Linux 6.9-rc5
[sfrench/cifs-2.6.git] / drivers / acpi / scan.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24
25 #include "internal.h"
26 #include "sleep.h"
27
28 #define ACPI_BUS_CLASS                  "system_bus"
29 #define ACPI_BUS_HID                    "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME            "System Bus"
31
32 #define INVALID_ACPI_HANDLE     ((acpi_handle)ZERO_PAGE(0))
33
34 static const char *dummy_hid = "device";
35
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51
52 void acpi_scan_lock_acquire(void)
53 {
54         mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58 void acpi_scan_lock_release(void)
59 {
60         mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64 void acpi_lock_hp_context(void)
65 {
66         mutex_lock(&acpi_hp_context_lock);
67 }
68
69 void acpi_unlock_hp_context(void)
70 {
71         mutex_unlock(&acpi_hp_context_lock);
72 }
73
74 void acpi_initialize_hp_context(struct acpi_device *adev,
75                                 struct acpi_hotplug_context *hp,
76                                 int (*notify)(struct acpi_device *, u32),
77                                 void (*uevent)(struct acpi_device *, u32))
78 {
79         acpi_lock_hp_context();
80         hp->notify = notify;
81         hp->uevent = uevent;
82         acpi_set_hp_context(adev, hp);
83         acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89         if (!handler)
90                 return -EINVAL;
91
92         list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93         return 0;
94 }
95
96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97                                        const char *hotplug_profile_name)
98 {
99         int error;
100
101         error = acpi_scan_add_handler(handler);
102         if (error)
103                 return error;
104
105         acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106         return 0;
107 }
108
109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111         struct acpi_device_physical_node *pn;
112         bool offline = true;
113         char *envp[] = { "EVENT=offline", NULL };
114
115         /*
116          * acpi_container_offline() calls this for all of the container's
117          * children under the container's physical_node_lock lock.
118          */
119         mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121         list_for_each_entry(pn, &adev->physical_node_list, node)
122                 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123                         if (uevent)
124                                 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126                         offline = false;
127                         break;
128                 }
129
130         mutex_unlock(&adev->physical_node_lock);
131         return offline;
132 }
133
134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135                                     void **ret_p)
136 {
137         struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138         struct acpi_device_physical_node *pn;
139         bool second_pass = (bool)data;
140         acpi_status status = AE_OK;
141
142         if (!device)
143                 return AE_OK;
144
145         if (device->handler && !device->handler->hotplug.enabled) {
146                 *ret_p = &device->dev;
147                 return AE_SUPPORT;
148         }
149
150         mutex_lock(&device->physical_node_lock);
151
152         list_for_each_entry(pn, &device->physical_node_list, node) {
153                 int ret;
154
155                 if (second_pass) {
156                         /* Skip devices offlined by the first pass. */
157                         if (pn->put_online)
158                                 continue;
159                 } else {
160                         pn->put_online = false;
161                 }
162                 ret = device_offline(pn->dev);
163                 if (ret >= 0) {
164                         pn->put_online = !ret;
165                 } else {
166                         *ret_p = pn->dev;
167                         if (second_pass) {
168                                 status = AE_ERROR;
169                                 break;
170                         }
171                 }
172         }
173
174         mutex_unlock(&device->physical_node_lock);
175
176         return status;
177 }
178
179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180                                    void **ret_p)
181 {
182         struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183         struct acpi_device_physical_node *pn;
184
185         if (!device)
186                 return AE_OK;
187
188         mutex_lock(&device->physical_node_lock);
189
190         list_for_each_entry(pn, &device->physical_node_list, node)
191                 if (pn->put_online) {
192                         device_online(pn->dev);
193                         pn->put_online = false;
194                 }
195
196         mutex_unlock(&device->physical_node_lock);
197
198         return AE_OK;
199 }
200
201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203         acpi_handle handle = device->handle;
204         struct device *errdev = NULL;
205         acpi_status status;
206
207         /*
208          * Carry out two passes here and ignore errors in the first pass,
209          * because if the devices in question are memory blocks and
210          * CONFIG_MEMCG is set, one of the blocks may hold data structures
211          * that the other blocks depend on, but it is not known in advance which
212          * block holds them.
213          *
214          * If the first pass is successful, the second one isn't needed, though.
215          */
216         status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217                                      NULL, acpi_bus_offline, (void *)false,
218                                      (void **)&errdev);
219         if (status == AE_SUPPORT) {
220                 dev_warn(errdev, "Offline disabled.\n");
221                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222                                     acpi_bus_online, NULL, NULL, NULL);
223                 return -EPERM;
224         }
225         acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226         if (errdev) {
227                 errdev = NULL;
228                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229                                     NULL, acpi_bus_offline, (void *)true,
230                                     (void **)&errdev);
231                 if (!errdev)
232                         acpi_bus_offline(handle, 0, (void *)true,
233                                          (void **)&errdev);
234
235                 if (errdev) {
236                         dev_warn(errdev, "Offline failed.\n");
237                         acpi_bus_online(handle, 0, NULL, NULL);
238                         acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239                                             ACPI_UINT32_MAX, acpi_bus_online,
240                                             NULL, NULL, NULL);
241                         return -EBUSY;
242                 }
243         }
244         return 0;
245 }
246
247 static int acpi_scan_check_and_detach(struct acpi_device *adev, void *check)
248 {
249         struct acpi_scan_handler *handler = adev->handler;
250
251         acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, check);
252
253         if (check) {
254                 acpi_bus_get_status(adev);
255                 /*
256                  * Skip devices that are still there and take the enabled
257                  * flag into account.
258                  */
259                 if (acpi_device_is_enabled(adev))
260                         return 0;
261
262                 /* Skip device that have not been enumerated. */
263                 if (!acpi_device_enumerated(adev)) {
264                         dev_dbg(&adev->dev, "Still not enumerated\n");
265                         return 0;
266                 }
267         }
268
269         adev->flags.match_driver = false;
270         if (handler) {
271                 if (handler->detach)
272                         handler->detach(adev);
273
274                 adev->handler = NULL;
275         } else {
276                 device_release_driver(&adev->dev);
277         }
278         /*
279          * Most likely, the device is going away, so put it into D3cold before
280          * that.
281          */
282         acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
283         adev->flags.initialized = false;
284         acpi_device_clear_enumerated(adev);
285
286         return 0;
287 }
288
289 static void acpi_scan_check_subtree(struct acpi_device *adev)
290 {
291         acpi_scan_check_and_detach(adev, (void *)true);
292 }
293
294 static int acpi_scan_hot_remove(struct acpi_device *device)
295 {
296         acpi_handle handle = device->handle;
297         unsigned long long sta;
298         acpi_status status;
299
300         if (device->handler && device->handler->hotplug.demand_offline) {
301                 if (!acpi_scan_is_offline(device, true))
302                         return -EBUSY;
303         } else {
304                 int error = acpi_scan_try_to_offline(device);
305                 if (error)
306                         return error;
307         }
308
309         acpi_handle_debug(handle, "Ejecting\n");
310
311         acpi_bus_trim(device);
312
313         acpi_evaluate_lck(handle, 0);
314         /*
315          * TBD: _EJD support.
316          */
317         status = acpi_evaluate_ej0(handle);
318         if (status == AE_NOT_FOUND)
319                 return -ENODEV;
320         else if (ACPI_FAILURE(status))
321                 return -EIO;
322
323         /*
324          * Verify if eject was indeed successful.  If not, log an error
325          * message.  No need to call _OST since _EJ0 call was made OK.
326          */
327         status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
328         if (ACPI_FAILURE(status)) {
329                 acpi_handle_warn(handle,
330                         "Status check after eject failed (0x%x)\n", status);
331         } else if (sta & ACPI_STA_DEVICE_ENABLED) {
332                 acpi_handle_warn(handle,
333                         "Eject incomplete - status 0x%llx\n", sta);
334         }
335
336         return 0;
337 }
338
339 static int acpi_scan_rescan_bus(struct acpi_device *adev)
340 {
341         struct acpi_scan_handler *handler = adev->handler;
342         int ret;
343
344         if (handler && handler->hotplug.scan_dependent)
345                 ret = handler->hotplug.scan_dependent(adev);
346         else
347                 ret = acpi_bus_scan(adev->handle);
348
349         if (ret)
350                 dev_info(&adev->dev, "Namespace scan failure\n");
351
352         return ret;
353 }
354
355 static int acpi_scan_device_check(struct acpi_device *adev)
356 {
357         struct acpi_device *parent;
358
359         acpi_scan_check_subtree(adev);
360
361         if (!acpi_device_is_present(adev))
362                 return 0;
363
364         /*
365          * This function is only called for device objects for which matching
366          * scan handlers exist.  The only situation in which the scan handler
367          * is not attached to this device object yet is when the device has
368          * just appeared (either it wasn't present at all before or it was
369          * removed and then added again).
370          */
371         if (adev->handler) {
372                 dev_dbg(&adev->dev, "Already enumerated\n");
373                 return 0;
374         }
375
376         parent = acpi_dev_parent(adev);
377         if (!parent)
378                 parent = adev;
379
380         return acpi_scan_rescan_bus(parent);
381 }
382
383 static int acpi_scan_bus_check(struct acpi_device *adev)
384 {
385         acpi_scan_check_subtree(adev);
386
387         return acpi_scan_rescan_bus(adev);
388 }
389
390 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
391 {
392         switch (type) {
393         case ACPI_NOTIFY_BUS_CHECK:
394                 return acpi_scan_bus_check(adev);
395         case ACPI_NOTIFY_DEVICE_CHECK:
396                 return acpi_scan_device_check(adev);
397         case ACPI_NOTIFY_EJECT_REQUEST:
398         case ACPI_OST_EC_OSPM_EJECT:
399                 if (adev->handler && !adev->handler->hotplug.enabled) {
400                         dev_info(&adev->dev, "Eject disabled\n");
401                         return -EPERM;
402                 }
403                 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
404                                   ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
405                 return acpi_scan_hot_remove(adev);
406         }
407         return -EINVAL;
408 }
409
410 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
411 {
412         u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
413         int error = -ENODEV;
414
415         lock_device_hotplug();
416         mutex_lock(&acpi_scan_lock);
417
418         /*
419          * The device object's ACPI handle cannot become invalid as long as we
420          * are holding acpi_scan_lock, but it might have become invalid before
421          * that lock was acquired.
