Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[sfrench/cifs-2.6.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER       "power"
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD                     1       /* 1us */
69 #define C3_OVERHEAD                     1       /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82         return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93                 return 0;
94
95         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96                " Override with \"processor.max_cstate=%d\"\n", id->ident,
97                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99         max_cstate = (long)id->driver_data;
100
101         return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107         { set_max_cstate, "Clevo 5600D", {
108           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110          (void *)2},
111         {},
112 };
113
114
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121         current_thread_info()->status &= ~TS_POLLING;
122         /*
123          * TS_POLLING-cleared state must be visible before we
124          * test NEED_RESCHED:
125          */
126         smp_mb();
127         if (!need_resched()) {
128                 safe_halt();
129                 local_irq_disable();
130         }
131         current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143                                    struct acpi_processor_cx *cx)
144 {
145         struct acpi_processor_power *pwr = &pr->power;
146         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149                 return;
150
151         /*
152          * Check, if one of the previous states already marked the lapic
153          * unstable
154          */
155         if (pwr->timer_broadcast_on_state < state)
156                 return;
157
158         if (cx->type >= type)
159                 pr->power.timer_broadcast_on_state = state;
160 }
161
162 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
163 {
164         unsigned long reason;
165
166         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
167                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
168
169         clockevents_notify(reason, &pr->id);
170 }
171
172 /* Power(C) State timer broadcast control */
173 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
174                                        struct acpi_processor_cx *cx,
175                                        int broadcast)
176 {
177         int state = cx - pr->power.states;
178
179         if (state >= pr->power.timer_broadcast_on_state) {
180                 unsigned long reason;
181
182                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
183                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
184                 clockevents_notify(reason, &pr->id);
185         }
186 }
187
188 #else
189
190 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
191                                    struct acpi_processor_cx *cstate) { }
192 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
193 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
194                                        struct acpi_processor_cx *cx,
195                                        int broadcast)
196 {
197 }
198
199 #endif
200
201 /*
202  * Suspend / resume control
203  */
204 static int acpi_idle_suspend;
205
206 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
207 {
208         acpi_idle_suspend = 1;
209         return 0;
210 }
211
212 int acpi_processor_resume(struct acpi_device * device)
213 {
214         acpi_idle_suspend = 0;
215         return 0;
216 }
217
218 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
219 static int tsc_halts_in_c(int state)
220 {
221         switch (boot_cpu_data.x86_vendor) {
222         case X86_VENDOR_AMD:
223         case X86_VENDOR_INTEL:
224                 /*
225                  * AMD Fam10h TSC will tick in all
226                  * C/P/S0/S1 states when this bit is set.
227                  */
228                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
229                         return 0;
230
231                 /*FALL THROUGH*/
232         default:
233                 return state > ACPI_STATE_C1;
234         }
235 }
236 #endif
237
238 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
239 {
240
241         if (!pr)
242                 return -EINVAL;
243
244         if (!pr->pblk)
245                 return -ENODEV;
246
247         /* if info is obtained from pblk/fadt, type equals state */
248         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
249         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
250
251 #ifndef CONFIG_HOTPLUG_CPU
252         /*
253          * Check for P_LVL2_UP flag before entering C2 and above on
254          * an SMP system.
