Merge tag 'regulator-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[sfrench/cifs-2.6.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
35
36 /*
37  * Include the apic definitions for x86 to have the APIC timer related defines
38  * available also for UP (on SMP it gets magically included via linux/smp.h).
39  * asm/acpi.h is not an option, as it would require more include magic. Also
40  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
41  */
42 #ifdef CONFIG_X86
43 #include <asm/apic.h>
44 #endif
45
46 #define ACPI_PROCESSOR_CLASS            "processor"
47 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
49
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
56
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
59
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
61
62 struct cpuidle_driver acpi_idle_driver = {
63         .name =         "acpi_idle",
64         .owner =        THIS_MODULE,
65 };
66
67 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
68 static
69 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
70
71 static int disabled_by_idle_boot_param(void)
72 {
73         return boot_option_idle_override == IDLE_POLL ||
74                 boot_option_idle_override == IDLE_HALT;
75 }
76
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86                 return 0;
87
88         pr_notice("%s detected - limiting to C%ld max_cstate."
89                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
90                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92         max_cstate = (long)id->driver_data;
93
94         return 0;
95 }
96
97 static const struct dmi_system_id processor_power_dmi_table[] = {
98         { set_max_cstate, "Clevo 5600D", {
99           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101          (void *)2},
102         { set_max_cstate, "Pavilion zv5000", {
103           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105          (void *)1},
106         { set_max_cstate, "Asus L8400B", {
107           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109          (void *)1},
110         {},
111 };
112
113
114 /*
115  * Callers should disable interrupts before the call and enable
116  * interrupts after return.
117  */
118 static void acpi_safe_halt(void)
119 {
120         if (!tif_need_resched()) {
121                 safe_halt();
122                 local_irq_disable();
123         }
124 }
125
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127
128 /*
129  * Some BIOS implementations switch to C3 in the published C2 state.
130  * This seems to be a common problem on AMD boxen, but other vendors
131  * are affected too. We pick the most conservative approach: we assume
132  * that the local APIC stops in both C2 and C3.
133  */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135                                    struct acpi_processor_cx *cx)
136 {
137         struct acpi_processor_power *pwr = &pr->power;
138         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139
140         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141                 return;
142
143         if (amd_e400_c1e_detected)
144                 type = ACPI_STATE_C1;
145
146         /*
147          * Check, if one of the previous states already marked the lapic
148          * unstable
149          */
150         if (pwr->timer_broadcast_on_state < state)
151                 return;
152
153         if (cx->type >= type)
154                 pr->power.timer_broadcast_on_state = state;
155 }
156
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159         struct acpi_processor *pr = (struct acpi_processor *) arg;
160
161         if (pr->power.timer_broadcast_on_state < INT_MAX)
162                 tick_broadcast_enable();
163         else
164                 tick_broadcast_disable();
165 }
166
167 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
168 {
169         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
170                                  (void *)pr, 1);
171 }
172
173 /* Power(C) State timer broadcast control */
174 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175                                        struct acpi_processor_cx *cx,
176                                        int broadcast)
177 {
178         int state = cx - pr->power.states;
179
180         if (state >= pr->power.timer_broadcast_on_state) {
181                 if (broadcast)
182                         tick_broadcast_enter();
183                 else
184                         tick_broadcast_exit();
185         }
186 }
187
188 #else
189
190 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191                                    struct acpi_processor_cx *cstate) { }
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194                                        struct acpi_processor_cx *cx,
195                                        int broadcast)
196 {
197 }
198
199 #endif
200
201 #if defined(CONFIG_X86)
202 static void tsc_check_state(int state)
203 {
204         switch (boot_cpu_data.x86_vendor) {
205         case X86_VENDOR_AMD:
206         case X86_VENDOR_INTEL:
207                 /*
208                  * AMD Fam10h TSC will tick in all
209                  * C/P/S0/S1 states when this bit is set.
210                  */
211                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
212                         return;
213
214                 /*FALL THROUGH*/
215         default:
216                 /* TSC could halt in idle, so notify users */
217                 if (state > ACPI_STATE_C1)
218                         mark_tsc_unstable("TSC halts in idle");
219         }
220 }
221 #else
222 static void tsc_check_state(int state) { return; }
223 #endif
224
225 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
226 {
227
228         if (!pr->pblk)
229                 return -ENODEV;
230
231         /* if info is obtained from pblk/fadt, type equals state */
232         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
233         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
234
235 #ifndef CONFIG_HOTPLUG_CPU
236         /*
237          * Check for P_LVL2_UP flag before entering C2 and above on
238          * an SMP system.
239          */
240         if ((num_online_cpus() > 1) &&
241             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
242                 return -ENODEV;
243 #endif
244
245         /* determine C2 and C3 address from pblk */
246         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
247         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
248
249         /* determine latencies from FADT */
250         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
251         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
252
253         /*
254          * FADT specified C2 latency must be less than or equal to
255          * 100 microseconds.
