2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
131 fis[13] = tf->hob_nsect;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
230 tf->protocol = ATA_PROT_DMA;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289 static const struct ata_xfer_ent {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
310 * Matching XFER_* value, 0 if no match found.
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 const struct ata_xfer_ent *ent;
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 const struct ata_xfer_ent *ent;
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask)
383 static const char * const xfer_mode_str[] = {
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
413 static const char *sata_spd_string(unsigned int spd)
415 static const char * const spd_str[] = {
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
422 return spd_str[spd - 1];
425 void ata_dev_disable(struct ata_device *dev)
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
454 struct ata_ioports *ioaddr = &ap->ioaddr;
457 ap->ops->dev_select(ap, device);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
498 struct ata_ioports *ioaddr = &ap->ioaddr;
501 ap->ops->dev_select(ap, device);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
534 static unsigned int ata_devchk(struct ata_port *ap,
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
606 struct ata_taskfile tf;
610 ap->ops->dev_select(ap, device);
612 memset(&tf, 0, sizeof(tf));
614 ap->ops->tf_read(ap, &tf);
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
625 else if ((device == 0) && (err == 0x81))
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
633 if (class == ATA_DEV_UNKNOWN)
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
695 ata_id_string(id, s, ofs, len - 1);
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
703 static u64 ata_id_n_sectors(const u16 *id)
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
709 return ata_id_u32(id, 60);
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
714 return id[1] * id[3] * id[6];
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
723 * This function performs no actual function.
725 * May be used as the dev_select() entry in ata_port_operations.
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
744 * May be used as the dev_select() entry in ata_port_operations.
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
755 tmp = ATA_DEVICE_OBS;
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
762 outb(tmp, ap->ioaddr.device_addr);
764 ata_pause(ap); /* needed; also flushes, for mmio */
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
796 ap->ops->dev_select(ap, device);
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
816 static inline void ata_dump_id(const u16 *id)
818 DPRINTK("49==0x%04x "
828 DPRINTK("80==0x%04x "
838 DPRINTK("88==0x%04x "
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
851 * FIXME: pre IDE drive timing (do we care ?).
859 static unsigned int ata_id_xfermask(const u16 *id)
861 unsigned int pio_mask, mwdma_mask, udma_mask;
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
873 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
875 /* But wait.. there's more. Design your standards by
876 * committee and you too can get a free iordy field to
877 * process. However its the speeds not the modes that
878 * are supported... Note drivers using the timing API
879 * will get this right anyway
883 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
885 if (ata_id_is_cfa(id)) {
887 * Process compact flash extended modes
889 int pio = id[163] & 0x7;
890 int dma = (id[163] >> 3) & 7;
893 pio_mask |= (1 << 5);
895 pio_mask |= (1 << 6);
897 mwdma_mask |= (1 << 3);
899 mwdma_mask |= (1 << 4);
903 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
904 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
906 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
910 * ata_port_queue_task - Queue port_task
911 * @ap: The ata_port to queue port_task for
912 * @fn: workqueue function to be scheduled
913 * @data: data value to pass to workqueue function
914 * @delay: delay time for workqueue function
916 * Schedule @fn(@data) for execution after @delay jiffies using
917 * port_task. There is one port_task per port and it's the
918 * user(low level driver)'s responsibility to make sure that only
919 * one task is active at any given time.
921 * libata core layer takes care of synchronization between
922 * port_task and EH. ata_port_queue_task() may be ignored for EH
926 * Inherited from caller.
928 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
936 PREPARE_WORK(&ap->port_task, fn, data);
939 rc = queue_work(ata_wq, &ap->port_task);
941 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
943 /* rc == 0 means that another user is using port task */
948 * ata_port_flush_task - Flush port_task
949 * @ap: The ata_port to flush port_task for
951 * After this function completes, port_task is guranteed not to
952 * be running or scheduled.
955 * Kernel thread context (may sleep)
957 void ata_port_flush_task(struct ata_port *ap)
963 spin_lock_irqsave(ap->lock, flags);
964 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
965 spin_unlock_irqrestore(ap->lock, flags);
967 DPRINTK("flush #1\n");
968 flush_workqueue(ata_wq);
971 * At this point, if a task is running, it's guaranteed to see
972 * the FLUSH flag; thus, it will never queue pio tasks again.
975 if (!cancel_delayed_work(&ap->port_task)) {
977 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
979 flush_workqueue(ata_wq);
982 spin_lock_irqsave(ap->lock, flags);
983 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
984 spin_unlock_irqrestore(ap->lock, flags);
987 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
990 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
992 struct completion *waiting = qc->private_data;
998 * ata_exec_internal - execute libata internal command
999 * @dev: Device to which the command is sent
1000 * @tf: Taskfile registers for the command and the result
1001 * @cdb: CDB for packet command
1002 * @dma_dir: Data tranfer direction of the command
1003 * @buf: Data buffer of the command
1004 * @buflen: Length of data buffer
1006 * Executes libata internal command with timeout. @tf contains
1007 * command on entry and result on return. Timeout and error
1008 * conditions are reported via return value. No recovery action
1009 * is taken after a command times out. It's caller's duty to
1010 * clean up after timeout.
1013 * None. Should be called with kernel context, might sleep.
1016 * Zero on success, AC_ERR_* mask on failure
1018 unsigned ata_exec_internal(struct ata_device *dev,
1019 struct ata_taskfile *tf, const u8 *cdb,
1020 int dma_dir, void *buf, unsigned int buflen)
1022 struct ata_port *ap = dev->ap;
1023 u8 command = tf->command;
1024 struct ata_queued_cmd *qc;
1025 unsigned int tag, preempted_tag;
1026 u32 preempted_sactive, preempted_qc_active;
1027 DECLARE_COMPLETION_ONSTACK(wait);
1028 unsigned long flags;
1029 unsigned int err_mask;
1032 spin_lock_irqsave(ap->lock, flags);
1034 /* no internal command while frozen */
1035 if (ap->pflags & ATA_PFLAG_FROZEN) {
1036 spin_unlock_irqrestore(ap->lock, flags);
1037 return AC_ERR_SYSTEM;
1040 /* initialize internal qc */
1042 /* XXX: Tag 0 is used for drivers with legacy EH as some
1043 * drivers choke if any other tag is given. This breaks
1044 * ata_tag_internal() test for those drivers. Don't use new
1045 * EH stuff without converting to it.
1047 if (ap->ops->error_handler)
1048 tag = ATA_TAG_INTERNAL;
1052 if (test_and_set_bit(tag, &ap->qc_allocated))
1054 qc = __ata_qc_from_tag(ap, tag);
1062 preempted_tag = ap->active_tag;
1063 preempted_sactive = ap->sactive;
1064 preempted_qc_active = ap->qc_active;
1065 ap->active_tag = ATA_TAG_POISON;
1069 /* prepare & issue qc */
1072 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1073 qc->flags |= ATA_QCFLAG_RESULT_TF;
1074 qc->dma_dir = dma_dir;
1075 if (dma_dir != DMA_NONE) {
1076 ata_sg_init_one(qc, buf, buflen);
1077 qc->nsect = buflen / ATA_SECT_SIZE;
1080 qc->private_data = &wait;
1081 qc->complete_fn = ata_qc_complete_internal;
1085 spin_unlock_irqrestore(ap->lock, flags);
1087 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1089 ata_port_flush_task(ap);
1092 spin_lock_irqsave(ap->lock, flags);
1094 /* We're racing with irq here. If we lose, the
1095 * following test prevents us from completing the qc
1096 * twice. If we win, the port is frozen and will be
1097 * cleaned up by ->post_internal_cmd().
