Merge master.kernel.org:/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/smp_lock.h>
34 #include <linux/interrupt.h>
35 #include <linux/kmod.h>
36 #include <linux/delay.h>
37 #include <linux/workqueue.h>
38 #include <linux/nmi.h>
39 #include <linux/acpi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT              ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX          "ACPI: "
51 struct acpi_os_dpc {
52         acpi_osd_exec_callback function;
53         void *context;
54         struct work_struct work;
55 };
56
57 #ifdef CONFIG_ACPI_CUSTOM_DSDT
58 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
59 #endif
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67
68 extern char line_buf[80];
69 #endif                          /*ENABLE_DEBUGGER */
70
71 int acpi_specific_hotkey_enabled = TRUE;
72 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
73
74 static unsigned int acpi_irq_irq;
75 static acpi_osd_handler acpi_irq_handler;
76 static void *acpi_irq_context;
77 static struct workqueue_struct *kacpid_wq;
78
79 static void __init acpi_request_region (struct acpi_generic_address *addr,
80         unsigned int length, char *desc)
81 {
82         struct resource *res;
83
84         if (!addr->address || !length)
85                 return;
86
87         if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
88                 res = request_region(addr->address, length, desc);
89         else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
90                 res = request_mem_region(addr->address, length, desc);
91 }
92
93 static int __init acpi_reserve_resources(void)
94 {
95         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
96                 "ACPI PM1a_EVT_BLK");
97
98         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
99                 "ACPI PM1b_EVT_BLK");
100
101         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
102                 "ACPI PM1a_CNT_BLK");
103
104         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
105                 "ACPI PM1b_CNT_BLK");
106
107         if (acpi_gbl_FADT.pm_timer_length == 4)
108                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
109
110         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
111                 "ACPI PM2_CNT_BLK");
112
113         /* Length of GPE blocks must be a non-negative multiple of 2 */
114
115         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
116                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
117                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
118
119         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
120                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
121                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
122
123         return 0;
124 }
125 device_initcall(acpi_reserve_resources);
126
127 acpi_status acpi_os_initialize(void)
128 {
129         return AE_OK;
130 }
131
132 acpi_status acpi_os_initialize1(void)
133 {
134         /*
135          * Initialize PCI configuration space access, as we'll need to access
136          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
137          */
138         if (!raw_pci_ops) {
139                 printk(KERN_ERR PREFIX
140                        "Access to PCI configuration space unavailable\n");
141                 return AE_NULL_ENTRY;
142         }
143         kacpid_wq = create_singlethread_workqueue("kacpid");
144         BUG_ON(!kacpid_wq);
145
146         return AE_OK;
147 }
148
149 acpi_status acpi_os_terminate(void)
150 {
151         if (acpi_irq_handler) {
152                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
153                                                  acpi_irq_handler);
154         }
155
156         destroy_workqueue(kacpid_wq);
157
158         return AE_OK;
159 }
160
161 void acpi_os_printf(const char *fmt, ...)
