Merge drm/drm-fixes into drm-misc-fixes
[sfrench/cifs-2.6.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT              ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56         acpi_osd_exec_callback function;
57         void *context;
58         struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif                          /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70                                       u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72                                       u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88         struct list_head list;
89         void __iomem *virt;
90         acpi_physical_address phys;
91         acpi_size size;
92         unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99         unsigned int length, char *desc)
100 {
101         u64 addr;
102
103         /* Handle possible alignment issues */
104         memcpy(&addr, &gas->address, sizeof(addr));
105         if (!addr || !length)
106                 return;
107
108         /* Resources are never freed */
109         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110                 request_region(addr, length, desc);
111         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112                 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1a_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121                 "ACPI PM1b_EVT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1a_CNT_BLK");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127                 "ACPI PM1b_CNT_BLK");
128
129         if (acpi_gbl_FADT.pm_timer_length == 4)
130                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133                 "ACPI PM2_CNT_BLK");
134
135         /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145         return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151         va_list args;
152         va_start(args, fmt);
153         acpi_os_vprintf(fmt, args);
154         va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160         static char buffer[512];
161
162         vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165         if (acpi_in_debugger) {
166                 kdb_printf("%s", buffer);
167         } else {
168                 if (printk_get_level(buffer))
169                         printk("%s", buffer);
170                 else
171                         printk(KERN_CONT "%s", buffer);
172         }
173 #else
174         if (acpi_debugger_write_log(buffer) < 0) {
175                 if (printk_get_level(buffer))
176                         printk("%s", buffer);
177                 else
178                         printk(KERN_CONT "%s", buffer);
179         }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187         return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194         acpi_physical_address pa;
195
196 #ifdef CONFIG_KEXEC
197         if (acpi_rsdp)
198                 return acpi_rsdp;
199 #endif
200         pa = acpi_arch_get_root_pointer();
201         if (pa)
202                 return pa;
203
204         if (efi_enabled(EFI_CONFIG_TABLES)) {
205                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206                         return efi.acpi20;
207                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208                         return efi.acpi;
209                 pr_err(PREFIX "System description tables not found\n");
210         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211                 acpi_find_root_pointer(&pa);
212         }
213
214         return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221         struct acpi_ioremap *map;
222
223         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224                 if (map->phys <= phys &&
225                     phys + size <= map->phys + map->size)
226                         return map;
227
228         return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235         struct acpi_ioremap *map;
236
237         map = acpi_map_lookup(phys, size);
238         if (map)
239                 return map->virt + (phys - map->phys);
240
241         return NULL;
242 }
243
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246         struct acpi_ioremap *map;
247         void __iomem *virt = NULL;
248
249         mutex_lock(&acpi_ioremap_lock);
250         map = acpi_map_lookup(phys, size);
251         if (map) {
252                 virt = map->virt + (phys - map->phys);
253                 map->refcount++;
254         }
255         mutex_unlock(&acpi_ioremap_lock);
256         return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264         struct acpi_ioremap *map;
265
266         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267                 if (map->virt <= virt &&
268                     virt + size <= map->virt + map->size)
269                         return map;
270
271         return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283         unsigned long pfn;
284
285         pfn = pg_off >> PAGE_SHIFT;
286         if (should_use_kmap(pfn)) {
287                 if (pg_sz > PAGE_SIZE)
288                         return NULL;
289                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290         } else
291                 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296         unsigned long pfn;
297
298         pfn = pg_off >> PAGE_SHIFT;
299         if (should_use_kmap(pfn))
300                 kunmap(pfn_to_page(pfn));
301         else
302                 iounmap(vaddr);
303 }
304
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321         struct acpi_ioremap *map;
322         void __iomem *virt;
323         acpi_physical_address pg_off;
324         acpi_size pg_sz;
325
326         if (phys > ULONG_MAX) {
327                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328                 return NULL;
329         }
330
331         if (!acpi_permanent_mmap)
332                 return __acpi_map_table((unsigned long)phys, size);
333
334         mutex_lock(&acpi_ioremap_lock);
335         /* Check if there's a suitable mapping already. */
336         map = acpi_map_lookup(phys, size);
337         if (map) {
338                 map->refcount++;
339                 goto out;
340         }
341
342         map = kzalloc(sizeof(*map), GFP_KERNEL);
343         if (!map) {
344                 mutex_unlock(&acpi_ioremap_lock);
345                 return NULL;
346         }
347
348         pg_off = round_down(phys, PAGE_SIZE);
349         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350         virt = acpi_map(pg_off, pg_sz);
351         if (!virt) {
352                 mutex_unlock(&acpi_ioremap_lock);
353                 kfree(map);
354                 return NULL;
355         }
356
357         INIT_LIST_HEAD(&map->list);
358         map->virt = virt;
359         map->phys = pg_off;
360         map->size = pg_sz;
361         map->refcount = 1;
362
363         list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366         mutex_unlock(&acpi_ioremap_lock);
367         return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373         return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379         if (!--map->refcount)
380                 list_del_rcu(&map->list);
381 }
382
383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385         if (!map->refcount) {
386                 synchronize_rcu_expedited();
387                 acpi_unmap(map->phys, map->virt);
388                 kfree(map);
389         }
390 }
391
392 /**
393  * acpi_os_unmap_iomem - Drop a memory mapping reference.