1099 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1100 qc->err_mask |= AC_ERR_TIMEOUT;
1102 if (ap->ops->error_handler)
1103 ata_port_freeze(ap);
1105 ata_qc_complete(qc);
1107 if (ata_msg_warn(ap))
1108 ata_dev_printk(dev, KERN_WARNING,
1109 "qc timeout (cmd 0x%x)\n", command);
1112 spin_unlock_irqrestore(ap->lock, flags);
1115 /* do post_internal_cmd */
1116 if (ap->ops->post_internal_cmd)
1117 ap->ops->post_internal_cmd(qc);
1119 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1120 if (ata_msg_warn(ap))
1121 ata_dev_printk(dev, KERN_WARNING,
1122 "zero err_mask for failed "
1123 "internal command, assuming AC_ERR_OTHER\n");
1124 qc->err_mask |= AC_ERR_OTHER;
1128 spin_lock_irqsave(ap->lock, flags);
1130 *tf = qc->result_tf;
1131 err_mask = qc->err_mask;
1134 ap->active_tag = preempted_tag;
1135 ap->sactive = preempted_sactive;
1136 ap->qc_active = preempted_qc_active;
1138 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1139 * Until those drivers are fixed, we detect the condition
1140 * here, fail the command with AC_ERR_SYSTEM and reenable the
1143 * Note that this doesn't change any behavior as internal
1144 * command failure results in disabling the device in the
1145 * higher layer for LLDDs without new reset/EH callbacks.
1147 * Kill the following code as soon as those drivers are fixed.
1149 if (ap->flags & ATA_FLAG_DISABLED) {
1150 err_mask |= AC_ERR_SYSTEM;
1154 spin_unlock_irqrestore(ap->lock, flags);
1160 * ata_do_simple_cmd - execute simple internal command
1161 * @dev: Device to which the command is sent
1162 * @cmd: Opcode to execute
1164 * Execute a 'simple' command, that only consists of the opcode
1165 * 'cmd' itself, without filling any other registers
1168 * Kernel thread context (may sleep).
1171 * Zero on success, AC_ERR_* mask on failure
1173 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1175 struct ata_taskfile tf;
1177 ata_tf_init(dev, &tf);
1180 tf.flags |= ATA_TFLAG_DEVICE;
1181 tf.protocol = ATA_PROT_NODATA;
1183 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1187 * ata_pio_need_iordy - check if iordy needed
1190 * Check if the current speed of the device requires IORDY. Used
1191 * by various controllers for chip configuration.
1194 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1197 int speed = adev->pio_mode - XFER_PIO_0;
1204 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1206 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1207 pio = adev->id[ATA_ID_EIDE_PIO];
1208 /* Is the speed faster than the drive allows non IORDY ? */
1210 /* This is cycle times not frequency - watch the logic! */
1211 if (pio > 240) /* PIO2 is 240nS per cycle */
1220 * ata_dev_read_id - Read ID data from the specified device
1221 * @dev: target device
1222 * @p_class: pointer to class of the target device (may be changed)
1223 * @post_reset: is this read ID post-reset?
1224 * @id: buffer to read IDENTIFY data into
1226 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1227 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1228 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1229 * for pre-ATA4 drives.
1232 * Kernel thread context (may sleep)
1235 * 0 on success, -errno otherwise.
1237 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1238 int post_reset, u16 *id)
1240 struct ata_port *ap = dev->ap;
1241 unsigned int class = *p_class;
1242 struct ata_taskfile tf;
1243 unsigned int err_mask = 0;
1247 if (ata_msg_ctl(ap))
1248 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1249 __FUNCTION__, ap->id, dev->devno);
1251 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1254 ata_tf_init(dev, &tf);
1258 tf.command = ATA_CMD_ID_ATA;
1261 tf.command = ATA_CMD_ID_ATAPI;
1265 reason = "unsupported class";
1269 tf.protocol = ATA_PROT_PIO;
1271 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1272 id, sizeof(id[0]) * ATA_ID_WORDS);
1275 reason = "I/O error";
1279 swap_buf_le16(id, ATA_ID_WORDS);
1283 reason = "device reports illegal type";
1285 if (class == ATA_DEV_ATA) {
1286 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1289 if (ata_id_is_ata(id))
1293 if (post_reset && class == ATA_DEV_ATA) {
1295 * The exact sequence expected by certain pre-ATA4 drives is:
1298 * INITIALIZE DEVICE PARAMETERS
1300 * Some drives were very specific about that exact sequence.
1302 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1303 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1306 reason = "INIT_DEV_PARAMS failed";
1310 /* current CHS translation info (id[53-58]) might be
1311 * changed. reread the identify device info.
1323 if (ata_msg_warn(ap))
1324 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1325 "(%s, err_mask=0x%x)\n", reason, err_mask);
1329 static inline u8 ata_dev_knobble(struct ata_device *dev)
1331 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1334 static void ata_dev_config_ncq(struct ata_device *dev,
1335 char *desc, size_t desc_sz)
1337 struct ata_port *ap = dev->ap;
1338 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1340 if (!ata_id_has_ncq(dev->id)) {
1345 if (ap->flags & ATA_FLAG_NCQ) {
1346 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1347 dev->flags |= ATA_DFLAG_NCQ;
1350 if (hdepth >= ddepth)
1351 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1353 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1356 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1360 if (ap->scsi_host) {
1361 unsigned int len = 0;
1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
1364 len = max(len, ap->device[i].cdb_len);
1366 ap->scsi_host->max_cmd_len = len;
1371 * ata_dev_configure - Configure the specified ATA/ATAPI device
1372 * @dev: Target device to configure
1373 * @print_info: Enable device info printout
1375 * Configure @dev according to @dev->id. Generic and low-level
1376 * driver specific fixups are also applied.
1379 * Kernel thread context (may sleep)
1382 * 0 on success, -errno otherwise
1384 int ata_dev_configure(struct ata_device *dev, int print_info)
1386 struct ata_port *ap = dev->ap;
1387 const u16 *id = dev->id;
1388 unsigned int xfer_mask;
1389 char revbuf[7]; /* XYZ-99\0 */
1392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1393 ata_dev_printk(dev, KERN_INFO,
1394 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1395 __FUNCTION__, ap->id, dev->devno);
1399 if (ata_msg_probe(ap))
1400 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1401 __FUNCTION__, ap->id, dev->devno);
1403 /* print device capabilities */
1404 if (ata_msg_probe(ap))
1405 ata_dev_printk(dev, KERN_DEBUG,
1406 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1407 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1409 id[49], id[82], id[83], id[84],
1410 id[85], id[86], id[87], id[88]);
1412 /* initialize to-be-configured parameters */
1413 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1414 dev->max_sectors = 0;
1422 * common ATA, ATAPI feature tests
1425 /* find max transfer mode; for printk only */
1426 xfer_mask = ata_id_xfermask(id);
1428 if (ata_msg_probe(ap))
1431 /* ATA-specific feature tests */
1432 if (dev->class == ATA_DEV_ATA) {
1433 if (ata_id_is_cfa(id)) {
1434 if (id[162] & 1) /* CPRM may make this media unusable */
1435 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1436 ap->id, dev->devno);
1437 snprintf(revbuf, 7, "CFA");
1440 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1442 dev->n_sectors = ata_id_n_sectors(id);
1444 if (ata_id_has_lba(id)) {
1445 const char *lba_desc;
1449 dev->flags |= ATA_DFLAG_LBA;
1450 if (ata_id_has_lba48(id)) {
1451 dev->flags |= ATA_DFLAG_LBA48;
1456 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1458 /* print device info to dmesg */
1459 if (ata_msg_drv(ap) && print_info)
1460 ata_dev_printk(dev, KERN_INFO, "%s, "
1461 "max %s, %Lu sectors: %s %s\n",
1463 ata_mode_string(xfer_mask),
1464 (unsigned long long)dev->n_sectors,
1465 lba_desc, ncq_desc);
1469 /* Default translation */
1470 dev->cylinders = id[1];
1472 dev->sectors = id[6];
1474 if (ata_id_current_chs_valid(id)) {
1475 /* Current CHS translation is valid. */
1476 dev->cylinders = id[54];
1477 dev->heads = id[55];
1478 dev->sectors = id[56];
1481 /* print device info to dmesg */
1482 if (ata_msg_drv(ap) && print_info)
1483 ata_dev_printk(dev, KERN_INFO, "%s, "
1484 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1486 ata_mode_string(xfer_mask),
1487 (unsigned long long)dev->n_sectors,
1488 dev->cylinders, dev->heads,
1492 if (dev->id[59] & 0x100) {
1493 dev->multi_count = dev->id[59] & 0xff;
1494 if (ata_msg_drv(ap) && print_info)
1495 ata_dev_printk(dev, KERN_INFO,
1496 "ata%u: dev %u multi count %u\n",
1497 ap->id, dev->devno, dev->multi_count);
1503 /* ATAPI-specific feature tests */
1504 else if (dev->class == ATA_DEV_ATAPI) {
1505 char *cdb_intr_string = "";
1507 rc = atapi_cdb_len(id);
1508 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1509 if (ata_msg_warn(ap))
1510 ata_dev_printk(dev, KERN_WARNING,
1511 "unsupported CDB len\n");
1515 dev->cdb_len = (unsigned int) rc;
1517 if (ata_id_cdb_intr(dev->id)) {
1518 dev->flags |= ATA_DFLAG_CDB_INTR;
1519 cdb_intr_string = ", CDB intr";
1522 /* print device info to dmesg */
1523 if (ata_msg_drv(ap) && print_info)
1524 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1525 ata_mode_string(xfer_mask),
1529 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1530 /* Let the user know. We don't want to disallow opens for
1531 rescue purposes, or in case the vendor is just a blithering
1534 ata_dev_printk(dev, KERN_WARNING,
1535 "Drive reports diagnostics failure. This may indicate a drive\n");
1536 ata_dev_printk(dev, KERN_WARNING,
1537 "fault or invalid emulation. Contact drive vendor for information.\n");
1541 ata_set_port_max_cmd_len(ap);
1543 /* limit bridge transfers to udma5, 200 sectors */
1544 if (ata_dev_knobble(dev)) {
1545 if (ata_msg_drv(ap) && print_info)
1546 ata_dev_printk(dev, KERN_INFO,
1547 "applying bridge limits\n");
1548 dev->udma_mask &= ATA_UDMA5;
1549 dev->max_sectors = ATA_MAX_SECTORS;
1552 if (ap->ops->dev_config)
1553 ap->ops->dev_config(ap, dev);
1555 if (ata_msg_probe(ap))
1556 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1557 __FUNCTION__, ata_chk_status(ap));
1561 if (ata_msg_probe(ap))
1562 ata_dev_printk(dev, KERN_DEBUG,
1563 "%s: EXIT, err\n", __FUNCTION__);
1568 * ata_bus_probe - Reset and probe ATA bus
1571 * Master ATA bus probing function. Initiates a hardware-dependent
1572 * bus reset, then attempts to identify any devices found on
1576 * PCI/etc. bus probe sem.