422          */
423         if (adev->handle == INVALID_ACPI_HANDLE)
424                 goto err_out;
425
426         if (adev->flags.is_dock_station) {
427                 error = dock_notify(adev, src);
428         } else if (adev->flags.hotplug_notify) {
429                 error = acpi_generic_hotplug_event(adev, src);
430         } else {
431                 int (*notify)(struct acpi_device *, u32);
432
433                 acpi_lock_hp_context();
434                 notify = adev->hp ? adev->hp->notify : NULL;
435                 acpi_unlock_hp_context();
436                 /*
437                  * There may be additional notify handlers for device objects
438                  * without the .event() callback, so ignore them here.
439                  */
440                 if (notify)
441                         error = notify(adev, src);
442                 else
443                         goto out;
444         }
445         switch (error) {
446         case 0:
447                 ost_code = ACPI_OST_SC_SUCCESS;
448                 break;
449         case -EPERM:
450                 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
451                 break;
452         case -EBUSY:
453                 ost_code = ACPI_OST_SC_DEVICE_BUSY;
454                 break;
455         default:
456                 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
457                 break;
458         }
459
460  err_out:
461         acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
462
463  out:
464         acpi_put_acpi_dev(adev);
465         mutex_unlock(&acpi_scan_lock);
466         unlock_device_hotplug();
467 }
468
469 static void acpi_free_power_resources_lists(struct acpi_device *device)
470 {
471         int i;
472
473         if (device->wakeup.flags.valid)
474                 acpi_power_resources_list_free(&device->wakeup.resources);
475
476         if (!device->power.flags.power_resources)
477                 return;
478
479         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
480                 struct acpi_device_power_state *ps = &device->power.states[i];
481                 acpi_power_resources_list_free(&ps->resources);
482         }
483 }
484
485 static void acpi_device_release(struct device *dev)
486 {
487         struct acpi_device *acpi_dev = to_acpi_device(dev);
488
489         acpi_free_properties(acpi_dev);
490         acpi_free_pnp_ids(&acpi_dev->pnp);
491         acpi_free_power_resources_lists(acpi_dev);
492         kfree(acpi_dev);
493 }
494
495 static void acpi_device_del(struct acpi_device *device)
496 {
497         struct acpi_device_bus_id *acpi_device_bus_id;
498
499         mutex_lock(&acpi_device_lock);
500
501         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
502                 if (!strcmp(acpi_device_bus_id->bus_id,
503                             acpi_device_hid(device))) {
504                         ida_free(&acpi_device_bus_id->instance_ida,
505                                  device->pnp.instance_no);
506                         if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
507                                 list_del(&acpi_device_bus_id->node);
508                                 kfree_const(acpi_device_bus_id->bus_id);
509                                 kfree(acpi_device_bus_id);
510                         }
511                         break;
512                 }
513
514         list_del(&device->wakeup_list);
515
516         mutex_unlock(&acpi_device_lock);
517
518         acpi_power_add_remove_device(device, false);
519         acpi_device_remove_files(device);
520         if (device->remove)
521                 device->remove(device);
522
523         device_del(&device->dev);
524 }
525
526 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
527
528 static LIST_HEAD(acpi_device_del_list);
529 static DEFINE_MUTEX(acpi_device_del_lock);
530
531 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
532 {
533         for (;;) {
534                 struct acpi_device *adev;
535
536                 mutex_lock(&acpi_device_del_lock);
537
538                 if (list_empty(&acpi_device_del_list)) {
539                         mutex_unlock(&acpi_device_del_lock);
540                         break;
541                 }
542                 adev = list_first_entry(&acpi_device_del_list,
543                                         struct acpi_device, del_list);
544                 list_del(&adev->del_list);
545
546                 mutex_unlock(&acpi_device_del_lock);
547
548                 blocking_notifier_call_chain(&acpi_reconfig_chain,
549                                              ACPI_RECONFIG_DEVICE_REMOVE, adev);
550
551                 acpi_device_del(adev);
552                 /*
553                  * Drop references to all power resources that might have been
554                  * used by the device.
555                  */
556                 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
557                 acpi_dev_put(adev);
558         }
559 }
560
561 /**
562  * acpi_scan_drop_device - Drop an ACPI device object.
563  * @handle: Handle of an ACPI namespace node, not used.
564  * @context: Address of the ACPI device object to drop.
565  *
566  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
567  * namespace node the device object pointed to by @context is attached to.
568  *
569  * The unregistration is carried out asynchronously to avoid running
570  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
571  * ensure the correct ordering (the device objects must be unregistered in the
572  * same order in which the corresponding namespace nodes are deleted).
573  */
574 static void acpi_scan_drop_device(acpi_handle handle, void *context)
575 {
576         static DECLARE_WORK(work, acpi_device_del_work_fn);
577         struct acpi_device *adev = context;
578
579         mutex_lock(&acpi_device_del_lock);
580
581         /*
582          * Use the ACPI hotplug workqueue which is ordered, so this work item
583          * won't run after any hotplug work items submitted subsequently.  That
584          * prevents attempts to register device objects identical to those being
585          * deleted from happening concurrently (such attempts result from
586          * hotplug events handled via the ACPI hotplug workqueue).  It also will
587          * run after all of the work items submitted previously, which helps
588          * those work items to ensure that they are not accessing stale device
589          * objects.
590          */
591         if (list_empty(&acpi_device_del_list))
592                 acpi_queue_hotplug_work(&work);
593
594         list_add_tail(&adev->del_list, &acpi_device_del_list);
595         /* Make acpi_ns_validate_handle() return NULL for this handle. */
596         adev->handle = INVALID_ACPI_HANDLE;
597
598         mutex_unlock(&acpi_device_del_lock);
599 }
600
601 static struct acpi_device *handle_to_device(acpi_handle handle,
602                                             void (*callback)(void *))
603 {
604         struct acpi_device *adev = NULL;
605         acpi_status status;
606
607         status = acpi_get_data_full(handle, acpi_scan_drop_device,
608                                     (void **)&adev, callback);
609         if (ACPI_FAILURE(status) || !adev) {
610                 acpi_handle_debug(handle, "No context!\n");
611                 return NULL;
612         }
613         return adev;
614 }
615
616 /**
617  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
618  * @handle: ACPI handle associated with the requested ACPI device object.
619  *
620  * Return a pointer to the ACPI device object associated with @handle, if
621  * present, or NULL otherwise.
622  */
623 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
624 {
625         return handle_to_device(handle, NULL);
626 }
627 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
628
629 static void get_acpi_device(void *dev)
630 {
631         acpi_dev_get(dev);
632 }
633
634 /**
635  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
636  * @handle: ACPI handle associated with the requested ACPI device object.
637  *
638  * Return a pointer to the ACPI device object associated with @handle and bump
639  * up that object's reference counter (under the ACPI Namespace lock), if
640  * present, or return NULL otherwise.
641  *
642  * The ACPI device object reference acquired by this function needs to be
643  * dropped via acpi_dev_put().
644  */
645 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
646 {
647         return handle_to_device(handle, get_acpi_device);
648 }
649 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
650
651 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
652 {
653         struct acpi_device_bus_id *acpi_device_bus_id;
654
655         /* Find suitable bus_id and instance number in acpi_bus_id_list. */
656         list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
657                 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
658                         return acpi_device_bus_id;
659         }
660         return NULL;
661 }
662
663 static int acpi_device_set_name(struct acpi_device *device,
664                                 struct acpi_device_bus_id *acpi_device_bus_id)
665 {
666         struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
667         int result;
668
669         result = ida_alloc(instance_ida, GFP_KERNEL);
670         if (result < 0)
671                 return result;
672
673         device->pnp.instance_no = result;
674         dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
675         return 0;
676 }
677
678 int acpi_tie_acpi_dev(struct acpi_device *adev)
679 {
680         acpi_handle handle = adev->handle;
681         acpi_status status;
682
683         if (!handle)
684                 return 0;
685
686         status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
687         if (ACPI_FAILURE(status)) {
688                 acpi_handle_err(handle, "Unable to attach device data\n");
689                 return -ENODEV;
690         }
691
692         return 0;
693 }
694
695 static void acpi_store_pld_crc(struct acpi_device *adev)
696 {
697         struct acpi_pld_info *pld;
698         acpi_status status;
699
700         status = acpi_get_physical_device_location(adev->handle, &pld);
701         if (ACPI_FAILURE(status))
702                 return;
703
704         adev->pld_crc = crc32(~0, pld, sizeof(*pld));
705         ACPI_FREE(pld);
706 }
707
708 int acpi_device_add(struct acpi_device *device)
709 {
710         struct acpi_device_bus_id *acpi_device_bus_id;
711         int result;
712
713         /*
714          * Linkage
715          * -------
716          * Link this device to its parent and siblings.
