Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[sfrench/cifs-2.6.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
59
60 #define ACPI_PROCESSOR_COMPONENT        0x01000000
61 #define ACPI_PROCESSOR_CLASS            "processor"
62 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER       "power"
65 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
67 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
68 static void (*pm_idle_save) (void) __read_mostly;
69 module_param(max_cstate, uint, 0644);
70
71 static unsigned int nocst __read_mostly;
72 module_param(nocst, uint, 0000);
73
74 /*
75  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
76  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
77  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
78  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
79  * reduce history for more aggressive entry into C3
80  */
81 static unsigned int bm_history __read_mostly =
82     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
83 module_param(bm_history, uint, 0644);
84 /* --------------------------------------------------------------------------
85                                 Power Management
86    -------------------------------------------------------------------------- */
87
88 /*
89  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
90  * For now disable this. Probably a bug somewhere else.
91  *
92  * To skip this limit, boot/load with a large max_cstate limit.
93  */
94 static int set_max_cstate(struct dmi_system_id *id)
95 {
96         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
97                 return 0;
98
99         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
100                " Override with \"processor.max_cstate=%d\"\n", id->ident,
101                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
102
103         max_cstate = (long)id->driver_data;
104
105         return 0;
106 }
107
108 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
109    callers to only run once -AK */
110 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
111         { set_max_cstate, "IBM ThinkPad R40e", {
112           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
113           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
114         { set_max_cstate, "IBM ThinkPad R40e", {
115           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
116           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
117         { set_max_cstate, "IBM ThinkPad R40e", {
118           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
119           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
120         { set_max_cstate, "IBM ThinkPad R40e", {
121           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
122           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
123         { set_max_cstate, "IBM ThinkPad R40e", {
124           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
125           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
126         { set_max_cstate, "IBM ThinkPad R40e", {
127           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
129         { set_max_cstate, "IBM ThinkPad R40e", {
130           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
132         { set_max_cstate, "IBM ThinkPad R40e", {
133           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
135         { set_max_cstate, "IBM ThinkPad R40e", {
136           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
138         { set_max_cstate, "IBM ThinkPad R40e", {
139           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
141         { set_max_cstate, "IBM ThinkPad R40e", {
142           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
144         { set_max_cstate, "IBM ThinkPad R40e", {
145           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
147         { set_max_cstate, "IBM ThinkPad R40e", {
148           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
150         { set_max_cstate, "IBM ThinkPad R40e", {
151           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
153         { set_max_cstate, "IBM ThinkPad R40e", {
154           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
156         { set_max_cstate, "IBM ThinkPad R40e", {
157           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
159         { set_max_cstate, "Medion 41700", {
160           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
161           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
162         { set_max_cstate, "Clevo 5600D", {
163           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
164           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
165          (void *)2},
166         {},
167 };
168
169 static inline u32 ticks_elapsed(u32 t1, u32 t2)
170 {
171         if (t2 >= t1)
172                 return (t2 - t1);
173         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
174                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
175         else
176                 return ((0xFFFFFFFF - t1) + t2);
177 }
178
179 static void
180 acpi_processor_power_activate(struct acpi_processor *pr,
181                               struct acpi_processor_cx *new)
182 {
183         struct acpi_processor_cx *old;
184
185         if (!pr || !new)
186                 return;
187
188         old = pr->power.state;
189
190         if (old)
191                 old->promotion.count = 0;
192         new->demotion.count = 0;
193
194         /* Cleanup from old state. */
195         if (old) {
196                 switch (old->type) {
197                 case ACPI_STATE_C3:
198                         /* Disable bus master reload */
199                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
200                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
201                         break;
202                 }
203         }
204
205         /* Prepare to use new state. */
206         switch (new->type) {
207         case ACPI_STATE_C3:
208                 /* Enable bus master reload */
209                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
210                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
211                 break;
212         }
213
214         pr->power.state = new;
215
216         return;
217 }
218
219 static void acpi_safe_halt(void)
220 {
221         current_thread_info()->status &= ~TS_POLLING;
222         /*
223          * TS_POLLING-cleared state must be visible before we
224          * test NEED_RESCHED:
225          */
226         smp_mb();
227         if (!need_resched())
228                 safe_halt();
229         current_thread_info()->status |= TS_POLLING;
230 }
231
232 static atomic_t c3_cpu_count;
233
234 /* Common C-state entry for C2, C3, .. */
235 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
236 {
237         if (cstate->space_id == ACPI_CSTATE_FFH) {
238                 /* Call into architectural FFH based C-state */
239                 acpi_processor_ffh_cstate_enter(cstate);
240         } else {
241                 int unused;
242                 /* IO port based C-state */
243                 inb(cstate->address);
244                 /* Dummy wait op - must do something useless after P_LVL2 read
245                    because chipsets cannot guarantee that STPCLK# signal
246                    gets asserted in time to freeze execution properly. */
247                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
248         }
249 }
250
251 #ifdef ARCH_APICTIMER_STOPS_ON_C3
252
253 /*
254  * Some BIOS implementations switch to C3 in the published C2 state.