1579 * Zero on success, negative errno otherwise.
1582 int ata_bus_probe(struct ata_port *ap)
1584 unsigned int classes[ATA_MAX_DEVICES];
1585 int tries[ATA_MAX_DEVICES];
1586 int i, rc, down_xfermask;
1587 struct ata_device *dev;
1591 for (i = 0; i < ATA_MAX_DEVICES; i++)
1592 tries[i] = ATA_PROBE_MAX_TRIES;
1597 /* reset and determine device classes */
1598 ap->ops->phy_reset(ap);
1600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1601 dev = &ap->device[i];
1603 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1604 dev->class != ATA_DEV_UNKNOWN)
1605 classes[dev->devno] = dev->class;
1607 classes[dev->devno] = ATA_DEV_NONE;
1609 dev->class = ATA_DEV_UNKNOWN;
1614 /* after the reset the device state is PIO 0 and the controller
1615 state is undefined. Record the mode */
1617 for (i = 0; i < ATA_MAX_DEVICES; i++)
1618 ap->device[i].pio_mode = XFER_PIO_0;
1620 /* read IDENTIFY page and configure devices */
1621 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1622 dev = &ap->device[i];
1625 dev->class = classes[i];
1627 if (!ata_dev_enabled(dev))
1630 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1634 rc = ata_dev_configure(dev, 1);
1639 /* configure transfer mode */
1640 rc = ata_set_mode(ap, &dev);
1646 for (i = 0; i < ATA_MAX_DEVICES; i++)
1647 if (ata_dev_enabled(&ap->device[i]))
1650 /* no device present, disable port */
1651 ata_port_disable(ap);
1652 ap->ops->port_disable(ap);
1659 tries[dev->devno] = 0;
1662 sata_down_spd_limit(ap);
1665 tries[dev->devno]--;
1666 if (down_xfermask &&
1667 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1668 tries[dev->devno] = 0;
1671 if (!tries[dev->devno]) {
1672 ata_down_xfermask_limit(dev, 1);
1673 ata_dev_disable(dev);
1680 * ata_port_probe - Mark port as enabled
1681 * @ap: Port for which we indicate enablement
1683 * Modify @ap data structure such that the system
1684 * thinks that the entire port is enabled.
1686 * LOCKING: host lock, or some other form of
1690 void ata_port_probe(struct ata_port *ap)
1692 ap->flags &= ~ATA_FLAG_DISABLED;
1696 * sata_print_link_status - Print SATA link status
1697 * @ap: SATA port to printk link status about
1699 * This function prints link speed and status of a SATA link.
1704 static void sata_print_link_status(struct ata_port *ap)
1706 u32 sstatus, scontrol, tmp;
1708 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1710 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1712 if (ata_port_online(ap)) {
1713 tmp = (sstatus >> 4) & 0xf;
1714 ata_port_printk(ap, KERN_INFO,
1715 "SATA link up %s (SStatus %X SControl %X)\n",
1716 sata_spd_string(tmp), sstatus, scontrol);
1718 ata_port_printk(ap, KERN_INFO,
1719 "SATA link down (SStatus %X SControl %X)\n",
1725 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1726 * @ap: SATA port associated with target SATA PHY.
1728 * This function issues commands to standard SATA Sxxx
1729 * PHY registers, to wake up the phy (and device), and
1730 * clear any reset condition.
1733 * PCI/etc. bus probe sem.
1736 void __sata_phy_reset(struct ata_port *ap)
1739 unsigned long timeout = jiffies + (HZ * 5);
1741 if (ap->flags & ATA_FLAG_SATA_RESET) {
1742 /* issue phy wake/reset */
1743 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1744 /* Couldn't find anything in SATA I/II specs, but
1745 * AHCI-1.1 10.4.2 says at least 1 ms. */
1748 /* phy wake/clear reset */
1749 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1751 /* wait for phy to become ready, if necessary */
1754 sata_scr_read(ap, SCR_STATUS, &sstatus);
1755 if ((sstatus & 0xf) != 1)
1757 } while (time_before(jiffies, timeout));
1759 /* print link status */
1760 sata_print_link_status(ap);
1762 /* TODO: phy layer with polling, timeouts, etc. */
1763 if (!ata_port_offline(ap))
1766 ata_port_disable(ap);
1768 if (ap->flags & ATA_FLAG_DISABLED)
1771 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1772 ata_port_disable(ap);
1776 ap->cbl = ATA_CBL_SATA;
1780 * sata_phy_reset - Reset SATA bus.
1781 * @ap: SATA port associated with target SATA PHY.
1783 * This function resets the SATA bus, and then probes
1784 * the bus for devices.
1787 * PCI/etc. bus probe sem.
1790 void sata_phy_reset(struct ata_port *ap)
1792 __sata_phy_reset(ap);
1793 if (ap->flags & ATA_FLAG_DISABLED)
1799 * ata_dev_pair - return other device on cable
1802 * Obtain the other device on the same cable, or if none is
1803 * present NULL is returned
1806 struct ata_device *ata_dev_pair(struct ata_device *adev)
1808 struct ata_port *ap = adev->ap;
1809 struct ata_device *pair = &ap->device[1 - adev->devno];
1810 if (!ata_dev_enabled(pair))
1816 * ata_port_disable - Disable port.
1817 * @ap: Port to be disabled.
1819 * Modify @ap data structure such that the system
1820 * thinks that the entire port is disabled, and should
1821 * never attempt to probe or communicate with devices
1824 * LOCKING: host lock, or some other form of
1828 void ata_port_disable(struct ata_port *ap)
1830 ap->device[0].class = ATA_DEV_NONE;
1831 ap->device[1].class = ATA_DEV_NONE;
1832 ap->flags |= ATA_FLAG_DISABLED;
1836 * sata_down_spd_limit - adjust SATA spd limit downward
1837 * @ap: Port to adjust SATA spd limit for
1839 * Adjust SATA spd limit of @ap downward. Note that this
1840 * function only adjusts the limit. The change must be applied
1841 * using sata_set_spd().
1844 * Inherited from caller.