162 {
163         va_list args;
164         va_start(args, fmt);
165         acpi_os_vprintf(fmt, args);
166         va_end(args);
167 }
168
169 EXPORT_SYMBOL(acpi_os_printf);
170
171 void acpi_os_vprintf(const char *fmt, va_list args)
172 {
173         static char buffer[512];
174
175         vsprintf(buffer, fmt, args);
176
177 #ifdef ENABLE_DEBUGGER
178         if (acpi_in_debugger) {
179                 kdb_printf("%s", buffer);
180         } else {
181                 printk("%s", buffer);
182         }
183 #else
184         printk("%s", buffer);
185 #endif
186 }
187
188 acpi_physical_address __init acpi_os_get_root_pointer(void)
189 {
190         if (efi_enabled) {
191                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
192                         return efi.acpi20;
193                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
194                         return efi.acpi;
195                 else {
196                         printk(KERN_ERR PREFIX
197                                "System description tables not found\n");
198                         return 0;
199                 }
200         } else
201                 return acpi_find_rsdp();
202 }
203
204 void __iomem *acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
205 {
206         if (phys > ULONG_MAX) {
207                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
208                 return 0;
209         }
210         if (acpi_gbl_permanent_mmap)
211                 /*
212                 * ioremap checks to ensure this is in reserved space
213                 */
214                 return ioremap((unsigned long)phys, size);
215         else
216                 return __acpi_map_table((unsigned long)phys, size);
217 }
218 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
219
220 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
221 {
222         if (acpi_gbl_permanent_mmap) {
223                 iounmap(virt);
224         }
225 }
226 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
227
228 #ifdef ACPI_FUTURE_USAGE
229 acpi_status
230 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
231 {
232         if (!phys || !virt)
233                 return AE_BAD_PARAMETER;
234
235         *phys = virt_to_phys(virt);
236
237         return AE_OK;
238 }
239 #endif
240
241 #define ACPI_MAX_OVERRIDE_LEN 100
242
243 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
244
245 acpi_status
246 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
247                             acpi_string * new_val)
248 {
249         if (!init_val || !new_val)
250                 return AE_BAD_PARAMETER;
251
252         *new_val = NULL;
253         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
254                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
255                        acpi_os_name);
256                 *new_val = acpi_os_name;
257         }
258
259         return AE_OK;
260 }
261
262 acpi_status
263 acpi_os_table_override(struct acpi_table_header * existing_table,
264                        struct acpi_table_header ** new_table)
265 {
266         if (!existing_table || !new_table)
267                 return AE_BAD_PARAMETER;
268
269 #ifdef CONFIG_ACPI_CUSTOM_DSDT
270         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
271                 *new_table = (struct acpi_table_header *)AmlCode;
272         else
273                 *new_table = NULL;
274 #else
275         *new_table = NULL;
276 #endif
277         return AE_OK;
278 }
279
280 static irqreturn_t acpi_irq(int irq, void *dev_id)
281 {
282         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
283 }
284
285 acpi_status
286 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
287                                   void *context)
288 {
289         unsigned int irq;
290
291         /*
292          * Ignore the GSI from the core, and use the value in our copy of the
293          * FADT. It may not be the same if an interrupt source override exists
294          * for the SCI.
295          */
296         gsi = acpi_gbl_FADT.sci_interrupt;
297         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
298                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
299                        gsi);
300                 return AE_OK;
301         }
302
303         acpi_irq_handler = handler;
304         acpi_irq_context = context;
305         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
306                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
307                 return AE_NOT_ACQUIRED;
308         }
309         acpi_irq_irq = irq;
310
311         return AE_OK;
312 }
313
314 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
315 {
316         if (irq) {
317                 free_irq(irq, acpi_irq);
318                 acpi_irq_handler = NULL;
319                 acpi_irq_irq = 0;
320         }
321
322         return AE_OK;
323 }
324
325 /*
326  * Running in interpreter thread context, safe to sleep
327  */
328
329 void acpi_os_sleep(acpi_integer ms)
330 {
331         schedule_timeout_interruptible(msecs_to_jiffies(ms));
332 }
333
334 EXPORT_SYMBOL(acpi_os_sleep);
335
336 void acpi_os_stall(u32 us)
337 {
338         while (us) {
339                 u32 delay = 1000;
340
341                 if (delay > us)
342                         delay = us;
343                 udelay(delay);
344                 touch_nmi_watchdog();
345                 us -= delay;
346         }
347 }
348
349 EXPORT_SYMBOL(acpi_os_stall);
350
351 /*
352  * Support ACPI 3.0 AML Timer operand
353  * Returns 64-bit free-running, monotonically increasing timer
354  * with 100ns granularity
355  */
356 u64 acpi_os_get_timer(void)
357 {
358         static u64 t;
359
360 #ifdef  CONFIG_HPET
361         /* TBD: use HPET if available */
362 #endif
363
364 #ifdef  CONFIG_X86_PM_TIMER