717          */
718         INIT_LIST_HEAD(&device->wakeup_list);
719         INIT_LIST_HEAD(&device->physical_node_list);
720         INIT_LIST_HEAD(&device->del_list);
721         mutex_init(&device->physical_node_lock);
722
723         mutex_lock(&acpi_device_lock);
724
725         acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
726         if (acpi_device_bus_id) {
727                 result = acpi_device_set_name(device, acpi_device_bus_id);
728                 if (result)
729                         goto err_unlock;
730         } else {
731                 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
732                                              GFP_KERNEL);
733                 if (!acpi_device_bus_id) {
734                         result = -ENOMEM;
735                         goto err_unlock;
736                 }
737                 acpi_device_bus_id->bus_id =
738                         kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
739                 if (!acpi_device_bus_id->bus_id) {
740                         kfree(acpi_device_bus_id);
741                         result = -ENOMEM;
742                         goto err_unlock;
743                 }
744
745                 ida_init(&acpi_device_bus_id->instance_ida);
746
747                 result = acpi_device_set_name(device, acpi_device_bus_id);
748                 if (result) {
749                         kfree_const(acpi_device_bus_id->bus_id);
750                         kfree(acpi_device_bus_id);
751                         goto err_unlock;
752                 }
753
754                 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
755         }
756
757         if (device->wakeup.flags.valid)
758                 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
759
760         acpi_store_pld_crc(device);
761
762         mutex_unlock(&acpi_device_lock);
763
764         result = device_add(&device->dev);
765         if (result) {
766                 dev_err(&device->dev, "Error registering device\n");
767                 goto err;
768         }
769
770         result = acpi_device_setup_files(device);
771         if (result)
772                 pr_err("Error creating sysfs interface for device %s\n",
773                        dev_name(&device->dev));
774
775         return 0;
776
777 err:
778         mutex_lock(&acpi_device_lock);
779
780         list_del(&device->wakeup_list);
781
782 err_unlock:
783         mutex_unlock(&acpi_device_lock);
784
785         acpi_detach_data(device->handle, acpi_scan_drop_device);
786
787         return result;
788 }
789
790 /* --------------------------------------------------------------------------
791                                  Device Enumeration
792    -------------------------------------------------------------------------- */
793 static bool acpi_info_matches_ids(struct acpi_device_info *info,
794                                   const char * const ids[])
795 {
796         struct acpi_pnp_device_id_list *cid_list = NULL;
797         int i, index;
798
799         if (!(info->valid & ACPI_VALID_HID))
800                 return false;
801
802         index = match_string(ids, -1, info->hardware_id.string);
803         if (index >= 0)
804                 return true;
805
806         if (info->valid & ACPI_VALID_CID)
807                 cid_list = &info->compatible_id_list;
808
809         if (!cid_list)
810                 return false;
811
812         for (i = 0; i < cid_list->count; i++) {
813                 index = match_string(ids, -1, cid_list->ids[i].string);
814                 if (index >= 0)
815                         return true;
816         }
817
818         return false;
819 }
820
821 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
822 static const char * const acpi_ignore_dep_ids[] = {
823         "PNP0D80", /* Windows-compatible System Power Management Controller */
824         "INT33BD", /* Intel Baytrail Mailbox Device */
825         "LATT2021", /* Lattice FW Update Client Driver */
826         NULL
827 };
828
829 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
830 static const char * const acpi_honor_dep_ids[] = {
831         "INT3472", /* Camera sensor PMIC / clk and regulator info */
832         "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
833         "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
834         "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
835         "INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
836         NULL
837 };
838
839 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
840 {
841         struct acpi_device *adev;
842
843         /*
844          * Fixed hardware devices do not appear in the namespace and do not
845          * have handles, but we fabricate acpi_devices for them, so we have
846          * to deal with them specially.
847          */
848         if (!handle)
849                 return acpi_root;
850
851         do {
852                 acpi_status status;
853
854                 status = acpi_get_parent(handle, &handle);
855                 if (ACPI_FAILURE(status)) {
856                         if (status != AE_NULL_ENTRY)
857                                 return acpi_root;
858
859                         return NULL;
860                 }
861                 adev = acpi_fetch_acpi_dev(handle);
862         } while (!adev);
863         return adev;
864 }
865
866 acpi_status
867 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
868 {
869         acpi_status status;
870         acpi_handle tmp;
871         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
872         union acpi_object *obj;
873
874         status = acpi_get_handle(handle, "_EJD", &tmp);
875         if (ACPI_FAILURE(status))
876                 return status;
877
878         status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
879         if (ACPI_SUCCESS(status)) {
880                 obj = buffer.pointer;
881                 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
882                                          ejd);
883                 kfree(buffer.pointer);
884         }
885         return status;
886 }
887 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
888
889 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
890 {
891         acpi_handle handle = dev->handle;
892         struct acpi_device_wakeup *wakeup = &dev->wakeup;
893         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
894         union acpi_object *package = NULL;
895         union acpi_object *element = NULL;
896         acpi_status status;
897         int err = -ENODATA;
898
899         INIT_LIST_HEAD(&wakeup->resources);
900
901         /* _PRW */
902         status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
903         if (ACPI_FAILURE(status)) {
904                 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
905                                  acpi_format_exception(status));
906                 return err;
907         }
908
909         package = (union acpi_object *)buffer.pointer;
910
911         if (!package || package->package.count < 2)
912                 goto out;
913
914         element = &(package->package.elements[0]);
915         if (!element)
916                 goto out;
917
918         if (element->type == ACPI_TYPE_PACKAGE) {
919                 if ((element->package.count < 2) ||
920                     (element->package.elements[0].type !=
921                      ACPI_TYPE_LOCAL_REFERENCE)
922                     || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
923                         goto out;
924
925                 wakeup->gpe_device =
926                     element->package.elements[0].reference.handle;
927                 wakeup->gpe_number =
928                     (u32) element->package.elements[1].integer.value;
929         } else if (element->type == ACPI_TYPE_INTEGER) {
930                 wakeup->gpe_device = NULL;
931                 wakeup->gpe_number = element->integer.value;
932         } else {
933                 goto out;
934         }
935
936         element = &(package->package.elements[1]);
937         if (element->type != ACPI_TYPE_INTEGER)
938                 goto out;
939
940         wakeup->sleep_state = element->integer.value;
941
942         err = acpi_extract_power_resources(package, 2, &wakeup->resources);
943         if (err)
944                 goto out;
945
946         if (!list_empty(&wakeup->resources)) {
947                 int sleep_state;
948
949                 err = acpi_power_wakeup_list_init(&wakeup->resources,
950                                                   &sleep_state);
951                 if (err) {
952                         acpi_handle_warn(handle, "Retrieving current states "
953                                          "of wakeup power resources failed\n");
954                         acpi_power_resources_list_free(&wakeup->resources);
955                         goto out;
956                 }
957                 if (sleep_state < wakeup->sleep_state) {
958                         acpi_handle_warn(handle, "Overriding _PRW sleep state "
959                                          "(S%d) by S%d from power resources\n",
960                                          (int)wakeup->sleep_state, sleep_state);
961                         wakeup->sleep_state = sleep_state;
962                 }
963         }
964
965  out:
966         kfree(buffer.pointer);
967         return err;
968 }
969
970 /* Do not use a button for S5 wakeup */
971 #define ACPI_AVOID_WAKE_FROM_S5         BIT(0)
972
973 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
974 {
975         static const struct acpi_device_id button_device_ids[] = {
976                 {"PNP0C0C", 0},                         /* Power button */
977                 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},   /* Lid */
978                 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},   /* Sleep button */
979                 {"", 0},
980         };
981         struct acpi_device_wakeup *wakeup = &device->wakeup;
982         const struct acpi_device_id *match;
983         acpi_status status;
984
985         wakeup->flags.notifier_present = 0;
986
987         /* Power button, Lid switch always enable wakeup */
988         match = acpi_match_acpi_device(button_device_ids, device);
989         if (match) {
990                 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
991                     wakeup->sleep_state == ACPI_STATE_S5)
992                         wakeup->sleep_state = ACPI_STATE_S4;
993                 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
994                 device_set_wakeup_capable(&device->dev, true);
995                 return true;
996         }
997
998         status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
999                                          wakeup->gpe_number);
1000         return ACPI_SUCCESS(status);
1001 }
1002
1003 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1004 {
1005         int err;
1006
1007         /* Presence of _PRW indicates wake capable */
1008         if (!acpi_has_method(device->handle, "_PRW"))
1009                 return;
1010
1011         err = acpi_bus_extract_wakeup_device_power_package(device);
1012         if (err) {
1013                 dev_err(&device->dev, "Unable to extract wakeup power resources");
1014                 return;
1015         }
1016
1017         device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1018         device->wakeup.prepare_count = 0;
1019         /*
1020          * Call _PSW/_DSW object to disable its ability to wake the sleeping
1021          * system for the ACPI device with the _PRW object.
1022          * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1023          * So it is necessary to call _DSW object first. Only when it is not
1024          * present will the _PSW object used.
1025          */
1026         err = acpi_device_sleep_wake(device, 0, 0, 0);
1027         if (err)
1028                 pr_debug("error in _DSW or _PSW evaluation\n");
1029 }
1030
1031 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1032 {
1033         struct acpi_device_power_state *ps = &device->power.states[state];
1034         char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1035         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1036         acpi_status status;
1037
1038         INIT_LIST_HEAD(&ps->resources);
1039
1040         /* Evaluate "_PRx" to get referenced power resources */
1041         status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1042         if (ACPI_SUCCESS(status)) {
1043                 union acpi_object *package = buffer.pointer;
1044
1045                 if (buffer.length && package
1046                     && package->type == ACPI_TYPE_PACKAGE
1047                     && package->package.count)
1048                         acpi_extract_power_resources(package, 0, &ps->resources);
1049
1050                 ACPI_FREE(buffer.pointer);
1051         }
1052
1053         /* Evaluate "_PSx" to see if we can do explicit sets */
1054         pathname[2] = 'S';
1055         if (acpi_has_method(device->handle, pathname))
1056                 ps->flags.explicit_set = 1;
1057
1058         /* State is valid if there are means to put the device into it. */
1059         if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1060                 ps->flags.valid = 1;
1061
1062         ps->power = -1;         /* Unknown - driver assigned */
1063         ps->latency = -1;       /* Unknown - driver assigned */
1064 }
1065
1066 static void acpi_bus_get_power_flags(struct acpi_device *device)
1067 {
1068         unsigned long long dsc = ACPI_STATE_D0;
1069         u32 i;
1070
1071         /* Presence of _PS0|_PR0 indicates 'power manageable' */
1072         if (!acpi_has_method(device->handle, "_PS0") &&
1073             !acpi_has_method(device->handle, "_PR0"))
1074                 return;
1075
1076         device->flags.power_manageable = 1;
1077
1078         /*
1079          * Power Management Flags
1080          */
1081         if (acpi_has_method(device->handle, "_PSC"))
1082                 device->power.flags.explicit_get = 1;
1083
1084         if (acpi_has_method(device->handle, "_IRC"))
1085                 device->power.flags.inrush_current = 1;
1086
1087         if (acpi_has_method(device->handle, "_DSW"))
1088                 device->power.flags.dsw_present = 1;
1089
1090         acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1091         device->power.state_for_enumeration = dsc;
1092
1093         /*
1094          * Enumerate supported power management states
1095          */
1096         for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1097                 acpi_bus_init_power_state(device, i);
1098
1099         INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1100
1101         /* Set the defaults for D0 and D3hot (always supported). */
1102         device->power.states[ACPI_STATE_D0].flags.valid = 1;
1103         device->power.states[ACPI_STATE_D0].power = 100;
1104         device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1105
1106         /*
1107          * Use power resources only if the D0 list of them is populated, because
1108          * some platforms may provide _PR3 only to indicate D3cold support and
1109          * in those cases the power resources list returned by it may be bogus.