255          */
256         if ((num_online_cpus() > 1) &&
257             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
258                 return -ENODEV;
259 #endif
260
261         /* determine C2 and C3 address from pblk */
262         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
263         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
264
265         /* determine latencies from FADT */
266         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
267         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
268
269         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270                           "lvl2[0x%08x] lvl3[0x%08x]\n",
271                           pr->power.states[ACPI_STATE_C2].address,
272                           pr->power.states[ACPI_STATE_C3].address));
273
274         return 0;
275 }
276
277 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
278 {
279         if (!pr->power.states[ACPI_STATE_C1].valid) {
280                 /* set the first C-State to C1 */
281                 /* all processors need to support C1 */
282                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
283                 pr->power.states[ACPI_STATE_C1].valid = 1;
284                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
285         }
286         /* the C0 state only exists as a filler in our array */
287         pr->power.states[ACPI_STATE_C0].valid = 1;
288         return 0;
289 }
290
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
292 {
293         acpi_status status = 0;
294         acpi_integer count;
295         int current_count;
296         int i;
297         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
298         union acpi_object *cst;
299
300
301         if (nocst)
302                 return -ENODEV;
303
304         current_count = 0;
305
306         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
307         if (ACPI_FAILURE(status)) {
308                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
309                 return -ENODEV;
310         }
311
312         cst = buffer.pointer;
313
314         /* There must be at least 2 elements */
315         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
316                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
317                 status = -EFAULT;
318                 goto end;
319         }
320
321         count = cst->package.elements[0].integer.value;
322
323         /* Validate number of power states. */
324         if (count < 1 || count != cst->package.count - 1) {
325                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
326                 status = -EFAULT;
327                 goto end;
328         }
329
330         /* Tell driver that at least _CST is supported. */
331         pr->flags.has_cst = 1;
332
333         for (i = 1; i <= count; i++) {
334                 union acpi_object *element;
335                 union acpi_object *obj;
336                 struct acpi_power_register *reg;
337                 struct acpi_processor_cx cx;
338
339                 memset(&cx, 0, sizeof(cx));
340
341                 element = &(cst->package.elements[i]);
342                 if (element->type != ACPI_TYPE_PACKAGE)
343                         continue;
344
345                 if (element->package.count != 4)
346                         continue;
347
348                 obj = &(element->package.elements[0]);
349
350                 if (obj->type != ACPI_TYPE_BUFFER)
351                         continue;
352
353                 reg = (struct acpi_power_register *)obj->buffer.pointer;
354
355                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
356                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
357                         continue;
358
359                 /* There should be an easy way to extract an integer... */
360                 obj = &(element->package.elements[1]);
361                 if (obj->type != ACPI_TYPE_INTEGER)
362                         continue;
363
364                 cx.type = obj->integer.value;
365                 /*
366                  * Some buggy BIOSes won't list C1 in _CST -
367                  * Let acpi_processor_get_power_info_default() handle them later
368                  */
369                 if (i == 1 && cx.type != ACPI_STATE_C1)
370                         current_count++;
371
372                 cx.address = reg->address;
373                 cx.index = current_count + 1;
374
375                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
376                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
377                         if (acpi_processor_ffh_cstate_probe
378                                         (pr->id, &cx, reg) == 0) {
379                                 cx.entry_method = ACPI_CSTATE_FFH;
380                         } else if (cx.type == ACPI_STATE_C1) {
381                                 /*
382                                  * C1 is a special case where FIXED_HARDWARE
383                                  * can be handled in non-MWAIT way as well.
384                                  * In that case, save this _CST entry info.
385                                  * Otherwise, ignore this info and continue.
386                                  */
387                                 cx.entry_method = ACPI_CSTATE_HALT;
388                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
389                         } else {
390                                 continue;
391                         }
392                         if (cx.type == ACPI_STATE_C1 &&
393                                         (idle_halt || idle_nomwait)) {
394                                 /*
395                                  * In most cases the C1 space_id obtained from
396                                  * _CST object is FIXED_HARDWARE access mode.
397                                  * But when the option of idle=halt is added,
398                                  * the entry_method type should be changed from
399                                  * CSTATE_FFH to CSTATE_HALT.
400                                  * When the option of idle=nomwait is added,
401                                  * the C1 entry_method type should be
402                                  * CSTATE_HALT.
403                                  */
404                                 cx.entry_method = ACPI_CSTATE_HALT;
405                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
406                         }
407                 } else {
408                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
409                                  cx.address);
410                 }
411
412                 if (cx.type == ACPI_STATE_C1) {
413                         cx.valid = 1;
414                 }
415
416                 obj = &(element->package.elements[2]);
417                 if (obj->type != ACPI_TYPE_INTEGER)
418                         continue;
419
420                 cx.latency = obj->integer.value;
421
422                 obj = &(element->package.elements[3]);
423                 if (obj->type != ACPI_TYPE_INTEGER)
424                         continue;
425
426                 cx.power = obj->integer.value;
427
428                 current_count++;
429                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
430
431                 /*
432                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
433                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
434                  */
435                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
436                         printk(KERN_WARNING
437                                "Limiting number of power states to max (%d)\n",
438                                ACPI_PROCESSOR_MAX_POWER);
439                         printk(KERN_WARNING
440                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
441                         break;
442                 }
443         }
444
445         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
446                           current_count));
447
448         /* Validate number of power states discovered */
449         if (current_count < 2)
450                 status = -EFAULT;
451
452       end:
453         kfree(buffer.pointer);
454
455         return status;
456 }
457
458 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
459 {
460
461         if (!cx->address)
462                 return;
463
464         /*
465          * C2 latency must be less than or equal to 100
466          * microseconds.
