2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76 static unsigned int ata_dev_init_params(struct ata_device *dev,
77 u16 heads, u16 sectors);
78 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
79 static unsigned int ata_dev_set_feature(struct ata_device *dev,
80 u8 enable, u8 feature);
81 static void ata_dev_xfermask(struct ata_device *dev);
82 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
84 unsigned int ata_print_id = 1;
85 static struct workqueue_struct *ata_wq;
87 struct workqueue_struct *ata_aux_wq;
89 int atapi_enabled = 1;
90 module_param(atapi_enabled, int, 0444);
91 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
94 module_param(atapi_dmadir, int, 0444);
95 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97 int atapi_passthru16 = 1;
98 module_param(atapi_passthru16, int, 0444);
99 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
102 module_param_named(fua, libata_fua, int, 0444);
103 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105 static int ata_ignore_hpa;
106 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
107 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
110 module_param_named(dma, libata_dma_mask, int, 0444);
111 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
114 module_param(ata_probe_timeout, int, 0444);
115 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117 int libata_noacpi = 0;
118 module_param_named(noacpi, libata_noacpi, int, 0444);
119 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
121 MODULE_AUTHOR("Jeff Garzik");
122 MODULE_DESCRIPTION("Library module for ATA devices");
123 MODULE_LICENSE("GPL");
124 MODULE_VERSION(DRV_VERSION);
128 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
129 * @tf: Taskfile to convert
130 * @pmp: Port multiplier port
131 * @is_cmd: This FIS is for command
132 * @fis: Buffer into which data will output
134 * Converts a standard ATA taskfile to a Serial ATA
135 * FIS structure (Register - Host to Device).
138 * Inherited from caller.
140 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
142 fis[0] = 0x27; /* Register - Host to Device FIS */
143 fis[1] = pmp & 0xf; /* Port multiplier number*/
145 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
147 fis[2] = tf->command;
148 fis[3] = tf->feature;
155 fis[8] = tf->hob_lbal;
156 fis[9] = tf->hob_lbam;
157 fis[10] = tf->hob_lbah;
158 fis[11] = tf->hob_feature;
161 fis[13] = tf->hob_nsect;
172 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
173 * @fis: Buffer from which data will be input
174 * @tf: Taskfile to output
176 * Converts a serial ATA FIS structure to a standard ATA taskfile.
179 * Inherited from caller.
182 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
184 tf->command = fis[2]; /* status */
185 tf->feature = fis[3]; /* error */
192 tf->hob_lbal = fis[8];
193 tf->hob_lbam = fis[9];
194 tf->hob_lbah = fis[10];
197 tf->hob_nsect = fis[13];
200 static const u8 ata_rw_cmds[] = {
204 ATA_CMD_READ_MULTI_EXT,
205 ATA_CMD_WRITE_MULTI_EXT,
209 ATA_CMD_WRITE_MULTI_FUA_EXT,
213 ATA_CMD_PIO_READ_EXT,
214 ATA_CMD_PIO_WRITE_EXT,
227 ATA_CMD_WRITE_FUA_EXT
231 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
232 * @tf: command to examine and configure
233 * @dev: device tf belongs to
235 * Examine the device configuration and tf->flags to calculate
236 * the proper read/write commands and protocol to use.
241 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
245 int index, fua, lba48, write;
247 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
248 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
249 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
251 if (dev->flags & ATA_DFLAG_PIO) {
252 tf->protocol = ATA_PROT_PIO;
253 index = dev->multi_count ? 0 : 8;
254 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
255 /* Unable to use DMA due to host limitation */
256 tf->protocol = ATA_PROT_PIO;
257 index = dev->multi_count ? 0 : 8;
259 tf->protocol = ATA_PROT_DMA;
263 cmd = ata_rw_cmds[index + fua + lba48 + write];
272 * ata_tf_read_block - Read block address from ATA taskfile
273 * @tf: ATA taskfile of interest
274 * @dev: ATA device @tf belongs to
279 * Read block address from @tf. This function can handle all
280 * three address formats - LBA, LBA48 and CHS. tf->protocol and
281 * flags select the address format to use.
284 * Block address read from @tf.
286 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
290 if (tf->flags & ATA_TFLAG_LBA) {
291 if (tf->flags & ATA_TFLAG_LBA48) {
292 block |= (u64)tf->hob_lbah << 40;
293 block |= (u64)tf->hob_lbam << 32;
294 block |= tf->hob_lbal << 24;
296 block |= (tf->device & 0xf) << 24;
298 block |= tf->lbah << 16;
299 block |= tf->lbam << 8;
304 cyl = tf->lbam | (tf->lbah << 8);
305 head = tf->device & 0xf;
308 block = (cyl * dev->heads + head) * dev->sectors + sect;
315 * ata_build_rw_tf - Build ATA taskfile for given read/write request
316 * @tf: Target ATA taskfile
317 * @dev: ATA device @tf belongs to
318 * @block: Block address
319 * @n_block: Number of blocks
320 * @tf_flags: RW/FUA etc...
326 * Build ATA taskfile @tf for read/write request described by
327 * @block, @n_block, @tf_flags and @tag on @dev.
331 * 0 on success, -ERANGE if the request is too large for @dev,
332 * -EINVAL if the request is invalid.
334 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
335 u64 block, u32 n_block, unsigned int tf_flags,
338 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
339 tf->flags |= tf_flags;
341 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
343 if (!lba_48_ok(block, n_block))
346 tf->protocol = ATA_PROT_NCQ;
347 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
349 if (tf->flags & ATA_TFLAG_WRITE)
350 tf->command = ATA_CMD_FPDMA_WRITE;
352 tf->command = ATA_CMD_FPDMA_READ;
354 tf->nsect = tag << 3;
355 tf->hob_feature = (n_block >> 8) & 0xff;
356 tf->feature = n_block & 0xff;
358 tf->hob_lbah = (block >> 40) & 0xff;
359 tf->hob_lbam = (block >> 32) & 0xff;
360 tf->hob_lbal = (block >> 24) & 0xff;
361 tf->lbah = (block >> 16) & 0xff;
362 tf->lbam = (block >> 8) & 0xff;
363 tf->lbal = block & 0xff;
366 if (tf->flags & ATA_TFLAG_FUA)
367 tf->device |= 1 << 7;
368 } else if (dev->flags & ATA_DFLAG_LBA) {
369 tf->flags |= ATA_TFLAG_LBA;
371 if (lba_28_ok(block, n_block)) {
373 tf->device |= (block >> 24) & 0xf;
374 } else if (lba_48_ok(block, n_block)) {
375 if (!(dev->flags & ATA_DFLAG_LBA48))
379 tf->flags |= ATA_TFLAG_LBA48;
381 tf->hob_nsect = (n_block >> 8) & 0xff;
383 tf->hob_lbah = (block >> 40) & 0xff;
384 tf->hob_lbam = (block >> 32) & 0xff;
385 tf->hob_lbal = (block >> 24) & 0xff;
387 /* request too large even for LBA48 */
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 tf->nsect = n_block & 0xff;
395 tf->lbah = (block >> 16) & 0xff;
396 tf->lbam = (block >> 8) & 0xff;
397 tf->lbal = block & 0xff;
399 tf->device |= ATA_LBA;
402 u32 sect, head, cyl, track;
404 /* The request -may- be too large for CHS addressing. */
405 if (!lba_28_ok(block, n_block))
408 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
411 /* Convert LBA to CHS */
412 track = (u32)block / dev->sectors;
413 cyl = track / dev->heads;
414 head = track % dev->heads;
415 sect = (u32)block % dev->sectors + 1;
417 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
418 (u32)block, track, cyl, head, sect);
420 /* Check whether the converted CHS can fit.
424 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
427 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
438 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
439 * @pio_mask: pio_mask
440 * @mwdma_mask: mwdma_mask
441 * @udma_mask: udma_mask
443 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
444 * unsigned int xfer_mask.
452 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
453 unsigned int mwdma_mask,
454 unsigned int udma_mask)
456 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
457 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
458 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
462 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
463 * @xfer_mask: xfer_mask to unpack
464 * @pio_mask: resulting pio_mask
465 * @mwdma_mask: resulting mwdma_mask
466 * @udma_mask: resulting udma_mask
468 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
469 * Any NULL distination masks will be ignored.
471 static void ata_unpack_xfermask(unsigned int xfer_mask,
472 unsigned int *pio_mask,
473 unsigned int *mwdma_mask,
474 unsigned int *udma_mask)
477 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
479 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
481 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
484 static const struct ata_xfer_ent {
488 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
489 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
490 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
495 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
496 * @xfer_mask: xfer_mask of interest
498 * Return matching XFER_* value for @xfer_mask. Only the highest
499 * bit of @xfer_mask is considered.
505 * Matching XFER_* value, 0 if no match found.
507 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
509 int highbit = fls(xfer_mask) - 1;
510 const struct ata_xfer_ent *ent;
512 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
513 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
514 return ent->base + highbit - ent->shift;
519 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
520 * @xfer_mode: XFER_* of interest
522 * Return matching xfer_mask for @xfer_mode.
528 * Matching xfer_mask, 0 if no match found.
530 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
532 const struct ata_xfer_ent *ent;
534 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
535 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
536 return 1 << (ent->shift + xfer_mode - ent->base);
541 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
542 * @xfer_mode: XFER_* of interest
544 * Return matching xfer_shift for @xfer_mode.
550 * Matching xfer_shift, -1 if no match found.
552 static int ata_xfer_mode2shift(unsigned int xfer_mode)
554 const struct ata_xfer_ent *ent;
556 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
557 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
563 * ata_mode_string - convert xfer_mask to string
564 * @xfer_mask: mask of bits supported; only highest bit counts.
566 * Determine string which represents the highest speed
567 * (highest bit in @modemask).
573 * Constant C string representing highest speed listed in
574 * @mode_mask, or the constant C string "<n/a>".
