore200e_pca_tbl,
2781 };
2782 #endif
2783
2784 static int __init fore200e_module_init(void)
2785 {
2786         int err = 0;
2787
2788         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2789
2790 #ifdef CONFIG_SBUS
2791         err = platform_driver_register(&fore200e_sba_driver);
2792         if (err)
2793                 return err;
2794 #endif
2795
2796 #ifdef CONFIG_PCI
2797         err = pci_register_driver(&fore200e_pca_driver);
2798 #endif
2799
2800 #ifdef CONFIG_SBUS
2801         if (err)
2802                 platform_driver_unregister(&fore200e_sba_driver);
2803 #endif
2804
2805         return err;
2806 }
2807
2808 static void __exit fore200e_module_cleanup(void)
2809 {
2810 #ifdef CONFIG_PCI
2811         pci_unregister_driver(&fore200e_pca_driver);
2812 #endif
2813 #ifdef CONFIG_SBUS
2814         platform_driver_unregister(&fore200e_sba_driver);
2815 #endif
2816 }
2817
2818 static int
2819 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2820 {
2821     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2822     struct fore200e_vcc* fore200e_vcc;
2823     struct atm_vcc*      vcc;
2824     int                  i, len, left = *pos;
2825     unsigned long        flags;
2826
2827     if (!left--) {
2828
2829         if (fore200e_getstats(fore200e) < 0)
2830             return -EIO;
2831
2832         len = sprintf(page,"\n"
2833                        " device:\n"
2834                        "   internal name:\t\t%s\n", fore200e->name);
2835
2836         /* print bus-specific information */
2837         if (fore200e->bus->proc_read)
2838             len += fore200e->bus->proc_read(fore200e, page + len);
2839         
2840         len += sprintf(page + len,
2841                 "   interrupt line:\t\t%s\n"
2842                 "   physical base address:\t0x%p\n"
2843                 "   virtual base address:\t0x%p\n"
2844                 "   factory address (ESI):\t%pM\n"
2845                 "   board serial number:\t\t%d\n\n",
2846                 fore200e_irq_itoa(fore200e->irq),
2847                 (void*)fore200e->phys_base,
2848                 fore200e->virt_base,
2849                 fore200e->esi,
2850                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2851
2852         return len;
2853     }
2854
2855     if (!left--)
2856         return sprintf(page,
2857                        "   free small bufs, scheme 1:\t%d\n"
2858                        "   free large bufs, scheme 1:\t%d\n"
2859                        "   free small bufs, scheme 2:\t%d\n"
2860                        "   free large bufs, scheme 2:\t%d\n",
2861                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2862                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2863                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2865
2866     if (!left--) {
2867         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2868
2869         len = sprintf(page,"\n\n"
2870                       " cell processor:\n"
2871                       "   heartbeat state:\t\t");
2872         
2873         if (hb >> 16 != 0xDEAD)
2874             len += sprintf(page + len, "0x%08x\n", hb);
2875         else
2876             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2877
2878         return len;
2879     }
2880
2881     if (!left--) {
2882         static const char* media_name[] = {
2883             "unshielded twisted pair",
2884             "multimode optical fiber ST",
2885             "multimode optical fiber SC",
2886             "single-mode optical fiber ST",
2887             "single-mode optical fiber SC",
2888             "unknown"
2889         };
2890
2891         static const char* oc3_mode[] = {
2892             "normal operation",
2893             "diagnostic loopback",
2894             "line loopback",
2895             "unknown"
2896         };
2897
2898         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2899         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2900         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2901         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2902         u32 oc3_index;
2903
2904         if (media_index > 4)
2905                 media_index = 5;
2906         
2907         switch (fore200e->loop_mode) {
2908             case ATM_LM_NONE:    oc3_index = 0;
2909                                  break;
2910             case ATM_LM_LOC_PHY: oc3_index = 1;
2911                                  break;
2912             case ATM_LM_RMT_PHY: oc3_index = 2;
2913                                  break;
2914             default:             oc3_index = 3;
2915         }
2916
2917         return sprintf(page,
2918                        "   firmware release:\t\t%d.%d.%d\n"
2919                        "   monitor release:\t\t%d.%d\n"
2920                        "   media type:\t\t\t%s\n"
2921                        "   OC-3 revision:\t\t0x%x\n"
2922                        "   OC-3 mode:\t\t\t%s",
2923                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2924                        mon960_release >> 16, mon960_release << 16 >> 16,
2925                        media_name[ media_index ],
2926                        oc3_revision,
2927                        oc3_mode[ oc3_index ]);
2928     }
2929
2930     if (!left--) {
2931         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2932
2933         return sprintf(page,
2934                        "\n\n"