394  * @virt: Start of the address range to drop a reference to.
395  * @size: Size of the address range to drop a reference to.
396  *
397  * Look up the given virtual address range in the list of existing ACPI memory
398  * mappings, drop a reference to it and unmap it if there are no more active
399  * references to it.
400  *
401  * During early init (when acpi_permanent_mmap has not been set yet) this
402  * routine simply calls __acpi_unmap_table() to get the job done.  Since
403  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404  * here.
405  */
406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408         struct acpi_ioremap *map;
409
410         if (!acpi_permanent_mmap) {
411                 __acpi_unmap_table(virt, size);
412                 return;
413         }
414
415         mutex_lock(&acpi_ioremap_lock);
416         map = acpi_map_lookup_virt(virt, size);
417         if (!map) {
418                 mutex_unlock(&acpi_ioremap_lock);
419                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420                 return;
421         }
422         acpi_os_drop_map_ref(map);
423         mutex_unlock(&acpi_ioremap_lock);
424
425         acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431         return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437         u64 addr;
438         void __iomem *virt;
439
440         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441                 return 0;
442
443         /* Handle possible alignment issues */
444         memcpy(&addr, &gas->address, sizeof(addr));
445         if (!addr || !gas->bit_width)
446                 return -EINVAL;
447
448         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449         if (!virt)
450                 return -EIO;
451
452         return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458         u64 addr;
459         struct acpi_ioremap *map;
460
461         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462                 return;
463
464         /* Handle possible alignment issues */
465         memcpy(&addr, &gas->address, sizeof(addr));
466         if (!addr || !gas->bit_width)
467                 return;
468
469         mutex_lock(&acpi_ioremap_lock);
470         map = acpi_map_lookup(addr, gas->bit_width / 8);
471         if (!map) {
472                 mutex_unlock(&acpi_ioremap_lock);
473                 return;
474         }
475         acpi_os_drop_map_ref(map);
476         mutex_unlock(&acpi_ioremap_lock);
477
478         acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486         if (!phys || !virt)
487                 return AE_BAD_PARAMETER;
488
489         *phys = virt_to_phys(virt);
490
491         return AE_OK;
492 }
493 #endif
494
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497
498 int __init acpi_rev_override_setup(char *str)
499 {
500         acpi_rev_override = true;
501         return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override       false
506 #endif
507
508 #define ACPI_MAX_OVERRIDE_LEN 100
509
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514                             acpi_string *new_val)
515 {
516         if (!init_val || !new_val)
517                 return AE_BAD_PARAMETER;
518
519         *new_val = NULL;
520         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522                        acpi_os_name);
523                 *new_val = acpi_os_name;
524         }
525
526         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528                 *new_val = (char *)5;
529         }
530
531         return AE_OK;
532 }
533
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536         u32 handled;
537
538         handled = (*acpi_irq_handler) (acpi_irq_context);
539
540         if (handled) {
541                 acpi_irq_handled++;
542                 return IRQ_HANDLED;
543         } else {
544                 acpi_irq_not_handled++;
545                 return IRQ_NONE;
546         }
547 }
548
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551                                   void *context)
552 {
553         unsigned int irq;
554
555         acpi_irq_stats_init();
556
557         /*
558          * ACPI interrupts different from the SCI in our copy of the FADT are
559          * not supported.
560          */
561         if (gsi != acpi_gbl_FADT.sci_interrupt)
562                 return AE_BAD_PARAMETER;
563
564         if (acpi_irq_handler)
565                 return AE_ALREADY_ACQUIRED;
566
567         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569                        gsi);
570                 return AE_OK;
571         }
572
573         acpi_irq_handler = handler;
574         acpi_irq_context = context;
575         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577                 acpi_irq_handler = NULL;
578                 return AE_NOT_ACQUIRED;
579         }
580         acpi_sci_irq = irq;
581
582         return AE_OK;
583 }
584
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588                 return AE_BAD_PARAMETER;
589
590         free_irq(acpi_sci_irq, acpi_irq);
591         acpi_irq_handler = NULL;
592         acpi_sci_irq = INVALID_ACPI_IRQ;
593
594         return AE_OK;
595 }
596
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600
601 void acpi_os_sleep(u64 ms)
602 {
603         msleep(ms);
604 }
605
606 void acpi_os_stall(u32 us)
607 {
608         while (us) {
609                 u32 delay = 1000;
610
611                 if (delay > us)
612                         delay = us;
613                 udelay(delay);
614                 touch_nmi_watchdog();
615                 us -= delay;
616         }
617 }
618
619 /*
620  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621  * monotonically increasing timer with 100ns granularity. Do not use
622  * ktime_get() to implement this function because this function may get
623  * called after timekeeping has been suspended. Note: calling this function
624  * after timekeeping has been suspended may lead to unexpected results
625  * because when timekeeping is suspended the jiffies counter is not
626  * incremented. See also timekeeping_suspend().