256          */
257         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
258                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
259                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
260                 /* invalidate C2 */
261                 pr->power.states[ACPI_STATE_C2].address = 0;
262         }
263
264         /*
265          * FADT supplied C3 latency must be less than or equal to
266          * 1000 microseconds.
267          */
268         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
269                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
271                 /* invalidate C3 */
272                 pr->power.states[ACPI_STATE_C3].address = 0;
273         }
274
275         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
276                           "lvl2[0x%08x] lvl3[0x%08x]\n",
277                           pr->power.states[ACPI_STATE_C2].address,
278                           pr->power.states[ACPI_STATE_C3].address));
279
280         return 0;
281 }
282
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285         if (!pr->power.states[ACPI_STATE_C1].valid) {
286                 /* set the first C-State to C1 */
287                 /* all processors need to support C1 */
288                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289                 pr->power.states[ACPI_STATE_C1].valid = 1;
290                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291         }
292         /* the C0 state only exists as a filler in our array */
293         pr->power.states[ACPI_STATE_C0].valid = 1;
294         return 0;
295 }
296
297 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
298 {
299         acpi_status status;
300         u64 count;
301         int current_count;
302         int i, ret = 0;
303         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
304         union acpi_object *cst;
305
306         if (nocst)
307                 return -ENODEV;
308
309         current_count = 0;
310
311         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
312         if (ACPI_FAILURE(status)) {
313                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
314                 return -ENODEV;
315         }
316
317         cst = buffer.pointer;
318
319         /* There must be at least 2 elements */
320         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
321                 pr_err("not enough elements in _CST\n");
322                 ret = -EFAULT;
323                 goto end;
324         }
325
326         count = cst->package.elements[0].integer.value;
327
328         /* Validate number of power states. */
329         if (count < 1 || count != cst->package.count - 1) {
330                 pr_err("count given by _CST is not valid\n");
331                 ret = -EFAULT;
332                 goto end;
333         }
334
335         /* Tell driver that at least _CST is supported. */
336         pr->flags.has_cst = 1;
337
338         for (i = 1; i <= count; i++) {
339                 union acpi_object *element;
340                 union acpi_object *obj;
341                 struct acpi_power_register *reg;
342                 struct acpi_processor_cx cx;
343
344                 memset(&cx, 0, sizeof(cx));
345
346                 element = &(cst->package.elements[i]);
347                 if (element->type != ACPI_TYPE_PACKAGE)
348                         continue;
349
350                 if (element->package.count != 4)
351                         continue;
352
353                 obj = &(element->package.elements[0]);
354
355                 if (obj->type != ACPI_TYPE_BUFFER)
356                         continue;
357
358                 reg = (struct acpi_power_register *)obj->buffer.pointer;
359
360                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
361                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
362                         continue;
363
364                 /* There should be an easy way to extract an integer... */
365                 obj = &(element->package.elements[1]);
366                 if (obj->type != ACPI_TYPE_INTEGER)
367                         continue;
368
369                 cx.type = obj->integer.value;
370                 /*
371                  * Some buggy BIOSes won't list C1 in _CST -
372                  * Let acpi_processor_get_power_info_default() handle them later
373                  */
374                 if (i == 1 && cx.type != ACPI_STATE_C1)
375                         current_count++;
376
377                 cx.address = reg->address;
378                 cx.index = current_count + 1;
379
380                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
381                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
382                         if (acpi_processor_ffh_cstate_probe
383                                         (pr->id, &cx, reg) == 0) {
384                                 cx.entry_method = ACPI_CSTATE_FFH;
385                         } else if (cx.type == ACPI_STATE_C1) {
386                                 /*
387                                  * C1 is a special case where FIXED_HARDWARE
388                                  * can be handled in non-MWAIT way as well.
389                                  * In that case, save this _CST entry info.
390                                  * Otherwise, ignore this info and continue.
391                                  */
392                                 cx.entry_method = ACPI_CSTATE_HALT;
393                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
394                         } else {
395                                 continue;
396                         }
397                         if (cx.type == ACPI_STATE_C1 &&
398                             (boot_option_idle_override == IDLE_NOMWAIT)) {
399                                 /*
400                                  * In most cases the C1 space_id obtained from
401                                  * _CST object is FIXED_HARDWARE access mode.
402                                  * But when the option of idle=halt is added,
403                                  * the entry_method type should be changed from
404                                  * CSTATE_FFH to CSTATE_HALT.
405                                  * When the option of idle=nomwait is added,
406                                  * the C1 entry_method type should be
407                                  * CSTATE_HALT.