576 static const char *ata_mode_string(unsigned int xfer_mask)
578 static const char * const xfer_mode_str[] = {
602 highbit = fls(xfer_mask) - 1;
603 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
604 return xfer_mode_str[highbit];
608 static const char *sata_spd_string(unsigned int spd)
610 static const char * const spd_str[] = {
615 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
617 return spd_str[spd - 1];
620 void ata_dev_disable(struct ata_device *dev)
622 if (ata_dev_enabled(dev)) {
623 if (ata_msg_drv(dev->link->ap))
624 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
625 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
631 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
633 struct ata_link *link = dev->link;
634 struct ata_port *ap = link->ap;
636 unsigned int err_mask;
640 * disallow DIPM for drivers which haven't set
641 * ATA_FLAG_IPM. This is because when DIPM is enabled,
642 * phy ready will be set in the interrupt status on
643 * state changes, which will cause some drivers to
644 * think there are errors - additionally drivers will
645 * need to disable hot plug.
647 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
648 ap->pm_policy = NOT_AVAILABLE;
653 * For DIPM, we will only enable it for the
656 * Why? Because Disks are too stupid to know that
657 * If the host rejects a request to go to SLUMBER
658 * they should retry at PARTIAL, and instead it
659 * just would give up. So, for medium_power to
660 * work at all, we need to only allow HIPM.
662 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
668 /* no restrictions on IPM transitions */
669 scontrol &= ~(0x3 << 8);
670 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
675 if (dev->flags & ATA_DFLAG_DIPM)
676 err_mask = ata_dev_set_feature(dev,
677 SETFEATURES_SATA_ENABLE, SATA_DIPM);
680 /* allow IPM to PARTIAL */
681 scontrol &= ~(0x1 << 8);
682 scontrol |= (0x2 << 8);
683 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
688 * we don't have to disable DIPM since IPM flags
689 * disallow transitions to SLUMBER, which effectively
690 * disable DIPM if it does not support PARTIAL
694 case MAX_PERFORMANCE:
695 /* disable all IPM transitions */
696 scontrol |= (0x3 << 8);
697 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
702 * we don't have to disable DIPM since IPM flags
703 * disallow all transitions which effectively
704 * disable DIPM anyway.
709 /* FIXME: handle SET FEATURES failure */
716 * ata_dev_enable_pm - enable SATA interface power management
717 * @dev: device to enable power management
718 * @policy: the link power management policy
720 * Enable SATA Interface power management. This will enable
721 * Device Interface Power Management (DIPM) for min_power
722 * policy, and then call driver specific callbacks for
723 * enabling Host Initiated Power management.
726 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
728 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
731 struct ata_port *ap = dev->link->ap;
733 /* set HIPM first, then DIPM */
734 if (ap->ops->enable_pm)
735 rc = ap->ops->enable_pm(ap, policy);
738 rc = ata_dev_set_dipm(dev, policy);
742 ap->pm_policy = MAX_PERFORMANCE;
744 ap->pm_policy = policy;
745 return /* rc */; /* hopefully we can use 'rc' eventually */
750 * ata_dev_disable_pm - disable SATA interface power management
751 * @dev: device to disable power management
753 * Disable SATA Interface power management. This will disable
754 * Device Interface Power Management (DIPM) without changing
755 * policy, call driver specific callbacks for disabling Host
756 * Initiated Power management.
761 static void ata_dev_disable_pm(struct ata_device *dev)
763 struct ata_port *ap = dev->link->ap;
765 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
766 if (ap->ops->disable_pm)
767 ap->ops->disable_pm(ap);
769 #endif /* CONFIG_PM */
771 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
773 ap->pm_policy = policy;
774 ap->link.eh_info.action |= ATA_EHI_LPM;
775 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
776 ata_port_schedule_eh(ap);
780 static void ata_lpm_enable(struct ata_host *host)
782 struct ata_link *link;
784 struct ata_device *dev;
787 for (i = 0; i < host->n_ports; i++) {
789 ata_port_for_each_link(link, ap) {
790 ata_link_for_each_dev(dev, link)
791 ata_dev_disable_pm(dev);
796 static void ata_lpm_disable(struct ata_host *host)
800 for (i = 0; i < host->n_ports; i++) {
801 struct ata_port *ap = host->ports[i];
802 ata_lpm_schedule(ap, ap->pm_policy);
805 #endif /* CONFIG_PM */
809 * ata_devchk - PATA device presence detection
810 * @ap: ATA channel to examine
811 * @device: Device to examine (starting at zero)
813 * This technique was originally described in
814 * Hale Landis's ATADRVR (www.ata-atapi.com), and
815 * later found its way into the ATA/ATAPI spec.
817 * Write a pattern to the ATA shadow registers,
818 * and if a device is present, it will respond by
819 * correctly storing and echoing back the
820 * ATA shadow register contents.
826 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
828 struct ata_ioports *ioaddr = &ap->ioaddr;
831 ap->ops->dev_select(ap, device);
833 iowrite8(0x55, ioaddr->nsect_addr);
834 iowrite8(0xaa, ioaddr->lbal_addr);
836 iowrite8(0xaa, ioaddr->nsect_addr);
837 iowrite8(0x55, ioaddr->lbal_addr);
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
842 nsect = ioread8(ioaddr->nsect_addr);
843 lbal = ioread8(ioaddr->lbal_addr);
845 if ((nsect == 0x55) && (lbal == 0xaa))
846 return 1; /* we found a device */
848 return 0; /* nothing found */
852 * ata_dev_classify - determine device type based on ATA-spec signature
853 * @tf: ATA taskfile register set for device to be identified
855 * Determine from taskfile register contents whether a device is
856 * ATA or ATAPI, as per "Signature and persistence" section
857 * of ATA/PI spec (volume 1, sect 5.14).
863 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
864 * %ATA_DEV_UNKNOWN the event of failure.
866 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
868 /* Apple's open source Darwin code hints that some devices only
869 * put a proper signature into the LBA mid/high registers,
870 * So, we only check those. It's sufficient for uniqueness.
872 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
873 * signatures for ATA and ATAPI devices attached on SerialATA,
874 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
875 * spec has never mentioned about using different signatures
876 * for ATA/ATAPI devices. Then, Serial ATA II: Port
877 * Multiplier specification began to use 0x69/0x96 to identify
878 * port multpliers and 0x3c/0xc3 to identify SEMB device.
879 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
880 * 0x69/0x96 shortly and described them as reserved for
883 * We follow the current spec and consider that 0x69/0x96
884 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
886 if ((tf->lbam == 0) && (tf->lbah == 0)) {
887 DPRINTK("found ATA device by sig\n");
891 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
892 DPRINTK("found ATAPI device by sig\n");
893 return ATA_DEV_ATAPI;
896 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
897 DPRINTK("found PMP device by sig\n");
901 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
902 printk(KERN_INFO "ata: SEMB device ignored\n");
903 return ATA_DEV_SEMB_UNSUP; /* not yet */
906 DPRINTK("unknown device\n");
907 return ATA_DEV_UNKNOWN;
911 * ata_dev_try_classify - Parse returned ATA device signature
912 * @dev: ATA device to classify (starting at zero)
913 * @present: device seems present
914 * @r_err: Value of error register on completion
916 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
917 * an ATA/ATAPI-defined set of values is placed in the ATA
918 * shadow registers, indicating the results of device detection
921 * Select the ATA device, and read the values from the ATA shadow
922 * registers. Then parse according to the Error register value,
923 * and the spec-defined values examined by ata_dev_classify().
929 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
931 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
934 struct ata_port *ap = dev->link->ap;
935 struct ata_taskfile tf;
939 ap->ops->dev_select(ap, dev->devno);
941 memset(&tf, 0, sizeof(tf));
943 ap->ops->tf_read(ap, &tf);
948 /* see if device passed diags: if master then continue and warn later */
949 if (err == 0 && dev->devno == 0)
950 /* diagnostic fail : do nothing _YET_ */
951 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
954 else if ((dev->devno == 0) && (err == 0x81))
959 /* determine if device is ATA or ATAPI */
960 class = ata_dev_classify(&tf);
962 if (class == ATA_DEV_UNKNOWN) {
963 /* If the device failed diagnostic, it's likely to
964 * have reported incorrect device signature too.
965 * Assume ATA device if the device seems present but
966 * device signature is invalid with diagnostic
969 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
972 class = ATA_DEV_NONE;
973 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
974 class = ATA_DEV_NONE;
980 * ata_id_string - Convert IDENTIFY DEVICE page into string
981 * @id: IDENTIFY DEVICE results we will examine
982 * @s: string into which data is output
983 * @ofs: offset into identify device page
984 * @len: length of string to return. must be an even number.
986 * The strings in the IDENTIFY DEVICE page are broken up into
987 * 16-bit chunks. Run through the string, and output each
988 * 8-bit chunk linearly, regardless of platform.
994 void ata_id_string(const u16 *id, unsigned char *s,
995 unsigned int ofs, unsigned int len)
1014 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1015 * @id: IDENTIFY DEVICE results we will examine
1016 * @s: string into which data is output
1017 * @ofs: offset into identify device page
1018 * @len: length of string to return. must be an odd number.
1020 * This function is identical to ata_id_string except that it
1021 * trims trailing spaces and terminates the resulting string with
1022 * null. @len must be actual maximum length (even number) + 1.
1027 void ata_id_c_string(const u16 *id, unsigned char *s,
1028 unsigned int ofs, unsigned int len)
1032 WARN_ON(!(len & 1));
1034 ata_id_string(id, s, ofs, len - 1);
1036 p = s + strnlen(s, len - 1);
1037 while (p > s && p[-1] == ' ')
1042 static u64 ata_id_n_sectors(const u16 *id)
1044 if (ata_id_has_lba(id)) {
1045 if (ata_id_has_lba48(id))
1046 return ata_id_u64(id, 100);
1048 return ata_id_u32(id, 60);
1050 if (ata_id_current_chs_valid(id))
1051 return ata_id_u32(id, 57);
1053 return id[1] * id[3] * id[6];
1057 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1061 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1062 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1063 sectors |= (tf->hob_lbal & 0xff) << 24;
1064 sectors |= (tf->lbah & 0xff) << 16;
1065 sectors |= (tf->lbam & 0xff) << 8;
1066 sectors |= (tf->lbal & 0xff);
1071 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1075 sectors |= (tf->device & 0x0f) << 24;
1076 sectors |= (tf->lbah & 0xff) << 16;
1077 sectors |= (tf->lbam & 0xff) << 8;
1078 sectors |= (tf->lbal & 0xff);
1084 * ata_read_native_max_address - Read native max address
1085 * @dev: target device
1086 * @max_sectors: out parameter for the result native max address
1088 * Perform an LBA48 or LBA28 native size query upon the device in
1092 * 0 on success, -EACCES if command is aborted by the drive.
