Merge tag 'pm-5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[sfrench/cifs-2.6.git] / drivers / acpi / acpica / hwxface.c
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
2 /******************************************************************************
3  *
4  * Module Name: hwxface - Public ACPICA hardware interfaces
5  *
6  * Copyright (C) 2000 - 2018, Intel Corp.
7  *
8  *****************************************************************************/
9
10 #define EXPORT_ACPI_INTERFACES
11
12 #include <acpi/acpi.h>
13 #include "accommon.h"
14 #include "acnamesp.h"
15
16 #define _COMPONENT          ACPI_HARDWARE
17 ACPI_MODULE_NAME("hwxface")
18
19 /******************************************************************************
20  *
21  * FUNCTION:    acpi_reset
22  *
23  * PARAMETERS:  None
24  *
25  * RETURN:      Status
26  *
27  * DESCRIPTION: Set reset register in memory or IO space. Note: Does not
28  *              support reset register in PCI config space, this must be
29  *              handled separately.
30  *
31  ******************************************************************************/
32 acpi_status acpi_reset(void)
33 {
34         struct acpi_generic_address *reset_reg;
35         acpi_status status;
36
37         ACPI_FUNCTION_TRACE(acpi_reset);
38
39         reset_reg = &acpi_gbl_FADT.reset_register;
40
41         /* Check if the reset register is supported */
42
43         if (!(acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) ||
44             !reset_reg->address) {
45                 return_ACPI_STATUS(AE_NOT_EXIST);
46         }
47
48         if (reset_reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
49                 /*
50                  * For I/O space, write directly to the OSL. This bypasses the port
51                  * validation mechanism, which may block a valid write to the reset
52                  * register.
53                  *
54                  * NOTE:
55                  * The ACPI spec requires the reset register width to be 8, so we
56                  * hardcode it here and ignore the FADT value. This maintains
57                  * compatibility with other ACPI implementations that have allowed
58                  * BIOS code with bad register width values to go unnoticed.
59                  */
60                 status = acpi_os_write_port((acpi_io_address)reset_reg->address,
61                                             acpi_gbl_FADT.reset_value,
62                                             ACPI_RESET_REGISTER_WIDTH);
63         } else {
64                 /* Write the reset value to the reset register */
65
66                 status = acpi_hw_write(acpi_gbl_FADT.reset_value, reset_reg);
67         }
68
69         return_ACPI_STATUS(status);
70 }
71
72 ACPI_EXPORT_SYMBOL(acpi_reset)
73
74 /******************************************************************************
75  *
76  * FUNCTION:    acpi_read
77  *
78  * PARAMETERS:  value               - Where the value is returned
79  *              reg                 - GAS register structure
80  *
81  * RETURN:      Status
82  *
83  * DESCRIPTION: Read from either memory or IO space.
84  *
85  * LIMITATIONS: <These limitations also apply to acpi_write>
86  *      bit_width must be exactly 8, 16, 32, or 64.
87  *      space_ID must be system_memory or system_IO.
88  *      bit_offset and access_width are currently ignored, as there has
89  *          not been a need to implement these.
90  *
91  ******************************************************************************/
92 acpi_status acpi_read(u64 *return_value, struct acpi_generic_address *reg)
93 {
94         acpi_status status;
95
96         ACPI_FUNCTION_NAME(acpi_read);
97
98         status = acpi_hw_read(return_value, reg);
99         return (status);
100 }
101
102 ACPI_EXPORT_SYMBOL(acpi_read)
103
104 /******************************************************************************
105  *
106  * FUNCTION:    acpi_write
107  *
108  * PARAMETERS:  value               - Value to be written
109  *              reg                 - GAS register structure
110  *
111  * RETURN:      Status
112  *
113  * DESCRIPTION: Write to either memory or IO space.