408                                  */
409                                 cx.entry_method = ACPI_CSTATE_HALT;
410                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
411                         }
412                 } else {
413                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
414                                  cx.address);
415                 }
416
417                 if (cx.type == ACPI_STATE_C1) {
418                         cx.valid = 1;
419                 }
420
421                 obj = &(element->package.elements[2]);
422                 if (obj->type != ACPI_TYPE_INTEGER)
423                         continue;
424
425                 cx.latency = obj->integer.value;
426
427                 obj = &(element->package.elements[3]);
428                 if (obj->type != ACPI_TYPE_INTEGER)
429                         continue;
430
431                 current_count++;
432                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
433
434                 /*
435                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
436                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
437                  */
438                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
439                         pr_warn("Limiting number of power states to max (%d)\n",
440                                 ACPI_PROCESSOR_MAX_POWER);
441                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
442                         break;
443                 }
444         }
445
446         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
447                           current_count));
448
449         /* Validate number of power states discovered */
450         if (current_count < 2)
451                 ret = -EFAULT;
452
453       end:
454         kfree(buffer.pointer);
455
456         return ret;
457 }
458
459 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
460                                            struct acpi_processor_cx *cx)
461 {
462         static int bm_check_flag = -1;
463         static int bm_control_flag = -1;
464
465
466         if (!cx->address)
467                 return;
468
469         /*
470          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
471          * DMA transfers are used by any ISA device to avoid livelock.
472          * Note that we could disable Type-F DMA (as recommended by
473          * the erratum), but this is known to disrupt certain ISA
474          * devices thus we take the conservative approach.
475          */
476         else if (errata.piix4.fdma) {
477                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
478                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
479                 return;
480         }
481
482         /* All the logic here assumes flags.bm_check is same across all CPUs */
483         if (bm_check_flag == -1) {
484                 /* Determine whether bm_check is needed based on CPU  */
485                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
486                 bm_check_flag = pr->flags.bm_check;
487                 bm_control_flag = pr->flags.bm_control;
488         } else {
489                 pr->flags.bm_check = bm_check_flag;
490                 pr->flags.bm_control = bm_control_flag;
491         }
492
493         if (pr->flags.bm_check) {
494                 if (!pr->flags.bm_control) {
495                         if (pr->flags.has_cst != 1) {
496                                 /* bus mastering control is necessary */
497                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
498                                         "C3 support requires BM control\n"));
499                                 return;
500                         } else {
501                                 /* Here we enter C3 without bus mastering */
502                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
503                                         "C3 support without BM control\n"));
504                         }
505                 }
506         } else {
507                 /*
508                  * WBINVD should be set in fadt, for C3 state to be
509                  * supported on when bm_check is not required.
510                  */
511                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
512                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513                                           "Cache invalidation should work properly"
514                                           " for C3 to be enabled on SMP systems\n"));
515                         return;
516                 }
517         }
518
519         /*
520          * Otherwise we've met all of our C3 requirements.
521          * Normalize the C3 latency to expidite policy.  Enable
522          * checking of bus mastering status (bm_check) so we can
523          * use this in our C3 policy
524          */
525         cx->valid = 1;
526
527         /*
528          * On older chipsets, BM_RLD needs to be set
529          * in order for Bus Master activity to wake the
530          * system from C3.  Newer chipsets handle DMA
531          * during C3 automatically and BM_RLD is a NOP.
532          * In either case, the proper way to
533          * handle BM_RLD is to set it and leave it set.
534          */
535         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
536
537         return;
538 }
539
540 static int acpi_processor_power_verify(struct acpi_processor *pr)
541 {
542         unsigned int i;
543         unsigned int working = 0;
544
545         pr->power.timer_broadcast_on_state = INT_MAX;
546
547         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
548                 struct acpi_processor_cx *cx = &pr->power.states[i];
549
550                 switch (cx->type) {
551                 case ACPI_STATE_C1:
552                         cx->valid = 1;
553                         break;
554
555                 case ACPI_STATE_C2:
556                         if (!cx->address)
557                                 break;
558                         cx->valid = 1;
559                         break;
560
561                 case ACPI_STATE_C3:
562                         acpi_processor_power_verify_c3(pr, cx);
563                         break;
564                 }
565                 if (!cx->valid)
566                         continue;
567
568                 lapic_timer_check_state(i, pr, cx);
569                 tsc_check_state(cx->type);
570                 working++;
571         }
572
573         lapic_timer_propagate_broadcast(pr);
574
575         return (working);
576 }
577
578 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
579 {
580         unsigned int i;
581         int result;
582
583
584         /* NOTE: the idle thread may not be running while calling
585          * this function */
586
587         /* Zero initialize all the C-states info. */
588         memset(pr->power.states, 0, sizeof(pr->power.states));
589
590         result = acpi_processor_get_power_info_cst(pr);
591         if (result == -ENODEV)
592                 result = acpi_processor_get_power_info_fadt(pr);
593
594         if (result)
595                 return result;
596
597         acpi_processor_get_power_info_default(pr);
598
599         pr->power.count = acpi_processor_power_verify(pr);
600
601         /*
602          * if one state of type C2 or C3 is available, mark this
603          * CPU as being "idle manageable"
604          */
605         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
606                 if (pr->power.states[i].valid) {
607                         pr->power.count = i;
608                         if (pr->power.states[i].type >= ACPI_STATE_C2)
609                                 pr->flags.power = 1;
610                 }
611         }
612
613         return 0;
614 }
615
616 /**
617  * acpi_idle_bm_check - checks if bus master activity was detected
618  */
619 static int acpi_idle_bm_check(void)
620 {
621         u32 bm_status = 0;
622
623         if (bm_check_disable)
624                 return 0;
625
626         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
627         if (bm_status)
628                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
629         /*
630          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
631          * the true state of bus mastering activity; forcing us to
632          * manually check the BMIDEA bit of each IDE channel.