467          */
468         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
469                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
470                                   "latency too large [%d]\n", cx->latency));
471                 return;
472         }
473
474         /*
475          * Otherwise we've met all of our C2 requirements.
476          * Normalize the C2 latency to expidite policy
477          */
478         cx->valid = 1;
479
480         cx->latency_ticks = cx->latency;
481
482         return;
483 }
484
485 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
486                                            struct acpi_processor_cx *cx)
487 {
488         static int bm_check_flag;
489
490
491         if (!cx->address)
492                 return;
493
494         /*
495          * C3 latency must be less than or equal to 1000
496          * microseconds.
497          */
498         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
499                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
500                                   "latency too large [%d]\n", cx->latency));
501                 return;
502         }
503
504         /*
505          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
506          * DMA transfers are used by any ISA device to avoid livelock.
507          * Note that we could disable Type-F DMA (as recommended by
508          * the erratum), but this is known to disrupt certain ISA
509          * devices thus we take the conservative approach.
510          */
511         else if (errata.piix4.fdma) {
512                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
514                 return;
515         }
516
517         /* All the logic here assumes flags.bm_check is same across all CPUs */
518         if (!bm_check_flag) {
519                 /* Determine whether bm_check is needed based on CPU  */
520                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
521                 bm_check_flag = pr->flags.bm_check;
522         } else {
523                 pr->flags.bm_check = bm_check_flag;
524         }
525
526         if (pr->flags.bm_check) {
527                 if (!pr->flags.bm_control) {
528                         if (pr->flags.has_cst != 1) {
529                                 /* bus mastering control is necessary */
530                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
531                                         "C3 support requires BM control\n"));
532                                 return;
533                         } else {
534                                 /* Here we enter C3 without bus mastering */
535                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
536                                         "C3 support without BM control\n"));
537                         }
538                 }
539         } else {
540                 /*
541                  * WBINVD should be set in fadt, for C3 state to be
542                  * supported on when bm_check is not required.
543                  */
544                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
545                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
546                                           "Cache invalidation should work properly"
547                                           " for C3 to be enabled on SMP systems\n"));
548                         return;
549                 }
550         }
551
552         /*
553          * Otherwise we've met all of our C3 requirements.
554          * Normalize the C3 latency to expidite policy.  Enable
555          * checking of bus mastering status (bm_check) so we can
556          * use this in our C3 policy
557          */
558         cx->valid = 1;
559
560         cx->latency_ticks = cx->latency;
561         /*
562          * On older chipsets, BM_RLD needs to be set
563          * in order for Bus Master activity to wake the
564          * system from C3.  Newer chipsets handle DMA
565          * during C3 automatically and BM_RLD is a NOP.
566          * In either case, the proper way to
567          * handle BM_RLD is to set it and leave it set.
568          */
569         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
570
571         return;
572 }
573
574 static int acpi_processor_power_verify(struct acpi_processor *pr)
575 {
576         unsigned int i;
577         unsigned int working = 0;
578
579         pr->power.timer_broadcast_on_state = INT_MAX;
580
581         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
582                 struct acpi_processor_cx *cx = &pr->power.states[i];
583
584                 switch (cx->type) {
585                 case ACPI_STATE_C1:
586                         cx->valid = 1;
587                         break;
588
589                 case ACPI_STATE_C2:
590                         acpi_processor_power_verify_c2(cx);
591                         if (cx->valid)
592                                 acpi_timer_check_state(i, pr, cx);
593                         break;
594
595                 case ACPI_STATE_C3:
596                         acpi_processor_power_verify_c3(pr, cx);
597                         if (cx->valid)
598                                 acpi_timer_check_state(i, pr, cx);
599                         break;
600                 }
601
602                 if (cx->valid)
603                         working++;
604         }
605
606         acpi_propagate_timer_broadcast(pr);
607
608         return (working);
609 }
610
611 static int acpi_processor_get_power_info(struct acpi_processor *pr)
612 {
613         unsigned int i;
614         int result;
615
616
617         /* NOTE: the idle thread may not be running while calling
618          * this function */
619
620         /* Zero initialize all the C-states info. */
621         memset(pr->power.states, 0, sizeof(pr->power.states));
622
623         result = acpi_processor_get_power_info_cst(pr);
624         if (result == -ENODEV)
625                 result = acpi_processor_get_power_info_fadt(pr);
626
627         if (result)