2935                        " monitor:\n"
2936                        "   version number:\t\t%d\n"
2937                        "   boot status word:\t\t0x%08x\n",
2938                        fore200e->bus->read(&cp_monitor->mon_version),
2939                        fore200e->bus->read(&cp_monitor->bstat));
2940     }
2941
2942     if (!left--)
2943         return sprintf(page,
2944                        "\n"
2945                        " device statistics:\n"
2946                        "  4b5b:\n"
2947                        "     crc_header_errors:\t\t%10u\n"
2948                        "     framing_errors:\t\t%10u\n",
2949                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2950                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2951     
2952     if (!left--)
2953         return sprintf(page, "\n"
2954                        "  OC-3:\n"
2955                        "     section_bip8_errors:\t%10u\n"
2956                        "     path_bip8_errors:\t\t%10u\n"
2957                        "     line_bip24_errors:\t\t%10u\n"
2958                        "     line_febe_errors:\t\t%10u\n"
2959                        "     path_febe_errors:\t\t%10u\n"
2960                        "     corr_hcs_errors:\t\t%10u\n"
2961                        "     ucorr_hcs_errors:\t\t%10u\n",
2962                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2963                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2964                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2965                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2966                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2967                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2968                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2969
2970     if (!left--)
2971         return sprintf(page,"\n"
2972                        "   ATM:\t\t\t\t     cells\n"
2973                        "     TX:\t\t\t%10u\n"
2974                        "     RX:\t\t\t%10u\n"
2975                        "     vpi out of range:\t\t%10u\n"
2976                        "     vpi no conn:\t\t%10u\n"
2977                        "     vci out of range:\t\t%10u\n"
2978                        "     vci no conn:\t\t%10u\n",
2979                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2980                        be32_to_cpu(fore200e->stats->atm.cells_received),
2981                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2982                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2983                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2984                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2985     
2986     if (!left--)
2987         return sprintf(page,"\n"
2988                        "   AAL0:\t\t\t     cells\n"
2989                        "     TX:\t\t\t%10u\n"
2990                        "     RX:\t\t\t%10u\n"
2991                        "     dropped:\t\t\t%10u\n",
2992                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2993                        be32_to_cpu(fore200e->stats->aal0.cells_received),
2994                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2995     
2996     if (!left--)
2997         return sprintf(page,"\n"
2998                        "   AAL3/4:\n"
2999                        "     SAR sublayer:\t\t     cells\n"
3000                        "       TX:\t\t\t%10u\n"
3001                        "       RX:\t\t\t%10u\n"
3002                        "       dropped:\t\t\t%10u\n"
3003                        "       CRC errors:\t\t%10u\n"
3004                        "       protocol errors:\t\t%10u\n\n"
3005                        "     CS  sublayer:\t\t      PDUs\n"
3006                        "       TX:\t\t\t%10u\n"
3007                        "       RX:\t\t\t%10u\n"
3008                        "       dropped:\t\t\t%10u\n"
3009                        "       protocol errors:\t\t%10u\n",
3010                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3011                        be32_to_cpu(fore200e->stats->aal34.cells_received),
3012                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3013                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3014                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3015                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3016                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3017                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3018                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3019     
3020     if (!left--)
3021         return sprintf(page,"\n"
3022                        "   AAL5:\n"
3023                        "     SAR sublayer:\t\t     cells\n"
3024                        "       TX:\t\t\t%10u\n"
3025                        "       RX:\t\t\t%10u\n"
3026                        "       dropped:\t\t\t%10u\n"
3027                        "       congestions:\t\t%10u\n\n"
3028                        "     CS  sublayer:\t\t      PDUs\n"
3029                        "       TX:\t\t\t%10u\n"
3030                        "       RX:\t\t\t%10u\n"
3031                        "       dropped:\t\t\t%10u\n"
3032                        "       CRC errors:\t\t%10u\n"
3033                        "       protocol errors:\t\t%10u\n",