633          */
634         else if (errata.piix4.bmisx) {
635                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
636                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
637                         bm_status = 1;
638         }
639         return bm_status;
640 }
641
642 /**
643  * acpi_idle_do_entry - enter idle state using the appropriate method
644  * @cx: cstate data
645  *
646  * Caller disables interrupt before call and enables interrupt after return.
647  */
648 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
649 {
650         if (cx->entry_method == ACPI_CSTATE_FFH) {
651                 /* Call into architectural FFH based C-state */
652                 acpi_processor_ffh_cstate_enter(cx);
653         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
654                 acpi_safe_halt();
655         } else {
656                 /* IO port based C-state */
657                 inb(cx->address);
658                 /* Dummy wait op - must do something useless after P_LVL2 read
659                    because chipsets cannot guarantee that STPCLK# signal
660                    gets asserted in time to freeze execution properly. */
661                 inl(acpi_gbl_FADT.xpm_timer_block.address);
662         }
663 }
664
665 /**
666  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
667  * @dev: the target CPU
668  * @index: the index of suggested state
669  */
670 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
671 {
672         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
673
674         ACPI_FLUSH_CPU_CACHE();
675
676         while (1) {
677
678                 if (cx->entry_method == ACPI_CSTATE_HALT)
679                         safe_halt();
680                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
681                         inb(cx->address);
682                         /* See comment in acpi_idle_do_entry() */
683                         inl(acpi_gbl_FADT.xpm_timer_block.address);
684                 } else
685                         return -ENODEV;
686         }
687
688         /* Never reached */
689         return 0;
690 }
691
692 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
693 {
694         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
695                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
696 }
697
698 static int c3_cpu_count;
699 static DEFINE_RAW_SPINLOCK(c3_lock);
700
701 /**
702  * acpi_idle_enter_bm - enters C3 with proper BM handling
703  * @pr: Target processor
704  * @cx: Target state context
705  * @timer_bc: Whether or not to change timer mode to broadcast
706  */
707 static void acpi_idle_enter_bm(struct acpi_processor *pr,
708                                struct acpi_processor_cx *cx, bool timer_bc)
709 {
710         acpi_unlazy_tlb(smp_processor_id());
711
712         /*
713          * Must be done before busmaster disable as we might need to
714          * access HPET !
715          */
716         if (timer_bc)
717                 lapic_timer_state_broadcast(pr, cx, 1);
718
719         /*
720          * disable bus master
721          * bm_check implies we need ARB_DIS
722          * bm_control implies whether we can do ARB_DIS
723          *
724          * That leaves a case where bm_check is set and bm_control is
725          * not set. In that case we cannot do much, we enter C3
726          * without doing anything.
727          */
728         if (pr->flags.bm_control) {
729                 raw_spin_lock(&c3_lock);
730                 c3_cpu_count++;
731                 /* Disable bus master arbitration when all CPUs are in C3 */
732                 if (c3_cpu_count == num_online_cpus())
733                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
734                 raw_spin_unlock(&c3_lock);
735         }
736
737         acpi_idle_do_entry(cx);
738
739         /* Re-enable bus master arbitration */
740         if (pr->flags.bm_control) {
741                 raw_spin_lock(&c3_lock);
742                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
743                 c3_cpu_count--;
744                 raw_spin_unlock(&c3_lock);
745         }
746
747         if (timer_bc)
748                 lapic_timer_state_broadcast(pr, cx, 0);
749 }
750
751 static int acpi_idle_enter(struct cpuidle_device *dev,
752                            struct cpuidle_driver *drv, int index)
753 {
754         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
755         struct acpi_processor *pr;
756
757         pr = __this_cpu_read(processors);
758         if (unlikely(!pr))
759                 return -EINVAL;
760
761         if (cx->type != ACPI_STATE_C1) {
762                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
763                         index = CPUIDLE_DRIVER_STATE_START;
764                         cx = per_cpu(acpi_cstate[index], dev->cpu);
765                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
766                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
767                                 acpi_idle_enter_bm(pr, cx, true);
768                                 return index;
769                         } else if (drv->safe_state_index >= 0) {
770                                 index = drv->safe_state_index;
771                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
772                         } else {
773                                 acpi_safe_halt();
774                                 return -EBUSY;
775                         }
776                 }
777         }
778
779         lapic_timer_state_broadcast(pr, cx, 1);
780
781         if (cx->type == ACPI_STATE_C3)
782                 ACPI_FLUSH_CPU_CACHE();
783
784         acpi_idle_do_entry(cx);
785
786         lapic_timer_state_broadcast(pr, cx, 0);
787
788         return index;
789 }
790
791 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
792                                    struct cpuidle_driver *drv, int index)
793 {
794         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
795
796         if (cx->type == ACPI_STATE_C3) {
797                 struct acpi_processor *pr = __this_cpu_read(processors);
798
799                 if (unlikely(!pr))
800                         return;
801
802                 if (pr->flags.bm_check) {
803                         acpi_idle_enter_bm(pr, cx, false);
804                         return;
805                 } else {
806                         ACPI_FLUSH_CPU_CACHE();
807                 }
808         }
809         acpi_idle_do_entry(cx);
810 }
811
812 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
813                                            struct cpuidle_device *dev)
814 {
815         int i, count = CPUIDLE_DRIVER_STATE_START;