255  * This seems to be a common problem on AMD boxen, but other vendors
256  * are affected too. We pick the most conservative approach: we assume
257  * that the local APIC stops in both C2 and C3.
258  */
259 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
260                                    struct acpi_processor_cx *cx)
261 {
262         struct acpi_processor_power *pwr = &pr->power;
263         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
264
265         /*
266          * Check, if one of the previous states already marked the lapic
267          * unstable
268          */
269         if (pwr->timer_broadcast_on_state < state)
270                 return;
271
272         if (cx->type >= type)
273                 pr->power.timer_broadcast_on_state = state;
274 }
275
276 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
277 {
278 #ifdef CONFIG_GENERIC_CLOCKEVENTS
279         unsigned long reason;
280
281         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
282                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
283
284         clockevents_notify(reason, &pr->id);
285 #else
286         cpumask_t mask = cpumask_of_cpu(pr->id);
287
288         if (pr->power.timer_broadcast_on_state < INT_MAX)
289                 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
290         else
291                 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
292 #endif
293 }
294
295 /* Power(C) State timer broadcast control */
296 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
297                                        struct acpi_processor_cx *cx,
298                                        int broadcast)
299 {
300 #ifdef CONFIG_GENERIC_CLOCKEVENTS
301
302         int state = cx - pr->power.states;
303
304         if (state >= pr->power.timer_broadcast_on_state) {
305                 unsigned long reason;
306
307                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
308                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
309                 clockevents_notify(reason, &pr->id);
310         }
311 #endif
312 }
313
314 #else
315
316 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
317                                    struct acpi_processor_cx *cstate) { }
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
319 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
320                                        struct acpi_processor_cx *cx,
321                                        int broadcast)
322 {
323 }
324
325 #endif
326
327 static void acpi_processor_idle(void)
328 {
329         struct acpi_processor *pr = NULL;
330         struct acpi_processor_cx *cx = NULL;
331         struct acpi_processor_cx *next_state = NULL;
332         int sleep_ticks = 0;
333         u32 t1, t2 = 0;
334
335         /*
336          * Interrupts must be disabled during bus mastering calculations and
337          * for C2/C3 transitions.
338          */
339         local_irq_disable();
340
341         pr = processors[smp_processor_id()];
342         if (!pr) {
343                 local_irq_enable();
344                 return;
345         }
346
347         /*
348          * Check whether we truly need to go idle, or should
349          * reschedule:
350          */
351         if (unlikely(need_resched())) {
352                 local_irq_enable();
353                 return;
354         }
355
356         cx = pr->power.state;
357         if (!cx) {
358                 if (pm_idle_save)
359                         pm_idle_save();
360                 else
361                         acpi_safe_halt();
362                 return;
363         }
364
365         /*
366          * Check BM Activity
367          * -----------------
368          * Check for bus mastering activity (if required), record, and check
369          * for demotion.
370          */
371         if (pr->flags.bm_check) {
372                 u32 bm_status = 0;
373                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
374
375                 if (diff > 31)
376                         diff = 31;
377
378                 pr->power.bm_activity <<= diff;
379
380                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
381                 if (bm_status) {
382                         pr->power.bm_activity |= 0x1;
383                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
384                 }
385                 /*
386                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
387                  * the true state of bus mastering activity; forcing us to
388                  * manually check the BMIDEA bit of each IDE channel.
389                  */
390                 else if (errata.piix4.bmisx) {
391                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
392                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
393                                 pr->power.bm_activity |= 0x1;
394                 }
395
396                 pr->power.bm_check_timestamp = jiffies;
397
398                 /*
399                  * If bus mastering is or was active this jiffy, demote
400                  * to avoid a faulty transition.  Note that the processor
401                  * won't enter a low-power state during this call (to this
402                  * function) but should upon the next.