628                 return result;
629
630         acpi_processor_get_power_info_default(pr);
631
632         pr->power.count = acpi_processor_power_verify(pr);
633
634         /*
635          * if one state of type C2 or C3 is available, mark this
636          * CPU as being "idle manageable"
637          */
638         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
639                 if (pr->power.states[i].valid) {
640                         pr->power.count = i;
641                         if (pr->power.states[i].type >= ACPI_STATE_C2)
642                                 pr->flags.power = 1;
643                 }
644         }
645
646         return 0;
647 }
648
649 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
650 {
651         struct acpi_processor *pr = seq->private;
652         unsigned int i;
653
654
655         if (!pr)
656                 goto end;
657
658         seq_printf(seq, "active state:            C%zd\n"
659                    "max_cstate:              C%d\n"
660                    "bus master activity:     %08x\n"
661                    "maximum allowed latency: %d usec\n",
662                    pr->power.state ? pr->power.state - pr->power.states : 0,
663                    max_cstate, (unsigned)pr->power.bm_activity,
664                    pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
665
666         seq_puts(seq, "states:\n");
667
668         for (i = 1; i <= pr->power.count; i++) {
669                 seq_printf(seq, "   %cC%d:                  ",
670                            (&pr->power.states[i] ==
671                             pr->power.state ? '*' : ' '), i);
672
673                 if (!pr->power.states[i].valid) {
674                         seq_puts(seq, "<not supported>\n");
675                         continue;
676                 }
677
678                 switch (pr->power.states[i].type) {
679                 case ACPI_STATE_C1:
680                         seq_printf(seq, "type[C1] ");
681                         break;
682                 case ACPI_STATE_C2:
683                         seq_printf(seq, "type[C2] ");
684                         break;
685                 case ACPI_STATE_C3:
686                         seq_printf(seq, "type[C3] ");
687                         break;
688                 default:
689                         seq_printf(seq, "type[--] ");
690                         break;
691                 }
692
693                 if (pr->power.states[i].promotion.state)
694                         seq_printf(seq, "promotion[C%zd] ",
695                                    (pr->power.states[i].promotion.state -
696                                     pr->power.states));
697                 else
698                         seq_puts(seq, "promotion[--] ");
699
700                 if (pr->power.states[i].demotion.state)
701                         seq_printf(seq, "demotion[C%zd] ",
702                                    (pr->power.states[i].demotion.state -
703                                     pr->power.states));
704                 else
705                         seq_puts(seq, "demotion[--] ");
706
707                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
708                            pr->power.states[i].latency,
709                            pr->power.states[i].usage,
710                            (unsigned long long)pr->power.states[i].time);
711         }
712
713       end:
714         return 0;
715 }
716
717 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
718 {
719         return single_open(file, acpi_processor_power_seq_show,
720                            PDE(inode)->data);
721 }
722
723 static const struct file_operations acpi_processor_power_fops = {
724         .owner = THIS_MODULE,
725         .open = acpi_processor_power_open_fs,
726         .read = seq_read,
727         .llseek = seq_lseek,
728         .release = single_release,
729 };
730
731
732 /**
733  * acpi_idle_bm_check - checks if bus master activity was detected
734  */
735 static int acpi_idle_bm_check(void)
736 {
737         u32 bm_status = 0;
738
739         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
740         if (bm_status)
741                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
742         /*
743          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
744          * the true state of bus mastering activity; forcing us to
745          * manually check the BMIDEA bit of each IDE channel.
746          */
747         else if (errata.piix4.bmisx) {
748                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
749                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
750                         bm_status = 1;
751         }
752         return bm_status;
753 }
754
755 /**
756  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
757  * @cx: cstate data
758  *
759  * Caller disables interrupt before call and enables interrupt after return.
760  */
761 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
762 {
763         /* Don't trace irqs off for idle */
764         stop_critical_timings();
765         if (cx->entry_method == ACPI_CSTATE_FFH) {
766                 /* Call into architectural FFH based C-state */
767                 acpi_processor_ffh_cstate_enter(cx);
768         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
769                 acpi_safe_halt();
770         } else {
771                 int unused;
772                 /* IO port based C-state */
773                 inb(cx->address);
774                 /* Dummy wait op - must do something useless after P_LVL2 read
775                    because chipsets cannot guarantee that STPCLK# signal
776                    gets asserted in time to freeze execution properly. */
777                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
778         }
779         start_critical_timings();
780 }
781
782 /**
783  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
784  * @dev: the target CPU
785  * @state: the state data
786  *
787  * This is equivalent to the HALT instruction.