1093 * -EIO on other errors.
1095 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1097 unsigned int err_mask;
1098 struct ata_taskfile tf;
1099 int lba48 = ata_id_has_lba48(dev->id);
1101 ata_tf_init(dev, &tf);
1103 /* always clear all address registers */
1104 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1107 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1108 tf.flags |= ATA_TFLAG_LBA48;
1110 tf.command = ATA_CMD_READ_NATIVE_MAX;
1112 tf.protocol |= ATA_PROT_NODATA;
1113 tf.device |= ATA_LBA;
1115 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1117 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1118 "max address (err_mask=0x%x)\n", err_mask);
1119 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1125 *max_sectors = ata_tf_to_lba48(&tf);
1127 *max_sectors = ata_tf_to_lba(&tf);
1128 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1134 * ata_set_max_sectors - Set max sectors
1135 * @dev: target device
1136 * @new_sectors: new max sectors value to set for the device
1138 * Set max sectors of @dev to @new_sectors.
1141 * 0 on success, -EACCES if command is aborted or denied (due to
1142 * previous non-volatile SET_MAX) by the drive. -EIO on other
1145 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1147 unsigned int err_mask;
1148 struct ata_taskfile tf;
1149 int lba48 = ata_id_has_lba48(dev->id);
1153 ata_tf_init(dev, &tf);
1155 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1158 tf.command = ATA_CMD_SET_MAX_EXT;
1159 tf.flags |= ATA_TFLAG_LBA48;
1161 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1162 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1163 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1165 tf.command = ATA_CMD_SET_MAX;
1167 tf.device |= (new_sectors >> 24) & 0xf;
1170 tf.protocol |= ATA_PROT_NODATA;
1171 tf.device |= ATA_LBA;
1173 tf.lbal = (new_sectors >> 0) & 0xff;
1174 tf.lbam = (new_sectors >> 8) & 0xff;
1175 tf.lbah = (new_sectors >> 16) & 0xff;
1177 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1179 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1180 "max address (err_mask=0x%x)\n", err_mask);
1181 if (err_mask == AC_ERR_DEV &&
1182 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1191 * ata_hpa_resize - Resize a device with an HPA set
1192 * @dev: Device to resize
1194 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1195 * it if required to the full size of the media. The caller must check
1196 * the drive has the HPA feature set enabled.
1199 * 0 on success, -errno on failure.
1201 static int ata_hpa_resize(struct ata_device *dev)
1203 struct ata_eh_context *ehc = &dev->link->eh_context;
1204 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1205 u64 sectors = ata_id_n_sectors(dev->id);
1209 /* do we need to do it? */
1210 if (dev->class != ATA_DEV_ATA ||
1211 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1212 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1215 /* read native max address */
1216 rc = ata_read_native_max_address(dev, &native_sectors);
1218 /* If HPA isn't going to be unlocked, skip HPA
1219 * resizing from the next try.
1221 if (!ata_ignore_hpa) {
1222 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1223 "broken, will skip HPA handling\n");
1224 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1226 /* we can continue if device aborted the command */
1234 /* nothing to do? */
1235 if (native_sectors <= sectors || !ata_ignore_hpa) {
1236 if (!print_info || native_sectors == sectors)
1239 if (native_sectors > sectors)
1240 ata_dev_printk(dev, KERN_INFO,
1241 "HPA detected: current %llu, native %llu\n",
1242 (unsigned long long)sectors,
1243 (unsigned long long)native_sectors);
1244 else if (native_sectors < sectors)
1245 ata_dev_printk(dev, KERN_WARNING,
1246 "native sectors (%llu) is smaller than "
1248 (unsigned long long)native_sectors,
1249 (unsigned long long)sectors);
1253 /* let's unlock HPA */
1254 rc = ata_set_max_sectors(dev, native_sectors);
1255 if (rc == -EACCES) {
1256 /* if device aborted the command, skip HPA resizing */
1257 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1258 "(%llu -> %llu), skipping HPA handling\n",
1259 (unsigned long long)sectors,
1260 (unsigned long long)native_sectors);
1261 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1266 /* re-read IDENTIFY data */
1267 rc = ata_dev_reread_id(dev, 0);
1269 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1270 "data after HPA resizing\n");
1275 u64 new_sectors = ata_id_n_sectors(dev->id);
1276 ata_dev_printk(dev, KERN_INFO,
1277 "HPA unlocked: %llu -> %llu, native %llu\n",
1278 (unsigned long long)sectors,
1279 (unsigned long long)new_sectors,
1280 (unsigned long long)native_sectors);
1287 * ata_id_to_dma_mode - Identify DMA mode from id block
1288 * @dev: device to identify
1289 * @unknown: mode to assume if we cannot tell
1291 * Set up the timing values for the device based upon the identify
1292 * reported values for the DMA mode. This function is used by drivers
1293 * which rely upon firmware configured modes, but wish to report the
1294 * mode correctly when possible.
1296 * In addition we emit similarly formatted messages to the default
1297 * ata_dev_set_mode handler, in order to provide consistency of
1301 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1306 /* Pack the DMA modes */
1307 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1308 if (dev->id[53] & 0x04)
1309 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1311 /* Select the mode in use */
1312 mode = ata_xfer_mask2mode(mask);
1315 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1316 ata_mode_string(mask));
1318 /* SWDMA perhaps ? */
1320 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1323 /* Configure the device reporting */
1324 dev->xfer_mode = mode;
1325 dev->xfer_shift = ata_xfer_mode2shift(mode);
1329 * ata_noop_dev_select - Select device 0/1 on ATA bus
1330 * @ap: ATA channel to manipulate
1331 * @device: ATA device (numbered from zero) to select
1333 * This function performs no actual function.
1335 * May be used as the dev_select() entry in ata_port_operations.
1340 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1346 * ata_std_dev_select - Select device 0/1 on ATA bus
1347 * @ap: ATA channel to manipulate
1348 * @device: ATA device (numbered from zero) to select
1350 * Use the method defined in the ATA specification to
1351 * make either device 0, or device 1, active on the
1352 * ATA channel. Works with both PIO and MMIO.
1354 * May be used as the dev_select() entry in ata_port_operations.
1360 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1365 tmp = ATA_DEVICE_OBS;
1367 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1369 iowrite8(tmp, ap->ioaddr.device_addr);
1370 ata_pause(ap); /* needed; also flushes, for mmio */
1374 * ata_dev_select - Select device 0/1 on ATA bus
1375 * @ap: ATA channel to manipulate
1376 * @device: ATA device (numbered from zero) to select
1377 * @wait: non-zero to wait for Status register BSY bit to clear
1378 * @can_sleep: non-zero if context allows sleeping
1380 * Use the method defined in the ATA specification to
1381 * make either device 0, or device 1, active on the
1384 * This is a high-level version of ata_std_dev_select(),
1385 * which additionally provides the services of inserting
1386 * the proper pauses and status polling, where needed.
1392 void ata_dev_select(struct ata_port *ap, unsigned int device,
1393 unsigned int wait, unsigned int can_sleep)
1395 if (ata_msg_probe(ap))
1396 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1397 "device %u, wait %u\n", device, wait);
1402 ap->ops->dev_select(ap, device);
1405 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1412 * ata_dump_id - IDENTIFY DEVICE info debugging output
1413 * @id: IDENTIFY DEVICE page to dump
1415 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 static inline void ata_dump_id(const u16 *id)
1424 DPRINTK("49==0x%04x "
1434 DPRINTK("80==0x%04x "
1444 DPRINTK("88==0x%04x "
1451 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1452 * @id: IDENTIFY data to compute xfer mask from
1454 * Compute the xfermask for this device. This is not as trivial
1455 * as it seems if we must consider early devices correctly.
1457 * FIXME: pre IDE drive timing (do we care ?).
1465 static unsigned int ata_id_xfermask(const u16 *id)
1467 unsigned int pio_mask, mwdma_mask, udma_mask;
1469 /* Usual case. Word 53 indicates word 64 is valid */
1470 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1471 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1475 /* If word 64 isn't valid then Word 51 high byte holds
1476 * the PIO timing number for the maximum. Turn it into
1479 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1480 if (mode < 5) /* Valid PIO range */
1481 pio_mask = (2 << mode) - 1;
1485 /* But wait.. there's more. Design your standards by
1486 * committee and you too can get a free iordy field to
1487 * process. However its the speeds not the modes that
1488 * are supported... Note drivers using the timing API
1489 * will get this right anyway
1493 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1495 if (ata_id_is_cfa(id)) {
1497 * Process compact flash extended modes
1499 int pio = id[163] & 0x7;
1500 int dma = (id[163] >> 3) & 7;
1503 pio_mask |= (1 << 5);
1505 pio_mask |= (1 << 6);
1507 mwdma_mask |= (1 << 3);
1509 mwdma_mask |= (1 << 4);
1513 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1514 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1516 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1520 * ata_port_queue_task - Queue port_task
1521 * @ap: The ata_port to queue port_task for
1522 * @fn: workqueue function to be scheduled
1523 * @data: data for @fn to use
1524 * @delay: delay time for workqueue function
1526 * Schedule @fn(@data) for execution after @delay jiffies using
1527 * port_task. There is one port_task per port and it's the
1528 * user(low level driver)'s responsibility to make sure that only
1529 * one task is active at any given time.
1531 * libata core layer takes care of synchronization between
1532 * port_task and EH. ata_port_queue_task() may be ignored for EH
1536 * Inherited from caller.
1538 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1539 unsigned long delay)
1541 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1542 ap->port_task_data = data;
1544 /* may fail if ata_port_flush_task() in progress */
1545 queue_delayed_work(ata_wq, &ap->port_task, delay);
1549 * ata_port_flush_task - Flush port_task
1550 * @ap: The ata_port to flush port_task for
1552 * After this function completes, port_task is guranteed not to
1553 * be running or scheduled.