403                  *
404                  * TBD: A better policy might be to fallback to the demotion
405                  *      state (use it for this quantum only) istead of
406                  *      demoting -- and rely on duration as our sole demotion
407                  *      qualification.  This may, however, introduce DMA
408                  *      issues (e.g. floppy DMA transfer overrun/underrun).
409                  */
410                 if ((pr->power.bm_activity & 0x1) &&
411                     cx->demotion.threshold.bm) {
412                         local_irq_enable();
413                         next_state = cx->demotion.state;
414                         goto end;
415                 }
416         }
417
418 #ifdef CONFIG_HOTPLUG_CPU
419         /*
420          * Check for P_LVL2_UP flag before entering C2 and above on
421          * an SMP system. We do it here instead of doing it at _CST/P_LVL
422          * detection phase, to work cleanly with logical CPU hotplug.
423          */
424         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
425             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
426                 cx = &pr->power.states[ACPI_STATE_C1];
427 #endif
428
429         /*
430          * Sleep:
431          * ------
432          * Invoke the current Cx state to put the processor to sleep.
433          */
434         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
435                 current_thread_info()->status &= ~TS_POLLING;
436                 /*
437                  * TS_POLLING-cleared state must be visible before we
438                  * test NEED_RESCHED:
439                  */
440                 smp_mb();
441                 if (need_resched()) {
442                         current_thread_info()->status |= TS_POLLING;
443                         local_irq_enable();
444                         return;
445                 }
446         }
447
448         switch (cx->type) {
449
450         case ACPI_STATE_C1:
451                 /*
452                  * Invoke C1.
453                  * Use the appropriate idle routine, the one that would
454                  * be used without acpi C-states.
455                  */
456                 if (pm_idle_save)
457                         pm_idle_save();
458                 else
459                         acpi_safe_halt();
460
461                 /*
462                  * TBD: Can't get time duration while in C1, as resumes
463                  *      go to an ISR rather than here.  Need to instrument
464                  *      base interrupt handler.
465                  */
466                 sleep_ticks = 0xFFFFFFFF;
467                 break;
468
469         case ACPI_STATE_C2:
470                 /* Get start time (ticks) */
471                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
472                 /* Invoke C2 */
473                 acpi_state_timer_broadcast(pr, cx, 1);
474                 acpi_cstate_enter(cx);
475                 /* Get end time (ticks) */
476                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
477
478 #ifdef CONFIG_GENERIC_TIME
479                 /* TSC halts in C2, so notify users */
480                 mark_tsc_unstable("possible TSC halt in C2");
481 #endif
482                 /* Re-enable interrupts */
483                 local_irq_enable();
484                 current_thread_info()->status |= TS_POLLING;
485                 /* Compute time (ticks) that we were actually asleep */
486                 sleep_ticks =
487                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
488                 acpi_state_timer_broadcast(pr, cx, 0);
489                 break;
490
491         case ACPI_STATE_C3:
492
493                 if (pr->flags.bm_check) {
494                         if (atomic_inc_return(&c3_cpu_count) ==
495                             num_online_cpus()) {
496                                 /*
497                                  * All CPUs are trying to go to C3
498                                  * Disable bus master arbitration
499                                  */
500                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
501                         }
502                 } else {
503                         /* SMP with no shared cache... Invalidate cache  */
504                         ACPI_FLUSH_CPU_CACHE();
505                 }
506
507                 /* Get start time (ticks) */
508                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
509                 /* Invoke C3 */
510                 acpi_state_timer_broadcast(pr, cx, 1);
511                 acpi_cstate_enter(cx);
512                 /* Get end time (ticks) */
513                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
514                 if (pr->flags.bm_check) {
515                         /* Enable bus master arbitration */
516                         atomic_dec(&c3_cpu_count);
517                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
518                 }
519
520 #ifdef CONFIG_GENERIC_TIME
521                 /* TSC halts in C3, so notify users */
522                 mark_tsc_unstable("TSC halts in C3");
523 #endif
524                 /* Re-enable interrupts */
525                 local_irq_enable();
526                 current_thread_info()->status |= TS_POLLING;
527                 /* Compute time (ticks) that we were actually asleep */
528                 sleep_ticks =
529                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
530                 acpi_state_timer_broadcast(pr, cx, 0);
531                 break;
532
533         default:
534                 local_irq_enable();
535                 return;
536         }
537         cx->usage++;
538         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
539                 cx->time += sleep_ticks;
540
541         next_state = pr->power.state;
542
543 #ifdef CONFIG_HOTPLUG_CPU
544         /* Don't do promotion/demotion */
545         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
546             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
547                 next_state = cx;
548                 goto end;
549         }
550 #endif
551
552         /*
553          * Promotion?