1110          */
1111         if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1112                 device->power.flags.power_resources = 1;
1113                 /*
1114                  * D3cold is supported if the D3hot list of power resources is
1115                  * not empty.
1116                  */
1117                 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1118                         device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1119         }
1120
1121         if (acpi_bus_init_power(device))
1122                 device->flags.power_manageable = 0;
1123 }
1124
1125 static void acpi_bus_get_flags(struct acpi_device *device)
1126 {
1127         /* Presence of _STA indicates 'dynamic_status' */
1128         if (acpi_has_method(device->handle, "_STA"))
1129                 device->flags.dynamic_status = 1;
1130
1131         /* Presence of _RMV indicates 'removable' */
1132         if (acpi_has_method(device->handle, "_RMV"))
1133                 device->flags.removable = 1;
1134
1135         /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1136         if (acpi_has_method(device->handle, "_EJD") ||
1137             acpi_has_method(device->handle, "_EJ0"))
1138                 device->flags.ejectable = 1;
1139 }
1140
1141 static void acpi_device_get_busid(struct acpi_device *device)
1142 {
1143         char bus_id[5] = { '?', 0 };
1144         struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1145         int i = 0;
1146
1147         /*
1148          * Bus ID
1149          * ------
1150          * The device's Bus ID is simply the object name.
1151          * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1152          */
1153         if (!acpi_dev_parent(device)) {
1154                 strcpy(device->pnp.bus_id, "ACPI");
1155                 return;
1156         }
1157
1158         switch (device->device_type) {
1159         case ACPI_BUS_TYPE_POWER_BUTTON:
1160                 strcpy(device->pnp.bus_id, "PWRF");
1161                 break;
1162         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1163                 strcpy(device->pnp.bus_id, "SLPF");
1164                 break;
1165         case ACPI_BUS_TYPE_ECDT_EC:
1166                 strcpy(device->pnp.bus_id, "ECDT");
1167                 break;
1168         default:
1169                 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1170                 /* Clean up trailing underscores (if any) */
1171                 for (i = 3; i > 1; i--) {
1172                         if (bus_id[i] == '_')
1173                                 bus_id[i] = '\0';
1174                         else
1175                                 break;
1176                 }
1177                 strcpy(device->pnp.bus_id, bus_id);
1178                 break;
1179         }
1180 }
1181
1182 /*
1183  * acpi_ata_match - see if an acpi object is an ATA device
1184  *
1185  * If an acpi object has one of the ACPI ATA methods defined,
1186  * then we can safely call it an ATA device.
1187  */
1188 bool acpi_ata_match(acpi_handle handle)
1189 {
1190         return acpi_has_method(handle, "_GTF") ||
1191                acpi_has_method(handle, "_GTM") ||
1192                acpi_has_method(handle, "_STM") ||
1193                acpi_has_method(handle, "_SDD");
1194 }
1195
1196 /*
1197  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1198  *
1199  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1200  * then we can safely call it an ejectable drive bay
1201  */
1202 bool acpi_bay_match(acpi_handle handle)
1203 {
1204         acpi_handle phandle;
1205
1206         if (!acpi_has_method(handle, "_EJ0"))
1207                 return false;
1208         if (acpi_ata_match(handle))
1209                 return true;
1210         if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1211                 return false;
1212
1213         return acpi_ata_match(phandle);
1214 }
1215
1216 bool acpi_device_is_battery(struct acpi_device *adev)
1217 {
1218         struct acpi_hardware_id *hwid;
1219
1220         list_for_each_entry(hwid, &adev->pnp.ids, list)
1221                 if (!strcmp("PNP0C0A", hwid->id))
1222                         return true;
1223
1224         return false;
1225 }
1226
1227 static bool is_ejectable_bay(struct acpi_device *adev)
1228 {
1229         acpi_handle handle = adev->handle;
1230
1231         if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1232                 return true;
1233
1234         return acpi_bay_match(handle);
1235 }
1236
1237 /*
1238  * acpi_dock_match - see if an acpi object has a _DCK method
1239  */
1240 bool acpi_dock_match(acpi_handle handle)
1241 {
1242         return acpi_has_method(handle, "_DCK");
1243 }
1244
1245 static acpi_status
1246 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1247                           void **return_value)
1248 {
1249         long *cap = context;
1250
1251         if (acpi_has_method(handle, "_BCM") &&
1252             acpi_has_method(handle, "_BCL")) {
1253                 acpi_handle_debug(handle, "Found generic backlight support\n");
1254                 *cap |= ACPI_VIDEO_BACKLIGHT;
1255                 /* We have backlight support, no need to scan further */
1256                 return AE_CTRL_TERMINATE;
1257         }
1258         return 0;
1259 }
1260
1261 /* Returns true if the ACPI object is a video device which can be
1262  * handled by video.ko.
1263  * The device will get a Linux specific CID added in scan.c to
1264  * identify the device as an ACPI graphics device
1265  * Be aware that the graphics device may not be physically present
1266  * Use acpi_video_get_capabilities() to detect general ACPI video
1267  * capabilities of present cards
1268  */
1269 long acpi_is_video_device(acpi_handle handle)
1270 {
1271         long video_caps = 0;
1272
1273         /* Is this device able to support video switching ? */
1274         if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1275                 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1276
1277         /* Is this device able to retrieve a video ROM ? */
1278         if (acpi_has_method(handle, "_ROM"))
1279                 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1280
1281         /* Is this device able to configure which video head to be POSTed ? */
1282         if (acpi_has_method(handle, "_VPO") &&
1283             acpi_has_method(handle, "_GPD") &&
1284             acpi_has_method(handle, "_SPD"))
1285                 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1286
1287         /* Only check for backlight functionality if one of the above hit. */
1288         if (video_caps)
1289                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1290                                     ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1291                                     &video_caps, NULL);
1292
1293         return video_caps;
1294 }
1295 EXPORT_SYMBOL(acpi_is_video_device);
1296
1297 const char *acpi_device_hid(struct acpi_device *device)
1298 {
1299         struct acpi_hardware_id *hid;
1300
1301         if (list_empty(&device->pnp.ids))
1302                 return dummy_hid;
1303
1304         hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1305         return hid->id;
1306 }
1307 EXPORT_SYMBOL(acpi_device_hid);
1308
1309 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1310 {
1311         struct acpi_hardware_id *id;
1312
1313         id = kmalloc(sizeof(*id), GFP_KERNEL);
1314         if (!id)
1315                 return;
1316
1317         id->id = kstrdup_const(dev_id, GFP_KERNEL);
1318         if (!id->id) {
1319                 kfree(id);
1320                 return;
1321         }
1322
1323         list_add_tail(&id->list, &pnp->ids);
1324         pnp->type.hardware_id = 1;
1325 }
1326
1327 /*
1328  * Old IBM workstations have a DSDT bug wherein the SMBus object
1329  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1330  * prefix.  Work around this.
1331  */
1332 static bool acpi_ibm_smbus_match(acpi_handle handle)
1333 {
1334         char node_name[ACPI_PATH_SEGMENT_LENGTH];
1335         struct acpi_buffer path = { sizeof(node_name), node_name };
1336
1337         if (!dmi_name_in_vendors("IBM"))
1338                 return false;
1339
1340         /* Look for SMBS object */
1341         if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1342             strcmp("SMBS", path.pointer))
1343                 return false;
1344
1345         /* Does it have the necessary (but misnamed) methods? */
1346         if (acpi_has_method(handle, "SBI") &&
1347             acpi_has_method(handle, "SBR") &&
1348             acpi_has_method(handle, "SBW"))
1349                 return true;
1350
1351         return false;
1352 }
1353
1354 static bool acpi_object_is_system_bus(acpi_handle handle)
1355 {
1356         acpi_handle tmp;
1357
1358         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1359             tmp == handle)
1360                 return true;
1361         if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1362             tmp == handle)
1363                 return true;
1364
1365         return false;
1366 }
1367
1368 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1369                              int device_type)
1370 {
1371         struct acpi_device_info *info = NULL;
1372         struct acpi_pnp_device_id_list *cid_list;
1373         int i;
1374
1375         switch (device_type) {
1376         case ACPI_BUS_TYPE_DEVICE:
1377                 if (handle == ACPI_ROOT_OBJECT) {
1378                         acpi_add_id(pnp, ACPI_SYSTEM_HID);
1379                         break;
1380                 }
1381
1382                 acpi_get_object_info(handle, &info);
1383                 if (!info) {
1384                         pr_err("%s: Error reading device info\n", __func__);
1385                         return;
1386                 }
1387
1388                 if (info->valid & ACPI_VALID_HID) {
1389                         acpi_add_id(pnp, info->hardware_id.string);
1390                         pnp->type.platform_id = 1;
1391                 }
1392                 if (info->valid & ACPI_VALID_CID) {
1393                         cid_list = &info->compatible_id_list;
1394                         for (i = 0; i < cid_list->count; i++)
1395                                 acpi_add_id(pnp, cid_list->ids[i].string);
1396                 }
1397                 if (info->valid & ACPI_VALID_ADR) {
1398                         pnp->bus_address = info->address;
1399                         pnp->type.bus_address = 1;
1400                 }
1401                 if (info->valid & ACPI_VALID_UID)
1402                         pnp->unique_id = kstrdup(info->unique_id.string,
1403                                                         GFP_KERNEL);
1404                 if (info->valid & ACPI_VALID_CLS)
1405                         acpi_add_id(pnp, info->class_code.string);
1406
1407                 kfree(info);
1408
1409                 /*
1410                  * Some devices don't reliably have _HIDs & _CIDs, so add
1411                  * synthetic HIDs to make sure drivers can find them.