114  *
115  ******************************************************************************/
116 acpi_status acpi_write(u64 value, struct acpi_generic_address *reg)
117 {
118         acpi_status status;
119
120         ACPI_FUNCTION_NAME(acpi_write);
121
122         status = acpi_hw_write(value, reg);
123         return (status);
124 }
125
126 ACPI_EXPORT_SYMBOL(acpi_write)
127
128 #if (!ACPI_REDUCED_HARDWARE)
129 /*******************************************************************************
130  *
131  * FUNCTION:    acpi_read_bit_register
132  *
133  * PARAMETERS:  register_id     - ID of ACPI Bit Register to access
134  *              return_value    - Value that was read from the register,
135  *                                normalized to bit position zero.
136  *
137  * RETURN:      Status and the value read from the specified Register. Value
138  *              returned is normalized to bit0 (is shifted all the way right)
139  *
140  * DESCRIPTION: ACPI bit_register read function. Does not acquire the HW lock.
141  *
142  * SUPPORTS:    Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
143  *              PM2 Control.
144  *
145  * Note: The hardware lock is not required when reading the ACPI bit registers
146  *       since almost all of them are single bit and it does not matter that
147  *       the parent hardware register can be split across two physical
148  *       registers. The only multi-bit field is SLP_TYP in the PM1 control
149  *       register, but this field does not cross an 8-bit boundary (nor does
150  *       it make much sense to actually read this field.)
151  *
152  ******************************************************************************/
153 acpi_status acpi_read_bit_register(u32 register_id, u32 *return_value)
154 {
155         struct acpi_bit_register_info *bit_reg_info;
156         u32 register_value;
157         u32 value;
158         acpi_status status;
159
160         ACPI_FUNCTION_TRACE_U32(acpi_read_bit_register, register_id);
161
162         /* Get the info structure corresponding to the requested ACPI Register */
163
164         bit_reg_info = acpi_hw_get_bit_register_info(register_id);
165         if (!bit_reg_info) {
166                 return_ACPI_STATUS(AE_BAD_PARAMETER);
167         }
168
169         /* Read the entire parent register */
170
171         status = acpi_hw_register_read(bit_reg_info->parent_register,
172                                        &register_value);
173         if (ACPI_FAILURE(status)) {
174                 return_ACPI_STATUS(status);
175         }
176
177         /* Normalize the value that was read, mask off other bits */
178
179         value = ((register_value & bit_reg_info->access_bit_mask)
180                  >> bit_reg_info->bit_position);
181
182         ACPI_DEBUG_PRINT((ACPI_DB_IO,
183                           "BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n",
184                           register_id, bit_reg_info->parent_register,
185                           register_value, value));
186
187         *return_value = value;
188         return_ACPI_STATUS(AE_OK);
189 }
190
191 ACPI_EXPORT_SYMBOL(acpi_read_bit_register)
192
193 /*******************************************************************************
194  *
195  * FUNCTION:    acpi_write_bit_register
196  *
197  * PARAMETERS:  register_id     - ID of ACPI Bit Register to access
198  *              value           - Value to write to the register, in bit
199  *                                position zero. The bit is automatically
200  *                                shifted to the correct position.
201  *
202  * RETURN:      Status
203  *
204  * DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock
205  *              since most operations require a read/modify/write sequence.
206  *
207  * SUPPORTS:    Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
208  *              PM2 Control.
209  *
210  * Note that at this level, the fact that there may be actually two
211  * hardware registers (A and B - and B may not exist) is abstracted.