554          * ----------
555          * Track the number of longs (time asleep is greater than threshold)
556          * and promote when the count threshold is reached.  Note that bus
557          * mastering activity may prevent promotions.
558          * Do not promote above max_cstate.
559          */
560         if (cx->promotion.state &&
561             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
562                 if (sleep_ticks > cx->promotion.threshold.ticks &&
563                   cx->promotion.state->latency <= system_latency_constraint()) {
564                         cx->promotion.count++;
565                         cx->demotion.count = 0;
566                         if (cx->promotion.count >=
567                             cx->promotion.threshold.count) {
568                                 if (pr->flags.bm_check) {
569                                         if (!
570                                             (pr->power.bm_activity & cx->
571                                              promotion.threshold.bm)) {
572                                                 next_state =
573                                                     cx->promotion.state;
574                                                 goto end;
575                                         }
576                                 } else {
577                                         next_state = cx->promotion.state;
578                                         goto end;
579                                 }
580                         }
581                 }
582         }
583
584         /*
585          * Demotion?
586          * ---------
587          * Track the number of shorts (time asleep is less than time threshold)
588          * and demote when the usage threshold is reached.
589          */
590         if (cx->demotion.state) {
591                 if (sleep_ticks < cx->demotion.threshold.ticks) {
592                         cx->demotion.count++;
593                         cx->promotion.count = 0;
594                         if (cx->demotion.count >= cx->demotion.threshold.count) {
595                                 next_state = cx->demotion.state;
596                                 goto end;
597                         }
598                 }
599         }
600
601       end:
602         /*
603          * Demote if current state exceeds max_cstate
604          * or if the latency of the current state is unacceptable
605          */
606         if ((pr->power.state - pr->power.states) > max_cstate ||
607                 pr->power.state->latency > system_latency_constraint()) {
608                 if (cx->demotion.state)
609                         next_state = cx->demotion.state;
610         }
611
612         /*
613          * New Cx State?
614          * -------------
615          * If we're going to start using a new Cx state we must clean up
616          * from the previous and prepare to use the new.
617          */
618         if (next_state != pr->power.state)
619                 acpi_processor_power_activate(pr, next_state);
620 }
621
622 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
623 {
624         unsigned int i;
625         unsigned int state_is_set = 0;
626         struct acpi_processor_cx *lower = NULL;
627         struct acpi_processor_cx *higher = NULL;
628         struct acpi_processor_cx *cx;
629
630
631         if (!pr)
632                 return -EINVAL;
633
634         /*
635          * This function sets the default Cx state policy (OS idle handler).
636          * Our scheme is to promote quickly to C2 but more conservatively
637          * to C3.  We're favoring C2  for its characteristics of low latency
638          * (quick response), good power savings, and ability to allow bus
639          * mastering activity.  Note that the Cx state policy is completely
640          * customizable and can be altered dynamically.
641          */
642
643         /* startup state */
644         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
645                 cx = &pr->power.states[i];
646                 if (!cx->valid)
647                         continue;
648
649                 if (!state_is_set)
650                         pr->power.state = cx;
651                 state_is_set++;
652                 break;
653         }
654
655         if (!state_is_set)
656                 return -ENODEV;
657
658         /* demotion */
659         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
660                 cx = &pr->power.states[i];
661                 if (!cx->valid)
662                         continue;
663
664                 if (lower) {
665                         cx->demotion.state = lower;
666                         cx->demotion.threshold.ticks = cx->latency_ticks;
667                         cx->demotion.threshold.count = 1;
668                         if (cx->type == ACPI_STATE_C3)
669                                 cx->demotion.threshold.bm = bm_history;
670                 }
671
672                 lower = cx;
673         }
674
675         /* promotion */
676         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
677                 cx = &pr->power.states[i];
678                 if (!cx->valid)
679                         continue;
680
681                 if (higher) {
682                         cx->promotion.state = higher;
683                         cx->promotion.threshold.ticks = cx->latency_ticks;
684                         if (cx->type >= ACPI_STATE_C2)
685                                 cx->promotion.threshold.count = 4;
686                         else
687                                 cx->promotion.threshold.count = 10;
688                         if (higher->type == ACPI_STATE_C3)
689                                 cx->promotion.threshold.bm = bm_history;
690                 }
691
692                 higher = cx;
693         }
694
695         return 0;
696 }
697
698 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
699 {
700
701         if (!pr)
702                 return -EINVAL;
703
704         if (!pr->pblk)
705                 return -ENODEV;
706
707         /* if info is obtained from pblk/fadt, type equals state */
708         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
709         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
710
711 #ifndef CONFIG_HOTPLUG_CPU
712         /*
713          * Check for P_LVL2_UP flag before entering C2 and above on
714          * an SMP system. 