627  */
628 u64 acpi_os_get_timer(void)
629 {
630         return (get_jiffies_64() - INITIAL_JIFFIES) *
631                 (ACPI_100NSEC_PER_SEC / HZ);
632 }
633
634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636         u32 dummy;
637
638         if (!value)
639                 value = &dummy;
640
641         *value = 0;
642         if (width <= 8) {
643                 *(u8 *) value = inb(port);
644         } else if (width <= 16) {
645                 *(u16 *) value = inw(port);
646         } else if (width <= 32) {
647                 *(u32 *) value = inl(port);
648         } else {
649                 BUG();
650         }
651
652         return AE_OK;
653 }
654
655 EXPORT_SYMBOL(acpi_os_read_port);
656
657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659         if (width <= 8) {
660                 outb(value, port);
661         } else if (width <= 16) {
662                 outw(value, port);
663         } else if (width <= 32) {
664                 outl(value, port);
665         } else {
666                 BUG();
667         }
668
669         return AE_OK;
670 }
671
672 EXPORT_SYMBOL(acpi_os_write_port);
673
674 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675 {
676
677         switch (width) {
678         case 8:
679                 *(u8 *) value = readb(virt_addr);
680                 break;
681         case 16:
682                 *(u16 *) value = readw(virt_addr);
683                 break;
684         case 32:
685                 *(u32 *) value = readl(virt_addr);
686                 break;
687         case 64:
688                 *(u64 *) value = readq(virt_addr);
689                 break;
690         default:
691                 return -EINVAL;
692         }
693
694         return 0;
695 }
696
697 acpi_status
698 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699 {
700         void __iomem *virt_addr;
701         unsigned int size = width / 8;
702         bool unmap = false;
703         u64 dummy;
704         int error;
705
706         rcu_read_lock();
707         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708         if (!virt_addr) {
709                 rcu_read_unlock();
710                 virt_addr = acpi_os_ioremap(phys_addr, size);
711                 if (!virt_addr)
712                         return AE_BAD_ADDRESS;
713                 unmap = true;
714         }
715
716         if (!value)
717                 value = &dummy;
718
719         error = acpi_os_read_iomem(virt_addr, value, width);
720         BUG_ON(error);
721
722         if (unmap)
723                 iounmap(virt_addr);
724         else
725                 rcu_read_unlock();
726
727         return AE_OK;
728 }
729
730 acpi_status
731 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732 {
733         void __iomem *virt_addr;
734         unsigned int size = width / 8;
735         bool unmap = false;
736
737         rcu_read_lock();
738         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739         if (!virt_addr) {
740                 rcu_read_unlock();
741                 virt_addr = acpi_os_ioremap(phys_addr, size);
742                 if (!virt_addr)
743                         return AE_BAD_ADDRESS;
744                 unmap = true;
745         }
746
747         switch (width) {
748         case 8:
749                 writeb(value, virt_addr);
750                 break;
751         case 16:
752                 writew(value, virt_addr);
753                 break;
754         case 32:
755                 writel(value, virt_addr);
756                 break;
757         case 64:
758                 writeq(value, virt_addr);
759                 break;
760         default:
761                 BUG();
762         }
763
764         if (unmap)
765                 iounmap(virt_addr);
766         else
767                 rcu_read_unlock();
768
769         return AE_OK;
770 }
771
772 #ifdef CONFIG_PCI
773 acpi_status
774 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775                                u64 *value, u32 width)
776 {
777         int result, size;
778         u32 value32;
779
780         if (!value)
781                 return AE_BAD_PARAMETER;
782
783         switch (width) {
784         case 8:
785                 size = 1;
786                 break;
787         case 16:
788                 size = 2;
789                 break;
790         case 32:
791                 size = 4;
792                 break;
793         default:
794                 return AE_ERROR;
795         }
796
797         result = raw_pci_read(pci_id->segment, pci_id->bus,
798                                 PCI_DEVFN(pci_id->device, pci_id->function),
799                                 reg, size, &value32);
800         *value = value32;
801
802         return (result ? AE_ERROR : AE_OK);
803 }
804
805 acpi_status
806 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807                                 u64 value, u32 width)
808 {
809         int result, size;
810
811         switch (width) {
812         case 8:
813                 size = 1;
814                 break;
815         case 16:
816                 size = 2;
817                 break;
818         case 32:
819                 size = 4;
820                 break;
821         default:
822                 return AE_ERROR;
823         }
824
825         result = raw_pci_write(pci_id->segment, pci_id->bus,
826                                 PCI_DEVFN(pci_id->device, pci_id->function),
827                                 reg, size, value);
828
829         return (result ? AE_ERROR : AE_OK);
830 }
831 #endif
832
833 static void acpi_os_execute_deferred(struct work_struct *work)
834 {
835         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836
837         dpc->function(dpc->context);
838         kfree(dpc);
839 }
840
841 #ifdef CONFIG_ACPI_DEBUGGER
842 static struct acpi_debugger acpi_debugger;
843 static bool acpi_debugger_initialized;
844
845 int acpi_register_debugger(struct module *owner,
846                            const struct acpi_debugger_ops *ops)
847 {
848         int ret = 0;
849