816         struct acpi_processor_cx *cx;
817
818         if (max_cstate == 0)
819                 max_cstate = 1;
820
821         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
822                 cx = &pr->power.states[i];
823
824                 if (!cx->valid)
825                         continue;
826
827                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
828
829                 count++;
830                 if (count == CPUIDLE_STATE_MAX)
831                         break;
832         }
833
834         if (!count)
835                 return -EINVAL;
836
837         return 0;
838 }
839
840 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
841 {
842         int i, count = CPUIDLE_DRIVER_STATE_START;
843         struct acpi_processor_cx *cx;
844         struct cpuidle_state *state;
845         struct cpuidle_driver *drv = &acpi_idle_driver;
846
847         if (max_cstate == 0)
848                 max_cstate = 1;
849
850         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
851                 cx = &pr->power.states[i];
852
853                 if (!cx->valid)
854                         continue;
855
856                 state = &drv->states[count];
857                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
858                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
859                 state->exit_latency = cx->latency;
860                 state->target_residency = cx->latency * latency_factor;
861                 state->enter = acpi_idle_enter;
862
863                 state->flags = 0;
864                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
865                         state->enter_dead = acpi_idle_play_dead;
866                         drv->safe_state_index = count;
867                 }
868                 /*
869                  * Halt-induced C1 is not good for ->enter_freeze, because it
870                  * re-enables interrupts on exit.  Moreover, C1 is generally not
871                  * particularly interesting from the suspend-to-idle angle, so
872                  * avoid C1 and the situations in which we may need to fall back
873                  * to it altogether.
874                  */
875                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
876                         state->enter_freeze = acpi_idle_enter_freeze;
877
878                 count++;
879                 if (count == CPUIDLE_STATE_MAX)
880                         break;
881         }
882
883         drv->state_count = count;
884
885         if (!count)
886                 return -EINVAL;
887
888         return 0;
889 }
890
891 static inline void acpi_processor_cstate_first_run_checks(void)
892 {
893         acpi_status status;
894         static int first_run;
895
896         if (first_run)
897                 return;
898         dmi_check_system(processor_power_dmi_table);
899         max_cstate = acpi_processor_cstate_check(max_cstate);
900         if (max_cstate < ACPI_C_STATES_MAX)
901                 pr_notice("ACPI: processor limited to max C-state %d\n",
902                           max_cstate);
903         first_run++;
904
905         if (acpi_gbl_FADT.cst_control && !nocst) {
906                 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
907                                             acpi_gbl_FADT.cst_control, 8);
908                 if (ACPI_FAILURE(status))
909                         ACPI_EXCEPTION((AE_INFO, status,
910                                         "Notifying BIOS of _CST ability failed"));
911         }
912 }
913 #else
914
915 static inline int disabled_by_idle_boot_param(void) { return 0; }
916 static inline void acpi_processor_cstate_first_run_checks(void) { }
917 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
918 {
919         return -ENODEV;
920 }
921
922 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
923                                            struct cpuidle_device *dev)
924 {
925         return -EINVAL;
926 }
927
928 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
929 {
930         return -EINVAL;
931 }
932
933 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
934
935 struct acpi_lpi_states_array {
936         unsigned int size;
937         unsigned int composite_states_size;
938         struct acpi_lpi_state *entries;
939         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
940 };
941
942 static int obj_get_integer(union acpi_object *obj, u32 *value)
943 {
944         if (obj->type != ACPI_TYPE_INTEGER)
945                 return -EINVAL;
946
947         *value = obj->integer.value;
948         return 0;
949 }
950
951 static int acpi_processor_evaluate_lpi(acpi_handle handle,
952                                        struct acpi_lpi_states_array *info)
953 {
954         acpi_status status;
955         int ret = 0;
956         int pkg_count, state_idx = 1, loop;
957         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
958         union acpi_object *lpi_data;
959         struct acpi_lpi_state *lpi_state;
960
961         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
962         if (ACPI_FAILURE(status)) {
963                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
964                 return -ENODEV;
965         }
966
967         lpi_data = buffer.pointer;
968
969         /* There must be at least 4 elements = 3 elements + 1 package */
970         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
971             lpi_data->package.count < 4) {
972                 pr_debug("not enough elements in _LPI\n");
973                 ret = -ENODATA;
974                 goto end;
975         }
976
977         pkg_count = lpi_data->package.elements[2].integer.value;
978
979         /* Validate number of power states. */
980         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
981                 pr_debug("count given by _LPI is not valid\n");
982                 ret = -ENODATA;
983                 goto end;
984         }
985
986         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
987         if (!lpi_state) {
988                 ret = -ENOMEM;
989                 goto end;
990         }
991
992         info->size = pkg_count;
993         info->entries = lpi_state;
994
995         /* LPI States start at index 3 */
996         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
997                 union acpi_object *element, *pkg_elem, *obj;
998
999                 element = &lpi_data->package.elements[loop];
1000                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1001                         continue;
1002
1003                 pkg_elem = element->package.elements;
1004
1005                 obj = pkg_elem + 6;
1006                 if (obj->type == ACPI_TYPE_BUFFER) {