715          */
716         if ((num_online_cpus() > 1) &&
717             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
718                 return -ENODEV;
719 #endif
720
721         /* determine C2 and C3 address from pblk */
722         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
723         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
724
725         /* determine latencies from FADT */
726         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
727         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
728
729         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
730                           "lvl2[0x%08x] lvl3[0x%08x]\n",
731                           pr->power.states[ACPI_STATE_C2].address,
732                           pr->power.states[ACPI_STATE_C3].address));
733
734         return 0;
735 }
736
737 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
738 {
739         if (!pr->power.states[ACPI_STATE_C1].valid) {
740                 /* set the first C-State to C1 */
741                 /* all processors need to support C1 */
742                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
743                 pr->power.states[ACPI_STATE_C1].valid = 1;
744         }
745         /* the C0 state only exists as a filler in our array */
746         pr->power.states[ACPI_STATE_C0].valid = 1;
747         return 0;
748 }
749
750 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
751 {
752         acpi_status status = 0;
753         acpi_integer count;
754         int current_count;
755         int i;
756         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
757         union acpi_object *cst;
758
759
760         if (nocst)
761                 return -ENODEV;
762
763         current_count = 0;
764
765         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
766         if (ACPI_FAILURE(status)) {
767                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
768                 return -ENODEV;
769         }
770
771         cst = buffer.pointer;
772
773         /* There must be at least 2 elements */
774         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
775                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
776                 status = -EFAULT;
777                 goto end;
778         }
779
780         count = cst->package.elements[0].integer.value;
781
782         /* Validate number of power states. */
783         if (count < 1 || count != cst->package.count - 1) {
784                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
785                 status = -EFAULT;
786                 goto end;
787         }
788
789         /* Tell driver that at least _CST is supported. */
790         pr->flags.has_cst = 1;
791
792         for (i = 1; i <= count; i++) {
793                 union acpi_object *element;
794                 union acpi_object *obj;
795                 struct acpi_power_register *reg;
796                 struct acpi_processor_cx cx;
797
798                 memset(&cx, 0, sizeof(cx));
799
800                 element = &(cst->package.elements[i]);
801                 if (element->type != ACPI_TYPE_PACKAGE)
802                         continue;
803
804                 if (element->package.count != 4)
805                         continue;
806
807                 obj = &(element->package.elements[0]);
808
809                 if (obj->type != ACPI_TYPE_BUFFER)
810                         continue;
811
812                 reg = (struct acpi_power_register *)obj->buffer.pointer;
813
814                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
815                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
816                         continue;
817
818                 /* There should be an easy way to extract an integer... */
819                 obj = &(element->package.elements[1]);
820                 if (obj->type != ACPI_TYPE_INTEGER)
821                         continue;
822
823                 cx.type = obj->integer.value;
824                 /*
825                  * Some buggy BIOSes won't list C1 in _CST -
826                  * Let acpi_processor_get_power_info_default() handle them later
827                  */
828                 if (i == 1 && cx.type != ACPI_STATE_C1)
829                         current_count++;
830
831                 cx.address = reg->address;
832                 cx.index = current_count + 1;
833
834                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
835                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
836                         if (acpi_processor_ffh_cstate_probe
837                                         (pr->id, &cx, reg) == 0) {
838                                 cx.space_id = ACPI_CSTATE_FFH;
839                         } else if (cx.type != ACPI_STATE_C1) {
840                                 /*
841                                  * C1 is a special case where FIXED_HARDWARE
842                                  * can be handled in non-MWAIT way as well.
843                                  * In that case, save this _CST entry info.
844                                  * That is, we retain space_id of SYSTEM_IO for
845                                  * halt based C1.