850         mutex_lock(&acpi_debugger.lock);
851         if (acpi_debugger.ops) {
852                 ret = -EBUSY;
853                 goto err_lock;
854         }
855
856         acpi_debugger.owner = owner;
857         acpi_debugger.ops = ops;
858
859 err_lock:
860         mutex_unlock(&acpi_debugger.lock);
861         return ret;
862 }
863 EXPORT_SYMBOL(acpi_register_debugger);
864
865 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866 {
867         mutex_lock(&acpi_debugger.lock);
868         if (ops == acpi_debugger.ops) {
869                 acpi_debugger.ops = NULL;
870                 acpi_debugger.owner = NULL;
871         }
872         mutex_unlock(&acpi_debugger.lock);
873 }
874 EXPORT_SYMBOL(acpi_unregister_debugger);
875
876 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877 {
878         int ret;
879         int (*func)(acpi_osd_exec_callback, void *);
880         struct module *owner;
881
882         if (!acpi_debugger_initialized)
883                 return -ENODEV;
884         mutex_lock(&acpi_debugger.lock);
885         if (!acpi_debugger.ops) {
886                 ret = -ENODEV;
887                 goto err_lock;
888         }
889         if (!try_module_get(acpi_debugger.owner)) {
890                 ret = -ENODEV;
891                 goto err_lock;
892         }
893         func = acpi_debugger.ops->create_thread;
894         owner = acpi_debugger.owner;
895         mutex_unlock(&acpi_debugger.lock);
896
897         ret = func(function, context);
898
899         mutex_lock(&acpi_debugger.lock);
900         module_put(owner);
901 err_lock:
902         mutex_unlock(&acpi_debugger.lock);
903         return ret;
904 }
905
906 ssize_t acpi_debugger_write_log(const char *msg)
907 {
908         ssize_t ret;
909         ssize_t (*func)(const char *);
910         struct module *owner;
911
912         if (!acpi_debugger_initialized)
913                 return -ENODEV;
914         mutex_lock(&acpi_debugger.lock);
915         if (!acpi_debugger.ops) {
916                 ret = -ENODEV;
917                 goto err_lock;
918         }
919         if (!try_module_get(acpi_debugger.owner)) {
920                 ret = -ENODEV;
921                 goto err_lock;
922         }
923         func = acpi_debugger.ops->write_log;
924         owner = acpi_debugger.owner;
925         mutex_unlock(&acpi_debugger.lock);
926
927         ret = func(msg);
928
929         mutex_lock(&acpi_debugger.lock);
930         module_put(owner);
931 err_lock:
932         mutex_unlock(&acpi_debugger.lock);
933         return ret;
934 }
935
936 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937 {
938         ssize_t ret;
939         ssize_t (*func)(char *, size_t);
940         struct module *owner;
941
942         if (!acpi_debugger_initialized)
943                 return -ENODEV;
944         mutex_lock(&acpi_debugger.lock);
945         if (!acpi_debugger.ops) {
946                 ret = -ENODEV;
947                 goto err_lock;
948         }
949         if (!try_module_get(acpi_debugger.owner)) {
950                 ret = -ENODEV;
951                 goto err_lock;
952         }
953         func = acpi_debugger.ops->read_cmd;
954         owner = acpi_debugger.owner;
955         mutex_unlock(&acpi_debugger.lock);
956
957         ret = func(buffer, buffer_length);
958
959         mutex_lock(&acpi_debugger.lock);
960         module_put(owner);
961 err_lock:
962         mutex_unlock(&acpi_debugger.lock);
963         return ret;
964 }
965
966 int acpi_debugger_wait_command_ready(void)
967 {
968         int ret;
969         int (*func)(bool, char *, size_t);
970         struct module *owner;
971
972         if (!acpi_debugger_initialized)
973                 return -ENODEV;
974         mutex_lock(&acpi_debugger.lock);
975         if (!acpi_debugger.ops) {
976                 ret = -ENODEV;
977                 goto err_lock;
978         }
979         if (!try_module_get(acpi_debugger.owner)) {
980                 ret = -ENODEV;
981                 goto err_lock;
982         }
983         func = acpi_debugger.ops->wait_command_ready;
984         owner = acpi_debugger.owner;
985         mutex_unlock(&acpi_debugger.lock);
986
987         ret = func(acpi_gbl_method_executing,
988                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989
990         mutex_lock(&acpi_debugger.lock);
991         module_put(owner);
992 err_lock:
993         mutex_unlock(&acpi_debugger.lock);
994         return ret;
995 }
996
997 int acpi_debugger_notify_command_complete(void)
998 {
999         int ret;
1000         int (*func)(void);
1001         struct module *owner;
1002
1003         if (!acpi_debugger_initialized)
1004                 return -ENODEV;
1005         mutex_lock(&acpi_debugger.lock);
1006         if (!acpi_debugger.ops) {
1007                 ret = -ENODEV;
1008                 goto err_lock;
1009         }
1010         if (!try_module_get(acpi_debugger.owner)) {
1011                 ret = -ENODEV;
1012                 goto err_lock;
1013         }
1014         func = acpi_debugger.ops->notify_command_complete;
1015         owner = acpi_debugger.owner;
1016         mutex_unlock(&acpi_debugger.lock);
1017
1018         ret = func();
1019
1020         mutex_lock(&acpi_debugger.lock);
1021         module_put(owner);
1022 err_lock:
1023         mutex_unlock(&acpi_debugger.lock);
1024         return ret;
1025 }
1026
1027 int __init acpi_debugger_init(void)
1028 {
1029         mutex_init(&acpi_debugger.lock);
1030         acpi_debugger_initialized = true;
1031         return 0;
1032 }
1033 #endif
1034
1035 /*******************************************************************************
1036  *
1037  * FUNCTION:    acpi_os_execute
1038  *
1039  * PARAMETERS:  Type               - Type of the callback
1040  *              Function           - Function to be executed
1041  *              Context            - Function parameters
1042  *
1043  * RETURN:      Status
1044  *
1045  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046  *              immediately executes function on a separate thread.