1556 * Kernel thread context (may sleep)
1558 void ata_port_flush_task(struct ata_port *ap)
1562 cancel_rearming_delayed_work(&ap->port_task);
1564 if (ata_msg_ctl(ap))
1565 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1568 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1570 struct completion *waiting = qc->private_data;
1576 * ata_exec_internal_sg - execute libata internal command
1577 * @dev: Device to which the command is sent
1578 * @tf: Taskfile registers for the command and the result
1579 * @cdb: CDB for packet command
1580 * @dma_dir: Data tranfer direction of the command
1581 * @sgl: sg list for the data buffer of the command
1582 * @n_elem: Number of sg entries
1583 * @timeout: Timeout in msecs (0 for default)
1585 * Executes libata internal command with timeout. @tf contains
1586 * command on entry and result on return. Timeout and error
1587 * conditions are reported via return value. No recovery action
1588 * is taken after a command times out. It's caller's duty to
1589 * clean up after timeout.
1592 * None. Should be called with kernel context, might sleep.
1595 * Zero on success, AC_ERR_* mask on failure
1597 unsigned ata_exec_internal_sg(struct ata_device *dev,
1598 struct ata_taskfile *tf, const u8 *cdb,
1599 int dma_dir, struct scatterlist *sgl,
1600 unsigned int n_elem, unsigned long timeout)
1602 struct ata_link *link = dev->link;
1603 struct ata_port *ap = link->ap;
1604 u8 command = tf->command;
1605 struct ata_queued_cmd *qc;
1606 unsigned int tag, preempted_tag;
1607 u32 preempted_sactive, preempted_qc_active;
1608 int preempted_nr_active_links;
1609 DECLARE_COMPLETION_ONSTACK(wait);
1610 unsigned long flags;
1611 unsigned int err_mask;
1614 spin_lock_irqsave(ap->lock, flags);
1616 /* no internal command while frozen */
1617 if (ap->pflags & ATA_PFLAG_FROZEN) {
1618 spin_unlock_irqrestore(ap->lock, flags);
1619 return AC_ERR_SYSTEM;
1622 /* initialize internal qc */
1624 /* XXX: Tag 0 is used for drivers with legacy EH as some
1625 * drivers choke if any other tag is given. This breaks
1626 * ata_tag_internal() test for those drivers. Don't use new
1627 * EH stuff without converting to it.
1629 if (ap->ops->error_handler)
1630 tag = ATA_TAG_INTERNAL;
1634 if (test_and_set_bit(tag, &ap->qc_allocated))
1636 qc = __ata_qc_from_tag(ap, tag);
1644 preempted_tag = link->active_tag;
1645 preempted_sactive = link->sactive;
1646 preempted_qc_active = ap->qc_active;
1647 preempted_nr_active_links = ap->nr_active_links;
1648 link->active_tag = ATA_TAG_POISON;
1651 ap->nr_active_links = 0;
1653 /* prepare & issue qc */
1656 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1657 qc->flags |= ATA_QCFLAG_RESULT_TF;
1658 qc->dma_dir = dma_dir;
1659 if (dma_dir != DMA_NONE) {
1660 unsigned int i, buflen = 0;
1661 struct scatterlist *sg;
1663 for_each_sg(sgl, sg, n_elem, i)
1664 buflen += sg->length;
1666 ata_sg_init(qc, sgl, n_elem);
1667 qc->nbytes = buflen;
1670 qc->private_data = &wait;
1671 qc->complete_fn = ata_qc_complete_internal;
1675 spin_unlock_irqrestore(ap->lock, flags);
1678 timeout = ata_probe_timeout * 1000 / HZ;
1680 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1682 ata_port_flush_task(ap);
1685 spin_lock_irqsave(ap->lock, flags);
1687 /* We're racing with irq here. If we lose, the
1688 * following test prevents us from completing the qc
1689 * twice. If we win, the port is frozen and will be
1690 * cleaned up by ->post_internal_cmd().
1692 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1693 qc->err_mask |= AC_ERR_TIMEOUT;
1695 if (ap->ops->error_handler)
1696 ata_port_freeze(ap);
1698 ata_qc_complete(qc);
1700 if (ata_msg_warn(ap))
1701 ata_dev_printk(dev, KERN_WARNING,
1702 "qc timeout (cmd 0x%x)\n", command);
1705 spin_unlock_irqrestore(ap->lock, flags);
1708 /* do post_internal_cmd */
1709 if (ap->ops->post_internal_cmd)
1710 ap->ops->post_internal_cmd(qc);
1712 /* perform minimal error analysis */
1713 if (qc->flags & ATA_QCFLAG_FAILED) {
1714 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1715 qc->err_mask |= AC_ERR_DEV;
1718 qc->err_mask |= AC_ERR_OTHER;
1720 if (qc->err_mask & ~AC_ERR_OTHER)
1721 qc->err_mask &= ~AC_ERR_OTHER;
1725 spin_lock_irqsave(ap->lock, flags);
1727 *tf = qc->result_tf;
1728 err_mask = qc->err_mask;
1731 link->active_tag = preempted_tag;
1732 link->sactive = preempted_sactive;
1733 ap->qc_active = preempted_qc_active;
1734 ap->nr_active_links = preempted_nr_active_links;
1736 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1737 * Until those drivers are fixed, we detect the condition
1738 * here, fail the command with AC_ERR_SYSTEM and reenable the
1741 * Note that this doesn't change any behavior as internal
1742 * command failure results in disabling the device in the
1743 * higher layer for LLDDs without new reset/EH callbacks.
1745 * Kill the following code as soon as those drivers are fixed.
1747 if (ap->flags & ATA_FLAG_DISABLED) {
1748 err_mask |= AC_ERR_SYSTEM;
1752 spin_unlock_irqrestore(ap->lock, flags);
1758 * ata_exec_internal - execute libata internal command
1759 * @dev: Device to which the command is sent
1760 * @tf: Taskfile registers for the command and the result
1761 * @cdb: CDB for packet command
1762 * @dma_dir: Data tranfer direction of the command
1763 * @buf: Data buffer of the command
1764 * @buflen: Length of data buffer
1765 * @timeout: Timeout in msecs (0 for default)
1767 * Wrapper around ata_exec_internal_sg() which takes simple
1768 * buffer instead of sg list.
1771 * None. Should be called with kernel context, might sleep.
1774 * Zero on success, AC_ERR_* mask on failure
1776 unsigned ata_exec_internal(struct ata_device *dev,
1777 struct ata_taskfile *tf, const u8 *cdb,
1778 int dma_dir, void *buf, unsigned int buflen,
1779 unsigned long timeout)
1781 struct scatterlist *psg = NULL, sg;
1782 unsigned int n_elem = 0;
1784 if (dma_dir != DMA_NONE) {
1786 sg_init_one(&sg, buf, buflen);
1791 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1796 * ata_do_simple_cmd - execute simple internal command
1797 * @dev: Device to which the command is sent
1798 * @cmd: Opcode to execute
1800 * Execute a 'simple' command, that only consists of the opcode
1801 * 'cmd' itself, without filling any other registers
1804 * Kernel thread context (may sleep).
1807 * Zero on success, AC_ERR_* mask on failure
1809 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1811 struct ata_taskfile tf;
1813 ata_tf_init(dev, &tf);
1816 tf.flags |= ATA_TFLAG_DEVICE;
1817 tf.protocol = ATA_PROT_NODATA;
1819 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1823 * ata_pio_need_iordy - check if iordy needed
1826 * Check if the current speed of the device requires IORDY. Used
1827 * by various controllers for chip configuration.
1830 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1832 /* Controller doesn't support IORDY. Probably a pointless check
1833 as the caller should know this */
1834 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1836 /* PIO3 and higher it is mandatory */
1837 if (adev->pio_mode > XFER_PIO_2)
1839 /* We turn it on when possible */
1840 if (ata_id_has_iordy(adev->id))
1846 * ata_pio_mask_no_iordy - Return the non IORDY mask
1849 * Compute the highest mode possible if we are not using iordy. Return
1850 * -1 if no iordy mode is available.
1853 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1855 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1856 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1857 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1858 /* Is the speed faster than the drive allows non IORDY ? */
1860 /* This is cycle times not frequency - watch the logic! */
1861 if (pio > 240) /* PIO2 is 240nS per cycle */
1862 return 3 << ATA_SHIFT_PIO;
1863 return 7 << ATA_SHIFT_PIO;
1866 return 3 << ATA_SHIFT_PIO;
1870 * ata_dev_read_id - Read ID data from the specified device
1871 * @dev: target device
1872 * @p_class: pointer to class of the target device (may be changed)
1873 * @flags: ATA_READID_* flags
1874 * @id: buffer to read IDENTIFY data into
1876 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1877 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1878 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1879 * for pre-ATA4 drives.
1881 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1882 * now we abort if we hit that case.
1885 * Kernel thread context (may sleep)
1888 * 0 on success, -errno otherwise.
1890 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1891 unsigned int flags, u16 *id)
1893 struct ata_port *ap = dev->link->ap;
1894 unsigned int class = *p_class;
1895 struct ata_taskfile tf;
1896 unsigned int err_mask = 0;
1898 int may_fallback = 1, tried_spinup = 0;
1901 if (ata_msg_ctl(ap))
1902 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1904 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1906 ata_tf_init(dev, &tf);
1910 tf.command = ATA_CMD_ID_ATA;
1913 tf.command = ATA_CMD_ID_ATAPI;
1917 reason = "unsupported class";
1921 tf.protocol = ATA_PROT_PIO;
1923 /* Some devices choke if TF registers contain garbage. Make
1924 * sure those are properly initialized.
1926 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1928 /* Device presence detection is unreliable on some
1929 * controllers. Always poll IDENTIFY if available.
1931 tf.flags |= ATA_TFLAG_POLLING;
1933 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1934 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1936 if (err_mask & AC_ERR_NODEV_HINT) {
1937 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1938 ap->print_id, dev->devno);
1942 /* Device or controller might have reported the wrong
1943 * device class. Give a shot at the other IDENTIFY if
1944 * the current one is aborted by the device.