1847 * 0 on success, negative errno on failure
1849 int sata_down_spd_limit(struct ata_port *ap)
1851 u32 sstatus, spd, mask;
1854 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1858 mask = ap->sata_spd_limit;
1861 highbit = fls(mask) - 1;
1862 mask &= ~(1 << highbit);
1864 spd = (sstatus >> 4) & 0xf;
1868 mask &= (1 << spd) - 1;
1872 ap->sata_spd_limit = mask;
1874 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1875 sata_spd_string(fls(mask)));
1880 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1884 if (ap->sata_spd_limit == UINT_MAX)
1887 limit = fls(ap->sata_spd_limit);
1889 spd = (*scontrol >> 4) & 0xf;
1890 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1892 return spd != limit;
1896 * sata_set_spd_needed - is SATA spd configuration needed
1897 * @ap: Port in question
1899 * Test whether the spd limit in SControl matches
1900 * @ap->sata_spd_limit. This function is used to determine
1901 * whether hardreset is necessary to apply SATA spd
1905 * Inherited from caller.
1908 * 1 if SATA spd configuration is needed, 0 otherwise.
1910 int sata_set_spd_needed(struct ata_port *ap)
1914 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1917 return __sata_set_spd_needed(ap, &scontrol);
1921 * sata_set_spd - set SATA spd according to spd limit
1922 * @ap: Port to set SATA spd for
1924 * Set SATA spd of @ap according to sata_spd_limit.
1927 * Inherited from caller.
1930 * 0 if spd doesn't need to be changed, 1 if spd has been
1931 * changed. Negative errno if SCR registers are inaccessible.
1933 int sata_set_spd(struct ata_port *ap)
1938 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1941 if (!__sata_set_spd_needed(ap, &scontrol))
1944 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1951 * This mode timing computation functionality is ported over from
1952 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1955 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1956 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1957 * for UDMA6, which is currently supported only by Maxtor drives.
1959 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1962 static const struct ata_timing ata_timing[] = {
1964 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1965 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1966 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1969 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1970 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1972 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1973 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1975 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1977 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1978 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1979 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1981 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1982 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1983 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1985 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1987 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1988 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1990 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1991 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1992 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1994 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1999 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2000 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2002 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2004 q->setup = EZ(t->setup * 1000, T);
2005 q->act8b = EZ(t->act8b * 1000, T);
2006 q->rec8b = EZ(t->rec8b * 1000, T);
2007 q->cyc8b = EZ(t->cyc8b * 1000, T);
2008 q->active = EZ(t->active * 1000, T);
2009 q->recover = EZ(t->recover * 1000, T);
2010 q->cycle = EZ(t->cycle * 1000, T);
2011 q->udma = EZ(t->udma * 1000, UT);
2014 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2015 struct ata_timing *m, unsigned int what)
2017 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2018 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2019 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2020 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2021 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2022 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2023 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2024 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2027 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2029 const struct ata_timing *t;
2031 for (t = ata_timing; t->mode != speed; t++)
2032 if (t->mode == 0xFF)
2037 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2038 struct ata_timing *t, int T, int UT)
2040 const struct ata_timing *s;
2041 struct ata_timing p;
2047 if (!(s = ata_timing_find_mode(speed)))
2050 memcpy(t, s, sizeof(*s));
2053 * If the drive is an EIDE drive, it can tell us it needs extended
2054 * PIO/MW_DMA cycle timing.
2057 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2058 memset(&p, 0, sizeof(p));
2059 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2060 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2061 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2062 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2063 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2065 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2069 * Convert the timing to bus clock counts.
2072 ata_timing_quantize(t, t, T, UT);
2075 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2076 * S.M.A.R.T * and some other commands. We have to ensure that the
2077 * DMA cycle timing is slower/equal than the fastest PIO timing.
2080 if (speed > XFER_PIO_4) {
2081 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2082 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2086 * Lengthen active & recovery time so that cycle time is correct.
2089 if (t->act8b + t->rec8b < t->cyc8b) {
2090 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2091 t->rec8b = t->cyc8b - t->act8b;
2094 if (t->active + t->recover < t->cycle) {
2095 t->active += (t->cycle - (t->active + t->recover)) / 2;
2096 t->recover = t->cycle - t->active;
2103 * ata_down_xfermask_limit - adjust dev xfer masks downward
2104 * @dev: Device to adjust xfer masks
2105 * @force_pio0: Force PIO0
2107 * Adjust xfer masks of @dev downward. Note that this function
2108 * does not apply the change. Invoking ata_set_mode() afterwards
2109 * will apply the limit.
2112 * Inherited from caller.
2115 * 0 on success, negative errno on failure
2117 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2119 unsigned long xfer_mask;
2122 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2127 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2128 if (xfer_mask & ATA_MASK_UDMA)
2129 xfer_mask &= ~ATA_MASK_MWDMA;
2131 highbit = fls(xfer_mask) - 1;
2132 xfer_mask &= ~(1 << highbit);
2134 xfer_mask &= 1 << ATA_SHIFT_PIO;
2138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2141 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2142 ata_mode_string(xfer_mask));
2150 static int ata_dev_set_mode(struct ata_device *dev)
2152 unsigned int err_mask;
2155 dev->flags &= ~ATA_DFLAG_PIO;
2156 if (dev->xfer_shift == ATA_SHIFT_PIO)
2157 dev->flags |= ATA_DFLAG_PIO;
2159 err_mask = ata_dev_set_xfermode(dev);
2161 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2162 "(err_mask=0x%x)\n", err_mask);
2166 rc = ata_dev_revalidate(dev, 0);
2170 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2171 dev->xfer_shift, (int)dev->xfer_mode);
2173 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2174 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2179 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2180 * @ap: port on which timings will be programmed
2181 * @r_failed_dev: out paramter for failed device
2183 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2184 * ata_set_mode() fails, pointer to the failing device is
2185 * returned in @r_failed_dev.
2188 * PCI/etc. bus probe sem.
2191 * 0 on success, negative errno otherwise
2193 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2195 struct ata_device *dev;
2196 int i, rc = 0, used_dma = 0, found = 0;
2198 /* has private set_mode? */
2199 if (ap->ops->set_mode) {
2200 /* FIXME: make ->set_mode handle no device case and
2201 * return error code and failing device on failure.
2203 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2204 if (ata_dev_ready(&ap->device[i])) {
2205 ap->ops->set_mode(ap);
2212 /* step 1: calculate xfer_mask */
2213 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2214 unsigned int pio_mask, dma_mask;
2216 dev = &ap->device[i];
2218 if (!ata_dev_enabled(dev))
2221 ata_dev_xfermask(dev);
2223 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2224 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2225 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2226 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2235 /* step 2: always set host PIO timings */
2236 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2237 dev = &ap->device[i];
2238 if (!ata_dev_enabled(dev))
2241 if (!dev->pio_mode) {
2242 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2247 dev->xfer_mode = dev->pio_mode;
2248 dev->xfer_shift = ATA_SHIFT_PIO;
2249 if (ap->ops->set_piomode)
2250 ap->ops->set_piomode(ap, dev);
2253 /* step 3: set host DMA timings */
2254 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2255 dev = &ap->device[i];
2257 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2260 dev->xfer_mode = dev->dma_mode;
2261 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2262 if (ap->ops->set_dmamode)
2263 ap->ops->set_dmamode(ap, dev);
2266 /* step 4: update devices' xfer mode */
2267 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2268 dev = &ap->device[i];
2270 /* don't udpate suspended devices' xfer mode */
2271 if (!ata_dev_ready(dev))
2274 rc = ata_dev_set_mode(dev);
2279 /* Record simplex status. If we selected DMA then the other
2280 * host channels are not permitted to do so.
2282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2283 ap->host->simplex_claimed = 1;
2285 /* step5: chip specific finalisation */
2286 if (ap->ops->post_set_mode)
2287 ap->ops->post_set_mode(ap);
2291 *r_failed_dev = dev;
2296 * ata_tf_to_host - issue ATA taskfile to host controller
2297 * @ap: port to which command is being issued
2298 * @tf: ATA taskfile register set
2300 * Issues ATA taskfile register set to ATA host controller,
2301 * with proper synchronization with interrupt handler and
2305 * spin_lock_irqsave(host lock)
2308 static inline void ata_tf_to_host(struct ata_port *ap,
2309 const struct ata_taskfile *tf)
2311 ap->ops->tf_load(ap, tf);
2312 ap->ops->exec_command(ap, tf);
2316 * ata_busy_sleep - sleep until BSY clears, or timeout
2317 * @ap: port containing status register to be polled
2318 * @tmout_pat: impatience timeout
2319 * @tmout: overall timeout
2321 * Sleep until ATA Status register bit BSY clears,
2322 * or a timeout occurs.