846                                  * Otherwise, ignore this info and continue.
847                                  */
848                                 continue;
849                         }
850                 }
851
852                 obj = &(element->package.elements[2]);
853                 if (obj->type != ACPI_TYPE_INTEGER)
854                         continue;
855
856                 cx.latency = obj->integer.value;
857
858                 obj = &(element->package.elements[3]);
859                 if (obj->type != ACPI_TYPE_INTEGER)
860                         continue;
861
862                 cx.power = obj->integer.value;
863
864                 current_count++;
865                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
866
867                 /*
868                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
869                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
870                  */
871                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
872                         printk(KERN_WARNING
873                                "Limiting number of power states to max (%d)\n",
874                                ACPI_PROCESSOR_MAX_POWER);
875                         printk(KERN_WARNING
876                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
877                         break;
878                 }
879         }
880
881         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
882                           current_count));
883
884         /* Validate number of power states discovered */
885         if (current_count < 2)
886                 status = -EFAULT;
887
888       end:
889         kfree(buffer.pointer);
890
891         return status;
892 }
893
894 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
895 {
896
897         if (!cx->address)
898                 return;
899
900         /*
901          * C2 latency must be less than or equal to 100
902          * microseconds.
903          */
904         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
905                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
906                                   "latency too large [%d]\n", cx->latency));
907                 return;
908         }
909
910         /*
911          * Otherwise we've met all of our C2 requirements.
912          * Normalize the C2 latency to expidite policy
913          */
914         cx->valid = 1;
915         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
916
917         return;
918 }
919
920 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
921                                            struct acpi_processor_cx *cx)
922 {
923         static int bm_check_flag;
924
925
926         if (!cx->address)
927                 return;
928
929         /*
930          * C3 latency must be less than or equal to 1000
931          * microseconds.
932          */
933         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
934                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
935                                   "latency too large [%d]\n", cx->latency));
936                 return;
937         }
938
939         /*
940          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
941          * DMA transfers are used by any ISA device to avoid livelock.
942          * Note that we could disable Type-F DMA (as recommended by
943          * the erratum), but this is known to disrupt certain ISA
944          * devices thus we take the conservative approach.
945          */
946         else if (errata.piix4.fdma) {
947                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
948                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
949                 return;
950         }
951
952         /* All the logic here assumes flags.bm_check is same across all CPUs */
953         if (!bm_check_flag) {
954                 /* Determine whether bm_check is needed based on CPU  */
955                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
956                 bm_check_flag = pr->flags.bm_check;
957         } else {
958                 pr->flags.bm_check = bm_check_flag;
959         }
960
961         if (pr->flags.bm_check) {
962                 /* bus mastering control is necessary */
963                 if (!pr->flags.bm_control) {
964                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
965                                           "C3 support requires bus mastering control\n"));
966                         return;
967                 }
968         } else {
969                 /*
970                  * WBINVD should be set in fadt, for C3 state to be
971                  * supported on when bm_check is not required.
972                  */
973                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
974                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
975                                           "Cache invalidation should work properly"
976                                           " for C3 to be enabled on SMP systems\n"));
977                         return;
978                 }
979                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
980         }
981
982         /*
983          * Otherwise we've met all of our C3 requirements.
984          * Normalize the C3 latency to expidite policy.  Enable
985          * checking of bus mastering status (bm_check) so we can
986          * use this in our C3 policy
987          */
988         cx->valid = 1;
989         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
990
991         return;
992 }
993
994 static int acpi_processor_power_verify(struct acpi_processor *pr)
995 {
996         unsigned int i;
997         unsigned int working = 0;
998
999         pr->power.timer_broadcast_on_state = INT_MAX;
1000
1001         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1002                 struct acpi_processor_cx *cx = &pr->power.states[i];
1003
1004                 switch (cx->type) {
1005                 case ACPI_STATE_C1:
1006                         cx->valid = 1;
1007                         break;
1008
1009                 case ACPI_STATE_C2:
1010                         acpi_processor_power_verify_c2(cx);
1011                         if (cx->valid)
1012                                 acpi_timer_check_state(i, pr, cx);
1013                         break;
1014
1015                 case ACPI_STATE_C3:
1016                         acpi_processor_power_verify_c3(pr, cx);
1017                         if (cx->valid)
1018                                 acpi_timer_check_state(i, pr, cx);
1019                         break;
1020                 }
1021
1022                 if (cx->valid)
1023                         working++;
1024         }
1025
1026         acpi_propagate_timer_broadcast(pr);
1027
1028         return (working);
1029 }
1030
1031 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1032 {
1033         unsigned int i;
1034         int result;
1035
1036
1037         /* NOTE: the idle thread may not be running while calling
1038          * this function */
1039
1040         /* Zero initialize all the C-states info. */
1041         memset(pr->power.states, 0, sizeof(pr->power.states));
1042
1043         result = acpi_processor_get_power_info_cst(pr);
1044         if (result == -ENODEV)
1045                 result = acpi_processor_get_power_info_fadt(pr);
1046
1047         if (result)
1048                 return result;
1049
1050         acpi_processor_get_power_info_default(pr);
1051
1052         pr->power.count = acpi_processor_power_verify(pr);
1053
1054         /*
1055          * Set Default Policy
1056          * ------------------
1057          * Now that we know which states are supported, set the default
1058          * policy.  Note that this policy can be changed dynamically
1059          * (e.g. encourage deeper sleeps to conserve battery life when
1060          * not on AC).