788  */
789 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
790                               struct cpuidle_state *state)
791 {
792         ktime_t  kt1, kt2;
793         s64 idle_time;
794         struct acpi_processor *pr;
795         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
796
797         pr = __get_cpu_var(processors);
798
799         if (unlikely(!pr))
800                 return 0;
801
802         local_irq_disable();
803
804         /* Do not access any ACPI IO ports in suspend path */
805         if (acpi_idle_suspend) {
806                 acpi_safe_halt();
807                 local_irq_enable();
808                 return 0;
809         }
810
811         kt1 = ktime_get_real();
812         acpi_idle_do_entry(cx);
813         kt2 = ktime_get_real();
814         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
815
816         local_irq_enable();
817         cx->usage++;
818
819         return idle_time;
820 }
821
822 /**
823  * acpi_idle_enter_simple - enters an ACPI state without BM handling
824  * @dev: the target CPU
825  * @state: the state data
826  */
827 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
828                                   struct cpuidle_state *state)
829 {
830         struct acpi_processor *pr;
831         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
832         ktime_t  kt1, kt2;
833         s64 idle_time;
834         s64 sleep_ticks = 0;
835
836         pr = __get_cpu_var(processors);
837
838         if (unlikely(!pr))
839                 return 0;
840
841         if (acpi_idle_suspend)
842                 return(acpi_idle_enter_c1(dev, state));
843
844         local_irq_disable();
845         current_thread_info()->status &= ~TS_POLLING;
846         /*
847          * TS_POLLING-cleared state must be visible before we test
848          * NEED_RESCHED:
849          */
850         smp_mb();
851
852         if (unlikely(need_resched())) {
853                 current_thread_info()->status |= TS_POLLING;
854                 local_irq_enable();
855                 return 0;
856         }
857
858         /*
859          * Must be done before busmaster disable as we might need to
860          * access HPET !
861          */
862         acpi_state_timer_broadcast(pr, cx, 1);
863
864         if (cx->type == ACPI_STATE_C3)
865                 ACPI_FLUSH_CPU_CACHE();
866
867         kt1 = ktime_get_real();
868         /* Tell the scheduler that we are going deep-idle: */
869         sched_clock_idle_sleep_event();
870         acpi_idle_do_entry(cx);
871         kt2 = ktime_get_real();
872         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
873
874 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
875         /* TSC could halt in idle, so notify users */
876         if (tsc_halts_in_c(cx->type))
877                 mark_tsc_unstable("TSC halts in idle");;
878 #endif
879         sleep_ticks = us_to_pm_timer_ticks(idle_time);
880
881         /* Tell the scheduler how much we idled: */
882         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
883
884         local_irq_enable();
885         current_thread_info()->status |= TS_POLLING;
886
887         cx->usage++;
888
889         acpi_state_timer_broadcast(pr, cx, 0);
890         cx->time += sleep_ticks;
891         return idle_time;
892 }
893
894 static int c3_cpu_count;
895 static DEFINE_SPINLOCK(c3_lock);
896
897 /**
898  * acpi_idle_enter_bm - enters C3 with proper BM handling
899  * @dev: the target CPU
900  * @state: the state data
901  *
902  * If BM is detected, the deepest non-C3 idle state is entered instead.
903  */
904 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
905                               struct cpuidle_state *state)
906 {
907         struct acpi_processor *pr;
908         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
909         ktime_t  kt1, kt2;
910         s64 idle_time;
911         s64 sleep_ticks = 0;
912
913
914         pr = __get_cpu_var(processors);
915
916         if (unlikely(!pr))
917                 return 0;
918
919         if (acpi_idle_suspend)
920                 return(acpi_idle_enter_c1(dev, state));
921
922         if (acpi_idle_bm_check()) {
923                 if (dev->safe_state) {
924                         dev->last_state = dev->safe_state;
925                         return dev->safe_state->enter(dev, dev->safe_state);
926                 } else {
927                         local_irq_disable();
928                         acpi_safe_halt();
929                         local_irq_enable();
930                         return 0;
931                 }
932         }
933
934         local_irq_disable();
935         current_thread_info()->status &= ~TS_POLLING;
936         /*
937          * TS_POLLING-cleared state must be visible before we test
938          * NEED_RESCHED:
939          */
940         smp_mb();
941
942         if (unlikely(need_resched())) {
943                 current_thread_info()->status |= TS_POLLING;
944                 local_irq_enable();
945                 return 0;
946         }
947
948         acpi_unlazy_tlb(smp_processor_id());
949
950         /* Tell the scheduler that we are going deep-idle: */
951         sched_clock_idle_sleep_event();
952         /*
953          * Must be done before busmaster disable as we might need to
954          * access HPET !