365         /* TBD: default to PM timer if HPET was not available */
366 #endif
367         if (!t)
368                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
369
370         return ++t;
371 }
372
373 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
374 {
375         u32 dummy;
376
377         if (!value)
378                 value = &dummy;
379
380         switch (width) {
381         case 8:
382                 *(u8 *) value = inb(port);
383                 break;
384         case 16:
385                 *(u16 *) value = inw(port);
386                 break;
387         case 32:
388                 *(u32 *) value = inl(port);
389                 break;
390         default:
391                 BUG();
392         }
393
394         return AE_OK;
395 }
396
397 EXPORT_SYMBOL(acpi_os_read_port);
398
399 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
400 {
401         switch (width) {
402         case 8:
403                 outb(value, port);
404                 break;
405         case 16:
406                 outw(value, port);
407                 break;
408         case 32:
409                 outl(value, port);
410                 break;
411         default:
412                 BUG();
413         }
414
415         return AE_OK;
416 }
417
418 EXPORT_SYMBOL(acpi_os_write_port);
419
420 acpi_status
421 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
422 {
423         u32 dummy;
424         void __iomem *virt_addr;
425
426         virt_addr = ioremap(phys_addr, width);
427         if (!value)
428                 value = &dummy;
429
430         switch (width) {
431         case 8:
432                 *(u8 *) value = readb(virt_addr);
433                 break;
434         case 16:
435                 *(u16 *) value = readw(virt_addr);
436                 break;
437         case 32:
438                 *(u32 *) value = readl(virt_addr);
439                 break;
440         default:
441                 BUG();
442         }
443
444         iounmap(virt_addr);
445
446         return AE_OK;
447 }
448
449 acpi_status
450 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
451 {
452         void __iomem *virt_addr;
453
454         virt_addr = ioremap(phys_addr, width);
455
456         switch (width) {
457         case 8:
458                 writeb(value, virt_addr);
459                 break;
460         case 16:
461                 writew(value, virt_addr);
462                 break;
463         case 32:
464                 writel(value, virt_addr);
465                 break;
466         default:
467                 BUG();
468         }
469
470         iounmap(virt_addr);
471
472         return AE_OK;
473 }
474
475 acpi_status
476 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
477                                void *value, u32 width)
478 {
479         int result, size;
480
481         if (!value)
482                 return AE_BAD_PARAMETER;
483
484         switch (width) {
485         case 8:
486                 size = 1;
487                 break;
488         case 16:
489                 size = 2;
490                 break;
491         case 32:
492                 size = 4;
493                 break;
494         default:
495                 return AE_ERROR;
496         }
497
498         BUG_ON(!raw_pci_ops);
499
500         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
501                                    PCI_DEVFN(pci_id->device, pci_id->function),
502                                    reg, size, value);
503
504         return (result ? AE_ERROR : AE_OK);
505 }
506
507 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
508
509 acpi_status
510 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
511                                 acpi_integer value, u32 width)
512 {
513         int result, size;
514
515         switch (width) {
516         case 8:
517                 size = 1;
518                 break;
519         case 16:
520                 size = 2;
521                 break;
522         case 32:
523                 size = 4;
524                 break;
525         default:
526                 return AE_ERROR;
527         }
528
529         BUG_ON(!raw_pci_ops);
530
531         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
532                                     PCI_DEVFN(pci_id->device, pci_id->function),
533                                     reg, size, value);
534
535         return (result ? AE_ERROR : AE_OK);
536 }
537
538 /* TODO: Change code to take advantage of driver model more */
539 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
540                                     acpi_handle chandle,        /* current node */
541                                     struct acpi_pci_id **id,
542                                     int *is_bridge, u8 * bus_number)
543 {
544         acpi_handle handle;
545         struct acpi_pci_id *pci_id = *id;
546         acpi_status status;
547         unsigned long temp;
548         acpi_object_type type;
549         u8 tu8;
550
551         acpi_get_parent(chandle, &handle);
552         if (handle != rhandle) {
553                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
554                                         bus_number);
555
556                 status = acpi_get_type(handle, &type);
557                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
558                         return;
559
560                 status =
561                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
562                                           &temp);
563                 if (ACPI_SUCCESS(status)) {
564                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
565                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
566
567                         if (*is_bridge)
568                                 pci_id->bus = *bus_number;
569
570                         /* any nicer way to get bus number of bridge ? */