1947 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1950 if (class == ATA_DEV_ATA)
1951 class = ATA_DEV_ATAPI;
1953 class = ATA_DEV_ATA;
1958 reason = "I/O error";
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1967 swap_buf_le16(id, ATA_ID_WORDS);
1971 reason = "device reports invalid type";
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 if (ata_id_is_ata(id))
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1989 if (err_mask && id[2] != 0x738c) {
1991 reason = "SPINUP failed";
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1998 if (id[2] == 0x37c8)
2002 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2009 * Some drives were very specific about that exact sequence.
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * shoud never trigger.
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2018 reason = "INIT_DEV_PARAMS failed";
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2025 flags &= ~ATA_READID_POSTRESET;
2035 if (ata_msg_warn(ap))
2036 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2037 "(%s, err_mask=0x%x)\n", reason, err_mask);
2041 static inline u8 ata_dev_knobble(struct ata_device *dev)
2043 struct ata_port *ap = dev->link->ap;
2044 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2047 static void ata_dev_config_ncq(struct ata_device *dev,
2048 char *desc, size_t desc_sz)
2050 struct ata_port *ap = dev->link->ap;
2051 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2053 if (!ata_id_has_ncq(dev->id)) {
2057 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2058 snprintf(desc, desc_sz, "NCQ (not used)");
2061 if (ap->flags & ATA_FLAG_NCQ) {
2062 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2063 dev->flags |= ATA_DFLAG_NCQ;
2066 if (hdepth >= ddepth)
2067 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2069 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2073 * ata_dev_configure - Configure the specified ATA/ATAPI device
2074 * @dev: Target device to configure
2076 * Configure @dev according to @dev->id. Generic and low-level
2077 * driver specific fixups are also applied.
2080 * Kernel thread context (may sleep)
2083 * 0 on success, -errno otherwise
2085 int ata_dev_configure(struct ata_device *dev)
2087 struct ata_port *ap = dev->link->ap;
2088 struct ata_eh_context *ehc = &dev->link->eh_context;
2089 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2090 const u16 *id = dev->id;
2091 unsigned int xfer_mask;
2092 char revbuf[7]; /* XYZ-99\0 */
2093 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2094 char modelbuf[ATA_ID_PROD_LEN+1];
2097 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2098 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2103 if (ata_msg_probe(ap))
2104 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2107 dev->horkage |= ata_dev_blacklisted(dev);
2109 /* let ACPI work its magic */
2110 rc = ata_acpi_on_devcfg(dev);
2114 /* massage HPA, do it early as it might change IDENTIFY data */
2115 rc = ata_hpa_resize(dev);
2119 /* print device capabilities */
2120 if (ata_msg_probe(ap))
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2123 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2125 id[49], id[82], id[83], id[84],
2126 id[85], id[86], id[87], id[88]);
2128 /* initialize to-be-configured parameters */
2129 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2130 dev->max_sectors = 0;
2138 * common ATA, ATAPI feature tests
2141 /* find max transfer mode; for printk only */
2142 xfer_mask = ata_id_xfermask(id);
2144 if (ata_msg_probe(ap))
2147 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2148 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2151 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2154 /* ATA-specific feature tests */
2155 if (dev->class == ATA_DEV_ATA) {
2156 if (ata_id_is_cfa(id)) {
2157 if (id[162] & 1) /* CPRM may make this media unusable */
2158 ata_dev_printk(dev, KERN_WARNING,
2159 "supports DRM functions and may "
2160 "not be fully accessable.\n");
2161 snprintf(revbuf, 7, "CFA");
2163 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2165 dev->n_sectors = ata_id_n_sectors(id);
2167 if (dev->id[59] & 0x100)
2168 dev->multi_count = dev->id[59] & 0xff;
2170 if (ata_id_has_lba(id)) {
2171 const char *lba_desc;
2175 dev->flags |= ATA_DFLAG_LBA;
2176 if (ata_id_has_lba48(id)) {
2177 dev->flags |= ATA_DFLAG_LBA48;
2180 if (dev->n_sectors >= (1UL << 28) &&
2181 ata_id_has_flush_ext(id))
2182 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2186 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2188 /* print device info to dmesg */
2189 if (ata_msg_drv(ap) && print_info) {
2190 ata_dev_printk(dev, KERN_INFO,
2191 "%s: %s, %s, max %s\n",
2192 revbuf, modelbuf, fwrevbuf,
2193 ata_mode_string(xfer_mask));
2194 ata_dev_printk(dev, KERN_INFO,
2195 "%Lu sectors, multi %u: %s %s\n",
2196 (unsigned long long)dev->n_sectors,
2197 dev->multi_count, lba_desc, ncq_desc);
2202 /* Default translation */
2203 dev->cylinders = id[1];
2205 dev->sectors = id[6];
2207 if (ata_id_current_chs_valid(id)) {
2208 /* Current CHS translation is valid. */
2209 dev->cylinders = id[54];
2210 dev->heads = id[55];
2211 dev->sectors = id[56];
2214 /* print device info to dmesg */
2215 if (ata_msg_drv(ap) && print_info) {
2216 ata_dev_printk(dev, KERN_INFO,
2217 "%s: %s, %s, max %s\n",
2218 revbuf, modelbuf, fwrevbuf,
2219 ata_mode_string(xfer_mask));
2220 ata_dev_printk(dev, KERN_INFO,
2221 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2222 (unsigned long long)dev->n_sectors,
2223 dev->multi_count, dev->cylinders,
2224 dev->heads, dev->sectors);
2231 /* ATAPI-specific feature tests */
2232 else if (dev->class == ATA_DEV_ATAPI) {
2233 const char *cdb_intr_string = "";
2234 const char *atapi_an_string = "";
2237 rc = atapi_cdb_len(id);
2238 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2239 if (ata_msg_warn(ap))
2240 ata_dev_printk(dev, KERN_WARNING,
2241 "unsupported CDB len\n");
2245 dev->cdb_len = (unsigned int) rc;
2247 /* Enable ATAPI AN if both the host and device have
2248 * the support. If PMP is attached, SNTF is required
2249 * to enable ATAPI AN to discern between PHY status
2250 * changed notifications and ATAPI ANs.
2252 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2253 (!ap->nr_pmp_links ||
2254 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2255 unsigned int err_mask;
2257 /* issue SET feature command to turn this on */
2258 err_mask = ata_dev_set_feature(dev,
2259 SETFEATURES_SATA_ENABLE, SATA_AN);
2261 ata_dev_printk(dev, KERN_ERR,
2262 "failed to enable ATAPI AN "
2263 "(err_mask=0x%x)\n", err_mask);
2265 dev->flags |= ATA_DFLAG_AN;
2266 atapi_an_string = ", ATAPI AN";
2270 if (ata_id_cdb_intr(dev->id)) {
2271 dev->flags |= ATA_DFLAG_CDB_INTR;
2272 cdb_intr_string = ", CDB intr";
2275 /* print device info to dmesg */
2276 if (ata_msg_drv(ap) && print_info)
2277 ata_dev_printk(dev, KERN_INFO,
2278 "ATAPI: %s, %s, max %s%s%s\n",
2280 ata_mode_string(xfer_mask),
2281 cdb_intr_string, atapi_an_string);
2284 /* determine max_sectors */
2285 dev->max_sectors = ATA_MAX_SECTORS;
2286 if (dev->flags & ATA_DFLAG_LBA48)
2287 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2289 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2290 if (ata_id_has_hipm(dev->id))
2291 dev->flags |= ATA_DFLAG_HIPM;
2292 if (ata_id_has_dipm(dev->id))
2293 dev->flags |= ATA_DFLAG_DIPM;
2296 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2297 /* Let the user know. We don't want to disallow opens for
2298 rescue purposes, or in case the vendor is just a blithering
2301 ata_dev_printk(dev, KERN_WARNING,
2302 "Drive reports diagnostics failure. This may indicate a drive\n");
2303 ata_dev_printk(dev, KERN_WARNING,
2304 "fault or invalid emulation. Contact drive vendor for information.\n");
2308 /* limit bridge transfers to udma5, 200 sectors */
2309 if (ata_dev_knobble(dev)) {
2310 if (ata_msg_drv(ap) && print_info)
2311 ata_dev_printk(dev, KERN_INFO,
2312 "applying bridge limits\n");
2313 dev->udma_mask &= ATA_UDMA5;
2314 dev->max_sectors = ATA_MAX_SECTORS;
2317 if ((dev->class == ATA_DEV_ATAPI) &&
2318 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2319 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2320 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2323 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2324 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2327 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2328 dev->horkage |= ATA_HORKAGE_IPM;
2330 /* reset link pm_policy for this port to no pm */
2331 ap->pm_policy = MAX_PERFORMANCE;
2334 if (ap->ops->dev_config)
2335 ap->ops->dev_config(dev);
2337 if (ata_msg_probe(ap))
2338 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2339 __FUNCTION__, ata_chk_status(ap));
2343 if (ata_msg_probe(ap))
2344 ata_dev_printk(dev, KERN_DEBUG,
2345 "%s: EXIT, err\n", __FUNCTION__);
2350 * ata_cable_40wire - return 40 wire cable type
2353 * Helper method for drivers which want to hardwire 40 wire cable
2357 int ata_cable_40wire(struct ata_port *ap)
2359 return ATA_CBL_PATA40;
2363 * ata_cable_80wire - return 80 wire cable type
2366 * Helper method for drivers which want to hardwire 80 wire cable
2370 int ata_cable_80wire(struct ata_port *ap)
2372 return ATA_CBL_PATA80;
2376 * ata_cable_unknown - return unknown PATA cable.
2379 * Helper method for drivers which have no PATA cable detection.
2382 int ata_cable_unknown(struct ata_port *ap)
2384 return ATA_CBL_PATA_UNK;
2388 * ata_cable_sata - return SATA cable type
2391 * Helper method for drivers which have SATA cables
2394 int ata_cable_sata(struct ata_port *ap)
2396 return ATA_CBL_SATA;
2400 * ata_bus_probe - Reset and probe ATA bus
2403 * Master ATA bus probing function. Initiates a hardware-dependent
2404 * bus reset, then attempts to identify any devices found on
2408 * PCI/etc. bus probe sem.