1007                         struct acpi_power_register *reg;
1008
1009                         reg = (struct acpi_power_register *)obj->buffer.pointer;
1010                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1011                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1012                                 continue;
1013
1014                         lpi_state->address = reg->address;
1015                         lpi_state->entry_method =
1016                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1017                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1018                 } else if (obj->type == ACPI_TYPE_INTEGER) {
1019                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1020                         lpi_state->address = obj->integer.value;
1021                 } else {
1022                         continue;
1023                 }
1024
1025                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1026
1027                 obj = pkg_elem + 9;
1028                 if (obj->type == ACPI_TYPE_STRING)
1029                         strlcpy(lpi_state->desc, obj->string.pointer,
1030                                 ACPI_CX_DESC_LEN);
1031
1032                 lpi_state->index = state_idx;
1033                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1034                         pr_debug("No min. residency found, assuming 10 us\n");
1035                         lpi_state->min_residency = 10;
1036                 }
1037
1038                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1039                         pr_debug("No wakeup residency found, assuming 10 us\n");
1040                         lpi_state->wake_latency = 10;
1041                 }
1042
1043                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1044                         lpi_state->flags = 0;
1045
1046                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1047                         lpi_state->arch_flags = 0;
1048
1049                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1050                         lpi_state->res_cnt_freq = 1;
1051
1052                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1053                         lpi_state->enable_parent_state = 0;
1054         }
1055
1056         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1057 end:
1058         kfree(buffer.pointer);
1059         return ret;
1060 }
1061
1062 /*
1063  * flat_state_cnt - the number of composite LPI states after the process of flattening
1064  */
1065 static int flat_state_cnt;
1066
1067 /**
1068  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1069  *
1070  * @local: local LPI state
1071  * @parent: parent LPI state
1072  * @result: composite LPI state
1073  */
1074 static bool combine_lpi_states(struct acpi_lpi_state *local,
1075                                struct acpi_lpi_state *parent,
1076                                struct acpi_lpi_state *result)
1077 {
1078         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1079                 if (!parent->address) /* 0 means autopromotable */
1080                         return false;
1081                 result->address = local->address + parent->address;
1082         } else {
1083                 result->address = parent->address;
1084         }
1085
1086         result->min_residency = max(local->min_residency, parent->min_residency);
1087         result->wake_latency = local->wake_latency + parent->wake_latency;
1088         result->enable_parent_state = parent->enable_parent_state;
1089         result->entry_method = local->entry_method;
1090
1091         result->flags = parent->flags;
1092         result->arch_flags = parent->arch_flags;
1093         result->index = parent->index;
1094
1095         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1096         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1097         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1098         return true;
1099 }
1100
1101 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1102
1103 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1104                                   struct acpi_lpi_state *t)
1105 {
1106         curr_level->composite_states[curr_level->composite_states_size++] = t;
1107 }
1108
1109 static int flatten_lpi_states(struct acpi_processor *pr,
1110                               struct acpi_lpi_states_array *curr_level,
1111                               struct acpi_lpi_states_array *prev_level)
1112 {
1113         int i, j, state_count = curr_level->size;
1114         struct acpi_lpi_state *p, *t = curr_level->entries;
1115
1116         curr_level->composite_states_size = 0;
1117         for (j = 0; j < state_count; j++, t++) {
1118                 struct acpi_lpi_state *flpi;
1119
1120                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1121                         continue;
1122
1123                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1124                         pr_warn("Limiting number of LPI states to max (%d)\n",
1125                                 ACPI_PROCESSOR_MAX_POWER);
1126                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1127                         break;
1128                 }
1129
1130                 flpi = &pr->power.lpi_states[flat_state_cnt];
1131
1132                 if (!prev_level) { /* leaf/processor node */
1133                         memcpy(flpi, t, sizeof(*t));
1134                         stash_composite_state(curr_level, flpi);
1135                         flat_state_cnt++;
1136                         continue;
1137                 }
1138
1139                 for (i = 0; i < prev_level->composite_states_size; i++) {
1140                         p = prev_level->composite_states[i];
1141                         if (t->index <= p->enable_parent_state &&
1142                             combine_lpi_states(p, t, flpi)) {
1143                                 stash_composite_state(curr_level, flpi);
1144                                 flat_state_cnt++;
1145                                 flpi++;
1146                         }
1147                 }
1148         }
1149
1150         kfree(curr_level->entries);
1151         return 0;
1152 }
1153
1154 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1155 {
1156         int ret, i;
1157         acpi_status status;
1158         acpi_handle handle = pr->handle, pr_ahandle;
1159         struct acpi_device *d = NULL;
1160         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1161
1162         if (!osc_pc_lpi_support_confirmed)
1163                 return -EOPNOTSUPP;
1164
1165         if (!acpi_has_method(handle, "_LPI"))
1166                 return -EINVAL;