571                         status =
572                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
573                                                            8);
574                         if (ACPI_SUCCESS(status)
575                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
576                                 status =
577                                     acpi_os_read_pci_configuration(pci_id, 0x18,
578                                                                    &tu8, 8);
579                                 if (!ACPI_SUCCESS(status)) {
580                                         /* Certainly broken...  FIX ME */
581                                         return;
582                                 }
583                                 *is_bridge = 1;
584                                 pci_id->bus = tu8;
585                                 status =
586                                     acpi_os_read_pci_configuration(pci_id, 0x19,
587                                                                    &tu8, 8);
588                                 if (ACPI_SUCCESS(status)) {
589                                         *bus_number = tu8;
590                                 }
591                         } else
592                                 *is_bridge = 0;
593                 }
594         }
595 }
596
597 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
598                            acpi_handle chandle, /* current node */
599                            struct acpi_pci_id **id)
600 {
601         int is_bridge = 1;
602         u8 bus_number = (*id)->bus;
603
604         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
605 }
606
607 static void acpi_os_execute_deferred(struct work_struct *work)
608 {
609         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
610
611         if (!dpc) {
612                 printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
613                 return;
614         }
615
616         dpc->function(dpc->context);
617
618         kfree(dpc);
619
620         return;
621 }
622
623 /*******************************************************************************
624  *
625  * FUNCTION:    acpi_os_execute
626  *
627  * PARAMETERS:  Type               - Type of the callback
628  *              Function           - Function to be executed
629  *              Context            - Function parameters
630  *
631  * RETURN:      Status
632  *
633  * DESCRIPTION: Depending on type, either queues function for deferred execution or
634  *              immediately executes function on a separate thread.
635  *
636  ******************************************************************************/
637
638 acpi_status acpi_os_execute(acpi_execute_type type,
639                             acpi_osd_exec_callback function, void *context)
640 {
641         acpi_status status = AE_OK;
642         struct acpi_os_dpc *dpc;
643
644         ACPI_FUNCTION_TRACE("os_queue_for_execution");
645
646         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
647                           "Scheduling function [%p(%p)] for deferred execution.\n",
648                           function, context));
649
650         if (!function)
651                 return_ACPI_STATUS(AE_BAD_PARAMETER);
652
653         /*
654          * Allocate/initialize DPC structure.  Note that this memory will be
655          * freed by the callee.  The kernel handles the work_struct list  in a
656          * way that allows us to also free its memory inside the callee.
657          * Because we may want to schedule several tasks with different
658          * parameters we can't use the approach some kernel code uses of
659          * having a static work_struct.
660          */
661
662         dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
663         if (!dpc)
664                 return_ACPI_STATUS(AE_NO_MEMORY);
665
666         dpc->function = function;
667         dpc->context = context;
668
669         INIT_WORK(&dpc->work, acpi_os_execute_deferred);
670         if (!queue_work(kacpid_wq, &dpc->work)) {
671                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
672                                   "Call to queue_work() failed.\n"));
673                 kfree(dpc);
674                 status = AE_ERROR;
675         }
676
677         return_ACPI_STATUS(status);
678 }
679
680 EXPORT_SYMBOL(acpi_os_execute);
681
682 void acpi_os_wait_events_complete(void *context)
683 {
684         flush_workqueue(kacpid_wq);
685 }
686
687 EXPORT_SYMBOL(acpi_os_wait_events_complete);
688
689 /*
690  * Allocate the memory for a spinlock and initialize it.
691  */
692 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
693 {
694         spin_lock_init(*handle);
695
696         return AE_OK;
697 }
698
699 /*
700  * Deallocate the memory for a spinlock.
701  */
702 void acpi_os_delete_lock(acpi_spinlock handle)
703 {
704         return;
705 }
706
707 acpi_status
708 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
709 {
710         struct semaphore *sem = NULL;
711
712
713         sem = acpi_os_allocate(sizeof(struct semaphore));
714         if (!sem)
715                 return AE_NO_MEMORY;
716         memset(sem, 0, sizeof(struct semaphore));
717
718         sema_init(sem, initial_units);
719
720         *handle = (acpi_handle *) sem;
721
722         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
723                           *handle, initial_units));
724
725         return AE_OK;
726 }
727
728 EXPORT_SYMBOL(acpi_os_create_semaphore);
729
730 /*
731  * TODO: A better way to delete semaphores?  Linux doesn't have a
732  * 'delete_semaphore()' function -- may result in an invalid
733  * pointer dereference for non-synchronized consumers.  Should
734  * we at least check for blocked threads and signal/cancel them?