1412                  */
1413                 if (acpi_is_video_device(handle)) {
1414                         acpi_add_id(pnp, ACPI_VIDEO_HID);
1415                         pnp->type.backlight = 1;
1416                         break;
1417                 }
1418                 if (acpi_bay_match(handle))
1419                         acpi_add_id(pnp, ACPI_BAY_HID);
1420                 else if (acpi_dock_match(handle))
1421                         acpi_add_id(pnp, ACPI_DOCK_HID);
1422                 else if (acpi_ibm_smbus_match(handle))
1423                         acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1424                 else if (list_empty(&pnp->ids) &&
1425                          acpi_object_is_system_bus(handle)) {
1426                         /* \_SB, \_TZ, LNXSYBUS */
1427                         acpi_add_id(pnp, ACPI_BUS_HID);
1428                         strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1429                         strcpy(pnp->device_class, ACPI_BUS_CLASS);
1430                 }
1431
1432                 break;
1433         case ACPI_BUS_TYPE_POWER:
1434                 acpi_add_id(pnp, ACPI_POWER_HID);
1435                 break;
1436         case ACPI_BUS_TYPE_PROCESSOR:
1437                 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1438                 break;
1439         case ACPI_BUS_TYPE_THERMAL:
1440                 acpi_add_id(pnp, ACPI_THERMAL_HID);
1441                 break;
1442         case ACPI_BUS_TYPE_POWER_BUTTON:
1443                 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1444                 break;
1445         case ACPI_BUS_TYPE_SLEEP_BUTTON:
1446                 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1447                 break;
1448         case ACPI_BUS_TYPE_ECDT_EC:
1449                 acpi_add_id(pnp, ACPI_ECDT_HID);
1450                 break;
1451         }
1452 }
1453
1454 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1455 {
1456         struct acpi_hardware_id *id, *tmp;
1457
1458         list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1459                 kfree_const(id->id);
1460                 kfree(id);
1461         }
1462         kfree(pnp->unique_id);
1463 }
1464
1465 /**
1466  * acpi_dma_supported - Check DMA support for the specified device.
1467  * @adev: The pointer to acpi device
1468  *
1469  * Return false if DMA is not supported. Otherwise, return true
1470  */
1471 bool acpi_dma_supported(const struct acpi_device *adev)
1472 {
1473         if (!adev)
1474                 return false;
1475
1476         if (adev->flags.cca_seen)
1477                 return true;
1478
1479         /*
1480         * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1481         * DMA on "Intel platforms".  Presumably that includes all x86 and
1482         * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1483         */
1484         if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1485                 return true;
1486
1487         return false;
1488 }
1489
1490 /**
1491  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1492  * @adev: The pointer to acpi device
1493  *
1494  * Return enum dev_dma_attr.
1495  */
1496 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1497 {
1498         if (!acpi_dma_supported(adev))
1499                 return DEV_DMA_NOT_SUPPORTED;
1500
1501         if (adev->flags.coherent_dma)
1502                 return DEV_DMA_COHERENT;
1503         else
1504                 return DEV_DMA_NON_COHERENT;
1505 }
1506
1507 /**
1508  * acpi_dma_get_range() - Get device DMA parameters.
1509  *
1510  * @dev: device to configure
1511  * @map: pointer to DMA ranges result
1512  *
1513  * Evaluate DMA regions and return pointer to DMA regions on
1514  * parsing success; it does not update the passed in values on failure.
1515  *
1516  * Return 0 on success, < 0 on failure.
1517  */
1518 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1519 {
1520         struct acpi_device *adev;
1521         LIST_HEAD(list);
1522         struct resource_entry *rentry;
1523         int ret;
1524         struct device *dma_dev = dev;
1525         struct bus_dma_region *r;
1526
1527         /*
1528          * Walk the device tree chasing an ACPI companion with a _DMA
1529          * object while we go. Stop if we find a device with an ACPI
1530          * companion containing a _DMA method.
1531          */
1532         do {
1533                 adev = ACPI_COMPANION(dma_dev);
1534                 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1535                         break;
1536
1537                 dma_dev = dma_dev->parent;
1538         } while (dma_dev);
1539
1540         if (!dma_dev)
1541                 return -ENODEV;
1542
1543         if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1544                 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1545                 return -EINVAL;
1546         }
1547
1548         ret = acpi_dev_get_dma_resources(adev, &list);
1549         if (ret > 0) {
1550                 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1551                 if (!r) {
1552                         ret = -ENOMEM;
1553                         goto out;
1554                 }
1555
1556                 *map = r;
1557
1558                 list_for_each_entry(rentry, &list, node) {
1559                         if (rentry->res->start >= rentry->res->end) {
1560                                 kfree(*map);
1561                                 *map = NULL;
1562                                 ret = -EINVAL;
1563                                 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1564                                 goto out;
1565                         }
1566
1567                         r->cpu_start = rentry->res->start;
1568                         r->dma_start = rentry->res->start - rentry->offset;
1569                         r->size = resource_size(rentry->res);
1570                         r++;
1571                 }
1572         }
1573  out:
1574         acpi_dev_free_resource_list(&list);
1575
1576         return ret >= 0 ? 0 : ret;
1577 }
1578
1579 #ifdef CONFIG_IOMMU_API
1580 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1581                            struct fwnode_handle *fwnode,
1582                            const struct iommu_ops *ops)
1583 {
1584         int ret = iommu_fwspec_init(dev, fwnode, ops);
1585
1586         if (!ret)
1587                 ret = iommu_fwspec_add_ids(dev, &id, 1);
1588
1589         return ret;
1590 }
1591
1592 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1593 {
1594         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1595
1596         return fwspec ? fwspec->ops : NULL;
1597 }
1598
1599 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1600 {
1601         int err;
1602         const struct iommu_ops *ops;
1603
1604         /* Serialise to make dev->iommu stable under our potential fwspec */
1605         mutex_lock(&iommu_probe_device_lock);
1606         /*
1607          * If we already translated the fwspec there is nothing left to do,
1608          * return the iommu_ops.
1609          */
1610         ops = acpi_iommu_fwspec_ops(dev);
1611         if (ops) {
1612                 mutex_unlock(&iommu_probe_device_lock);
1613                 return 0;
1614         }
1615
1616         err = iort_iommu_configure_id(dev, id_in);
1617         if (err && err != -EPROBE_DEFER)
1618                 err = viot_iommu_configure(dev);
1619         mutex_unlock(&iommu_probe_device_lock);
1620
1621         /*
1622          * If we have reason to believe the IOMMU driver missed the initial
1623          * iommu_probe_device() call for dev, replay it to get things in order.
1624          */
1625         if (!err && dev->bus)
1626                 err = iommu_probe_device(dev);
1627
1628         /* Ignore all other errors apart from EPROBE_DEFER */
1629         if (err == -EPROBE_DEFER) {
1630                 return err;
1631         } else if (err) {
1632                 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1633                 return -ENODEV;
1634         }
1635         if (!acpi_iommu_fwspec_ops(dev))
1636                 return -ENODEV;
1637         return 0;
1638 }
1639
1640 #else /* !CONFIG_IOMMU_API */
1641
1642 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1643                            struct fwnode_handle *fwnode,
1644                            const struct iommu_ops *ops)
1645 {
1646         return -ENODEV;
1647 }
1648
1649 static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1650 {
1651         return -ENODEV;
1652 }
1653
1654 #endif /* !CONFIG_IOMMU_API */
1655
1656 /**
1657  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1658  * @dev: The pointer to the device
1659  * @attr: device dma attributes
1660  * @input_id: input device id const value pointer
1661  */
1662 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1663                           const u32 *input_id)
1664 {
1665         int ret;
1666
1667         if (attr == DEV_DMA_NOT_SUPPORTED) {
1668                 set_dma_ops(dev, &dma_dummy_ops);
1669                 return 0;
1670         }
1671
1672         acpi_arch_dma_setup(dev);
1673
1674         ret = acpi_iommu_configure_id(dev, input_id);
1675         if (ret == -EPROBE_DEFER)
1676                 return -EPROBE_DEFER;
1677
1678         /*
1679          * Historically this routine doesn't fail driver probing due to errors
1680          * in acpi_iommu_configure_id()
1681          */
1682
1683         arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1684
1685         return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1688
1689 static void acpi_init_coherency(struct acpi_device *adev)
1690 {
1691         unsigned long long cca = 0;
1692         acpi_status status;
1693         struct acpi_device *parent = acpi_dev_parent(adev);
1694
1695         if (parent && parent->flags.cca_seen) {
1696                 /*
1697                  * From ACPI spec, OSPM will ignore _CCA if an ancestor
1698                  * already saw one.
1699                  */
1700                 adev->flags.cca_seen = 1;
1701                 cca = parent->flags.coherent_dma;
1702         } else {
1703                 status = acpi_evaluate_integer(adev->handle, "_CCA",
1704                                                NULL, &cca);
1705                 if (ACPI_SUCCESS(status))
1706                         adev->flags.cca_seen = 1;
1707                 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1708                         /*
1709                          * If architecture does not specify that _CCA is
1710                          * required for DMA-able devices (e.g. x86),
1711                          * we default to _CCA=1.
1712                          */
1713                         cca = 1;
1714                 else
1715                         acpi_handle_debug(adev->handle,
1716                                           "ACPI device is missing _CCA.\n");
1717         }
1718
1719         adev->flags.coherent_dma = cca;
1720 }
1721
1722 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1723 {
1724         bool *is_serial_bus_slave_p = data;
1725
1726         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1727                 return 1;
1728
1729         *is_serial_bus_slave_p = true;
1730
1731          /* no need to do more checking */
1732         return -1;
1733 }
1734
1735 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1736 {
1737         struct acpi_device *parent = acpi_dev_parent(device);
1738         static const struct acpi_device_id indirect_io_hosts[] = {
1739                 {"HISI0191", 0},
1740                 {}
1741         };
1742
1743         return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1744 }
1745
1746 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1747 {
1748         struct list_head resource_list;
1749         bool is_serial_bus_slave = false;
1750         static const struct acpi_device_id ignore_serial_bus_ids[] = {
1751         /*
1752          * These devices have multiple SerialBus resources and a client
1753          * device must be instantiated for each of them, each with
1754          * its own device id.
1755          * Normally we only instantiate one client device for the first
1756          * resource, using the ACPI HID as id. These special cases are handled
1757          * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1758          * knows which client device id to use for each resource.
1759          */
1760                 {"BSG1160", },
1761                 {"BSG2150", },
1762                 {"CSC3551", },
1763                 {"CSC3554", },
1764                 {"CSC3556", },
1765                 {"CSC3557", },
1766                 {"INT33FE", },
1767                 {"INT3515", },
1768                 /* Non-conforming _HID for Cirrus Logic already released */
1769                 {"CLSA0100", },
1770                 {"CLSA0101", },
1771         /*
1772          * Some ACPI devs contain SerialBus resources even though they are not
1773          * attached to a serial bus at all.