2327 unsigned int ata_busy_sleep (struct ata_port *ap,
2328 unsigned long tmout_pat, unsigned long tmout)
2330 unsigned long timer_start, timeout;
2333 status = ata_busy_wait(ap, ATA_BUSY, 300);
2334 timer_start = jiffies;
2335 timeout = timer_start + tmout_pat;
2336 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2338 status = ata_busy_wait(ap, ATA_BUSY, 3);
2341 if (status & ATA_BUSY)
2342 ata_port_printk(ap, KERN_WARNING,
2343 "port is slow to respond, please be patient "
2344 "(Status 0x%x)\n", status);
2346 timeout = timer_start + tmout;
2347 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2349 status = ata_chk_status(ap);
2352 if (status & ATA_BUSY) {
2353 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2354 "(%lu secs, Status 0x%x)\n",
2355 tmout / HZ, status);
2362 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2364 struct ata_ioports *ioaddr = &ap->ioaddr;
2365 unsigned int dev0 = devmask & (1 << 0);
2366 unsigned int dev1 = devmask & (1 << 1);
2367 unsigned long timeout;
2369 /* if device 0 was found in ata_devchk, wait for its
2373 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2375 /* if device 1 was found in ata_devchk, wait for
2376 * register access, then wait for BSY to clear
2378 timeout = jiffies + ATA_TMOUT_BOOT;
2382 ap->ops->dev_select(ap, 1);
2383 if (ap->flags & ATA_FLAG_MMIO) {
2384 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2385 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2387 nsect = inb(ioaddr->nsect_addr);
2388 lbal = inb(ioaddr->lbal_addr);
2390 if ((nsect == 1) && (lbal == 1))
2392 if (time_after(jiffies, timeout)) {
2396 msleep(50); /* give drive a breather */
2399 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2401 /* is all this really necessary? */
2402 ap->ops->dev_select(ap, 0);
2404 ap->ops->dev_select(ap, 1);
2406 ap->ops->dev_select(ap, 0);
2409 static unsigned int ata_bus_softreset(struct ata_port *ap,
2410 unsigned int devmask)
2412 struct ata_ioports *ioaddr = &ap->ioaddr;
2414 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2416 /* software reset. causes dev0 to be selected */
2417 if (ap->flags & ATA_FLAG_MMIO) {
2418 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2419 udelay(20); /* FIXME: flush */
2420 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2421 udelay(20); /* FIXME: flush */
2422 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2424 outb(ap->ctl, ioaddr->ctl_addr);
2426 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2428 outb(ap->ctl, ioaddr->ctl_addr);
2431 /* spec mandates ">= 2ms" before checking status.
2432 * We wait 150ms, because that was the magic delay used for
2433 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2434 * between when the ATA command register is written, and then
2435 * status is checked. Because waiting for "a while" before
2436 * checking status is fine, post SRST, we perform this magic
2437 * delay here as well.
2439 * Old drivers/ide uses the 2mS rule and then waits for ready
2443 /* Before we perform post reset processing we want to see if
2444 * the bus shows 0xFF because the odd clown forgets the D7
2445 * pulldown resistor.
2447 if (ata_check_status(ap) == 0xFF) {
2448 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2449 return AC_ERR_OTHER;
2452 ata_bus_post_reset(ap, devmask);
2458 * ata_bus_reset - reset host port and associated ATA channel
2459 * @ap: port to reset
2461 * This is typically the first time we actually start issuing
2462 * commands to the ATA channel. We wait for BSY to clear, then
2463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2464 * result. Determine what devices, if any, are on the channel
2465 * by looking at the device 0/1 error register. Look at the signature
2466 * stored in each device's taskfile registers, to determine if
2467 * the device is ATA or ATAPI.
2470 * PCI/etc. bus probe sem.
2471 * Obtains host lock.
2474 * Sets ATA_FLAG_DISABLED if bus reset fails.
2477 void ata_bus_reset(struct ata_port *ap)
2479 struct ata_ioports *ioaddr = &ap->ioaddr;
2480 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2482 unsigned int dev0, dev1 = 0, devmask = 0;
2484 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2486 /* determine if device 0/1 are present */
2487 if (ap->flags & ATA_FLAG_SATA_RESET)
2490 dev0 = ata_devchk(ap, 0);
2492 dev1 = ata_devchk(ap, 1);
2496 devmask |= (1 << 0);
2498 devmask |= (1 << 1);
2500 /* select device 0 again */
2501 ap->ops->dev_select(ap, 0);
2503 /* issue bus reset */
2504 if (ap->flags & ATA_FLAG_SRST)
2505 if (ata_bus_softreset(ap, devmask))
2509 * determine by signature whether we have ATA or ATAPI devices
2511 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2512 if ((slave_possible) && (err != 0x81))
2513 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2515 /* re-enable interrupts */
2516 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2519 /* is double-select really necessary? */
2520 if (ap->device[1].class != ATA_DEV_NONE)
2521 ap->ops->dev_select(ap, 1);
2522 if (ap->device[0].class != ATA_DEV_NONE)
2523 ap->ops->dev_select(ap, 0);
2525 /* if no devices were detected, disable this port */
2526 if ((ap->device[0].class == ATA_DEV_NONE) &&
2527 (ap->device[1].class == ATA_DEV_NONE))
2530 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2531 /* set up device control for ATA_FLAG_SATA_RESET */
2532 if (ap->flags & ATA_FLAG_MMIO)
2533 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2535 outb(ap->ctl, ioaddr->ctl_addr);
2542 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2543 ap->ops->port_disable(ap);
2549 * sata_phy_debounce - debounce SATA phy status
2550 * @ap: ATA port to debounce SATA phy status for
2551 * @params: timing parameters { interval, duratinon, timeout } in msec
2553 * Make sure SStatus of @ap reaches stable state, determined by
2554 * holding the same value where DET is not 1 for @duration polled
2555 * every @interval, before @timeout. Timeout constraints the
2556 * beginning of the stable state. Because, after hot unplugging,
2557 * DET gets stuck at 1 on some controllers, this functions waits
2558 * until timeout then returns 0 if DET is stable at 1.
2561 * Kernel thread context (may sleep)
2564 * 0 on success, -errno on failure.
2566 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2568 unsigned long interval_msec = params[0];
2569 unsigned long duration = params[1] * HZ / 1000;
2570 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2571 unsigned long last_jiffies;
2575 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2580 last_jiffies = jiffies;
2583 msleep(interval_msec);
2584 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2590 if (cur == 1 && time_before(jiffies, timeout))
2592 if (time_after(jiffies, last_jiffies + duration))
2597 /* unstable, start over */
2599 last_jiffies = jiffies;
2602 if (time_after(jiffies, timeout))
2608 * sata_phy_resume - resume SATA phy
2609 * @ap: ATA port to resume SATA phy for
2610 * @params: timing parameters { interval, duratinon, timeout } in msec
2612 * Resume SATA phy of @ap and debounce it.
2615 * Kernel thread context (may sleep)
2618 * 0 on success, -errno on failure.
2620 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2625 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2628 scontrol = (scontrol & 0x0f0) | 0x300;
2630 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2633 /* Some PHYs react badly if SStatus is pounded immediately
2634 * after resuming. Delay 200ms before debouncing.
2638 return sata_phy_debounce(ap, params);
2641 static void ata_wait_spinup(struct ata_port *ap)
2643 struct ata_eh_context *ehc = &ap->eh_context;
2644 unsigned long end, secs;
2647 /* first, debounce phy if SATA */
2648 if (ap->cbl == ATA_CBL_SATA) {
2649 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2651 /* if debounced successfully and offline, no need to wait */
2652 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2656 /* okay, let's give the drive time to spin up */
2657 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2658 secs = ((end - jiffies) + HZ - 1) / HZ;
2660 if (time_after(jiffies, end))
2664 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2665 "(%lu secs)\n", secs);
2667 schedule_timeout_uninterruptible(end - jiffies);
2671 * ata_std_prereset - prepare for reset
2672 * @ap: ATA port to be reset
2674 * @ap is about to be reset. Initialize it.