1167
1168         flat_state_cnt = 0;
1169         prev = &info[0];
1170         curr = &info[1];
1171         handle = pr->handle;
1172         ret = acpi_processor_evaluate_lpi(handle, prev);
1173         if (ret)
1174                 return ret;
1175         flatten_lpi_states(pr, prev, NULL);
1176
1177         status = acpi_get_parent(handle, &pr_ahandle);
1178         while (ACPI_SUCCESS(status)) {
1179                 acpi_bus_get_device(pr_ahandle, &d);
1180                 handle = pr_ahandle;
1181
1182                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1183                         break;
1184
1185                 /* can be optional ? */
1186                 if (!acpi_has_method(handle, "_LPI"))
1187                         break;
1188
1189                 ret = acpi_processor_evaluate_lpi(handle, curr);
1190                 if (ret)
1191                         break;
1192
1193                 /* flatten all the LPI states in this level of hierarchy */
1194                 flatten_lpi_states(pr, curr, prev);
1195
1196                 tmp = prev, prev = curr, curr = tmp;
1197
1198                 status = acpi_get_parent(handle, &pr_ahandle);
1199         }
1200
1201         pr->power.count = flat_state_cnt;
1202         /* reset the index after flattening */
1203         for (i = 0; i < pr->power.count; i++)
1204                 pr->power.lpi_states[i].index = i;
1205
1206         /* Tell driver that _LPI is supported. */
1207         pr->flags.has_lpi = 1;
1208         pr->flags.power = 1;
1209
1210         return 0;
1211 }
1212
1213 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1214 {
1215         return -ENODEV;
1216 }
1217
1218 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1219 {
1220         return -ENODEV;
1221 }
1222
1223 /**
1224  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1225  * @dev: the target CPU
1226  * @drv: cpuidle driver containing cpuidle state info
1227  * @index: index of target state
1228  *
1229  * Return: 0 for success or negative value for error
1230  */
1231 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1232                                struct cpuidle_driver *drv, int index)
1233 {
1234         struct acpi_processor *pr;
1235         struct acpi_lpi_state *lpi;
1236
1237         pr = __this_cpu_read(processors);
1238
1239         if (unlikely(!pr))
1240                 return -EINVAL;
1241
1242         lpi = &pr->power.lpi_states[index];
1243         if (lpi->entry_method == ACPI_CSTATE_FFH)
1244                 return acpi_processor_ffh_lpi_enter(lpi);
1245
1246         return -EINVAL;
1247 }
1248
1249 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1250 {
1251         int i;
1252         struct acpi_lpi_state *lpi;
1253         struct cpuidle_state *state;
1254         struct cpuidle_driver *drv = &acpi_idle_driver;
1255
1256         if (!pr->flags.has_lpi)
1257                 return -EOPNOTSUPP;
1258
1259         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1260                 lpi = &pr->power.lpi_states[i];
1261
1262                 state = &drv->states[i];
1263                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1264                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1265                 state->exit_latency = lpi->wake_latency;
1266                 state->target_residency = lpi->min_residency;
1267                 if (lpi->arch_flags)
1268                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1269                 state->enter = acpi_idle_lpi_enter;
1270                 drv->safe_state_index = i;
1271         }
1272
1273         drv->state_count = i;
1274
1275         return 0;
1276 }
1277
1278 /**
1279  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1280  * global state data i.e. idle routines
1281  *
1282  * @pr: the ACPI processor
1283  */
1284 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1285 {
1286         int i;
1287         struct cpuidle_driver *drv = &acpi_idle_driver;
1288
1289         if (!pr->flags.power_setup_done || !pr->flags.power)
1290                 return -EINVAL;
1291
1292         drv->safe_state_index = -1;
1293         for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1294                 drv->states[i].name[0] = '\0';
1295                 drv->states[i].desc[0] = '\0';
1296         }
1297
1298         if (pr->flags.has_lpi)
1299                 return acpi_processor_setup_lpi_states(pr);
1300
1301         return acpi_processor_setup_cstates(pr);
1302 }
1303
1304 /**
1305  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1306  * device i.e. per-cpu data
1307  *
1308  * @pr: the ACPI processor
1309  * @dev : the cpuidle device
1310  */
1311 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1312                                             struct cpuidle_device *dev)
1313 {
1314         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1315                 return -EINVAL;
1316
1317         dev->cpu = pr->id;
1318         if (pr->flags.has_lpi)
1319                 return acpi_processor_ffh_lpi_probe(pr->id);
1320
1321         return acpi_processor_setup_cpuidle_cx(pr, dev);
1322 }
1323
1324 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1325 {
1326         int ret;
1327
1328         ret = acpi_processor_get_lpi_info(pr);
1329         if (ret)
1330                 ret = acpi_processor_get_cstate_info(pr);
1331
1332         return ret;
1333 }
1334
1335 int acpi_processor_hotplug(struct acpi_processor *pr)
1336 {
1337         int ret = 0;
1338         struct cpuidle_device *dev;
1339
1340         if (disabled_by_idle_boot_param())
1341                 return 0;
1342
1343         if (!pr->flags.power_setup_done)
1344                 return -ENODEV;
1345
1346         dev = per_cpu(acpi_cpuidle_device, pr->id);
1347         cpuidle_pause_and_lock();
1348         cpuidle_disable_device(dev);
1349         ret = acpi_processor_get_power_info(pr);
1350         if (!ret && pr->flags.power) {
1351                 acpi_processor_setup_cpuidle_dev(pr, dev);
1352                 ret = cpuidle_enable_device(dev);
1353         }
1354         cpuidle_resume_and_unlock();
1355
1356         return ret;
1357 }
1358
1359 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1360 {
1361         int cpu;
1362         struct acpi_processor *_pr;
1363         struct cpuidle_device *dev;
1364
1365         if (disabled_by_idle_boot_param())
1366                 return 0;
1367
1368         if (!pr->flags.power_setup_done)
1369                 return -ENODEV;
1370
1371         /*
1372          * FIXME:  Design the ACPI notification to make it once per
1373          * system instead of once per-cpu.  This condition is a hack
1374          * to make the code that updates C-States be called once.