1774          */
1775                 {ACPI_VIDEO_HID, },
1776                 {"MSHW0028", },
1777         /*
1778          * HIDs of device with an UartSerialBusV2 resource for which userspace
1779          * expects a regular tty cdev to be created (instead of the in kernel
1780          * serdev) and which have a kernel driver which expects a platform_dev
1781          * such as the rfkill-gpio driver.
1782          */
1783                 {"BCM4752", },
1784                 {"LNV4752", },
1785                 {}
1786         };
1787
1788         if (acpi_is_indirect_io_slave(device))
1789                 return true;
1790
1791         /* Macs use device properties in lieu of _CRS resources */
1792         if (x86_apple_machine &&
1793             (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1794              fwnode_property_present(&device->fwnode, "i2cAddress") ||
1795              fwnode_property_present(&device->fwnode, "baud")))
1796                 return true;
1797
1798         if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1799                 return false;
1800
1801         INIT_LIST_HEAD(&resource_list);
1802         acpi_dev_get_resources(device, &resource_list,
1803                                acpi_check_serial_bus_slave,
1804                                &is_serial_bus_slave);
1805         acpi_dev_free_resource_list(&resource_list);
1806
1807         return is_serial_bus_slave;
1808 }
1809
1810 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1811                              int type, void (*release)(struct device *))
1812 {
1813         struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1814
1815         INIT_LIST_HEAD(&device->pnp.ids);
1816         device->device_type = type;
1817         device->handle = handle;
1818         device->dev.parent = parent ? &parent->dev : NULL;
1819         device->dev.release = release;
1820         device->dev.bus = &acpi_bus_type;
1821         fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1822         acpi_set_device_status(device, ACPI_STA_DEFAULT);
1823         acpi_device_get_busid(device);
1824         acpi_set_pnp_ids(handle, &device->pnp, type);
1825         acpi_init_properties(device);
1826         acpi_bus_get_flags(device);
1827         device->flags.match_driver = false;
1828         device->flags.initialized = true;
1829         device->flags.enumeration_by_parent =
1830                 acpi_device_enumeration_by_parent(device);
1831         acpi_device_clear_enumerated(device);
1832         device_initialize(&device->dev);
1833         dev_set_uevent_suppress(&device->dev, true);
1834         acpi_init_coherency(device);
1835 }
1836
1837 static void acpi_scan_dep_init(struct acpi_device *adev)
1838 {
1839         struct acpi_dep_data *dep;
1840
1841         list_for_each_entry(dep, &acpi_dep_list, node) {
1842                 if (dep->consumer == adev->handle) {
1843                         if (dep->honor_dep)
1844                                 adev->flags.honor_deps = 1;
1845
1846                         if (!dep->met)
1847                                 adev->dep_unmet++;
1848                 }
1849         }
1850 }
1851
1852 void acpi_device_add_finalize(struct acpi_device *device)
1853 {
1854         dev_set_uevent_suppress(&device->dev, false);
1855         kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1856 }
1857
1858 static void acpi_scan_init_status(struct acpi_device *adev)
1859 {
1860         if (acpi_bus_get_status(adev))
1861                 acpi_set_device_status(adev, 0);
1862 }
1863
1864 static int acpi_add_single_object(struct acpi_device **child,
1865                                   acpi_handle handle, int type, bool dep_init)
1866 {
1867         struct acpi_device *device;
1868         bool release_dep_lock = false;
1869         int result;
1870
1871         device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1872         if (!device)
1873                 return -ENOMEM;
1874
1875         acpi_init_device_object(device, handle, type, acpi_device_release);
1876         /*
1877          * Getting the status is delayed till here so that we can call
1878          * acpi_bus_get_status() and use its quirk handling.  Note that
1879          * this must be done before the get power-/wakeup_dev-flags calls.
1880          */
1881         if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1882                 if (dep_init) {
1883                         mutex_lock(&acpi_dep_list_lock);
1884                         /*
1885                          * Hold the lock until the acpi_tie_acpi_dev() call
1886                          * below to prevent concurrent acpi_scan_clear_dep()
1887                          * from deleting a dependency list entry without
1888                          * updating dep_unmet for the device.
1889                          */
1890                         release_dep_lock = true;
1891                         acpi_scan_dep_init(device);
1892                 }
1893                 acpi_scan_init_status(device);
1894         }
1895
1896         acpi_bus_get_power_flags(device);
1897         acpi_bus_get_wakeup_device_flags(device);
1898
1899         result = acpi_tie_acpi_dev(device);
1900
1901         if (release_dep_lock)
1902                 mutex_unlock(&acpi_dep_list_lock);
1903
1904         if (!result)
1905                 result = acpi_device_add(device);
1906
1907         if (result) {
1908                 acpi_device_release(&device->dev);
1909                 return result;
1910         }
1911
1912         acpi_power_add_remove_device(device, true);
1913         acpi_device_add_finalize(device);
1914
1915         acpi_handle_debug(handle, "Added as %s, parent %s\n",
1916                           dev_name(&device->dev), device->dev.parent ?
1917                                 dev_name(device->dev.parent) : "(null)");
1918
1919         *child = device;
1920         return 0;
1921 }
1922
1923 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1924                                             void *context)
1925 {
1926         struct resource *res = context;
1927
1928         if (acpi_dev_resource_memory(ares, res))
1929                 return AE_CTRL_TERMINATE;
1930
1931         return AE_OK;
1932 }
1933
1934 static bool acpi_device_should_be_hidden(acpi_handle handle)
1935 {
1936         acpi_status status;
1937         struct resource res;
1938
1939         /* Check if it should ignore the UART device */
1940         if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1941                 return false;
1942
1943         /*
1944          * The UART device described in SPCR table is assumed to have only one
1945          * memory resource present. So we only look for the first one here.
1946          */
1947         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1948                                      acpi_get_resource_memory, &res);
1949         if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1950                 return false;
1951
1952         acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1953                          &res.start);
1954
1955         return true;
1956 }
1957
1958 bool acpi_device_is_present(const struct acpi_device *adev)
1959 {
1960         return adev->status.present || adev->status.functional;
1961 }
1962
1963 bool acpi_device_is_enabled(const struct acpi_device *adev)
1964 {
1965         return adev->status.present && adev->status.enabled;
1966 }
1967
1968 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1969                                        const char *idstr,
1970                                        const struct acpi_device_id **matchid)
1971 {
1972         const struct acpi_device_id *devid;
1973
1974         if (handler->match)
1975                 return handler->match(idstr, matchid);
1976
1977         for (devid = handler->ids; devid->id[0]; devid++)
1978                 if (!strcmp((char *)devid->id, idstr)) {
1979                         if (matchid)
1980                                 *matchid = devid;
1981
1982                         return true;
1983                 }
1984
1985         return false;
1986 }
1987
1988 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1989                                         const struct acpi_device_id **matchid)
1990 {
1991         struct acpi_scan_handler *handler;
1992
1993         list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1994                 if (acpi_scan_handler_matching(handler, idstr, matchid))
1995                         return handler;
1996
1997         return NULL;
1998 }
1999
2000 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2001 {
2002         if (!!hotplug->enabled == !!val)
2003                 return;
2004
2005         mutex_lock(&acpi_scan_lock);
2006
2007         hotplug->enabled = val;
2008
2009         mutex_unlock(&acpi_scan_lock);
2010 }
2011
2012 static void acpi_scan_init_hotplug(struct acpi_device *adev)
2013 {
2014         struct acpi_hardware_id *hwid;
2015
2016         if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2017                 acpi_dock_add(adev);
2018                 return;
2019         }
2020         list_for_each_entry(hwid, &adev->pnp.ids, list) {
2021                 struct acpi_scan_handler *handler;
2022
2023                 handler = acpi_scan_match_handler(hwid->id, NULL);
2024                 if (handler) {
2025                         adev->flags.hotplug_notify = true;
2026                         break;
2027                 }
2028         }
2029 }
2030
2031 static u32 acpi_scan_check_dep(acpi_handle handle)
2032 {
2033         struct acpi_handle_list dep_devices;
2034         u32 count;
2035         int i;
2036
2037         /*
2038          * Check for _HID here to avoid deferring the enumeration of:
2039          * 1. PCI devices.
2040          * 2. ACPI nodes describing USB ports.
2041          * Still, checking for _HID catches more then just these cases ...
2042          */
2043         if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2044                 return 0;
2045
2046         if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2047                 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2048                 return 0;
2049         }
2050
2051         for (count = 0, i = 0; i < dep_devices.count; i++) {
2052                 struct acpi_device_info *info;
2053                 struct acpi_dep_data *dep;
2054                 bool skip, honor_dep;
2055                 acpi_status status;
2056
2057                 status = acpi_get_object_info(dep_devices.handles[i], &info);
2058                 if (ACPI_FAILURE(status)) {
2059                         acpi_handle_debug(handle, "Error reading _DEP device info\n");
2060                         continue;
2061                 }
2062
2063                 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2064                 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2065                 kfree(info);
2066
2067                 if (skip)
2068                         continue;
2069
2070                 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2071                 if (!dep)
2072                         continue;
2073
2074                 count++;
2075
2076                 dep->supplier = dep_devices.handles[i];
2077                 dep->consumer = handle;
2078                 dep->honor_dep = honor_dep;
2079
2080                 mutex_lock(&acpi_dep_list_lock);
2081                 list_add_tail(&dep->node , &acpi_dep_list);
2082                 mutex_unlock(&acpi_dep_list_lock);
2083         }
2084
2085         acpi_handle_list_free(&dep_devices);
2086         return count;
2087 }
2088
2089 static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2090 {
2091         acpi_mipi_check_crs_csi2(handle);
2092         return AE_OK;
2093 }
2094
2095 static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2096                                       struct acpi_device **adev_p)
2097 {
2098         struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2099         acpi_object_type acpi_type;
2100         int type;
2101
2102         if (device)
2103                 goto out;
2104
2105         if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2106                 return AE_OK;
2107
2108         switch (acpi_type) {
2109         case ACPI_TYPE_DEVICE:
2110                 if (acpi_device_should_be_hidden(handle))
2111                         return AE_OK;
2112
2113                 if (first_pass) {
2114                         acpi_mipi_check_crs_csi2(handle);
2115
2116                         /* Bail out if there are dependencies. */
2117                         if (acpi_scan_check_dep(handle) > 0) {
2118                                 /*
2119                                  * The entire CSI-2 connection graph needs to be
2120                                  * extracted before any drivers or scan handlers
2121                                  * are bound to struct device objects, so scan
2122                                  * _CRS CSI-2 resource descriptors for all
2123                                  * devices below the current handle.