955          */
956         acpi_state_timer_broadcast(pr, cx, 1);
957
958         /*
959          * disable bus master
960          * bm_check implies we need ARB_DIS
961          * !bm_check implies we need cache flush
962          * bm_control implies whether we can do ARB_DIS
963          *
964          * That leaves a case where bm_check is set and bm_control is
965          * not set. In that case we cannot do much, we enter C3
966          * without doing anything.
967          */
968         if (pr->flags.bm_check && pr->flags.bm_control) {
969                 spin_lock(&c3_lock);
970                 c3_cpu_count++;
971                 /* Disable bus master arbitration when all CPUs are in C3 */
972                 if (c3_cpu_count == num_online_cpus())
973                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
974                 spin_unlock(&c3_lock);
975         } else if (!pr->flags.bm_check) {
976                 ACPI_FLUSH_CPU_CACHE();
977         }
978
979         kt1 = ktime_get_real();
980         acpi_idle_do_entry(cx);
981         kt2 = ktime_get_real();
982         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
983
984         /* Re-enable bus master arbitration */
985         if (pr->flags.bm_check && pr->flags.bm_control) {
986                 spin_lock(&c3_lock);
987                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
988                 c3_cpu_count--;
989                 spin_unlock(&c3_lock);
990         }
991
992 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
993         /* TSC could halt in idle, so notify users */
994         if (tsc_halts_in_c(ACPI_STATE_C3))
995                 mark_tsc_unstable("TSC halts in idle");
996 #endif
997         sleep_ticks = us_to_pm_timer_ticks(idle_time);
998         /* Tell the scheduler how much we idled: */
999         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1000
1001         local_irq_enable();
1002         current_thread_info()->status |= TS_POLLING;
1003
1004         cx->usage++;
1005
1006         acpi_state_timer_broadcast(pr, cx, 0);
1007         cx->time += sleep_ticks;
1008         return idle_time;
1009 }
1010
1011 struct cpuidle_driver acpi_idle_driver = {
1012         .name =         "acpi_idle",
1013         .owner =        THIS_MODULE,
1014 };
1015
1016 /**
1017  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1018  * @pr: the ACPI processor
1019  */
1020 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1021 {
1022         int i, count = CPUIDLE_DRIVER_STATE_START;
1023         struct acpi_processor_cx *cx;
1024         struct cpuidle_state *state;
1025         struct cpuidle_device *dev = &pr->power.dev;
1026
1027         if (!pr->flags.power_setup_done)
1028                 return -EINVAL;
1029
1030         if (pr->flags.power == 0) {
1031                 return -EINVAL;
1032         }
1033
1034         dev->cpu = pr->id;
1035         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1036                 dev->states[i].name[0] = '\0';
1037                 dev->states[i].desc[0] = '\0';
1038         }
1039
1040         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1041                 cx = &pr->power.states[i];
1042                 state = &dev->states[count];
1043
1044                 if (!cx->valid)
1045                         continue;
1046
1047 #ifdef CONFIG_HOTPLUG_CPU
1048                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1049                     !pr->flags.has_cst &&
1050                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1051                         continue;
1052 #endif
1053                 cpuidle_set_statedata(state, cx);
1054
1055                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1056                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1057                 state->exit_latency = cx->latency;
1058                 state->target_residency = cx->latency * latency_factor;
1059                 state->power_usage = cx->power;
1060
1061                 state->flags = 0;
1062                 switch (cx->type) {
1063                         case ACPI_STATE_C1:
1064                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1065                         if (cx->entry_method == ACPI_CSTATE_FFH)
1066                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1067
1068                         state->enter = acpi_idle_enter_c1;
1069                         dev->safe_state = state;
1070                         break;
1071
1072                         case ACPI_STATE_C2:
1073                         state->flags |= CPUIDLE_FLAG_BALANCED;
1074                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1075                         state->enter = acpi_idle_enter_simple;
1076                         dev->safe_state = state;
1077                         break;
1078
1079                         case ACPI_STATE_C3:
1080                         state->flags |= CPUIDLE_FLAG_DEEP;
1081                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1082                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1083                         state->enter = pr->flags.bm_check ?