735  */
736
737 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
738 {
739         struct semaphore *sem = (struct semaphore *)handle;
740
741
742         if (!sem)
743                 return AE_BAD_PARAMETER;
744
745         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
746
747         kfree(sem);
748         sem = NULL;
749
750         return AE_OK;
751 }
752
753 EXPORT_SYMBOL(acpi_os_delete_semaphore);
754
755 /*
756  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
757  * improvise.  The process is to sleep for one scheduler quantum
758  * until the semaphore becomes available.  Downside is that this
759  * may result in starvation for timeout-based waits when there's
760  * lots of semaphore activity.
761  *
762  * TODO: Support for units > 1?
763  */
764 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
765 {
766         acpi_status status = AE_OK;
767         struct semaphore *sem = (struct semaphore *)handle;
768         int ret = 0;
769
770
771         if (!sem || (units < 1))
772                 return AE_BAD_PARAMETER;
773
774         if (units > 1)
775                 return AE_SUPPORT;
776
777         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
778                           handle, units, timeout));
779
780         /*
781          * This can be called during resume with interrupts off.
782          * Like boot-time, we should be single threaded and will
783          * always get the lock if we try -- timeout or not.
784          * If this doesn't succeed, then we will oops courtesy of
785          * might_sleep() in down().
786          */
787         if (!down_trylock(sem))
788                 return AE_OK;
789
790         switch (timeout) {
791                 /*
792                  * No Wait:
793                  * --------
794                  * A zero timeout value indicates that we shouldn't wait - just
795                  * acquire the semaphore if available otherwise return AE_TIME
796                  * (a.k.a. 'would block').
797                  */
798         case 0:
799                 if (down_trylock(sem))
800                         status = AE_TIME;
801                 break;
802
803                 /*
804                  * Wait Indefinitely:
805                  * ------------------
806                  */
807         case ACPI_WAIT_FOREVER:
808                 down(sem);
809                 break;
810
811                 /*
812                  * Wait w/ Timeout:
813                  * ----------------
814                  */
815         default:
816                 // TODO: A better timeout algorithm?
817                 {
818                         int i = 0;
819                         static const int quantum_ms = 1000 / HZ;
820
821                         ret = down_trylock(sem);
822                         for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
823                                 schedule_timeout_interruptible(1);
824                                 ret = down_trylock(sem);
825                         }
826
827                         if (ret != 0)
828                                 status = AE_TIME;
829                 }
830                 break;
831         }
832
833         if (ACPI_FAILURE(status)) {
834                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
835                                   "Failed to acquire semaphore[%p|%d|%d], %s",
836                                   handle, units, timeout,
837                                   acpi_format_exception(status)));
838         } else {
839                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
840                                   "Acquired semaphore[%p|%d|%d]", handle,
841                                   units, timeout));
842         }
843
844         return status;
845 }
846
847 EXPORT_SYMBOL(acpi_os_wait_semaphore);
848
849 /*
850  * TODO: Support for units > 1?