1375          */
1376
1377         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1378
1379                 /* Protect against cpu-hotplug */
1380                 get_online_cpus();
1381                 cpuidle_pause_and_lock();
1382
1383                 /* Disable all cpuidle devices */
1384                 for_each_online_cpu(cpu) {
1385                         _pr = per_cpu(processors, cpu);
1386                         if (!_pr || !_pr->flags.power_setup_done)
1387                                 continue;
1388                         dev = per_cpu(acpi_cpuidle_device, cpu);
1389                         cpuidle_disable_device(dev);
1390                 }
1391
1392                 /* Populate Updated C-state information */
1393                 acpi_processor_get_power_info(pr);
1394                 acpi_processor_setup_cpuidle_states(pr);
1395
1396                 /* Enable all cpuidle devices */
1397                 for_each_online_cpu(cpu) {
1398                         _pr = per_cpu(processors, cpu);
1399                         if (!_pr || !_pr->flags.power_setup_done)
1400                                 continue;
1401                         acpi_processor_get_power_info(_pr);
1402                         if (_pr->flags.power) {
1403                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1404                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1405                                 cpuidle_enable_device(dev);
1406                         }
1407                 }
1408                 cpuidle_resume_and_unlock();
1409                 put_online_cpus();
1410         }
1411
1412         return 0;
1413 }
1414
1415 static int acpi_processor_registered;
1416
1417 int acpi_processor_power_init(struct acpi_processor *pr)
1418 {
1419         int retval;
1420         struct cpuidle_device *dev;
1421
1422         if (disabled_by_idle_boot_param())
1423                 return 0;
1424
1425         acpi_processor_cstate_first_run_checks();
1426
1427         if (!acpi_processor_get_power_info(pr))
1428                 pr->flags.power_setup_done = 1;
1429
1430         /*
1431          * Install the idle handler if processor power management is supported.
1432          * Note that we use previously set idle handler will be used on
1433          * platforms that only support C1.
1434          */
1435         if (pr->flags.power) {
1436                 /* Register acpi_idle_driver if not already registered */
1437                 if (!acpi_processor_registered) {
1438                         acpi_processor_setup_cpuidle_states(pr);
1439                         retval = cpuidle_register_driver(&acpi_idle_driver);
1440                         if (retval)
1441                                 return retval;
1442                         pr_debug("%s registered with cpuidle\n",
1443                                  acpi_idle_driver.name);
1444                 }
1445
1446                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1447                 if (!dev)
1448                         return -ENOMEM;
1449                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1450
1451                 acpi_processor_setup_cpuidle_dev(pr, dev);
1452
1453                 /* Register per-cpu cpuidle_device. Cpuidle driver
1454                  * must already be registered before registering device
1455                  */
1456                 retval = cpuidle_register_device(dev);
1457                 if (retval) {
1458                         if (acpi_processor_registered == 0)
1459                                 cpuidle_unregister_driver(&acpi_idle_driver);
1460                         return retval;
1461                 }
1462                 acpi_processor_registered++;
1463         }
1464         return 0;
1465 }
1466
1467 int acpi_processor_power_exit(struct acpi_processor *pr)
1468 {
1469         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1470
1471         if (disabled_by_idle_boot_param())
1472                 return 0;
1473
1474         if (pr->flags.power) {
1475                 cpuidle_unregister_device(dev);
1476                 acpi_processor_registered--;
1477                 if (acpi_processor_registered == 0)
1478                         cpuidle_unregister_driver(&acpi_idle_driver);
1479         }
1480
1481         pr->flags.power_setup_done = 0;
1482         return 0;
1483 }