arm64: mm: avoid name clash in __page_to_voff()
[sfrench/cifs-2.6.git] / crypto / mcryptd.c
1 /*
2  * Software multibuffer async crypto daemon.
3  *
4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5  *
6  * Adapted from crypto daemon.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
29
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
32
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34                                    unsigned int tail);
35
36 struct mcryptd_flush_list {
37         struct list_head list;
38         struct mutex lock;
39 };
40
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
42
43 struct hashd_instance_ctx {
44         struct crypto_ahash_spawn spawn;
45         struct mcryptd_queue *queue;
46 };
47
48 static void mcryptd_queue_worker(struct work_struct *work);
49
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51 {
52         struct mcryptd_flush_list *flist;
53
54         if (!cstate->flusher_engaged) {
55                 /* put the flusher on the flush list */
56                 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57                 mutex_lock(&flist->lock);
58                 list_add_tail(&cstate->flush_list, &flist->list);
59                 cstate->flusher_engaged = true;
60                 cstate->next_flush = jiffies + delay;
61                 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62                         &cstate->flush, delay);
63                 mutex_unlock(&flist->lock);
64         }
65 }
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
67
68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69                              unsigned int max_cpu_qlen)
70 {
71         int cpu;
72         struct mcryptd_cpu_queue *cpu_queue;
73
74         queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75         pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76         if (!queue->cpu_queue)
77                 return -ENOMEM;
78         for_each_possible_cpu(cpu) {
79                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80                 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81                 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82                 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83         }
84         return 0;
85 }
86
87 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
88 {
89         int cpu;
90         struct mcryptd_cpu_queue *cpu_queue;
91
92         for_each_possible_cpu(cpu) {
93                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94                 BUG_ON(cpu_queue->queue.qlen);
95         }
96         free_percpu(queue->cpu_queue);
97 }
98
99 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100                                   struct crypto_async_request *request,
101                                   struct mcryptd_hash_request_ctx *rctx)
102 {
103         int cpu, err;
104         struct mcryptd_cpu_queue *cpu_queue;
105
106         cpu = get_cpu();
107         cpu_queue = this_cpu_ptr(queue->cpu_queue);
108         rctx->tag.cpu = cpu;
109
110         err = crypto_enqueue_request(&cpu_queue->queue, request);
111         pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112                  cpu, cpu_queue, request);
113         queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114         put_cpu();
115
116         return err;
117 }
118
119 /*
120  * Try to opportunisticlly flush the partially completed jobs if
121  * crypto daemon is the only task running.
122  */
123 static void mcryptd_opportunistic_flush(void)
124 {
125         struct mcryptd_flush_list *flist;
126         struct mcryptd_alg_cstate *cstate;
127
128         flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129         while (single_task_running()) {
130                 mutex_lock(&flist->lock);
131                 cstate = list_first_entry_or_null(&flist->list,
132                                 struct mcryptd_alg_cstate, flush_list);
133                 if (!cstate || !cstate->flusher_engaged) {
134                         mutex_unlock(&flist->lock);
135                         return;
136                 }
137                 list_del(&cstate->flush_list);
138                 cstate->flusher_engaged = false;
139                 mutex_unlock(&flist->lock);
140                 cstate->alg_state->flusher(cstate);
141         }
142 }
143
144 /*
145  * Called in workqueue context, do one real cryption work (via
146  * req->complete) and reschedule itself if there are more work to
147  * do.
148  */
149 static void mcryptd_queue_worker(struct work_struct *work)
150 {
151         struct mcryptd_cpu_queue *cpu_queue;
152         struct crypto_async_request *req, *backlog;
153         int i;
154
155         /*
156          * Need to loop through more than once for multi-buffer to
157          * be effective.