212  *
213  ******************************************************************************/
214 acpi_status acpi_write_bit_register(u32 register_id, u32 value)
215 {
216         struct acpi_bit_register_info *bit_reg_info;
217         acpi_cpu_flags lock_flags;
218         u32 register_value;
219         acpi_status status = AE_OK;
220
221         ACPI_FUNCTION_TRACE_U32(acpi_write_bit_register, register_id);
222
223         /* Get the info structure corresponding to the requested ACPI Register */
224
225         bit_reg_info = acpi_hw_get_bit_register_info(register_id);
226         if (!bit_reg_info) {
227                 return_ACPI_STATUS(AE_BAD_PARAMETER);
228         }
229
230         lock_flags = acpi_os_acquire_raw_lock(acpi_gbl_hardware_lock);
231
232         /*
233          * At this point, we know that the parent register is one of the
234          * following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control
235          */
236         if (bit_reg_info->parent_register != ACPI_REGISTER_PM1_STATUS) {
237                 /*
238                  * 1) Case for PM1 Enable, PM1 Control, and PM2 Control
239                  *
240                  * Perform a register read to preserve the bits that we are not
241                  * interested in
242                  */
243                 status = acpi_hw_register_read(bit_reg_info->parent_register,
244                                                &register_value);
245                 if (ACPI_FAILURE(status)) {
246                         goto unlock_and_exit;
247                 }
248
249                 /*
250                  * Insert the input bit into the value that was just read
251                  * and write the register
252                  */
253                 ACPI_REGISTER_INSERT_VALUE(register_value,
254                                            bit_reg_info->bit_position,
255                                            bit_reg_info->access_bit_mask,
256                                            value);
257
258                 status = acpi_hw_register_write(bit_reg_info->parent_register,
259                                                 register_value);
260         } else {
261                 /*
262                  * 2) Case for PM1 Status
263                  *
264                  * The Status register is different from the rest. Clear an event
265                  * by writing 1, writing 0 has no effect. So, the only relevant
266                  * information is the single bit we're interested in, all others
267                  * should be written as 0 so they will be left unchanged.
268                  */
269                 register_value = ACPI_REGISTER_PREPARE_BITS(value,
270                                                             bit_reg_info->
271                                                             bit_position,
272                                                             bit_reg_info->
273                                                             access_bit_mask);
274
275                 /* No need to write the register if value is all zeros */
276
277                 if (register_value) {
278                         status =
279                             acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
280                                                    register_value);
281                 }
282         }
283
284         ACPI_DEBUG_PRINT((ACPI_DB_IO,
285                           "BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n",
286                           register_id, bit_reg_info->parent_register, value,
287                           register_value));
288
289 unlock_and_exit:
290
291         acpi_os_release_raw_lock(acpi_gbl_hardware_lock, lock_flags);
292         return_ACPI_STATUS(status);
293 }
294
295 ACPI_EXPORT_SYMBOL(acpi_write_bit_register)
296 #endif                          /* !ACPI_REDUCED_HARDWARE */
297 /*******************************************************************************
298  *
299  * FUNCTION:    acpi_get_sleep_type_data
300  *
301  * PARAMETERS:  sleep_state         - Numeric sleep state
302  *              *sleep_type_a        - Where SLP_TYPa is returned
303  *              *sleep_type_b        - Where SLP_TYPb is returned
304  *
305  * RETURN:      Status
306  *
307  * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested
308  *              sleep state via the appropriate \_Sx object.
309  *
310  *  The sleep state package returned from the corresponding \_Sx_ object
311  *  must contain at least one integer.
312  *
313  *  March 2005:
314  *  Added support for a package that contains two integers. This
315  *  goes against the ACPI specification which defines this object as a
316  *  package with one encoded DWORD integer. However, existing practice
317  *  by many BIOS vendors is to return a package with 2 or more integer
318  *  elements, at least one per sleep type (A/B).
319  *
320  *  January 2013:
321  *  Therefore, we must be prepared to accept a package with either a
322  *  single integer or multiple integers.