1084                                         acpi_idle_enter_bm :
1085                                         acpi_idle_enter_simple;
1086                         break;
1087                 }
1088
1089                 count++;
1090                 if (count == CPUIDLE_STATE_MAX)
1091                         break;
1092         }
1093
1094         dev->state_count = count;
1095
1096         if (!count)
1097                 return -EINVAL;
1098
1099         return 0;
1100 }
1101
1102 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1103 {
1104         int ret = 0;
1105
1106         if (boot_option_idle_override)
1107                 return 0;
1108
1109         if (!pr)
1110                 return -EINVAL;
1111
1112         if (nocst) {
1113                 return -ENODEV;
1114         }
1115
1116         if (!pr->flags.power_setup_done)
1117                 return -ENODEV;
1118
1119         cpuidle_pause_and_lock();
1120         cpuidle_disable_device(&pr->power.dev);
1121         acpi_processor_get_power_info(pr);
1122         if (pr->flags.power) {
1123                 acpi_processor_setup_cpuidle(pr);
1124                 ret = cpuidle_enable_device(&pr->power.dev);
1125         }
1126         cpuidle_resume_and_unlock();
1127
1128         return ret;
1129 }
1130
1131 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1132                               struct acpi_device *device)
1133 {
1134         acpi_status status = 0;
1135         static int first_run;
1136         struct proc_dir_entry *entry = NULL;
1137         unsigned int i;
1138
1139         if (boot_option_idle_override)
1140                 return 0;
1141
1142         if (!first_run) {
1143                 if (idle_halt) {
1144                         /*
1145                          * When the boot option of "idle=halt" is added, halt
1146                          * is used for CPU IDLE.
1147                          * In such case C2/C3 is meaningless. So the max_cstate
1148                          * is set to one.
1149                          */
1150                         max_cstate = 1;
1151                 }
1152                 dmi_check_system(processor_power_dmi_table);
1153                 max_cstate = acpi_processor_cstate_check(max_cstate);
1154                 if (max_cstate < ACPI_C_STATES_MAX)
1155                         printk(KERN_NOTICE
1156                                "ACPI: processor limited to max C-state %d\n",
1157                                max_cstate);
1158                 first_run++;
1159         }
1160
1161         if (!pr)
1162                 return -EINVAL;
1163
1164         if (acpi_gbl_FADT.cst_control && !nocst) {
1165                 status =
1166                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1167                 if (ACPI_FAILURE(status)) {
1168                         ACPI_EXCEPTION((AE_INFO, status,
1169                                         "Notifying BIOS of _CST ability failed"));
1170                 }
1171         }
1172
1173         acpi_processor_get_power_info(pr);
1174         pr->flags.power_setup_done = 1;
1175
1176         /*
1177          * Install the idle handler if processor power management is supported.
1178          * Note that we use previously set idle handler will be used on
1179          * platforms that only support C1.
1180          */
1181         if (pr->flags.power) {
1182                 acpi_processor_setup_cpuidle(pr);
1183                 if (cpuidle_register_device(&pr->power.dev))
1184                         return -EIO;
1185
1186                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1187                 for (i = 1; i <= pr->power.count; i++)
1188                         if (pr->power.states[i].valid)
1189                                 printk(" C%d[C%d]", i,
1190                                        pr->power.states[i].type);
1191                 printk(")\n");
1192         }
1193
1194         /* 'power' [R] */
1195         entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1196                                  S_IRUGO, acpi_device_dir(device),
1197                                  &acpi_processor_power_fops,
1198                                  acpi_driver_data(device));
1199         if (!entry)
1200                 return -EIO;
1201         return 0;
1202 }
1203
1204 int acpi_processor_power_exit(struct acpi_processor *pr,
1205                               struct acpi_device *device)
1206 {
1207         if (boot_option_idle_override)
1208                 return 0;
1209
1210         cpuidle_unregister_device(&pr->power.dev);
1211         pr->flags.power_setup_done = 0;
1212
1213         if (acpi_device_dir(device))
1214                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1215                                   acpi_device_dir(device));
1216
1217         return 0;
1218 }