2411 * Zero on success, negative errno otherwise.
2414 int ata_bus_probe(struct ata_port *ap)
2416 unsigned int classes[ATA_MAX_DEVICES];
2417 int tries[ATA_MAX_DEVICES];
2419 struct ata_device *dev;
2423 ata_link_for_each_dev(dev, &ap->link)
2424 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2427 ata_link_for_each_dev(dev, &ap->link) {
2428 /* If we issue an SRST then an ATA drive (not ATAPI)
2429 * may change configuration and be in PIO0 timing. If
2430 * we do a hard reset (or are coming from power on)
2431 * this is true for ATA or ATAPI. Until we've set a
2432 * suitable controller mode we should not touch the
2433 * bus as we may be talking too fast.
2435 dev->pio_mode = XFER_PIO_0;
2437 /* If the controller has a pio mode setup function
2438 * then use it to set the chipset to rights. Don't
2439 * touch the DMA setup as that will be dealt with when
2440 * configuring devices.
2442 if (ap->ops->set_piomode)
2443 ap->ops->set_piomode(ap, dev);
2446 /* reset and determine device classes */
2447 ap->ops->phy_reset(ap);
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2451 dev->class != ATA_DEV_UNKNOWN)
2452 classes[dev->devno] = dev->class;
2454 classes[dev->devno] = ATA_DEV_NONE;
2456 dev->class = ATA_DEV_UNKNOWN;
2461 /* read IDENTIFY page and configure devices. We have to do the identify
2462 specific sequence bass-ackwards so that PDIAG- is released by
2465 ata_link_for_each_dev(dev, &ap->link) {
2466 if (tries[dev->devno])
2467 dev->class = classes[dev->devno];
2469 if (!ata_dev_enabled(dev))
2472 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2478 /* Now ask for the cable type as PDIAG- should have been released */
2479 if (ap->ops->cable_detect)
2480 ap->cbl = ap->ops->cable_detect(ap);
2482 /* We may have SATA bridge glue hiding here irrespective of the
2483 reported cable types and sensed types */
2484 ata_link_for_each_dev(dev, &ap->link) {
2485 if (!ata_dev_enabled(dev))
2487 /* SATA drives indicate we have a bridge. We don't know which
2488 end of the link the bridge is which is a problem */
2489 if (ata_id_is_sata(dev->id))
2490 ap->cbl = ATA_CBL_SATA;
2493 /* After the identify sequence we can now set up the devices. We do
2494 this in the normal order so that the user doesn't get confused */
2496 ata_link_for_each_dev(dev, &ap->link) {
2497 if (!ata_dev_enabled(dev))
2500 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2501 rc = ata_dev_configure(dev);
2502 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2507 /* configure transfer mode */
2508 rc = ata_set_mode(&ap->link, &dev);
2512 ata_link_for_each_dev(dev, &ap->link)
2513 if (ata_dev_enabled(dev))
2516 /* no device present, disable port */
2517 ata_port_disable(ap);
2521 tries[dev->devno]--;
2525 /* eeek, something went very wrong, give up */
2526 tries[dev->devno] = 0;
2530 /* give it just one more chance */
2531 tries[dev->devno] = min(tries[dev->devno], 1);
2533 if (tries[dev->devno] == 1) {
2534 /* This is the last chance, better to slow
2535 * down than lose it.
2537 sata_down_spd_limit(&ap->link);
2538 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2542 if (!tries[dev->devno])
2543 ata_dev_disable(dev);
2549 * ata_port_probe - Mark port as enabled
2550 * @ap: Port for which we indicate enablement
2552 * Modify @ap data structure such that the system
2553 * thinks that the entire port is enabled.
2555 * LOCKING: host lock, or some other form of
2559 void ata_port_probe(struct ata_port *ap)
2561 ap->flags &= ~ATA_FLAG_DISABLED;
2565 * sata_print_link_status - Print SATA link status
2566 * @link: SATA link to printk link status about
2568 * This function prints link speed and status of a SATA link.
2573 void sata_print_link_status(struct ata_link *link)
2575 u32 sstatus, scontrol, tmp;
2577 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2579 sata_scr_read(link, SCR_CONTROL, &scontrol);
2581 if (ata_link_online(link)) {
2582 tmp = (sstatus >> 4) & 0xf;
2583 ata_link_printk(link, KERN_INFO,
2584 "SATA link up %s (SStatus %X SControl %X)\n",
2585 sata_spd_string(tmp), sstatus, scontrol);
2587 ata_link_printk(link, KERN_INFO,
2588 "SATA link down (SStatus %X SControl %X)\n",
2594 * ata_dev_pair - return other device on cable
2597 * Obtain the other device on the same cable, or if none is
2598 * present NULL is returned
2601 struct ata_device *ata_dev_pair(struct ata_device *adev)
2603 struct ata_link *link = adev->link;
2604 struct ata_device *pair = &link->device[1 - adev->devno];
2605 if (!ata_dev_enabled(pair))
2611 * ata_port_disable - Disable port.
2612 * @ap: Port to be disabled.
2614 * Modify @ap data structure such that the system
2615 * thinks that the entire port is disabled, and should
2616 * never attempt to probe or communicate with devices
2619 * LOCKING: host lock, or some other form of
2623 void ata_port_disable(struct ata_port *ap)
2625 ap->link.device[0].class = ATA_DEV_NONE;
2626 ap->link.device[1].class = ATA_DEV_NONE;
2627 ap->flags |= ATA_FLAG_DISABLED;
2631 * sata_down_spd_limit - adjust SATA spd limit downward
2632 * @link: Link to adjust SATA spd limit for
2634 * Adjust SATA spd limit of @link downward. Note that this
2635 * function only adjusts the limit. The change must be applied
2636 * using sata_set_spd().
2639 * Inherited from caller.
2642 * 0 on success, negative errno on failure
2644 int sata_down_spd_limit(struct ata_link *link)
2646 u32 sstatus, spd, mask;
2649 if (!sata_scr_valid(link))
2652 /* If SCR can be read, use it to determine the current SPD.
2653 * If not, use cached value in link->sata_spd.
2655 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2657 spd = (sstatus >> 4) & 0xf;
2659 spd = link->sata_spd;
2661 mask = link->sata_spd_limit;
2665 /* unconditionally mask off the highest bit */
2666 highbit = fls(mask) - 1;
2667 mask &= ~(1 << highbit);
2669 /* Mask off all speeds higher than or equal to the current
2670 * one. Force 1.5Gbps if current SPD is not available.
2673 mask &= (1 << (spd - 1)) - 1;
2677 /* were we already at the bottom? */
2681 link->sata_spd_limit = mask;
2683 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2684 sata_spd_string(fls(mask)));
2689 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2691 struct ata_link *host_link = &link->ap->link;
2692 u32 limit, target, spd;
2694 limit = link->sata_spd_limit;
2696 /* Don't configure downstream link faster than upstream link.
2697 * It doesn't speed up anything and some PMPs choke on such
2700 if (!ata_is_host_link(link) && host_link->sata_spd)
2701 limit &= (1 << host_link->sata_spd) - 1;
2703 if (limit == UINT_MAX)
2706 target = fls(limit);
2708 spd = (*scontrol >> 4) & 0xf;
2709 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2711 return spd != target;
2715 * sata_set_spd_needed - is SATA spd configuration needed
2716 * @link: Link in question
2718 * Test whether the spd limit in SControl matches
2719 * @link->sata_spd_limit. This function is used to determine
2720 * whether hardreset is necessary to apply SATA spd
2724 * Inherited from caller.
2727 * 1 if SATA spd configuration is needed, 0 otherwise.
2729 int sata_set_spd_needed(struct ata_link *link)
2733 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2736 return __sata_set_spd_needed(link, &scontrol);
2740 * sata_set_spd - set SATA spd according to spd limit
2741 * @link: Link to set SATA spd for
2743 * Set SATA spd of @link according to sata_spd_limit.
2746 * Inherited from caller.
2749 * 0 if spd doesn't need to be changed, 1 if spd has been
2750 * changed. Negative errno if SCR registers are inaccessible.
2752 int sata_set_spd(struct ata_link *link)
2757 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2760 if (!__sata_set_spd_needed(link, &scontrol))
2763 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2770 * This mode timing computation functionality is ported over from
2771 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2774 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2775 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2776 * for UDMA6, which is currently supported only by Maxtor drives.
2778 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2781 static const struct ata_timing ata_timing[] = {
2783 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2784 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2785 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2788 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2789 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2790 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2791 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2792 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2794 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2796 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2797 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2798 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2800 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2801 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2802 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2804 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2805 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2806 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2807 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2809 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2810 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2811 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2813 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2818 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2819 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2821 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2823 q->setup = EZ(t->setup * 1000, T);
2824 q->act8b = EZ(t->act8b * 1000, T);
2825 q->rec8b = EZ(t->rec8b * 1000, T);
2826 q->cyc8b = EZ(t->cyc8b * 1000, T);
2827 q->active = EZ(t->active * 1000, T);
2828 q->recover = EZ(t->recover * 1000, T);
2829 q->cycle = EZ(t->cycle * 1000, T);
2830 q->udma = EZ(t->udma * 1000, UT);
2833 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2834 struct ata_timing *m, unsigned int what)
2836 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2837 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2838 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2839 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2840 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2841 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2842 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2843 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2846 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2848 const struct ata_timing *t;
2850 for (t = ata_timing; t->mode != speed; t++)
2851 if (t->mode == 0xFF)
2856 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2857 struct ata_timing *t, int T, int UT)
2859 const struct ata_timing *s;
2860 struct ata_timing p;
2866 if (!(s = ata_timing_find_mode(speed)))
2869 memcpy(t, s, sizeof(*s));
2872 * If the drive is an EIDE drive, it can tell us it needs extended
2873 * PIO/MW_DMA cycle timing.