158          */
159
160         cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
161         i = 0;
162         while (i < MCRYPTD_BATCH || single_task_running()) {
163                 /*
164                  * preempt_disable/enable is used to prevent
165                  * being preempted by mcryptd_enqueue_request()
166                  */
167                 local_bh_disable();
168                 preempt_disable();
169                 backlog = crypto_get_backlog(&cpu_queue->queue);
170                 req = crypto_dequeue_request(&cpu_queue->queue);
171                 preempt_enable();
172                 local_bh_enable();
173
174                 if (!req) {
175                         mcryptd_opportunistic_flush();
176                         return;
177                 }
178
179                 if (backlog)
180                         backlog->complete(backlog, -EINPROGRESS);
181                 req->complete(req, 0);
182                 if (!cpu_queue->queue.qlen)
183                         return;
184                 ++i;
185         }
186         if (cpu_queue->queue.qlen)
187                 queue_work(kcrypto_wq, &cpu_queue->work);
188 }
189
190 void mcryptd_flusher(struct work_struct *__work)
191 {
192         struct  mcryptd_alg_cstate      *alg_cpu_state;
193         struct  mcryptd_alg_state       *alg_state;
194         struct  mcryptd_flush_list      *flist;
195         int     cpu;
196
197         cpu = smp_processor_id();
198         alg_cpu_state = container_of(to_delayed_work(__work),
199                                      struct mcryptd_alg_cstate, flush);
200         alg_state = alg_cpu_state->alg_state;
201         if (alg_cpu_state->cpu != cpu)
202                 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
203                                 cpu, alg_cpu_state->cpu);
204
205         if (alg_cpu_state->flusher_engaged) {
206                 flist = per_cpu_ptr(mcryptd_flist, cpu);
207                 mutex_lock(&flist->lock);
208                 list_del(&alg_cpu_state->flush_list);
209                 alg_cpu_state->flusher_engaged = false;
210                 mutex_unlock(&flist->lock);
211                 alg_state->flusher(alg_cpu_state);
212         }
213 }
214 EXPORT_SYMBOL_GPL(mcryptd_flusher);
215
216 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
217 {
218         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
219         struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
220
221         return ictx->queue;
222 }
223
224 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225                                    unsigned int tail)
226 {
227         char *p;
228         struct crypto_instance *inst;
229         int err;
230
231         p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
232         if (!p)
233                 return ERR_PTR(-ENOMEM);
234
235         inst = (void *)(p + head);
236
237         err = -ENAMETOOLONG;
238         if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
239                     "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
240                 goto out_free_inst;
241
242         memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
243
244         inst->alg.cra_priority = alg->cra_priority + 50;
245         inst->alg.cra_blocksize = alg->cra_blocksize;
246         inst->alg.cra_alignmask = alg->cra_alignmask;
247
248 out:
249         return p;
250
251 out_free_inst:
252         kfree(p);
253         p = ERR_PTR(err);
254         goto out;
255 }
256
257 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
258                                           u32 *mask)
259 {
260         struct crypto_attr_type *algt;
261
262         algt = crypto_get_attr_type(tb);
263         if (IS_ERR(algt))
264                 return false;
265
266         *type |= algt->type & CRYPTO_ALG_INTERNAL;
267         *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
268
269         if (*type & *mask & CRYPTO_ALG_INTERNAL)
270                 return true;
271         else
272                 return false;
273 }
274
275 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
276 {
277         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
278         struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
279         struct crypto_ahash_spawn *spawn = &ictx->spawn;
280         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
281         struct crypto_ahash *hash;
282
283         hash = crypto_spawn_ahash(spawn);
284         if (IS_ERR(hash))
285                 return PTR_ERR(hash);
286
287         ctx->child = hash;
288         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
289                                  sizeof(struct mcryptd_hash_request_ctx) +
290                                  crypto_ahash_reqsize(hash));
291         return 0;
292 }
293
294 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
295 {
296         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
297
298         crypto_free_ahash(ctx->child);
299 }
300
301 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
302                                    const u8 *key, unsigned int keylen)
303 {
304         struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
305         struct crypto_ahash *child = ctx->child;
306         int err;
307
308         crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
309         crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
310                                       CRYPTO_TFM_REQ_MASK);
311         err = crypto_ahash_setkey(child, key, keylen);
312         crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
313                                        CRYPTO_TFM_RES_MASK);
314         return err;
315 }
316
317 static int mcryptd_hash_enqueue(struct ahash_request *req,
318                                 crypto_completion_t complete)
319 {
320         int ret;
321
322         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
323         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324         struct mcryptd_queue *queue =
325                 mcryptd_get_queue(crypto_ahash_tfm(tfm));