2677 * Kernel thread context (may sleep)
2680 * 0 on success, -errno otherwise.
2682 int ata_std_prereset(struct ata_port *ap)
2684 struct ata_eh_context *ehc = &ap->eh_context;
2685 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2688 /* handle link resume & hotplug spinup */
2689 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2690 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2691 ehc->i.action |= ATA_EH_HARDRESET;
2693 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2694 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2695 ata_wait_spinup(ap);
2697 /* if we're about to do hardreset, nothing more to do */
2698 if (ehc->i.action & ATA_EH_HARDRESET)
2701 /* if SATA, resume phy */
2702 if (ap->cbl == ATA_CBL_SATA) {
2703 rc = sata_phy_resume(ap, timing);
2704 if (rc && rc != -EOPNOTSUPP) {
2705 /* phy resume failed */
2706 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2707 "link for reset (errno=%d)\n", rc);
2712 /* Wait for !BSY if the controller can wait for the first D2H
2713 * Reg FIS and we don't know that no device is attached.
2715 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2716 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2722 * ata_std_softreset - reset host port via ATA SRST
2723 * @ap: port to reset
2724 * @classes: resulting classes of attached devices
2726 * Reset host port using ATA SRST.
2729 * Kernel thread context (may sleep)
2732 * 0 on success, -errno otherwise.
2734 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2736 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2737 unsigned int devmask = 0, err_mask;
2742 if (ata_port_offline(ap)) {
2743 classes[0] = ATA_DEV_NONE;
2747 /* determine if device 0/1 are present */
2748 if (ata_devchk(ap, 0))
2749 devmask |= (1 << 0);
2750 if (slave_possible && ata_devchk(ap, 1))
2751 devmask |= (1 << 1);
2753 /* select device 0 again */
2754 ap->ops->dev_select(ap, 0);
2756 /* issue bus reset */
2757 DPRINTK("about to softreset, devmask=%x\n", devmask);
2758 err_mask = ata_bus_softreset(ap, devmask);
2760 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2765 /* determine by signature whether we have ATA or ATAPI devices */
2766 classes[0] = ata_dev_try_classify(ap, 0, &err);
2767 if (slave_possible && err != 0x81)
2768 classes[1] = ata_dev_try_classify(ap, 1, &err);
2771 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2776 * sata_std_hardreset - reset host port via SATA phy reset
2777 * @ap: port to reset
2778 * @class: resulting class of attached device
2780 * SATA phy-reset host port using DET bits of SControl register.
2783 * Kernel thread context (may sleep)
2786 * 0 on success, -errno otherwise.
2788 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2790 struct ata_eh_context *ehc = &ap->eh_context;
2791 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2797 if (sata_set_spd_needed(ap)) {
2798 /* SATA spec says nothing about how to reconfigure
2799 * spd. To be on the safe side, turn off phy during
2800 * reconfiguration. This works for at least ICH7 AHCI
2803 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2806 scontrol = (scontrol & 0x0f0) | 0x304;
2808 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2814 /* issue phy wake/reset */
2815 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2818 scontrol = (scontrol & 0x0f0) | 0x301;
2820 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2823 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2824 * 10.4.2 says at least 1 ms.
2828 /* bring phy back */
2829 sata_phy_resume(ap, timing);
2831 /* TODO: phy layer with polling, timeouts, etc. */
2832 if (ata_port_offline(ap)) {
2833 *class = ATA_DEV_NONE;
2834 DPRINTK("EXIT, link offline\n");
2838 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2839 ata_port_printk(ap, KERN_ERR,
2840 "COMRESET failed (device not ready)\n");
2844 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2846 *class = ata_dev_try_classify(ap, 0, NULL);
2848 DPRINTK("EXIT, class=%u\n", *class);
2853 * ata_std_postreset - standard postreset callback
2854 * @ap: the target ata_port
2855 * @classes: classes of attached devices
2857 * This function is invoked after a successful reset. Note that
2858 * the device might have been reset more than once using
2859 * different reset methods before postreset is invoked.
2862 * Kernel thread context (may sleep)
2864 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2870 /* print link status */
2871 sata_print_link_status(ap);
2874 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2875 sata_scr_write(ap, SCR_ERROR, serror);
2877 /* re-enable interrupts */
2878 if (!ap->ops->error_handler) {
2879 /* FIXME: hack. create a hook instead */
2880 if (ap->ioaddr.ctl_addr)
2884 /* is double-select really necessary? */
2885 if (classes[0] != ATA_DEV_NONE)
2886 ap->ops->dev_select(ap, 1);
2887 if (classes[1] != ATA_DEV_NONE)
2888 ap->ops->dev_select(ap, 0);
2890 /* bail out if no device is present */
2891 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2892 DPRINTK("EXIT, no device\n");
2896 /* set up device control */
2897 if (ap->ioaddr.ctl_addr) {
2898 if (ap->flags & ATA_FLAG_MMIO)
2899 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2901 outb(ap->ctl, ap->ioaddr.ctl_addr);
2908 * ata_dev_same_device - Determine whether new ID matches configured device
2909 * @dev: device to compare against
2910 * @new_class: class of the new device
2911 * @new_id: IDENTIFY page of the new device
2913 * Compare @new_class and @new_id against @dev and determine
2914 * whether @dev is the device indicated by @new_class and
2921 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2923 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2926 const u16 *old_id = dev->id;
2927 unsigned char model[2][41], serial[2][21];
2930 if (dev->class != new_class) {
2931 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2932 dev->class, new_class);
2936 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2937 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2938 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2939 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2940 new_n_sectors = ata_id_n_sectors(new_id);
2942 if (strcmp(model[0], model[1])) {
2943 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2944 "'%s' != '%s'\n", model[0], model[1]);
2948 if (strcmp(serial[0], serial[1])) {
2949 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2950 "'%s' != '%s'\n", serial[0], serial[1]);
2954 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2955 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2957 (unsigned long long)dev->n_sectors,
2958 (unsigned long long)new_n_sectors);
2966 * ata_dev_revalidate - Revalidate ATA device
2967 * @dev: device to revalidate
2968 * @post_reset: is this revalidation after reset?
2970 * Re-read IDENTIFY page and make sure @dev is still attached to
2974 * Kernel thread context (may sleep)
2977 * 0 on success, negative errno otherwise
2979 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2981 unsigned int class = dev->class;
2982 u16 *id = (void *)dev->ap->sector_buf;
2985 if (!ata_dev_enabled(dev)) {
2991 rc = ata_dev_read_id(dev, &class, post_reset, id);
2995 /* is the device still there? */
2996 if (!ata_dev_same_device(dev, class, id)) {
3001 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3003 /* configure device according to the new ID */
3004 rc = ata_dev_configure(dev, 0);
3009 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3013 static const char * const ata_dma_blacklist [] = {
3014 "WDC AC11000H", NULL,
3015 "WDC AC22100H", NULL,
3016 "WDC AC32500H", NULL,
3017 "WDC AC33100H", NULL,
3018 "WDC AC31600H", NULL,
3019 "WDC AC32100H", "24.09P07",
3020 "WDC AC23200L", "21.10N21",
3021 "Compaq CRD-8241B", NULL,
3026 "SanDisk SDP3B", NULL,
3027 "SanDisk SDP3B-64", NULL,
3028 "SANYO CD-ROM CRD", NULL,
3029 "HITACHI CDR-8", NULL,
3030 "HITACHI CDR-8335", NULL,
3031 "HITACHI CDR-8435", NULL,
3032 "Toshiba CD-ROM XM-6202B", NULL,
3033 "TOSHIBA CD-ROM XM-1702BC", NULL,
3035 "E-IDE CD-ROM CR-840", NULL,
3036 "CD-ROM Drive/F5A", NULL,
3037 "WPI CDD-820", NULL,
3038 "SAMSUNG CD-ROM SC-148C", NULL,
3039 "SAMSUNG CD-ROM SC", NULL,
3040 "SanDisk SDP3B-64", NULL,
3041 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3042 "_NEC DV5800A", NULL,
3043 "SAMSUNG CD-ROM SN-124", "N001"
3046 static int ata_strim(char *s, size_t len)
3048 len = strnlen(s, len);
3050 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3051 while ((len > 0) && (s[len - 1] == ' ')) {
3058 static int ata_dma_blacklisted(const struct ata_device *dev)
3060 unsigned char model_num[40];
3061 unsigned char model_rev[16];
3062 unsigned int nlen, rlen;
3065 /* We don't support polling DMA.