2876 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2877 memset(&p, 0, sizeof(p));
2878 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2879 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2880 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2881 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2882 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2884 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2888 * Convert the timing to bus clock counts.
2891 ata_timing_quantize(t, t, T, UT);
2894 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2895 * S.M.A.R.T * and some other commands. We have to ensure that the
2896 * DMA cycle timing is slower/equal than the fastest PIO timing.
2899 if (speed > XFER_PIO_6) {
2900 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2901 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2905 * Lengthen active & recovery time so that cycle time is correct.
2908 if (t->act8b + t->rec8b < t->cyc8b) {
2909 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2910 t->rec8b = t->cyc8b - t->act8b;
2913 if (t->active + t->recover < t->cycle) {
2914 t->active += (t->cycle - (t->active + t->recover)) / 2;
2915 t->recover = t->cycle - t->active;
2918 /* In a few cases quantisation may produce enough errors to
2919 leave t->cycle too low for the sum of active and recovery
2920 if so we must correct this */
2921 if (t->active + t->recover > t->cycle)
2922 t->cycle = t->active + t->recover;
2928 * ata_down_xfermask_limit - adjust dev xfer masks downward
2929 * @dev: Device to adjust xfer masks
2930 * @sel: ATA_DNXFER_* selector
2932 * Adjust xfer masks of @dev downward. Note that this function
2933 * does not apply the change. Invoking ata_set_mode() afterwards
2934 * will apply the limit.
2937 * Inherited from caller.
2940 * 0 on success, negative errno on failure
2942 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2945 unsigned int orig_mask, xfer_mask;
2946 unsigned int pio_mask, mwdma_mask, udma_mask;
2949 quiet = !!(sel & ATA_DNXFER_QUIET);
2950 sel &= ~ATA_DNXFER_QUIET;
2952 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2955 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2958 case ATA_DNXFER_PIO:
2959 highbit = fls(pio_mask) - 1;
2960 pio_mask &= ~(1 << highbit);
2963 case ATA_DNXFER_DMA:
2965 highbit = fls(udma_mask) - 1;
2966 udma_mask &= ~(1 << highbit);
2969 } else if (mwdma_mask) {
2970 highbit = fls(mwdma_mask) - 1;
2971 mwdma_mask &= ~(1 << highbit);
2977 case ATA_DNXFER_40C:
2978 udma_mask &= ATA_UDMA_MASK_40C;
2981 case ATA_DNXFER_FORCE_PIO0:
2983 case ATA_DNXFER_FORCE_PIO:
2992 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2994 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2998 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2999 snprintf(buf, sizeof(buf), "%s:%s",
3000 ata_mode_string(xfer_mask),
3001 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3003 snprintf(buf, sizeof(buf), "%s",
3004 ata_mode_string(xfer_mask));
3006 ata_dev_printk(dev, KERN_WARNING,
3007 "limiting speed to %s\n", buf);
3010 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3016 static int ata_dev_set_mode(struct ata_device *dev)
3018 struct ata_eh_context *ehc = &dev->link->eh_context;
3019 unsigned int err_mask;
3022 dev->flags &= ~ATA_DFLAG_PIO;
3023 if (dev->xfer_shift == ATA_SHIFT_PIO)
3024 dev->flags |= ATA_DFLAG_PIO;
3026 err_mask = ata_dev_set_xfermode(dev);
3028 /* Old CFA may refuse this command, which is just fine */
3029 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3030 err_mask &= ~AC_ERR_DEV;
3032 /* Some very old devices and some bad newer ones fail any kind of
3033 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3034 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3035 dev->pio_mode <= XFER_PIO_2)
3036 err_mask &= ~AC_ERR_DEV;
3038 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3039 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3040 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3041 dev->dma_mode == XFER_MW_DMA_0 &&
3042 (dev->id[63] >> 8) & 1)
3043 err_mask &= ~AC_ERR_DEV;
3046 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3047 "(err_mask=0x%x)\n", err_mask);
3051 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3052 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3053 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3057 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3058 dev->xfer_shift, (int)dev->xfer_mode);
3060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3061 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3066 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3067 * @link: link on which timings will be programmed
3068 * @r_failed_dev: out paramter for failed device
3070 * Standard implementation of the function used to tune and set
3071 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3072 * ata_dev_set_mode() fails, pointer to the failing device is
3073 * returned in @r_failed_dev.
3076 * PCI/etc. bus probe sem.
3079 * 0 on success, negative errno otherwise
3082 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3084 struct ata_port *ap = link->ap;
3085 struct ata_device *dev;
3086 int rc = 0, used_dma = 0, found = 0;
3088 /* step 1: calculate xfer_mask */
3089 ata_link_for_each_dev(dev, link) {
3090 unsigned int pio_mask, dma_mask;
3091 unsigned int mode_mask;
3093 if (!ata_dev_enabled(dev))
3096 mode_mask = ATA_DMA_MASK_ATA;
3097 if (dev->class == ATA_DEV_ATAPI)
3098 mode_mask = ATA_DMA_MASK_ATAPI;
3099 else if (ata_id_is_cfa(dev->id))
3100 mode_mask = ATA_DMA_MASK_CFA;
3102 ata_dev_xfermask(dev);
3104 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3105 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3107 if (libata_dma_mask & mode_mask)
3108 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3112 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3113 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3122 /* step 2: always set host PIO timings */
3123 ata_link_for_each_dev(dev, link) {
3124 if (!ata_dev_enabled(dev))
3127 if (!dev->pio_mode) {
3128 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3133 dev->xfer_mode = dev->pio_mode;
3134 dev->xfer_shift = ATA_SHIFT_PIO;
3135 if (ap->ops->set_piomode)
3136 ap->ops->set_piomode(ap, dev);
3139 /* step 3: set host DMA timings */
3140 ata_link_for_each_dev(dev, link) {
3141 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3144 dev->xfer_mode = dev->dma_mode;
3145 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3146 if (ap->ops->set_dmamode)
3147 ap->ops->set_dmamode(ap, dev);
3150 /* step 4: update devices' xfer mode */
3151 ata_link_for_each_dev(dev, link) {
3152 /* don't update suspended devices' xfer mode */
3153 if (!ata_dev_enabled(dev))
3156 rc = ata_dev_set_mode(dev);
3161 /* Record simplex status. If we selected DMA then the other
3162 * host channels are not permitted to do so.
3164 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3165 ap->host->simplex_claimed = ap;
3169 *r_failed_dev = dev;
3174 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3175 * @link: link on which timings will be programmed
3176 * @r_failed_dev: out paramter for failed device
3178 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3179 * ata_set_mode() fails, pointer to the failing device is
3180 * returned in @r_failed_dev.
3183 * PCI/etc. bus probe sem.
3186 * 0 on success, negative errno otherwise
3188 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3190 struct ata_port *ap = link->ap;
3192 /* has private set_mode? */
3193 if (ap->ops->set_mode)
3194 return ap->ops->set_mode(link, r_failed_dev);
3195 return ata_do_set_mode(link, r_failed_dev);
3199 * ata_tf_to_host - issue ATA taskfile to host controller
3200 * @ap: port to which command is being issued
3201 * @tf: ATA taskfile register set
3203 * Issues ATA taskfile register set to ATA host controller,
3204 * with proper synchronization with interrupt handler and
3208 * spin_lock_irqsave(host lock)
3211 static inline void ata_tf_to_host(struct ata_port *ap,
3212 const struct ata_taskfile *tf)
3214 ap->ops->tf_load(ap, tf);
3215 ap->ops->exec_command(ap, tf);
3219 * ata_busy_sleep - sleep until BSY clears, or timeout
3220 * @ap: port containing status register to be polled
3221 * @tmout_pat: impatience timeout
3222 * @tmout: overall timeout
3224 * Sleep until ATA Status register bit BSY clears,
3225 * or a timeout occurs.
3228 * Kernel thread context (may sleep).
3231 * 0 on success, -errno otherwise.
3233 int ata_busy_sleep(struct ata_port *ap,
3234 unsigned long tmout_pat, unsigned long tmout)
3236 unsigned long timer_start, timeout;
3239 status = ata_busy_wait(ap, ATA_BUSY, 300);
3240 timer_start = jiffies;
3241 timeout = timer_start + tmout_pat;
3242 while (status != 0xff && (status & ATA_BUSY) &&
3243 time_before(jiffies, timeout)) {
3245 status = ata_busy_wait(ap, ATA_BUSY, 3);
3248 if (status != 0xff && (status & ATA_BUSY))
3249 ata_port_printk(ap, KERN_WARNING,
3250 "port is slow to respond, please be patient "
3251 "(Status 0x%x)\n", status);
3253 timeout = timer_start + tmout;
3254 while (status != 0xff && (status & ATA_BUSY) &&
3255 time_before(jiffies, timeout)) {
3257 status = ata_chk_status(ap);
3263 if (status & ATA_BUSY) {
3264 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3265 "(%lu secs, Status 0x%x)\n",
3266 tmout / HZ, status);
3274 * ata_wait_after_reset - wait before checking status after reset
3275 * @ap: port containing status register to be polled
3276 * @deadline: deadline jiffies for the operation
3278 * After reset, we need to pause a while before reading status.
3279 * Also, certain combination of controller and device report 0xff
3280 * for some duration (e.g. until SATA PHY is up and running)
3281 * which is interpreted as empty port in ATA world. This
3282 * function also waits for such devices to get out of 0xff
3286 * Kernel thread context (may sleep).
3288 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3290 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3292 if (time_before(until, deadline))
3295 /* Spec mandates ">= 2ms" before checking status. We wait
3296 * 150ms, because that was the magic delay used for ATAPI
3297 * devices in Hale Landis's ATADRVR, for the period of time
3298 * between when the ATA command register is written, and then
3299 * status is checked. Because waiting for "a while" before
3300 * checking status is fine, post SRST, we perform this magic
3301 * delay here as well.
3303 * Old drivers/ide uses the 2mS rule and then waits for ready.