326
327         rctx->complete = req->base.complete;
328         req->base.complete = complete;
329
330         ret = mcryptd_enqueue_request(queue, &req->base, rctx);
331
332         return ret;
333 }
334
335 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
336 {
337         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
338         struct crypto_ahash *child = ctx->child;
339         struct ahash_request *req = ahash_request_cast(req_async);
340         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
341         struct ahash_request *desc = &rctx->areq;
342
343         if (unlikely(err == -EINPROGRESS))
344                 goto out;
345
346         ahash_request_set_tfm(desc, child);
347         ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
348                                                 rctx->complete, req_async);
349
350         rctx->out = req->result;
351         err = crypto_ahash_init(desc);
352
353 out:
354         local_bh_disable();
355         rctx->complete(&req->base, err);
356         local_bh_enable();
357 }
358
359 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
360 {
361         return mcryptd_hash_enqueue(req, mcryptd_hash_init);
362 }
363
364 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
365 {
366         struct ahash_request *req = ahash_request_cast(req_async);
367         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
368
369         if (unlikely(err == -EINPROGRESS))
370                 goto out;
371
372         rctx->out = req->result;
373         err = ahash_mcryptd_update(&rctx->areq);
374         if (err) {
375                 req->base.complete = rctx->complete;
376                 goto out;
377         }
378
379         return;
380 out:
381         local_bh_disable();
382         rctx->complete(&req->base, err);
383         local_bh_enable();
384 }
385
386 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
387 {
388         return mcryptd_hash_enqueue(req, mcryptd_hash_update);
389 }
390
391 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
392 {
393         struct ahash_request *req = ahash_request_cast(req_async);
394         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
395
396         if (unlikely(err == -EINPROGRESS))
397                 goto out;
398
399         rctx->out = req->result;
400         err = ahash_mcryptd_final(&rctx->areq);
401         if (err) {
402                 req->base.complete = rctx->complete;
403                 goto out;
404         }
405
406         return;
407 out:
408         local_bh_disable();
409         rctx->complete(&req->base, err);
410         local_bh_enable();
411 }
412
413 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
414 {
415         return mcryptd_hash_enqueue(req, mcryptd_hash_final);
416 }
417
418 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
419 {
420         struct ahash_request *req = ahash_request_cast(req_async);
421         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
422
423         if (unlikely(err == -EINPROGRESS))
424                 goto out;
425         rctx->out = req->result;
426         err = ahash_mcryptd_finup(&rctx->areq);
427
428         if (err) {
429                 req->base.complete = rctx->complete;
430                 goto out;
431         }
432
433         return;
434 out:
435         local_bh_disable();
436         rctx->complete(&req->base, err);
437         local_bh_enable();
438 }
439
440 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
441 {
442         return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
443 }
444
445 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
446 {
447         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
448         struct crypto_ahash *child = ctx->child;
449         struct ahash_request *req = ahash_request_cast(req_async);
450         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
451         struct ahash_request *desc = &rctx->areq;
452
453         if (unlikely(err == -EINPROGRESS))
454                 goto out;
455
456         ahash_request_set_tfm(desc, child);
457         ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
458                                                 rctx->complete, req_async);
459
460         rctx->out = req->result;
461         err = ahash_mcryptd_digest(desc);
462
463 out:
464         local_bh_disable();
465         rctx->complete(&req->base, err);
466         local_bh_enable();
467 }
468
469 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
470 {
471         return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
472 }
473
474 static int mcryptd_hash_export(struct ahash_request *req, void *out)
475 {
476         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
477
478         return crypto_ahash_export(&rctx->areq, out);
479 }
480
481 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
482 {
483         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
484
485         return crypto_ahash_import(&rctx->areq, in);
486 }
487
488 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
489                               struct mcryptd_queue *queue)
490 {
491         struct hashd_instance_ctx *ctx;
492         struct ahash_instance *inst;
493         struct hash_alg_common *halg;
494         struct crypto_alg *alg;
495         u32 type = 0;
496         u32 mask = 0;
497         int err;
498
499         if (!mcryptd_check_internal(tb, &type, &mask))
500                 return -EINVAL;
501
502         halg = ahash_attr_alg(tb[1], type, mask);
503         if (IS_ERR(halg))
504                 return PTR_ERR(halg);
505
506         alg = &halg->base;
507         pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
508         inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
509                                         sizeof(*ctx));
510         err = PTR_ERR(inst);
511         if (IS_ERR(inst))
512                 goto out_put_alg;
513
514         ctx = ahash_instance_ctx(inst);
515         ctx->queue = queue;
516
517         err = crypto_init_ahash_spawn(&ctx->spawn, halg,
518                                       ahash_crypto_instance(inst));