3034                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3035                        be32_to_cpu(fore200e->stats->aal5.cells_received),
3036                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3037                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3038                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3039                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3040                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3041                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3042                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3043     
3044     if (!left--)
3045         return sprintf(page,"\n"
3046                        "   AUX:\t\t       allocation failures\n"
3047                        "     small b1:\t\t\t%10u\n"
3048                        "     large b1:\t\t\t%10u\n"
3049                        "     small b2:\t\t\t%10u\n"
3050                        "     large b2:\t\t\t%10u\n"
3051                        "     RX PDUs:\t\t\t%10u\n"
3052                        "     TX PDUs:\t\t\t%10lu\n",
3053                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3054                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3055                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3056                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3057                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3058                        fore200e->tx_sat);
3059     
3060     if (!left--)
3061         return sprintf(page,"\n"
3062                        " receive carrier:\t\t\t%s\n",
3063                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3064     
3065     if (!left--) {
3066         return sprintf(page,"\n"
3067                        " VCCs:\n  address   VPI VCI   AAL "
3068                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3069     }
3070
3071     for (i = 0; i < NBR_CONNECT; i++) {
3072
3073         vcc = fore200e->vc_map[i].vcc;
3074
3075         if (vcc == NULL)
3076             continue;
3077
3078         spin_lock_irqsave(&fore200e->q_lock, flags);
3079
3080         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3081
3082             fore200e_vcc = FORE200E_VCC(vcc);
3083             ASSERT(fore200e_vcc);
3084
3085             len = sprintf(page,
3086                           "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3087                           vcc,
3088                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3089                           fore200e_vcc->tx_pdu,
3090                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3091                           fore200e_vcc->tx_max_pdu,
3092                           fore200e_vcc->rx_pdu,
3093                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3094                           fore200e_vcc->rx_max_pdu);
3095
3096             spin_unlock_irqrestore(&fore200e->q_lock, flags);
3097             return len;
3098         }
3099
3100         spin_unlock_irqrestore(&fore200e->q_lock, flags);
3101     }
3102     
3103     return 0;
3104 }
3105
3106 module_init(fore200e_module_init);
3107 module_exit(fore200e_module_cleanup);
3108
3109
3110 static const struct atmdev_ops fore200e_ops =
3111 {
3112         .open       = fore200e_open,
3113         .close      = fore200e_close,
3114         .ioctl      = fore200e_ioctl,
3115         .getsockopt = fore200e_getsockopt,
3116         .setsockopt = fore200e_setsockopt,
3117         .send       = fore200e_send,
3118         .change_qos = fore200e_change_qos,
3119         .proc_read  = fore200e_proc_read,
3120         .owner      = THIS_MODULE
3121 };
3122
3123
3124 static const struct fore200e_bus fore200e_bus[] = {
3125 #ifdef CONFIG_PCI
3126     { "PCA-200E", "pca200e", 32, 4, 32, 
3127       fore200e_pca_read,
3128       fore200e_pca_write,
3129       fore200e_pca_dma_map,
3130       fore200e_pca_dma_unmap,
3131       fore200e_pca_dma_sync_for_cpu,
3132       fore200e_pca_dma_sync_for_device,
3133       fore200e_pca_dma_chunk_alloc,
3134       fore200e_pca_dma_chunk_free,
3135       fore200e_pca_configure,
3136       fore200e_pca_map,
3137       fore200e_pca_reset,
3138       fore200e_pca_prom_read,
3139       fore200e_pca_unmap,
3140       NULL,
3141       fore200e_pca_irq_check,
3142       fore200e_pca_irq_ack,
3143       fore200e_pca_proc_read,
3144     },
3145 #endif
3146 #ifdef CONFIG_SBUS
3147     { "SBA-200E", "sba200e", 32, 64, 32,
3148       fore200e_sba_read,
3149       fore200e_sba_write,
3150       fore200e_sba_dma_map,
3151       fore200e_sba_dma_unmap,
3152       fore200e_sba_dma_sync_for_cpu,
3153       fore200e_sba_dma_sync_for_device,
3154       fore200e_sba_dma_chunk_alloc,
3155       fore200e_sba_dma_chunk_free,
3156       fore200e_sba_configure,
3157       fore200e_sba_map,
3158       fore200e_sba_reset,
3159       fore200e_sba_prom_read,
3160       fore200e_sba_unmap,
3161       fore200e_sba_irq_enable,
3162       fore200e_sba_irq_check,
3163       fore200e_sba_irq_ack,
3164       fore200e_sba_proc_read,
3165     },
3166 #endif
3167     {}
3168 };
3169
3170 MODULE_LICENSE("GPL");
3171 #ifdef CONFIG_PCI
3172 #ifdef __LITTLE_ENDIAN__
3173 MODULE_FIRMWARE("pca200e.bin");
3174 #else
3175 MODULE_FIRMWARE("pca200e_ecd.bin2");
3176 #endif
3177 #endif /* CONFIG_PCI */
3178 #ifdef CONFIG_SBUS
3179 MODULE_FIRMWARE("sba200e_ecd.bin2");
3180 #endif