3307 /* Wait for 0xff to clear. Some SATA devices take a long time
3308 * to clear 0xff after reset. For example, HHD424020F7SV00
3309 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3312 * Note that some PATA controllers (pata_ali) explode if
3313 * status register is read more than once when there's no
3316 if (ap->flags & ATA_FLAG_SATA) {
3318 u8 status = ata_chk_status(ap);
3320 if (status != 0xff || time_after(jiffies, deadline))
3329 * ata_wait_ready - sleep until BSY clears, or timeout
3330 * @ap: port containing status register to be polled
3331 * @deadline: deadline jiffies for the operation
3333 * Sleep until ATA Status register bit BSY clears, or timeout
3337 * Kernel thread context (may sleep).
3340 * 0 on success, -errno otherwise.
3342 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3344 unsigned long start = jiffies;
3348 u8 status = ata_chk_status(ap);
3349 unsigned long now = jiffies;
3351 if (!(status & ATA_BUSY))
3353 if (!ata_link_online(&ap->link) && status == 0xff)
3355 if (time_after(now, deadline))
3358 if (!warned && time_after(now, start + 5 * HZ) &&
3359 (deadline - now > 3 * HZ)) {
3360 ata_port_printk(ap, KERN_WARNING,
3361 "port is slow to respond, please be patient "
3362 "(Status 0x%x)\n", status);
3370 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3371 unsigned long deadline)
3373 struct ata_ioports *ioaddr = &ap->ioaddr;
3374 unsigned int dev0 = devmask & (1 << 0);
3375 unsigned int dev1 = devmask & (1 << 1);
3378 /* if device 0 was found in ata_devchk, wait for its
3382 rc = ata_wait_ready(ap, deadline);
3390 /* if device 1 was found in ata_devchk, wait for register
3391 * access briefly, then wait for BSY to clear.
3396 ap->ops->dev_select(ap, 1);
3398 /* Wait for register access. Some ATAPI devices fail
3399 * to set nsect/lbal after reset, so don't waste too
3400 * much time on it. We're gonna wait for !BSY anyway.
3402 for (i = 0; i < 2; i++) {
3405 nsect = ioread8(ioaddr->nsect_addr);
3406 lbal = ioread8(ioaddr->lbal_addr);
3407 if ((nsect == 1) && (lbal == 1))
3409 msleep(50); /* give drive a breather */
3412 rc = ata_wait_ready(ap, deadline);
3420 /* is all this really necessary? */
3421 ap->ops->dev_select(ap, 0);
3423 ap->ops->dev_select(ap, 1);
3425 ap->ops->dev_select(ap, 0);
3430 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3431 unsigned long deadline)
3433 struct ata_ioports *ioaddr = &ap->ioaddr;
3435 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3437 /* software reset. causes dev0 to be selected */
3438 iowrite8(ap->ctl, ioaddr->ctl_addr);
3439 udelay(20); /* FIXME: flush */
3440 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3441 udelay(20); /* FIXME: flush */
3442 iowrite8(ap->ctl, ioaddr->ctl_addr);
3444 /* wait a while before checking status */
3445 ata_wait_after_reset(ap, deadline);
3447 /* Before we perform post reset processing we want to see if
3448 * the bus shows 0xFF because the odd clown forgets the D7
3449 * pulldown resistor.
3451 if (ata_chk_status(ap) == 0xFF)
3454 return ata_bus_post_reset(ap, devmask, deadline);
3458 * ata_bus_reset - reset host port and associated ATA channel
3459 * @ap: port to reset
3461 * This is typically the first time we actually start issuing
3462 * commands to the ATA channel. We wait for BSY to clear, then
3463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3464 * result. Determine what devices, if any, are on the channel
3465 * by looking at the device 0/1 error register. Look at the signature
3466 * stored in each device's taskfile registers, to determine if
3467 * the device is ATA or ATAPI.
3470 * PCI/etc. bus probe sem.
3471 * Obtains host lock.
3474 * Sets ATA_FLAG_DISABLED if bus reset fails.
3477 void ata_bus_reset(struct ata_port *ap)
3479 struct ata_device *device = ap->link.device;
3480 struct ata_ioports *ioaddr = &ap->ioaddr;
3481 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3483 unsigned int dev0, dev1 = 0, devmask = 0;
3486 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3488 /* determine if device 0/1 are present */
3489 if (ap->flags & ATA_FLAG_SATA_RESET)
3492 dev0 = ata_devchk(ap, 0);
3494 dev1 = ata_devchk(ap, 1);
3498 devmask |= (1 << 0);
3500 devmask |= (1 << 1);
3502 /* select device 0 again */
3503 ap->ops->dev_select(ap, 0);
3505 /* issue bus reset */
3506 if (ap->flags & ATA_FLAG_SRST) {
3507 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3508 if (rc && rc != -ENODEV)
3513 * determine by signature whether we have ATA or ATAPI devices
3515 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3516 if ((slave_possible) && (err != 0x81))
3517 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3519 /* is double-select really necessary? */
3520 if (device[1].class != ATA_DEV_NONE)
3521 ap->ops->dev_select(ap, 1);
3522 if (device[0].class != ATA_DEV_NONE)
3523 ap->ops->dev_select(ap, 0);
3525 /* if no devices were detected, disable this port */
3526 if ((device[0].class == ATA_DEV_NONE) &&
3527 (device[1].class == ATA_DEV_NONE))
3530 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3531 /* set up device control for ATA_FLAG_SATA_RESET */
3532 iowrite8(ap->ctl, ioaddr->ctl_addr);
3539 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3540 ata_port_disable(ap);
3546 * sata_link_debounce - debounce SATA phy status
3547 * @link: ATA link to debounce SATA phy status for
3548 * @params: timing parameters { interval, duratinon, timeout } in msec
3549 * @deadline: deadline jiffies for the operation
3551 * Make sure SStatus of @link reaches stable state, determined by
3552 * holding the same value where DET is not 1 for @duration polled
3553 * every @interval, before @timeout. Timeout constraints the
3554 * beginning of the stable state. Because DET gets stuck at 1 on
3555 * some controllers after hot unplugging, this functions waits
3556 * until timeout then returns 0 if DET is stable at 1.
3558 * @timeout is further limited by @deadline. The sooner of the
3562 * Kernel thread context (may sleep)
3565 * 0 on success, -errno on failure.
3567 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3568 unsigned long deadline)
3570 unsigned long interval_msec = params[0];
3571 unsigned long duration = msecs_to_jiffies(params[1]);
3572 unsigned long last_jiffies, t;
3576 t = jiffies + msecs_to_jiffies(params[2]);
3577 if (time_before(t, deadline))
3580 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3585 last_jiffies = jiffies;
3588 msleep(interval_msec);
3589 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3595 if (cur == 1 && time_before(jiffies, deadline))
3597 if (time_after(jiffies, last_jiffies + duration))
3602 /* unstable, start over */
3604 last_jiffies = jiffies;
3606 /* Check deadline. If debouncing failed, return
3607 * -EPIPE to tell upper layer to lower link speed.
3609 if (time_after(jiffies, deadline))
3615 * sata_link_resume - resume SATA link
3616 * @link: ATA link to resume SATA
3617 * @params: timing parameters { interval, duratinon, timeout } in msec
3618 * @deadline: deadline jiffies for the operation
3620 * Resume SATA phy @link and debounce it.
3623 * Kernel thread context (may sleep)
3626 * 0 on success, -errno on failure.
3628 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3629 unsigned long deadline)
3634 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3637 scontrol = (scontrol & 0x0f0) | 0x300;
3639 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3642 /* Some PHYs react badly if SStatus is pounded immediately
3643 * after resuming. Delay 200ms before debouncing.
3647 return sata_link_debounce(link, params, deadline);
3651 * ata_std_prereset - prepare for reset
3652 * @link: ATA link to be reset
3653 * @deadline: deadline jiffies for the operation
3655 * @link is about to be reset. Initialize it. Failure from
3656 * prereset makes libata abort whole reset sequence and give up
3657 * that port, so prereset should be best-effort. It does its
3658 * best to prepare for reset sequence but if things go wrong, it
3659 * should just whine, not fail.
3662 * Kernel thread context (may sleep)
3665 * 0 on success, -errno otherwise.
3667 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3669 struct ata_port *ap = link->ap;
3670 struct ata_eh_context *ehc = &link->eh_context;
3671 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3674 /* handle link resume */
3675 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3676 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3677 ehc->i.action |= ATA_EH_HARDRESET;
3679 /* Some PMPs don't work with only SRST, force hardreset if PMP
3682 if (ap->flags & ATA_FLAG_PMP)
3683 ehc->i.action |= ATA_EH_HARDRESET;
3685 /* if we're about to do hardreset, nothing more to do */
3686 if (ehc->i.action & ATA_EH_HARDRESET)
3689 /* if SATA, resume link */
3690 if (ap->flags & ATA_FLAG_SATA) {
3691 rc = sata_link_resume(link, timing, deadline);
3692 /* whine about phy resume failure but proceed */
3693 if (rc && rc != -EOPNOTSUPP)
3694 ata_link_printk(link, KERN_WARNING, "failed to resume "
3695 "link for reset (errno=%d)\n", rc);
3698 /* Wait for !BSY if the controller can wait for the first D2H
3699 * Reg FIS and we don't know that no device is attached.
3701 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3702 rc = ata_wait_ready(ap, deadline);
3703 if (rc && rc != -ENODEV) {
3704 ata_link_printk(link, KERN_WARNING, "device not ready "
3705 "(errno=%d), forcing hardreset\n", rc);
3706 ehc->i.action |= ATA_EH_HARDRESET;
3714 * ata_std_softreset - reset host port via ATA SRST
3715 * @link: ATA link to reset
3716 * @classes: resulting classes of attached devices
3717 * @deadline: deadline jiffies for the operation
3719 * Reset host port using ATA SRST.
3722 * Kernel thread context (may sleep)
3725 * 0 on success, -errno otherwise.
3727 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3728 unsigned long deadline)
3730 struct ata_port *ap = link->ap;
3731 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3732 unsigned int devmask = 0;
3738 if (ata_link_offline(link)) {
3739 classes[0] = ATA_DEV_NONE;
3743 /* determine if device 0/1 are present */
3744 if (ata_devchk(ap, 0))
3745 devmask |= (1 << 0);
3746 if (slave_possible && ata_devchk(ap, 1))