519         if (err)
520                 goto out_free_inst;
521
522         type = CRYPTO_ALG_ASYNC;
523         if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
524                 type |= CRYPTO_ALG_INTERNAL;
525         inst->alg.halg.base.cra_flags = type;
526
527         inst->alg.halg.digestsize = halg->digestsize;
528         inst->alg.halg.statesize = halg->statesize;
529         inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
530
531         inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
532         inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
533
534         inst->alg.init   = mcryptd_hash_init_enqueue;
535         inst->alg.update = mcryptd_hash_update_enqueue;
536         inst->alg.final  = mcryptd_hash_final_enqueue;
537         inst->alg.finup  = mcryptd_hash_finup_enqueue;
538         inst->alg.export = mcryptd_hash_export;
539         inst->alg.import = mcryptd_hash_import;
540         inst->alg.setkey = mcryptd_hash_setkey;
541         inst->alg.digest = mcryptd_hash_digest_enqueue;
542
543         err = ahash_register_instance(tmpl, inst);
544         if (err) {
545                 crypto_drop_ahash(&ctx->spawn);
546 out_free_inst:
547                 kfree(inst);
548         }
549
550 out_put_alg:
551         crypto_mod_put(alg);
552         return err;
553 }
554
555 static struct mcryptd_queue mqueue;
556
557 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
558 {
559         struct crypto_attr_type *algt;
560
561         algt = crypto_get_attr_type(tb);
562         if (IS_ERR(algt))
563                 return PTR_ERR(algt);
564
565         switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
566         case CRYPTO_ALG_TYPE_DIGEST:
567                 return mcryptd_create_hash(tmpl, tb, &mqueue);
568         break;
569         }
570
571         return -EINVAL;
572 }
573
574 static void mcryptd_free(struct crypto_instance *inst)
575 {
576         struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
577         struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
578
579         switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
580         case CRYPTO_ALG_TYPE_AHASH:
581                 crypto_drop_ahash(&hctx->spawn);
582                 kfree(ahash_instance(inst));
583                 return;
584         default:
585                 crypto_drop_spawn(&ctx->spawn);
586                 kfree(inst);
587         }
588 }
589
590 static struct crypto_template mcryptd_tmpl = {
591         .name = "mcryptd",
592         .create = mcryptd_create,
593         .free = mcryptd_free,
594         .module = THIS_MODULE,
595 };
596
597 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
598                                         u32 type, u32 mask)
599 {
600         char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
601         struct crypto_ahash *tfm;
602
603         if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
604                      "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
605                 return ERR_PTR(-EINVAL);
606         tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
607         if (IS_ERR(tfm))
608                 return ERR_CAST(tfm);
609         if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
610                 crypto_free_ahash(tfm);
611                 return ERR_PTR(-EINVAL);
612         }
613
614         return __mcryptd_ahash_cast(tfm);
615 }
616 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
617
618 int ahash_mcryptd_digest(struct ahash_request *desc)
619 {
620         return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
621 }
622
623 int ahash_mcryptd_update(struct ahash_request *desc)
624 {
625         /* alignment is to be done by multi-buffer crypto algorithm if needed */
626
627         return crypto_ahash_update(desc);
628 }
629
630 int ahash_mcryptd_finup(struct ahash_request *desc)
631 {
632         /* alignment is to be done by multi-buffer crypto algorithm if needed */
633
634         return crypto_ahash_finup(desc);
635 }
636
637 int ahash_mcryptd_final(struct ahash_request *desc)
638 {
639         /* alignment is to be done by multi-buffer crypto algorithm if needed */
640
641         return crypto_ahash_final(desc);
642 }
643
644 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
645 {
646         struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
647
648         return ctx->child;
649 }
650 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
651
652 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
653 {
654         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
655         return &rctx->areq;
656 }
657 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
658
659 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
660 {
661         crypto_free_ahash(&tfm->base);
662 }
663 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
664
665 static int __init mcryptd_init(void)
666 {
667         int err, cpu;
668         struct mcryptd_flush_list *flist;
669
670         mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
671         for_each_possible_cpu(cpu) {
672                 flist = per_cpu_ptr(mcryptd_flist, cpu);
673                 INIT_LIST_HEAD(&flist->list);
674                 mutex_init(&flist->lock);
675         }
676
677         err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
678         if (err) {
679                 free_percpu(mcryptd_flist);
680                 return err;
681         }
682
683         err = crypto_register_template(&mcryptd_tmpl);
684         if (err) {
685                 mcryptd_fini_queue(&mqueue);
686                 free_percpu(mcryptd_flist);
687         }
688
689         return err;
690 }
691
692 static void __exit mcryptd_exit(void)
693 {
694         mcryptd_fini_queue(&mqueue);
695         crypto_unregister_template(&mcryptd_tmpl);
696         free_percpu(mcryptd_flist);
697 }
698
699 subsys_initcall(mcryptd_init);
700 module_exit(mcryptd_exit);
701
702 MODULE_LICENSE("GPL");
703 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
704 MODULE_ALIAS_CRYPTO("mcryptd");