1061          */
1062         result = acpi_processor_set_power_policy(pr);
1063         if (result)
1064                 return result;
1065
1066         /*
1067          * if one state of type C2 or C3 is available, mark this
1068          * CPU as being "idle manageable"
1069          */
1070         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1071                 if (pr->power.states[i].valid) {
1072                         pr->power.count = i;
1073                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1074                                 pr->flags.power = 1;
1075                 }
1076         }
1077
1078         return 0;
1079 }
1080
1081 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1082 {
1083         int result = 0;
1084
1085
1086         if (!pr)
1087                 return -EINVAL;
1088
1089         if (nocst) {
1090                 return -ENODEV;
1091         }
1092
1093         if (!pr->flags.power_setup_done)
1094                 return -ENODEV;
1095
1096         /* Fall back to the default idle loop */
1097         pm_idle = pm_idle_save;
1098         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1099
1100         pr->flags.power = 0;
1101         result = acpi_processor_get_power_info(pr);
1102         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1103                 pm_idle = acpi_processor_idle;
1104
1105         return result;
1106 }
1107
1108 /* proc interface */
1109
1110 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1111 {
1112         struct acpi_processor *pr = seq->private;
1113         unsigned int i;
1114
1115
1116         if (!pr)
1117                 goto end;
1118
1119         seq_printf(seq, "active state:            C%zd\n"
1120                    "max_cstate:              C%d\n"
1121                    "bus master activity:     %08x\n"
1122                    "maximum allowed latency: %d usec\n",
1123                    pr->power.state ? pr->power.state - pr->power.states : 0,
1124                    max_cstate, (unsigned)pr->power.bm_activity,
1125                    system_latency_constraint());
1126
1127         seq_puts(seq, "states:\n");
1128
1129         for (i = 1; i <= pr->power.count; i++) {
1130                 seq_printf(seq, "   %cC%d:                  ",
1131                            (&pr->power.states[i] ==
1132                             pr->power.state ? '*' : ' '), i);
1133
1134                 if (!pr->power.states[i].valid) {
1135                         seq_puts(seq, "<not supported>\n");
1136                         continue;
1137                 }
1138
1139                 switch (pr->power.states[i].type) {
1140                 case ACPI_STATE_C1:
1141                         seq_printf(seq, "type[C1] ");
1142                         break;
1143                 case ACPI_STATE_C2:
1144                         seq_printf(seq, "type[C2] ");
1145                         break;
1146                 case ACPI_STATE_C3:
1147                         seq_printf(seq, "type[C3] ");
1148                         break;
1149                 default:
1150                         seq_printf(seq, "type[--] ");
1151                         break;
1152                 }
1153
1154                 if (pr->power.states[i].promotion.state)
1155                         seq_printf(seq, "promotion[C%zd] ",
1156                                    (pr->power.states[i].promotion.state -
1157                                     pr->power.states));
1158                 else
1159                         seq_puts(seq, "promotion[--] ");
1160
1161                 if (pr->power.states[i].demotion.state)
1162                         seq_printf(seq, "demotion[C%zd] ",
1163                                    (pr->power.states[i].demotion.state -
1164                                     pr->power.states));
1165                 else
1166                         seq_puts(seq, "demotion[--] ");
1167
1168                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1169                            pr->power.states[i].latency,
1170                            pr->power.states[i].usage,
1171                            (unsigned long long)pr->power.states[i].time);
1172         }
1173
1174       end:
1175         return 0;
1176 }
1177
1178 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1179 {
1180         return single_open(file, acpi_processor_power_seq_show,
1181                            PDE(inode)->data);
1182 }
1183
1184 static const struct file_operations acpi_processor_power_fops = {
1185         .open = acpi_processor_power_open_fs,
1186         .read = seq_read,
1187         .llseek = seq_lseek,
1188         .release = single_release,
1189 };
1190
1191 #ifdef CONFIG_SMP
1192 static void smp_callback(void *v)
1193 {
1194         /* we already woke the CPU up, nothing more to do */
1195 }
1196
1197 /*
1198  * This function gets called when a part of the kernel has a new latency
1199  * requirement.  This means we need to get all processors out of their C-state,
1200  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1201  * wakes them all right up.