323  *
324  *  The single integer DWORD format is as follows:
325  *      BYTE 0 - Value for the PM1A SLP_TYP register
326  *      BYTE 1 - Value for the PM1B SLP_TYP register
327  *      BYTE 2-3 - Reserved
328  *
329  *  The dual integer format is as follows:
330  *      Integer 0 - Value for the PM1A SLP_TYP register
331  *      Integer 1 - Value for the PM1A SLP_TYP register
332  *
333  ******************************************************************************/
334 acpi_status
335 acpi_get_sleep_type_data(u8 sleep_state, u8 *sleep_type_a, u8 *sleep_type_b)
336 {
337         acpi_status status;
338         struct acpi_evaluate_info *info;
339         union acpi_operand_object **elements;
340
341         ACPI_FUNCTION_TRACE(acpi_get_sleep_type_data);
342
343         /* Validate parameters */
344
345         if ((sleep_state > ACPI_S_STATES_MAX) || !sleep_type_a || !sleep_type_b) {
346                 return_ACPI_STATUS(AE_BAD_PARAMETER);
347         }
348
349         /* Allocate the evaluation information block */
350
351         info = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_evaluate_info));
352         if (!info) {
353                 return_ACPI_STATUS(AE_NO_MEMORY);
354         }
355
356         /*
357          * Evaluate the \_Sx namespace object containing the register values
358          * for this state
359          */
360         info->relative_pathname = acpi_gbl_sleep_state_names[sleep_state];
361
362         status = acpi_ns_evaluate(info);
363         if (ACPI_FAILURE(status)) {
364                 if (status == AE_NOT_FOUND) {
365
366                         /* The _Sx states are optional, ignore NOT_FOUND */
367
368                         goto final_cleanup;
369                 }
370
371                 goto warning_cleanup;
372         }
373
374         /* Must have a return object */
375
376         if (!info->return_object) {
377                 ACPI_ERROR((AE_INFO, "No Sleep State object returned from [%s]",
378                             info->relative_pathname));
379                 status = AE_AML_NO_RETURN_VALUE;
380                 goto warning_cleanup;
381         }
382
383         /* Return object must be of type Package */
384
385         if (info->return_object->common.type != ACPI_TYPE_PACKAGE) {
386                 ACPI_ERROR((AE_INFO,
387                             "Sleep State return object is not a Package"));
388                 status = AE_AML_OPERAND_TYPE;
389                 goto return_value_cleanup;
390         }
391
392         /*
393          * Any warnings about the package length or the object types have
394          * already been issued by the predefined name module -- there is no
395          * need to repeat them here.
396          */
397         elements = info->return_object->package.elements;
398         switch (info->return_object->package.count) {
399         case 0:
400
401                 status = AE_AML_PACKAGE_LIMIT;
402                 break;
403
404         case 1:
405
406                 if (elements[0]->common.type != ACPI_TYPE_INTEGER) {
407                         status = AE_AML_OPERAND_TYPE;
408                         break;
409                 }
410
411                 /* A valid _Sx_ package with one integer */
412
413                 *sleep_type_a = (u8)elements[0]->integer.value;
414                 *sleep_type_b = (u8)(elements[0]->integer.value >> 8);
415                 break;
416
417         case 2:
418         default:
419
420                 if ((elements[0]->common.type != ACPI_TYPE_INTEGER) ||
421                     (elements[1]->common.type != ACPI_TYPE_INTEGER)) {
422                         status = AE_AML_OPERAND_TYPE;
423                         break;
424                 }
425
426                 /* A valid _Sx_ package with two integers */
427
428                 *sleep_type_a = (u8)elements[0]->integer.value;
429                 *sleep_type_b = (u8)elements[1]->integer.value;
430                 break;
431         }
432
433 return_value_cleanup:
434         acpi_ut_remove_reference(info->return_object);
435
436 warning_cleanup:
437         if (ACPI_FAILURE(status)) {
438                 ACPI_EXCEPTION((AE_INFO, status,
439                                 "While evaluating Sleep State [%s]",
440                                 info->relative_pathname));
441         }
442
443 final_cleanup:
444         ACPI_FREE(info);
445         return_ACPI_STATUS(status);
446 }
447
448 ACPI_EXPORT_SYMBOL(acpi_get_sleep_type_data)