1047  *
1048  ******************************************************************************/
1049
1050 acpi_status acpi_os_execute(acpi_execute_type type,
1051                             acpi_osd_exec_callback function, void *context)
1052 {
1053         acpi_status status = AE_OK;
1054         struct acpi_os_dpc *dpc;
1055         struct workqueue_struct *queue;
1056         int ret;
1057         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058                           "Scheduling function [%p(%p)] for deferred execution.\n",
1059                           function, context));
1060
1061         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062                 ret = acpi_debugger_create_thread(function, context);
1063                 if (ret) {
1064                         pr_err("Call to kthread_create() failed.\n");
1065                         status = AE_ERROR;
1066                 }
1067                 goto out_thread;
1068         }
1069
1070         /*
1071          * Allocate/initialize DPC structure.  Note that this memory will be
1072          * freed by the callee.  The kernel handles the work_struct list  in a
1073          * way that allows us to also free its memory inside the callee.
1074          * Because we may want to schedule several tasks with different
1075          * parameters we can't use the approach some kernel code uses of
1076          * having a static work_struct.
1077          */
1078
1079         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080         if (!dpc)
1081                 return AE_NO_MEMORY;
1082
1083         dpc->function = function;
1084         dpc->context = context;
1085
1086         /*
1087          * To prevent lockdep from complaining unnecessarily, make sure that
1088          * there is a different static lockdep key for each workqueue by using
1089          * INIT_WORK() for each of them separately.
1090          */
1091         if (type == OSL_NOTIFY_HANDLER) {
1092                 queue = kacpi_notify_wq;
1093                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094         } else if (type == OSL_GPE_HANDLER) {
1095                 queue = kacpid_wq;
1096                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097         } else {
1098                 pr_err("Unsupported os_execute type %d.\n", type);
1099                 status = AE_ERROR;
1100         }
1101
1102         if (ACPI_FAILURE(status))
1103                 goto err_workqueue;
1104
1105         /*
1106          * On some machines, a software-initiated SMI causes corruption unless
1107          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1108          * typically it's done in GPE-related methods that are run via
1109          * workqueues, so we can avoid the known corruption cases by always
1110          * queueing on CPU 0.
1111          */
1112         ret = queue_work_on(0, queue, &dpc->work);
1113         if (!ret) {
1114                 printk(KERN_ERR PREFIX
1115                           "Call to queue_work() failed.\n");
1116                 status = AE_ERROR;
1117         }
1118 err_workqueue:
1119         if (ACPI_FAILURE(status))
1120                 kfree(dpc);
1121 out_thread:
1122         return status;
1123 }
1124 EXPORT_SYMBOL(acpi_os_execute);
1125
1126 void acpi_os_wait_events_complete(void)
1127 {
1128         /*
1129          * Make sure the GPE handler or the fixed event handler is not used
1130          * on another CPU after removal.
1131          */
1132         if (acpi_sci_irq_valid())
1133                 synchronize_hardirq(acpi_sci_irq);
1134         flush_workqueue(kacpid_wq);
1135         flush_workqueue(kacpi_notify_wq);
1136 }
1137 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139 struct acpi_hp_work {
1140         struct work_struct work;
1141         struct acpi_device *adev;
1142         u32 src;
1143 };
1144
1145 static void acpi_hotplug_work_fn(struct work_struct *work)
1146 {
1147         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149         acpi_os_wait_events_complete();
1150         acpi_device_hotplug(hpw->adev, hpw->src);
1151         kfree(hpw);
1152 }
1153
1154 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155 {
1156         struct acpi_hp_work *hpw;
1157
1158         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160                   adev, src));
1161
1162         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163         if (!hpw)
1164                 return AE_NO_MEMORY;
1165
1166         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167         hpw->adev = adev;
1168         hpw->src = src;
1169         /*
1170          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171          * the hotplug code may call driver .remove() functions, which may
1172          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173          * these workqueues.
1174          */
1175         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176                 kfree(hpw);
1177                 return AE_ERROR;
1178         }
1179         return AE_OK;
1180 }
1181
1182 bool acpi_queue_hotplug_work(struct work_struct *work)
1183 {
1184         return queue_work(kacpi_hotplug_wq, work);
1185 }
1186
1187 acpi_status
1188 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189 {
1190         struct semaphore *sem = NULL;
1191
1192         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193         if (!sem)
1194                 return AE_NO_MEMORY;
1195
1196         sema_init(sem, initial_units);
1197
1198         *handle = (acpi_handle *) sem;
1199
1200         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201                           *handle, initial_units));
1202
1203         return AE_OK;
1204 }
1205
1206 /*
1207  * TODO: A better way to delete semaphores?  Linux doesn't have a
1208  * 'delete_semaphore()' function -- may result in an invalid
1209  * pointer dereference for non-synchronized consumers.  Should
1210  * we at least check for blocked threads and signal/cancel them?
1211  */
1212
1213 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214 {
1215         struct semaphore *sem = (struct semaphore *)handle;
1216
1217         if (!sem)
1218                 return AE_BAD_PARAMETER;
1219
1220         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222         BUG_ON(!list_empty(&sem->wait_list));
1223         kfree(sem);
1224         sem = NULL;
1225
1226         return AE_OK;
1227 }
1228
1229 /*
1230  * TODO: Support for units > 1?