1202  */
1203 static int acpi_processor_latency_notify(struct notifier_block *b,
1204                 unsigned long l, void *v)
1205 {
1206         smp_call_function(smp_callback, NULL, 0, 1);
1207         return NOTIFY_OK;
1208 }
1209
1210 static struct notifier_block acpi_processor_latency_notifier = {
1211         .notifier_call = acpi_processor_latency_notify,
1212 };
1213 #endif
1214
1215 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1216                               struct acpi_device *device)
1217 {
1218         acpi_status status = 0;
1219         static int first_run;
1220         struct proc_dir_entry *entry = NULL;
1221         unsigned int i;
1222
1223
1224         if (!first_run) {
1225                 dmi_check_system(processor_power_dmi_table);
1226                 if (max_cstate < ACPI_C_STATES_MAX)
1227                         printk(KERN_NOTICE
1228                                "ACPI: processor limited to max C-state %d\n",
1229                                max_cstate);
1230                 first_run++;
1231 #ifdef CONFIG_SMP
1232                 register_latency_notifier(&acpi_processor_latency_notifier);
1233 #endif
1234         }
1235
1236         if (!pr)
1237                 return -EINVAL;
1238
1239         if (acpi_gbl_FADT.cst_control && !nocst) {
1240                 status =
1241                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1242                 if (ACPI_FAILURE(status)) {
1243                         ACPI_EXCEPTION((AE_INFO, status,
1244                                         "Notifying BIOS of _CST ability failed"));
1245                 }
1246         }
1247
1248         acpi_processor_get_power_info(pr);
1249
1250         /*
1251          * Install the idle handler if processor power management is supported.
1252          * Note that we use previously set idle handler will be used on
1253          * platforms that only support C1.
1254          */
1255         if ((pr->flags.power) && (!boot_option_idle_override)) {
1256                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1257                 for (i = 1; i <= pr->power.count; i++)
1258                         if (pr->power.states[i].valid)
1259                                 printk(" C%d[C%d]", i,
1260                                        pr->power.states[i].type);
1261                 printk(")\n");
1262
1263                 if (pr->id == 0) {
1264                         pm_idle_save = pm_idle;
1265                         pm_idle = acpi_processor_idle;
1266                 }
1267         }
1268
1269         /* 'power' [R] */
1270         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1271                                   S_IRUGO, acpi_device_dir(device));
1272         if (!entry)
1273                 return -EIO;
1274         else {
1275                 entry->proc_fops = &acpi_processor_power_fops;
1276                 entry->data = acpi_driver_data(device);
1277                 entry->owner = THIS_MODULE;
1278         }
1279
1280         pr->flags.power_setup_done = 1;
1281
1282         return 0;
1283 }
1284
1285 int acpi_processor_power_exit(struct acpi_processor *pr,
1286                               struct acpi_device *device)
1287 {
1288
1289         pr->flags.power_setup_done = 0;
1290
1291         if (acpi_device_dir(device))
1292                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1293                                   acpi_device_dir(device));
1294
1295         /* Unregister the idle handler when processor #0 is removed. */
1296         if (pr->id == 0) {
1297                 pm_idle = pm_idle_save;
1298
1299                 /*
1300                  * We are about to unload the current idle thread pm callback
1301                  * (pm_idle), Wait for all processors to update cached/local
1302                  * copies of pm_idle before proceeding.
1303                  */
1304                 cpu_idle_wait();
1305 #ifdef CONFIG_SMP
1306                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1307 #endif
1308         }
1309
1310         return 0;
1311 }