3066 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3067 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3069 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3070 (dev->flags & ATA_DFLAG_CDB_INTR))
3073 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3075 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3077 nlen = ata_strim(model_num, sizeof(model_num));
3078 rlen = ata_strim(model_rev, sizeof(model_rev));
3080 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3081 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3082 if (ata_dma_blacklist[i+1] == NULL)
3084 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3092 * ata_dev_xfermask - Compute supported xfermask of the given device
3093 * @dev: Device to compute xfermask for
3095 * Compute supported xfermask of @dev and store it in
3096 * dev->*_mask. This function is responsible for applying all
3097 * known limits including host controller limits, device
3103 static void ata_dev_xfermask(struct ata_device *dev)
3105 struct ata_port *ap = dev->ap;
3106 struct ata_host *host = ap->host;
3107 unsigned long xfer_mask;
3109 /* controller modes available */
3110 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3111 ap->mwdma_mask, ap->udma_mask);
3113 /* Apply cable rule here. Don't apply it early because when
3114 * we handle hot plug the cable type can itself change.
3116 if (ap->cbl == ATA_CBL_PATA40)
3117 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3119 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3120 dev->mwdma_mask, dev->udma_mask);
3121 xfer_mask &= ata_id_xfermask(dev->id);
3124 * CFA Advanced TrueIDE timings are not allowed on a shared
3127 if (ata_dev_pair(dev)) {
3128 /* No PIO5 or PIO6 */
3129 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3130 /* No MWDMA3 or MWDMA 4 */
3131 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3134 if (ata_dma_blacklisted(dev)) {
3135 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3136 ata_dev_printk(dev, KERN_WARNING,
3137 "device is on DMA blacklist, disabling DMA\n");
3140 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3141 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3142 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3143 "other device, disabling DMA\n");
3146 if (ap->ops->mode_filter)
3147 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3149 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3150 &dev->mwdma_mask, &dev->udma_mask);
3154 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3155 * @dev: Device to which command will be sent
3157 * Issue SET FEATURES - XFER MODE command to device @dev
3161 * PCI/etc. bus probe sem.
3164 * 0 on success, AC_ERR_* mask otherwise.
3167 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3169 struct ata_taskfile tf;
3170 unsigned int err_mask;
3172 /* set up set-features taskfile */
3173 DPRINTK("set features - xfer mode\n");
3175 ata_tf_init(dev, &tf);
3176 tf.command = ATA_CMD_SET_FEATURES;
3177 tf.feature = SETFEATURES_XFER;
3178 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3179 tf.protocol = ATA_PROT_NODATA;
3180 tf.nsect = dev->xfer_mode;
3182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3184 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3189 * ata_dev_init_params - Issue INIT DEV PARAMS command
3190 * @dev: Device to which command will be sent
3191 * @heads: Number of heads (taskfile parameter)
3192 * @sectors: Number of sectors (taskfile parameter)
3195 * Kernel thread context (may sleep)
3198 * 0 on success, AC_ERR_* mask otherwise.
3200 static unsigned int ata_dev_init_params(struct ata_device *dev,
3201 u16 heads, u16 sectors)
3203 struct ata_taskfile tf;
3204 unsigned int err_mask;
3206 /* Number of sectors per track 1-255. Number of heads 1-16 */
3207 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3208 return AC_ERR_INVALID;
3210 /* set up init dev params taskfile */
3211 DPRINTK("init dev params \n");
3213 ata_tf_init(dev, &tf);
3214 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3215 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3216 tf.protocol = ATA_PROT_NODATA;
3218 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3220 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3222 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3227 * ata_sg_clean - Unmap DMA memory associated with command
3228 * @qc: Command containing DMA memory to be released
3230 * Unmap all mapped DMA memory associated with this command.
3233 * spin_lock_irqsave(host lock)
3236 static void ata_sg_clean(struct ata_queued_cmd *qc)
3238 struct ata_port *ap = qc->ap;
3239 struct scatterlist *sg = qc->__sg;
3240 int dir = qc->dma_dir;
3241 void *pad_buf = NULL;
3243 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3244 WARN_ON(sg == NULL);
3246 if (qc->flags & ATA_QCFLAG_SINGLE)
3247 WARN_ON(qc->n_elem > 1);
3249 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3251 /* if we padded the buffer out to 32-bit bound, and data
3252 * xfer direction is from-device, we must copy from the
3253 * pad buffer back into the supplied buffer
3255 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3256 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3258 if (qc->flags & ATA_QCFLAG_SG) {
3260 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3261 /* restore last sg */
3262 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3264 struct scatterlist *psg = &qc->pad_sgent;
3265 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3266 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3267 kunmap_atomic(addr, KM_IRQ0);
3271 dma_unmap_single(ap->dev,
3272 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3275 sg->length += qc->pad_len;
3277 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3278 pad_buf, qc->pad_len);
3281 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3286 * ata_fill_sg - Fill PCI IDE PRD table
3287 * @qc: Metadata associated with taskfile to be transferred
3289 * Fill PCI IDE PRD (scatter-gather) table with segments
3290 * associated with the current disk command.
3293 * spin_lock_irqsave(host lock)
3296 static void ata_fill_sg(struct ata_queued_cmd *qc)
3298 struct ata_port *ap = qc->ap;
3299 struct scatterlist *sg;
3302 WARN_ON(qc->__sg == NULL);
3303 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3306 ata_for_each_sg(sg, qc) {
3310 /* determine if physical DMA addr spans 64K boundary.
3311 * Note h/w doesn't support 64-bit, so we unconditionally
3312 * truncate dma_addr_t to u32.
3314 addr = (u32) sg_dma_address(sg);
3315 sg_len = sg_dma_len(sg);
3318 offset = addr & 0xffff;
3320 if ((offset + sg_len) > 0x10000)
3321 len = 0x10000 - offset;
3323 ap->prd[idx].addr = cpu_to_le32(addr);
3324 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3325 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3334 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3337 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3338 * @qc: Metadata associated with taskfile to check
3340 * Allow low-level driver to filter ATA PACKET commands, returning
3341 * a status indicating whether or not it is OK to use DMA for the
3342 * supplied PACKET command.
3345 * spin_lock_irqsave(host lock)
3347 * RETURNS: 0 when ATAPI DMA can be used
3350 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3352 struct ata_port *ap = qc->ap;
3353 int rc = 0; /* Assume ATAPI DMA is OK by default */
3355 if (ap->ops->check_atapi_dma)
3356 rc = ap->ops->check_atapi_dma(qc);
3361 * ata_qc_prep - Prepare taskfile for submission
3362 * @qc: Metadata associated with taskfile to be prepared
3364 * Prepare ATA taskfile for submission.
3367 * spin_lock_irqsave(host lock)
3369 void ata_qc_prep(struct ata_queued_cmd *qc)
3371 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3377 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3380 * ata_sg_init_one - Associate command with memory buffer
3381 * @qc: Command to be associated
3382 * @buf: Memory buffer
3383 * @buflen: Length of memory buffer, in bytes.
3385 * Initialize the data-related elements of queued_cmd @qc
3386 * to point to a single memory buffer, @buf of byte length @buflen.
3389 * spin_lock_irqsave(host lock)
3392 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3394 struct scatterlist *sg;
3396 qc->flags |= ATA_QCFLAG_SINGLE;
3398 memset(&qc->sgent, 0, sizeof(qc->sgent));
3399 qc->__sg = &qc->sgent;
3401 qc->orig_n_elem = 1;
3403 qc->nbytes = buflen;
3406 sg_init_one(sg, buf, buflen);
3410 * ata_sg_init - Associate command with scatter-gather table.
3411 * @qc: Command to be associated
3412 * @sg: Scatter-gather table.
3413 * @n_elem: Number of elements in s/g table.
3415 * Initialize the data-related elements of queued_cmd @qc
3416 * to point to a scatter-gather table @sg, containing @n_elem
3420 * spin_lock_irqsave(host lock)
3423 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3424 unsigned int n_elem)
3426 qc->flags |= ATA_QCFLAG_SG;
3428 qc->n_elem = n_elem;
3429 qc->orig_n_elem = n_elem;
3433 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3434 * @qc: Command with memory buffer to be mapped.