851  */
852 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
853 {
854         struct semaphore *sem = (struct semaphore *)handle;
855
856
857         if (!sem || (units < 1))
858                 return AE_BAD_PARAMETER;
859
860         if (units > 1)
861                 return AE_SUPPORT;
862
863         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
864                           units));
865
866         up(sem);
867
868         return AE_OK;
869 }
870
871 EXPORT_SYMBOL(acpi_os_signal_semaphore);
872
873 #ifdef ACPI_FUTURE_USAGE
874 u32 acpi_os_get_line(char *buffer)
875 {
876
877 #ifdef ENABLE_DEBUGGER
878         if (acpi_in_debugger) {
879                 u32 chars;
880
881                 kdb_read(buffer, sizeof(line_buf));
882
883                 /* remove the CR kdb includes */
884                 chars = strlen(buffer) - 1;
885                 buffer[chars] = '\0';
886         }
887 #endif
888
889         return 0;
890 }
891 #endif                          /*  ACPI_FUTURE_USAGE  */
892
893 /* Assumes no unreadable holes inbetween */
894 u8 acpi_os_readable(void *ptr, acpi_size len)
895 {
896 #if defined(__i386__) || defined(__x86_64__)
897         char tmp;
898         return !__get_user(tmp, (char __user *)ptr)
899             && !__get_user(tmp, (char __user *)ptr + len - 1);
900 #endif
901         return 1;
902 }
903
904 #ifdef ACPI_FUTURE_USAGE
905 u8 acpi_os_writable(void *ptr, acpi_size len)
906 {
907         /* could do dummy write (racy) or a kernel page table lookup.
908            The later may be difficult at early boot when kmap doesn't work yet. */
909         return 1;
910 }
911 #endif
912
913 acpi_status acpi_os_signal(u32 function, void *info)
914 {
915         switch (function) {
916         case ACPI_SIGNAL_FATAL:
917                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
918                 break;
919         case ACPI_SIGNAL_BREAKPOINT:
920                 /*
921                  * AML Breakpoint
922                  * ACPI spec. says to treat it as a NOP unless
923                  * you are debugging.  So if/when we integrate
924                  * AML debugger into the kernel debugger its
925                  * hook will go here.  But until then it is
926                  * not useful to print anything on breakpoints.
927                  */
928                 break;
929         default:
930                 break;
931         }
932
933         return AE_OK;
934 }
935
936 EXPORT_SYMBOL(acpi_os_signal);
937
938 static int __init acpi_os_name_setup(char *str)
939 {
940         char *p = acpi_os_name;
941         int count = ACPI_MAX_OVERRIDE_LEN - 1;
942
943         if (!str || !*str)
944                 return 0;
945
946         for (; count-- && str && *str; str++) {
947                 if (isalnum(*str) || *str == ' ' || *str == ':')
948                         *p++ = *str;
949                 else if (*str == '\'' || *str == '"')
950                         continue;
951                 else
952                         break;
953         }
954         *p = 0;
955
956         return 1;
957
958 }
959
960 __setup("acpi_os_name=", acpi_os_name_setup);
961
962 /*
963  * _OSI control
964  * empty string disables _OSI
965  * TBD additional string adds to _OSI
966  */
967 static int __init acpi_osi_setup(char *str)
968 {
969         if (str == NULL || *str == '\0') {
970                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
971                 acpi_gbl_create_osi_method = FALSE;
972         } else {
973                 /* TBD */
974                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
975                        str);
976         }
977
978         return 1;
979 }
980
981 __setup("acpi_osi=", acpi_osi_setup);
982
983 /* enable serialization to combat AE_ALREADY_EXISTS errors */
984 static int __init acpi_serialize_setup(char *str)
985 {
986         printk(KERN_INFO PREFIX "serialize enabled\n");
987
988         acpi_gbl_all_methods_serialized = TRUE;
989
990         return 1;
991 }
992
993 __setup("acpi_serialize", acpi_serialize_setup);
994
995 /*
996  * Wake and Run-Time GPES are expected to be separate.
997  * We disable wake-GPEs at run-time to prevent spurious
998  * interrupts.
999  *
1000  * However, if a system exists that shares Wake and
1001  * Run-time events on the same GPE this flag is available
1002  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1003  */
1004 static int __init acpi_wake_gpes_always_on_setup(char *str)
1005 {
1006         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1007
1008         acpi_gbl_leave_wake_gpes_disabled = FALSE;
1009
1010         return 1;
1011 }
1012
1013 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1014
1015 static int __init acpi_hotkey_setup(char *str)
1016 {
1017         acpi_specific_hotkey_enabled = FALSE;
1018         return 1;
1019 }
1020
1021 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1022
1023 /*
1024  * max_cstate is defined in the base kernel so modules can
1025  * change it w/o depending on the state of the processor module.