1231  */
1232 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233 {
1234         acpi_status status = AE_OK;
1235         struct semaphore *sem = (struct semaphore *)handle;
1236         long jiffies;
1237         int ret = 0;
1238
1239         if (!acpi_os_initialized)
1240                 return AE_OK;
1241
1242         if (!sem || (units < 1))
1243                 return AE_BAD_PARAMETER;
1244
1245         if (units > 1)
1246                 return AE_SUPPORT;
1247
1248         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249                           handle, units, timeout));
1250
1251         if (timeout == ACPI_WAIT_FOREVER)
1252                 jiffies = MAX_SCHEDULE_TIMEOUT;
1253         else
1254                 jiffies = msecs_to_jiffies(timeout);
1255
1256         ret = down_timeout(sem, jiffies);
1257         if (ret)
1258                 status = AE_TIME;
1259
1260         if (ACPI_FAILURE(status)) {
1261                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1263                                   handle, units, timeout,
1264                                   acpi_format_exception(status)));
1265         } else {
1266                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267                                   "Acquired semaphore[%p|%d|%d]", handle,
1268                                   units, timeout));
1269         }
1270
1271         return status;
1272 }
1273
1274 /*
1275  * TODO: Support for units > 1?
1276  */
1277 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278 {
1279         struct semaphore *sem = (struct semaphore *)handle;
1280
1281         if (!acpi_os_initialized)
1282                 return AE_OK;
1283
1284         if (!sem || (units < 1))
1285                 return AE_BAD_PARAMETER;
1286
1287         if (units > 1)
1288                 return AE_SUPPORT;
1289
1290         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291                           units));
1292
1293         up(sem);
1294
1295         return AE_OK;
1296 }
1297
1298 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299 {
1300 #ifdef ENABLE_DEBUGGER
1301         if (acpi_in_debugger) {
1302                 u32 chars;
1303
1304                 kdb_read(buffer, buffer_length);
1305
1306                 /* remove the CR kdb includes */
1307                 chars = strlen(buffer) - 1;
1308                 buffer[chars] = '\0';
1309         }
1310 #else
1311         int ret;
1312
1313         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314         if (ret < 0)
1315                 return AE_ERROR;
1316         if (bytes_read)
1317                 *bytes_read = ret;
1318 #endif
1319
1320         return AE_OK;
1321 }
1322 EXPORT_SYMBOL(acpi_os_get_line);
1323
1324 acpi_status acpi_os_wait_command_ready(void)
1325 {
1326         int ret;
1327
1328         ret = acpi_debugger_wait_command_ready();
1329         if (ret < 0)
1330                 return AE_ERROR;
1331         return AE_OK;
1332 }
1333
1334 acpi_status acpi_os_notify_command_complete(void)
1335 {
1336         int ret;
1337
1338         ret = acpi_debugger_notify_command_complete();
1339         if (ret < 0)
1340                 return AE_ERROR;
1341         return AE_OK;
1342 }
1343
1344 acpi_status acpi_os_signal(u32 function, void *info)
1345 {
1346         switch (function) {
1347         case ACPI_SIGNAL_FATAL:
1348                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349                 break;
1350         case ACPI_SIGNAL_BREAKPOINT:
1351                 /*
1352                  * AML Breakpoint
1353                  * ACPI spec. says to treat it as a NOP unless
1354                  * you are debugging.  So if/when we integrate
1355                  * AML debugger into the kernel debugger its
1356                  * hook will go here.  But until then it is
1357                  * not useful to print anything on breakpoints.
1358                  */
1359                 break;
1360         default:
1361                 break;
1362         }
1363
1364         return AE_OK;
1365 }
1366
1367 static int __init acpi_os_name_setup(char *str)
1368 {
1369         char *p = acpi_os_name;
1370         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372         if (!str || !*str)
1373                 return 0;
1374
1375         for (; count-- && *str; str++) {
1376                 if (isalnum(*str) || *str == ' ' || *str == ':')
1377                         *p++ = *str;
1378                 else if (*str == '\'' || *str == '"')
1379                         continue;
1380                 else
1381                         break;
1382         }
1383         *p = 0;
1384
1385         return 1;
1386
1387 }
1388
1389 __setup("acpi_os_name=", acpi_os_name_setup);
1390
1391 /*
1392  * Disable the auto-serialization of named objects creation methods.
1393  *
1394  * This feature is enabled by default.  It marks the AML control methods
1395  * that contain the opcodes to create named objects as "Serialized".
1396  */
1397 static int __init acpi_no_auto_serialize_setup(char *str)
1398 {
1399         acpi_gbl_auto_serialize_methods = FALSE;
1400         pr_info("ACPI: auto-serialization disabled\n");
1401
1402         return 1;
1403 }
1404
1405 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407 /* Check of resource interference between native drivers and ACPI
1408  * OperationRegions (SystemIO and System Memory only).
1409  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410  * in arbitrary AML code and can interfere with legacy drivers.
1411  * acpi_enforce_resources= can be set to:
1412  *
1413  *   - strict (default) (2)
1414  *     -> further driver trying to access the resources will not load
1415  *   - lax              (1)
1416  *     -> further driver trying to access the resources will load, but you
1417  *     get a system message that something might go wrong...