3436 * DMA-map the memory buffer associated with queued_cmd @qc.
3439 * spin_lock_irqsave(host lock)
3442 * Zero on success, negative on error.
3445 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3447 struct ata_port *ap = qc->ap;
3448 int dir = qc->dma_dir;
3449 struct scatterlist *sg = qc->__sg;
3450 dma_addr_t dma_address;
3453 /* we must lengthen transfers to end on a 32-bit boundary */
3454 qc->pad_len = sg->length & 3;
3456 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3457 struct scatterlist *psg = &qc->pad_sgent;
3459 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3461 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3463 if (qc->tf.flags & ATA_TFLAG_WRITE)
3464 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3467 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3468 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3470 sg->length -= qc->pad_len;
3471 if (sg->length == 0)
3474 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3475 sg->length, qc->pad_len);
3483 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3485 if (dma_mapping_error(dma_address)) {
3487 sg->length += qc->pad_len;
3491 sg_dma_address(sg) = dma_address;
3492 sg_dma_len(sg) = sg->length;
3495 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3496 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3502 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3503 * @qc: Command with scatter-gather table to be mapped.
3505 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3508 * spin_lock_irqsave(host lock)
3511 * Zero on success, negative on error.
3515 static int ata_sg_setup(struct ata_queued_cmd *qc)
3517 struct ata_port *ap = qc->ap;
3518 struct scatterlist *sg = qc->__sg;
3519 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3520 int n_elem, pre_n_elem, dir, trim_sg = 0;
3522 VPRINTK("ENTER, ata%u\n", ap->id);
3523 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3525 /* we must lengthen transfers to end on a 32-bit boundary */
3526 qc->pad_len = lsg->length & 3;
3528 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3529 struct scatterlist *psg = &qc->pad_sgent;
3530 unsigned int offset;
3532 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3534 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3537 * psg->page/offset are used to copy to-be-written
3538 * data in this function or read data in ata_sg_clean.
3540 offset = lsg->offset + lsg->length - qc->pad_len;
3541 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3542 psg->offset = offset_in_page(offset);
3544 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3545 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3546 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3547 kunmap_atomic(addr, KM_IRQ0);
3550 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3551 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3553 lsg->length -= qc->pad_len;
3554 if (lsg->length == 0)
3557 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3558 qc->n_elem - 1, lsg->length, qc->pad_len);
3561 pre_n_elem = qc->n_elem;
3562 if (trim_sg && pre_n_elem)
3571 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3573 /* restore last sg */
3574 lsg->length += qc->pad_len;
3578 DPRINTK("%d sg elements mapped\n", n_elem);
3581 qc->n_elem = n_elem;
3587 * swap_buf_le16 - swap halves of 16-bit words in place
3588 * @buf: Buffer to swap
3589 * @buf_words: Number of 16-bit words in buffer.
3591 * Swap halves of 16-bit words if needed to convert from
3592 * little-endian byte order to native cpu byte order, or
3596 * Inherited from caller.
3598 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3603 for (i = 0; i < buf_words; i++)
3604 buf[i] = le16_to_cpu(buf[i]);
3605 #endif /* __BIG_ENDIAN */
3609 * ata_mmio_data_xfer - Transfer data by MMIO
3610 * @adev: device for this I/O
3612 * @buflen: buffer length
3613 * @write_data: read/write
3615 * Transfer data from/to the device data register by MMIO.
3618 * Inherited from caller.
3621 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3622 unsigned int buflen, int write_data)
3624 struct ata_port *ap = adev->ap;
3626 unsigned int words = buflen >> 1;
3627 u16 *buf16 = (u16 *) buf;
3628 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3630 /* Transfer multiple of 2 bytes */
3632 for (i = 0; i < words; i++)
3633 writew(le16_to_cpu(buf16[i]), mmio);
3635 for (i = 0; i < words; i++)
3636 buf16[i] = cpu_to_le16(readw(mmio));
3639 /* Transfer trailing 1 byte, if any. */
3640 if (unlikely(buflen & 0x01)) {
3641 u16 align_buf[1] = { 0 };
3642 unsigned char *trailing_buf = buf + buflen - 1;
3645 memcpy(align_buf, trailing_buf, 1);
3646 writew(le16_to_cpu(align_buf[0]), mmio);
3648 align_buf[0] = cpu_to_le16(readw(mmio));
3649 memcpy(trailing_buf, align_buf, 1);
3655 * ata_pio_data_xfer - Transfer data by PIO
3656 * @adev: device to target
3658 * @buflen: buffer length
3659 * @write_data: read/write
3661 * Transfer data from/to the device data register by PIO.
3664 * Inherited from caller.
3667 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3668 unsigned int buflen, int write_data)
3670 struct ata_port *ap = adev->ap;
3671 unsigned int words = buflen >> 1;
3673 /* Transfer multiple of 2 bytes */
3675 outsw(ap->ioaddr.data_addr, buf, words);
3677 insw(ap->ioaddr.data_addr, buf, words);
3679 /* Transfer trailing 1 byte, if any. */
3680 if (unlikely(buflen & 0x01)) {
3681 u16 align_buf[1] = { 0 };
3682 unsigned char *trailing_buf = buf + buflen - 1;
3685 memcpy(align_buf, trailing_buf, 1);
3686 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3688 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3689 memcpy(trailing_buf, align_buf, 1);
3695 * ata_pio_data_xfer_noirq - Transfer data by PIO
3696 * @adev: device to target
3698 * @buflen: buffer length
3699 * @write_data: read/write
3701 * Transfer data from/to the device data register by PIO. Do the
3702 * transfer with interrupts disabled.
3705 * Inherited from caller.
3708 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3709 unsigned int buflen, int write_data)
3711 unsigned long flags;
3712 local_irq_save(flags);
3713 ata_pio_data_xfer(adev, buf, buflen, write_data);
3714 local_irq_restore(flags);
3719 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3720 * @qc: Command on going
3722 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3725 * Inherited from caller.
3728 static void ata_pio_sector(struct ata_queued_cmd *qc)
3730 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3731 struct scatterlist *sg = qc->__sg;
3732 struct ata_port *ap = qc->ap;
3734 unsigned int offset;
3737 if (qc->cursect == (qc->nsect - 1))
3738 ap->hsm_task_state = HSM_ST_LAST;
3740 page = sg[qc->cursg].page;
3741 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3743 /* get the current page and offset */
3744 page = nth_page(page, (offset >> PAGE_SHIFT));
3745 offset %= PAGE_SIZE;
3747 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3749 if (PageHighMem(page)) {
3750 unsigned long flags;
3752 /* FIXME: use a bounce buffer */
3753 local_irq_save(flags);
3754 buf = kmap_atomic(page, KM_IRQ0);
3756 /* do the actual data transfer */
3757 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3759 kunmap_atomic(buf, KM_IRQ0);
3760 local_irq_restore(flags);
3762 buf = page_address(page);
3763 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3769 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3776 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3777 * @qc: Command on going
3779 * Transfer one or many ATA_SECT_SIZE of data from/to the
3780 * ATA device for the DRQ request.
3783 * Inherited from caller.
3786 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3788 if (is_multi_taskfile(&qc->tf)) {
3789 /* READ/WRITE MULTIPLE */
3792 WARN_ON(qc->dev->multi_count == 0);
3794 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3802 * atapi_send_cdb - Write CDB bytes to hardware
3803 * @ap: Port to which ATAPI device is attached.
3804 * @qc: Taskfile currently active
3806 * When device has indicated its readiness to accept
3807 * a CDB, this function is called. Send the CDB.
3813 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3816 DPRINTK("send cdb\n");
3817 WARN_ON(qc->dev->cdb_len < 12);
3819 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3820 ata_altstatus(ap); /* flush */
3822 switch (qc->tf.protocol) {
3823 case ATA_PROT_ATAPI:
3824 ap->hsm_task_state = HSM_ST;
3826 case ATA_PROT_ATAPI_NODATA:
3827 ap->hsm_task_state = HSM_ST_LAST;
3829 case ATA_PROT_ATAPI_DMA:
3830 ap->hsm_task_state = HSM_ST_LAST;
3831 /* initiate bmdma */
3832 ap->ops->bmdma_start(qc);
3838 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.