2124                                  */
2125                                 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2126                                                     ACPI_UINT32_MAX,
2127                                                     acpi_scan_check_crs_csi2_cb,
2128                                                     NULL, NULL, NULL);
2129                                 return AE_CTRL_DEPTH;
2130                         }
2131                 }
2132
2133                 fallthrough;
2134         case ACPI_TYPE_ANY:     /* for ACPI_ROOT_OBJECT */
2135                 type = ACPI_BUS_TYPE_DEVICE;
2136                 break;
2137
2138         case ACPI_TYPE_PROCESSOR:
2139                 type = ACPI_BUS_TYPE_PROCESSOR;
2140                 break;
2141
2142         case ACPI_TYPE_THERMAL:
2143                 type = ACPI_BUS_TYPE_THERMAL;
2144                 break;
2145
2146         case ACPI_TYPE_POWER:
2147                 acpi_add_power_resource(handle);
2148                 fallthrough;
2149         default:
2150                 return AE_OK;
2151         }
2152
2153         /*
2154          * If first_pass is true at this point, the device has no dependencies,
2155          * or the creation of the device object would have been postponed above.
2156          */
2157         acpi_add_single_object(&device, handle, type, !first_pass);
2158         if (!device)
2159                 return AE_CTRL_DEPTH;
2160
2161         acpi_scan_init_hotplug(device);
2162
2163 out:
2164         if (!*adev_p)
2165                 *adev_p = device;
2166
2167         return AE_OK;
2168 }
2169
2170 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2171                                         void *not_used, void **ret_p)
2172 {
2173         return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2174 }
2175
2176 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2177                                         void *not_used, void **ret_p)
2178 {
2179         return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2180 }
2181
2182 static void acpi_default_enumeration(struct acpi_device *device)
2183 {
2184         /*
2185          * Do not enumerate devices with enumeration_by_parent flag set as
2186          * they will be enumerated by their respective parents.
2187          */
2188         if (!device->flags.enumeration_by_parent) {
2189                 acpi_create_platform_device(device, NULL);
2190                 acpi_device_set_enumerated(device);
2191         } else {
2192                 blocking_notifier_call_chain(&acpi_reconfig_chain,
2193                                              ACPI_RECONFIG_DEVICE_ADD, device);
2194         }
2195 }
2196
2197 static const struct acpi_device_id generic_device_ids[] = {
2198         {ACPI_DT_NAMESPACE_HID, },
2199         {"", },
2200 };
2201
2202 static int acpi_generic_device_attach(struct acpi_device *adev,
2203                                       const struct acpi_device_id *not_used)
2204 {
2205         /*
2206          * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2207          * below can be unconditional.
2208          */
2209         if (adev->data.of_compatible)
2210                 acpi_default_enumeration(adev);
2211
2212         return 1;
2213 }
2214
2215 static struct acpi_scan_handler generic_device_handler = {
2216         .ids = generic_device_ids,
2217         .attach = acpi_generic_device_attach,
2218 };
2219
2220 static int acpi_scan_attach_handler(struct acpi_device *device)
2221 {
2222         struct acpi_hardware_id *hwid;
2223         int ret = 0;
2224
2225         list_for_each_entry(hwid, &device->pnp.ids, list) {
2226                 const struct acpi_device_id *devid;
2227                 struct acpi_scan_handler *handler;
2228
2229                 handler = acpi_scan_match_handler(hwid->id, &devid);
2230                 if (handler) {
2231                         if (!handler->attach) {
2232                                 device->pnp.type.platform_id = 0;
2233                                 continue;
2234                         }
2235                         device->handler = handler;
2236                         ret = handler->attach(device, devid);
2237                         if (ret > 0)
2238                                 break;
2239
2240                         device->handler = NULL;
2241                         if (ret < 0)
2242                                 break;
2243                 }
2244         }
2245
2246         return ret;
2247 }
2248
2249 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2250 {
2251         bool skip = !first_pass && device->flags.visited;
2252         acpi_handle ejd;
2253         int ret;
2254
2255         if (skip)
2256                 goto ok;
2257
2258         if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2259                 register_dock_dependent_device(device, ejd);
2260
2261         acpi_bus_get_status(device);
2262         /* Skip devices that are not ready for enumeration (e.g. not present) */
2263         if (!acpi_dev_ready_for_enumeration(device)) {
2264                 device->flags.initialized = false;
2265                 acpi_device_clear_enumerated(device);
2266                 device->flags.power_manageable = 0;
2267                 return 0;
2268         }
2269         if (device->handler)
2270                 goto ok;
2271
2272         if (!device->flags.initialized) {
2273                 device->flags.power_manageable =
2274                         device->power.states[ACPI_STATE_D0].flags.valid;
2275                 if (acpi_bus_init_power(device))
2276                         device->flags.power_manageable = 0;
2277
2278                 device->flags.initialized = true;
2279         } else if (device->flags.visited) {
2280                 goto ok;
2281         }
2282
2283         ret = acpi_scan_attach_handler(device);
2284         if (ret < 0)
2285                 return 0;
2286
2287         device->flags.match_driver = true;
2288         if (ret > 0 && !device->flags.enumeration_by_parent) {
2289                 acpi_device_set_enumerated(device);
2290                 goto ok;
2291         }
2292
2293         ret = device_attach(&device->dev);
2294         if (ret < 0)
2295                 return 0;
2296
2297         if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2298                 acpi_default_enumeration(device);
2299         else
2300                 acpi_device_set_enumerated(device);
2301
2302 ok:
2303         acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2304
2305         if (!skip && device->handler && device->handler->hotplug.notify_online)
2306                 device->handler->hotplug.notify_online(device);
2307
2308         return 0;
2309 }
2310
2311 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2312 {
2313         struct acpi_device **adev_p = data;
2314         struct acpi_device *adev = *adev_p;
2315
2316         /*
2317          * If we're passed a 'previous' consumer device then we need to skip
2318          * any consumers until we meet the previous one, and then NULL @data
2319          * so the next one can be returned.
2320          */
2321         if (adev) {
2322                 if (dep->consumer == adev->handle)
2323                         *adev_p = NULL;
2324
2325                 return 0;
2326         }
2327
2328         adev = acpi_get_acpi_dev(dep->consumer);
2329         if (adev) {
2330                 *(struct acpi_device **)data = adev;
2331                 return 1;
2332         }
2333         /* Continue parsing if the device object is not present. */
2334         return 0;
2335 }
2336
2337 struct acpi_scan_clear_dep_work {
2338         struct work_struct work;
2339         struct acpi_device *adev;
2340 };
2341
2342 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2343 {
2344         struct acpi_scan_clear_dep_work *cdw;
2345
2346         cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2347
2348         acpi_scan_lock_acquire();
2349         acpi_bus_attach(cdw->adev, (void *)true);
2350         acpi_scan_lock_release();
2351
2352         acpi_dev_put(cdw->adev);
2353         kfree(cdw);
2354 }
2355
2356 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2357 {
2358         struct acpi_scan_clear_dep_work *cdw;
2359
2360         if (adev->dep_unmet)
2361                 return false;
2362
2363         cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2364         if (!cdw)
2365                 return false;
2366
2367         cdw->adev = adev;
2368         INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2369         /*
2370          * Since the work function may block on the lock until the entire
2371          * initial enumeration of devices is complete, put it into the unbound
2372          * workqueue.
2373          */
2374         queue_work(system_unbound_wq, &cdw->work);
2375
2376         return true;
2377 }
2378
2379 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2380 {
2381         list_del(&dep->node);
2382         kfree(dep);
2383 }
2384
2385 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2386 {
2387         struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2388
2389         if (adev) {
2390                 adev->dep_unmet--;
2391                 if (!acpi_scan_clear_dep_queue(adev))
2392                         acpi_dev_put(adev);
2393         }
2394
2395         if (dep->free_when_met)
2396                 acpi_scan_delete_dep_data(dep);
2397         else
2398                 dep->met = true;
2399
2400         return 0;
2401 }
2402
2403 /**
2404  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2405  * @handle:     The ACPI handle of the supplier device
2406  * @callback:   Pointer to the callback function to apply
2407  * @data:       Pointer to some data to pass to the callback
2408  *
2409  * The return value of the callback determines this function's behaviour. If 0
2410  * is returned we continue to iterate over acpi_dep_list. If a positive value
2411  * is returned then the loop is broken but this function returns 0. If a
2412  * negative value is returned by the callback then the loop is broken and that
2413  * value is returned as the final error.
2414  */
2415 static int acpi_walk_dep_device_list(acpi_handle handle,
2416                                 int (*callback)(struct acpi_dep_data *, void *),
2417                                 void *data)
2418 {
2419         struct acpi_dep_data *dep, *tmp;
2420         int ret = 0;
2421
2422         mutex_lock(&acpi_dep_list_lock);
2423         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2424                 if (dep->supplier == handle) {
2425                         ret = callback(dep, data);
2426                         if (ret)
2427                                 break;
2428                 }
2429         }
2430         mutex_unlock(&acpi_dep_list_lock);
2431
2432         return ret > 0 ? 0 : ret;
2433 }
2434
2435 /**
2436  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2437  * @supplier: Pointer to the supplier &struct acpi_device
2438  *
2439  * Clear dependencies on the given device.
2440  */
2441 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2442 {
2443         acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2444 }
2445 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2446
2447 /**
2448  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2449  * @device: Pointer to the &struct acpi_device to check
2450  *
2451  * Check if the device is present and has no unmet dependencies.
2452  *
2453  * Return true if the device is ready for enumeratino. Otherwise, return false.