1418  *
1419  *   - no               (0)
1420  *     -> ACPI Operation Region resources will not be registered
1421  *
1422  */
1423 #define ENFORCE_RESOURCES_STRICT 2
1424 #define ENFORCE_RESOURCES_LAX    1
1425 #define ENFORCE_RESOURCES_NO     0
1426
1427 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429 static int __init acpi_enforce_resources_setup(char *str)
1430 {
1431         if (str == NULL || *str == '\0')
1432                 return 0;
1433
1434         if (!strcmp("strict", str))
1435                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436         else if (!strcmp("lax", str))
1437                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438         else if (!strcmp("no", str))
1439                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441         return 1;
1442 }
1443
1444 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446 /* Check for resource conflicts between ACPI OperationRegions and native
1447  * drivers */
1448 int acpi_check_resource_conflict(const struct resource *res)
1449 {
1450         acpi_adr_space_type space_id;
1451         acpi_size length;
1452         u8 warn = 0;
1453         int clash = 0;
1454
1455         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456                 return 0;
1457         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458                 return 0;
1459
1460         if (res->flags & IORESOURCE_IO)
1461                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462         else
1463                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465         length = resource_size(res);
1466         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467                 warn = 1;
1468         clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470         if (clash) {
1471                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473                                 printk(KERN_NOTICE "ACPI: This conflict may"
1474                                        " cause random problems and system"
1475                                        " instability\n");
1476                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477                                " for this device, you should use it instead of"
1478                                " the native driver\n");
1479                 }
1480                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481                         return -EBUSY;
1482         }
1483         return 0;
1484 }
1485 EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487 int acpi_check_region(resource_size_t start, resource_size_t n,
1488                       const char *name)
1489 {
1490         struct resource res = {
1491                 .start = start,
1492                 .end   = start + n - 1,
1493                 .name  = name,
1494                 .flags = IORESOURCE_IO,
1495         };
1496
1497         return acpi_check_resource_conflict(&res);
1498 }
1499 EXPORT_SYMBOL(acpi_check_region);
1500
1501 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502                                               void *_res, void **return_value)
1503 {
1504         struct acpi_mem_space_context **mem_ctx;
1505         union acpi_operand_object *handler_obj;
1506         union acpi_operand_object *region_obj2;
1507         union acpi_operand_object *region_obj;
1508         struct resource *res = _res;
1509         acpi_status status;
1510
1511         region_obj = acpi_ns_get_attached_object(handle);
1512         if (!region_obj)
1513                 return AE_OK;
1514
1515         handler_obj = region_obj->region.handler;
1516         if (!handler_obj)
1517                 return AE_OK;
1518
1519         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520                 return AE_OK;
1521
1522         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523                 return AE_OK;
1524
1525         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526         if (!region_obj2)
1527                 return AE_OK;
1528
1529         mem_ctx = (void *)&region_obj2->extra.region_context;
1530
1531         if (!(mem_ctx[0]->address >= res->start &&
1532               mem_ctx[0]->address < res->end))
1533                 return AE_OK;
1534
1535         status = handler_obj->address_space.setup(region_obj,
1536                                                   ACPI_REGION_DEACTIVATE,
1537                                                   NULL, (void **)mem_ctx);
1538         if (ACPI_SUCCESS(status))
1539                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541         return status;
1542 }
1543
1544 /**
1545  * acpi_release_memory - Release any mappings done to a memory region
1546  * @handle: Handle to namespace node
1547  * @res: Memory resource
1548  * @level: A level that terminates the search
1549  *
1550  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551  * overlap with @res and that have already been activated (mapped).
1552  *
1553  * This is a helper that allows drivers to place special requirements on memory
1554  * region that may overlap with operation regions, primarily allowing them to
1555  * safely map the region as non-cached memory.
1556  *
1557  * The unmapped Operation Regions will be automatically remapped next time they
1558  * are called, so the drivers do not need to do anything else.
1559  */
1560 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561                                 u32 level)
1562 {
1563         if (!(res->flags & IORESOURCE_MEM))
1564                 return AE_TYPE;
1565
1566         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567                                    acpi_deactivate_mem_region, NULL, res, NULL);
1568 }
1569 EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571 /*
1572  * Let drivers know whether the resource checks are effective
1573  */
1574 int acpi_resources_are_enforced(void)
1575 {
1576         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577 }
1578 EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580 /*
1581  * Deallocate the memory for a spinlock.
1582  */
1583 void acpi_os_delete_lock(acpi_spinlock handle)
1584 {
1585         ACPI_FREE(handle);
1586 }
1587
1588 /*
1589  * Acquire a spinlock.
1590  *
1591  * handle is a pointer to the spinlock_t.
1592  */
1593
1594 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595 {
1596         acpi_cpu_flags flags;
1597         spin_lock_irqsave(lockp, flags);
1598         return flags;
1599 }
1600
1601 /*
1602  * Release a spinlock. See above.