1026  */
1027 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1028
1029 EXPORT_SYMBOL(max_cstate);
1030
1031 /*
1032  * Acquire a spinlock.
1033  *
1034  * handle is a pointer to the spinlock_t.
1035  */
1036
1037 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1038 {
1039         acpi_cpu_flags flags;
1040         spin_lock_irqsave(lockp, flags);
1041         return flags;
1042 }
1043
1044 /*
1045  * Release a spinlock. See above.
1046  */
1047
1048 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1049 {
1050         spin_unlock_irqrestore(lockp, flags);
1051 }
1052
1053 #ifndef ACPI_USE_LOCAL_CACHE
1054
1055 /*******************************************************************************
1056  *
1057  * FUNCTION:    acpi_os_create_cache
1058  *
1059  * PARAMETERS:  name      - Ascii name for the cache
1060  *              size      - Size of each cached object
1061  *              depth     - Maximum depth of the cache (in objects) <ignored>
1062  *              cache     - Where the new cache object is returned
1063  *
1064  * RETURN:      status
1065  *
1066  * DESCRIPTION: Create a cache object
1067  *
1068  ******************************************************************************/
1069
1070 acpi_status
1071 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1072 {
1073         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1074         if (*cache == NULL)
1075                 return AE_ERROR;
1076         else
1077                 return AE_OK;
1078 }
1079
1080 /*******************************************************************************
1081  *
1082  * FUNCTION:    acpi_os_purge_cache
1083  *
1084  * PARAMETERS:  Cache           - Handle to cache object
1085  *
1086  * RETURN:      Status
1087  *
1088  * DESCRIPTION: Free all objects within the requested cache.
1089  *
1090  ******************************************************************************/
1091
1092 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1093 {
1094         kmem_cache_shrink(cache);
1095         return (AE_OK);
1096 }
1097
1098 /*******************************************************************************
1099  *
1100  * FUNCTION:    acpi_os_delete_cache
1101  *
1102  * PARAMETERS:  Cache           - Handle to cache object
1103  *
1104  * RETURN:      Status
1105  *
1106  * DESCRIPTION: Free all objects within the requested cache and delete the
1107  *              cache object.
1108  *
1109  ******************************************************************************/
1110
1111 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1112 {
1113         kmem_cache_destroy(cache);
1114         return (AE_OK);
1115 }
1116
1117 /*******************************************************************************
1118  *
1119  * FUNCTION:    acpi_os_release_object
1120  *
1121  * PARAMETERS:  Cache       - Handle to cache object
1122  *              Object      - The object to be released
1123  *
1124  * RETURN:      None
1125  *
1126  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1127  *              the object is deleted.
1128  *
1129  ******************************************************************************/
1130
1131 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1132 {
1133         kmem_cache_free(cache, object);
1134         return (AE_OK);
1135 }
1136
1137 /******************************************************************************
1138  *
1139  * FUNCTION:    acpi_os_validate_interface
1140  *
1141  * PARAMETERS:  interface           - Requested interface to be validated
1142  *
1143  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1144  *
1145  * DESCRIPTION: Match an interface string to the interfaces supported by the
1146  *              host. Strings originate from an AML call to the _OSI method.
1147  *
1148  *****************************************************************************/
1149
1150 acpi_status
1151 acpi_os_validate_interface (char *interface)
1152 {
1153
1154     return AE_SUPPORT;
1155 }
1156
1157
1158 /******************************************************************************
1159  *
1160  * FUNCTION:    acpi_os_validate_address
1161  *
1162  * PARAMETERS:  space_id             - ACPI space ID
1163  *              address             - Physical address
1164  *              length              - Address length
1165  *
1166  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1167  *              should return AE_AML_ILLEGAL_ADDRESS.
1168  *
1169  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1170  *              the addresses accessed by AML operation regions.
1171  *
1172  *****************************************************************************/
1173
1174 acpi_status
1175 acpi_os_validate_address (
1176     u8                   space_id,
1177     acpi_physical_address   address,
1178     acpi_size               length)
1179 {
1180
1181     return AE_OK;
1182 }
1183
1184
1185 #endif