2454  */
2455 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2456 {
2457         if (device->flags.honor_deps && device->dep_unmet)
2458                 return false;
2459
2460         return acpi_device_is_present(device);
2461 }
2462 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2463
2464 /**
2465  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2466  * @supplier: Pointer to the dependee device
2467  * @start: Pointer to the current dependent device
2468  *
2469  * Returns the next &struct acpi_device which declares itself dependent on
2470  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2471  *
2472  * If the returned adev is not passed as @start to this function, the caller is
2473  * responsible for putting the reference to adev when it is no longer needed.
2474  */
2475 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2476                                                    struct acpi_device *start)
2477 {
2478         struct acpi_device *adev = start;
2479
2480         acpi_walk_dep_device_list(supplier->handle,
2481                                   acpi_dev_get_next_consumer_dev_cb, &adev);
2482
2483         acpi_dev_put(start);
2484
2485         if (adev == start)
2486                 return NULL;
2487
2488         return adev;
2489 }
2490 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2491
2492 static void acpi_scan_postponed_branch(acpi_handle handle)
2493 {
2494         struct acpi_device *adev = NULL;
2495
2496         if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2497                 return;
2498
2499         acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2500                             acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2501
2502         /*
2503          * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2504          * have been added above.
2505          */
2506         acpi_mipi_init_crs_csi2_swnodes();
2507
2508         acpi_bus_attach(adev, NULL);
2509 }
2510
2511 static void acpi_scan_postponed(void)
2512 {
2513         struct acpi_dep_data *dep, *tmp;
2514
2515         mutex_lock(&acpi_dep_list_lock);
2516
2517         list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2518                 acpi_handle handle = dep->consumer;
2519
2520                 /*
2521                  * In case there are multiple acpi_dep_list entries with the
2522                  * same consumer, skip the current entry if the consumer device
2523                  * object corresponding to it is present already.
2524                  */
2525                 if (!acpi_fetch_acpi_dev(handle)) {
2526                         /*
2527                          * Even though the lock is released here, tmp is
2528                          * guaranteed to be valid, because none of the list
2529                          * entries following dep is marked as "free when met"
2530                          * and so they cannot be deleted.
2531                          */
2532                         mutex_unlock(&acpi_dep_list_lock);
2533
2534                         acpi_scan_postponed_branch(handle);
2535
2536                         mutex_lock(&acpi_dep_list_lock);
2537                 }
2538
2539                 if (dep->met)
2540                         acpi_scan_delete_dep_data(dep);
2541                 else
2542                         dep->free_when_met = true;
2543         }
2544
2545         mutex_unlock(&acpi_dep_list_lock);
2546 }
2547
2548 /**
2549  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2550  * @handle: Root of the namespace scope to scan.
2551  *
2552  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2553  * found devices.
2554  *
2555  * If no devices were found, -ENODEV is returned, but it does not mean that
2556  * there has been a real error.  There just have been no suitable ACPI objects
2557  * in the table trunk from which the kernel could create a device and add an
2558  * appropriate driver.
2559  *
2560  * Must be called under acpi_scan_lock.
2561  */
2562 int acpi_bus_scan(acpi_handle handle)
2563 {
2564         struct acpi_device *device = NULL;
2565
2566         /* Pass 1: Avoid enumerating devices with missing dependencies. */
2567
2568         if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2569                 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2570                                     acpi_bus_check_add_1, NULL, NULL,
2571                                     (void **)&device);
2572
2573         if (!device)
2574                 return -ENODEV;
2575
2576         /*
2577          * Set up ACPI _CRS CSI-2 software nodes using information extracted
2578          * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2579          * walk above and MIPI DisCo for Imaging device properties.
2580          */
2581         acpi_mipi_scan_crs_csi2();
2582         acpi_mipi_init_crs_csi2_swnodes();
2583
2584         acpi_bus_attach(device, (void *)true);
2585
2586         /* Pass 2: Enumerate all of the remaining devices. */
2587
2588         acpi_scan_postponed();
2589
2590         acpi_mipi_crs_csi2_cleanup();
2591
2592         return 0;
2593 }
2594 EXPORT_SYMBOL(acpi_bus_scan);
2595
2596 /**
2597  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2598  * @adev: Root of the ACPI namespace scope to walk.
2599  *
2600  * Must be called under acpi_scan_lock.
2601  */
2602 void acpi_bus_trim(struct acpi_device *adev)
2603 {
2604         acpi_scan_check_and_detach(adev, NULL);
2605 }
2606 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2607
2608 int acpi_bus_register_early_device(int type)
2609 {
2610         struct acpi_device *device = NULL;
2611         int result;
2612
2613         result = acpi_add_single_object(&device, NULL, type, false);
2614         if (result)
2615                 return result;
2616
2617         device->flags.match_driver = true;
2618         return device_attach(&device->dev);
2619 }
2620 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2621
2622 static void acpi_bus_scan_fixed(void)
2623 {
2624         if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2625                 struct acpi_device *adev = NULL;
2626
2627                 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2628                                        false);
2629                 if (adev) {
2630                         adev->flags.match_driver = true;
2631                         if (device_attach(&adev->dev) >= 0)
2632                                 device_init_wakeup(&adev->dev, true);
2633                         else
2634                                 dev_dbg(&adev->dev, "No driver\n");
2635                 }
2636         }
2637
2638         if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2639                 struct acpi_device *adev = NULL;
2640
2641                 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2642                                        false);
2643                 if (adev) {
2644                         adev->flags.match_driver = true;
2645                         if (device_attach(&adev->dev) < 0)
2646                                 dev_dbg(&adev->dev, "No driver\n");
2647                 }
2648         }
2649 }
2650
2651 static void __init acpi_get_spcr_uart_addr(void)
2652 {
2653         acpi_status status;
2654         struct acpi_table_spcr *spcr_ptr;
2655
2656         status = acpi_get_table(ACPI_SIG_SPCR, 0,
2657                                 (struct acpi_table_header **)&spcr_ptr);
2658         if (ACPI_FAILURE(status)) {
2659                 pr_warn("STAO table present, but SPCR is missing\n");
2660                 return;
2661         }
2662
2663         spcr_uart_addr = spcr_ptr->serial_port.address;
2664         acpi_put_table((struct acpi_table_header *)spcr_ptr);
2665 }
2666
2667 static bool acpi_scan_initialized;
2668
2669 void __init acpi_scan_init(void)
2670 {
2671         acpi_status status;
2672         struct acpi_table_stao *stao_ptr;
2673
2674         acpi_pci_root_init();
2675         acpi_pci_link_init();
2676         acpi_processor_init();
2677         acpi_platform_init();
2678         acpi_lpss_init();
2679         acpi_apd_init();
2680         acpi_cmos_rtc_init();
2681         acpi_container_init();
2682         acpi_memory_hotplug_init();
2683         acpi_watchdog_init();
2684         acpi_pnp_init();
2685         acpi_int340x_thermal_init();
2686         acpi_init_lpit();
2687
2688         acpi_scan_add_handler(&generic_device_handler);
2689
2690         /*
2691          * If there is STAO table, check whether it needs to ignore the UART
2692          * device in SPCR table.
2693          */
2694         status = acpi_get_table(ACPI_SIG_STAO, 0,
2695                                 (struct acpi_table_header **)&stao_ptr);
2696         if (ACPI_SUCCESS(status)) {
2697                 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2698                         pr_info("STAO Name List not yet supported.\n");
2699
2700                 if (stao_ptr->ignore_uart)
2701                         acpi_get_spcr_uart_addr();
2702
2703                 acpi_put_table((struct acpi_table_header *)stao_ptr);
2704         }
2705
2706         acpi_gpe_apply_masked_gpes();
2707         acpi_update_all_gpes();
2708
2709         /*
2710          * Although we call __add_memory() that is documented to require the
2711          * device_hotplug_lock, it is not necessary here because this is an
2712          * early code when userspace or any other code path cannot trigger
2713          * hotplug/hotunplug operations.
2714          */
2715         mutex_lock(&acpi_scan_lock);
2716         /*
2717          * Enumerate devices in the ACPI namespace.
2718          */
2719         if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2720                 goto unlock;
2721
2722         acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2723         if (!acpi_root)
2724                 goto unlock;
2725
2726         /* Fixed feature devices do not exist on HW-reduced platform */
2727         if (!acpi_gbl_reduced_hardware)
2728                 acpi_bus_scan_fixed();
2729
2730         acpi_turn_off_unused_power_resources();
2731
2732         acpi_scan_initialized = true;
2733
2734 unlock:
2735         mutex_unlock(&acpi_scan_lock);
2736 }
2737
2738 static struct acpi_probe_entry *ape;
2739 static int acpi_probe_count;
2740 static DEFINE_MUTEX(acpi_probe_mutex);
2741
2742 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2743                                   const unsigned long end)
2744 {
2745         if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2746                 if (!ape->probe_subtbl(header, end))
2747                         acpi_probe_count++;
2748
2749         return 0;
2750 }
2751
2752 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2753 {
2754         int count = 0;
2755
2756         if (acpi_disabled)
2757                 return 0;
2758
2759         mutex_lock(&acpi_probe_mutex);
2760         for (ape = ap_head; nr; ape++, nr--) {
2761                 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2762                         acpi_probe_count = 0;
2763                         acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2764                         count += acpi_probe_count;
2765                 } else {
2766                         int res;
2767                         res = acpi_table_parse(ape->id, ape->probe_table);
2768                         if (!res)
2769                                 count++;
2770                 }
2771         }
2772         mutex_unlock(&acpi_probe_mutex);
2773
2774         return count;
2775 }
2776
2777 static void acpi_table_events_fn(struct work_struct *work)
2778 {
2779         acpi_scan_lock_acquire();
2780         acpi_bus_scan(ACPI_ROOT_OBJECT);
2781         acpi_scan_lock_release();
2782
2783         kfree(work);
2784 }
2785
2786 void acpi_scan_table_notify(void)
2787 {
2788         struct work_struct *work;
2789
2790         if (!acpi_scan_initialized)
2791                 return;
2792
2793         work = kmalloc(sizeof(*work), GFP_KERNEL);
2794         if (!work)
2795                 return;
2796
2797         INIT_WORK(work, acpi_table_events_fn);
2798         schedule_work(work);
2799 }
2800
2801 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2802 {
2803         return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2804 }
2805 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2806
2807 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2808 {
2809         return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2810 }
2811 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);