1603  */
1604
1605 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606 {
1607         spin_unlock_irqrestore(lockp, flags);
1608 }
1609
1610 #ifndef ACPI_USE_LOCAL_CACHE
1611
1612 /*******************************************************************************
1613  *
1614  * FUNCTION:    acpi_os_create_cache
1615  *
1616  * PARAMETERS:  name      - Ascii name for the cache
1617  *              size      - Size of each cached object
1618  *              depth     - Maximum depth of the cache (in objects) <ignored>
1619  *              cache     - Where the new cache object is returned
1620  *
1621  * RETURN:      status
1622  *
1623  * DESCRIPTION: Create a cache object
1624  *
1625  ******************************************************************************/
1626
1627 acpi_status
1628 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629 {
1630         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631         if (*cache == NULL)
1632                 return AE_ERROR;
1633         else
1634                 return AE_OK;
1635 }
1636
1637 /*******************************************************************************
1638  *
1639  * FUNCTION:    acpi_os_purge_cache
1640  *
1641  * PARAMETERS:  Cache           - Handle to cache object
1642  *
1643  * RETURN:      Status
1644  *
1645  * DESCRIPTION: Free all objects within the requested cache.
1646  *
1647  ******************************************************************************/
1648
1649 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650 {
1651         kmem_cache_shrink(cache);
1652         return (AE_OK);
1653 }
1654
1655 /*******************************************************************************
1656  *
1657  * FUNCTION:    acpi_os_delete_cache
1658  *
1659  * PARAMETERS:  Cache           - Handle to cache object
1660  *
1661  * RETURN:      Status
1662  *
1663  * DESCRIPTION: Free all objects within the requested cache and delete the
1664  *              cache object.
1665  *
1666  ******************************************************************************/
1667
1668 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669 {
1670         kmem_cache_destroy(cache);
1671         return (AE_OK);
1672 }
1673
1674 /*******************************************************************************
1675  *
1676  * FUNCTION:    acpi_os_release_object
1677  *
1678  * PARAMETERS:  Cache       - Handle to cache object
1679  *              Object      - The object to be released
1680  *
1681  * RETURN:      None
1682  *
1683  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1684  *              the object is deleted.
1685  *
1686  ******************************************************************************/
1687
1688 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689 {
1690         kmem_cache_free(cache, object);
1691         return (AE_OK);
1692 }
1693 #endif
1694
1695 static int __init acpi_no_static_ssdt_setup(char *s)
1696 {
1697         acpi_gbl_disable_ssdt_table_install = TRUE;
1698         pr_info("ACPI: static SSDT installation disabled\n");
1699
1700         return 0;
1701 }
1702
1703 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705 static int __init acpi_disable_return_repair(char *s)
1706 {
1707         printk(KERN_NOTICE PREFIX
1708                "ACPI: Predefined validation mechanism disabled\n");
1709         acpi_gbl_disable_auto_repair = TRUE;
1710
1711         return 1;
1712 }
1713
1714 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716 acpi_status __init acpi_os_initialize(void)
1717 {
1718         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723                 /*
1724                  * Use acpi_os_map_generic_address to pre-map the reset
1725                  * register if it's in system memory.
1726                  */
1727                 int rv;
1728
1729                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731         }
1732         acpi_os_initialized = true;
1733
1734         return AE_OK;
1735 }
1736
1737 acpi_status __init acpi_os_initialize1(void)
1738 {
1739         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742         BUG_ON(!kacpid_wq);
1743         BUG_ON(!kacpi_notify_wq);
1744         BUG_ON(!kacpi_hotplug_wq);
1745         acpi_osi_init();
1746         return AE_OK;
1747 }
1748
1749 acpi_status acpi_os_terminate(void)
1750 {
1751         if (acpi_irq_handler) {
1752                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753                                                  acpi_irq_handler);
1754         }
1755
1756         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763         destroy_workqueue(kacpid_wq);
1764         destroy_workqueue(kacpi_notify_wq);
1765         destroy_workqueue(kacpi_hotplug_wq);
1766
1767         return AE_OK;
1768 }
1769
1770 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771                                   u32 pm1b_control)
1772 {
1773         int rc = 0;
1774         if (__acpi_os_prepare_sleep)
1775                 rc = __acpi_os_prepare_sleep(sleep_state,
1776                                              pm1a_control, pm1b_control);
1777         if (rc < 0)
1778                 return AE_ERROR;
1779         else if (rc > 0)
1780                 return AE_CTRL_TERMINATE;
1781
1782         return AE_OK;
1783 }
1784
1785 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1787 {
1788         __acpi_os_prepare_sleep = func;
1789 }
1790
1791 #if (ACPI_REDUCED_HARDWARE)
1792 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793                                   u32 val_b)
1794 {
1795         int rc = 0;
1796         if (__acpi_os_prepare_extended_sleep)
1797                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798                                              val_a, val_b);
1799         if (rc < 0)
1800                 return AE_ERROR;
1801         else if (rc > 0)
1802                 return AE_CTRL_TERMINATE;
1803
1804         return AE_OK;
1805 }
1806 #else
1807 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808                                   u32 val_b)
1809 {
1810         return AE_OK;
1811 }
1812 #endif
1813
1814 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815                                u32 val_a, u32 val_b))
1816 {
1817         __acpi_os_prepare_extended_sleep = func;
1818 }
1819
1820 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821                                 u32 reg_a_value, u32 reg_b_value)
1822 {
1823         acpi_status status;
1824
1825         if (acpi_gbl_reduced_hardware)
1826                 status = acpi_os_prepare_extended_sleep(sleep_state,
1827                                                         reg_a_value,
1828                                                         reg_b_value);
1829         else
1830                 status = acpi_os_prepare_sleep(sleep_state,
1831                                                reg_a_value, reg_b_value);
1832         return status;
1833 }