mm, hugetlb: do not rely on overcommit limit during migration
[sfrench/cifs-2.6.git] / crypto / lrw.c
1 /* LRW: as defined by Cyril Guyot in
2  *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 #include <crypto/lrw.h>
32
33 #define LRW_BUFFER_SIZE 128u
34
35 struct priv {
36         struct crypto_skcipher *child;
37         struct lrw_table_ctx table;
38 };
39
40 struct rctx {
41         be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
42
43         be128 t;
44
45         be128 *ext;
46
47         struct scatterlist srcbuf[2];
48         struct scatterlist dstbuf[2];
49         struct scatterlist *src;
50         struct scatterlist *dst;
51
52         unsigned int left;
53
54         struct skcipher_request subreq;
55 };
56
57 static inline void setbit128_bbe(void *b, int bit)
58 {
59         __set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61                          BITS_PER_LONG
62 #else
63                          BITS_PER_BYTE
64 #endif
65                         ), b);
66 }
67
68 int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
69 {
70         be128 tmp = { 0 };
71         int i;
72
73         if (ctx->table)
74                 gf128mul_free_64k(ctx->table);
75
76         /* initialize multiplication table for Key2 */
77         ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
78         if (!ctx->table)
79                 return -ENOMEM;
80
81         /* initialize optimization table */
82         for (i = 0; i < 128; i++) {
83                 setbit128_bbe(&tmp, i);
84                 ctx->mulinc[i] = tmp;
85                 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
86         }
87
88         return 0;
89 }
90 EXPORT_SYMBOL_GPL(lrw_init_table);
91
92 void lrw_free_table(struct lrw_table_ctx *ctx)
93 {
94         if (ctx->table)
95                 gf128mul_free_64k(ctx->table);
96 }
97 EXPORT_SYMBOL_GPL(lrw_free_table);
98
99 static int setkey(struct crypto_skcipher *parent, const u8 *key,
100                   unsigned int keylen)
101 {
102         struct priv *ctx = crypto_skcipher_ctx(parent);
103         struct crypto_skcipher *child = ctx->child;
104         int err, bsize = LRW_BLOCK_SIZE;
105         const u8 *tweak = key + keylen - bsize;
106
107         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
108         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
109                                          CRYPTO_TFM_REQ_MASK);
110         err = crypto_skcipher_setkey(child, key, keylen - bsize);
111         crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
112                                           CRYPTO_TFM_RES_MASK);
113         if (err)
114                 return err;
115
116         return lrw_init_table(&ctx->table, tweak);
117 }
118
119 static inline void inc(be128 *iv)
120 {
121         be64_add_cpu(&iv->b, 1);
122         if (!iv->b)
123                 be64_add_cpu(&iv->a, 1);
124 }
125
126 /* this returns the number of consequative 1 bits starting
127  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
128 static inline int get_index128(be128 *block)
129 {
130         int x;
131         __be32 *p = (__be32 *) block;
132
133         for (p += 3, x = 0; x < 128; p--, x += 32) {
134                 u32 val = be32_to_cpup(p);
135
136                 if (!~val)
137                         continue;
138
139                 return x + ffz(val);
140         }
141
142         return x;
143 }
144
145 static int post_crypt(struct skcipher_request *req)
146 {
147         struct rctx *rctx = skcipher_request_ctx(req);
148         be128 *buf = rctx->ext ?: rctx->buf;
149         struct skcipher_request *subreq;
150         const int bs = LRW_BLOCK_SIZE;
151         struct skcipher_walk w;
152         struct scatterlist *sg;
153         unsigned offset;
154         int err;
155
156         subreq = &rctx->subreq;
157         err = skcipher_walk_virt(&w, subreq, false);
158
159         while (w.nbytes) {
160                 unsigned int avail = w.nbytes;
161                 be128 *wdst;
162
163                 wdst = w.dst.virt.addr;
164
165                 do {
166                         be128_xor(wdst, buf++, wdst);
167                         wdst++;
168                 } while ((avail -= bs) >= bs);
169
170                 err = skcipher_walk_done(&w, avail);
171         }
172
173         rctx->left -= subreq->cryptlen;
174
175         if (err || !rctx->left)
176                 goto out;
177
178         rctx->dst = rctx->dstbuf;
179
180         scatterwalk_done(&w.out, 0, 1);
181         sg = w.out.sg;
182         offset = w.out.offset;
183
184         if (rctx->dst != sg) {
185                 rctx->dst[0] = *sg;
186                 sg_unmark_end(rctx->dst);
187                 scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
188         }
189         rctx->dst[0].length -= offset - sg->offset;
190         rctx->dst[0].offset = offset;
191
192 out:
193         return err;
194 }
195
196 static int pre_crypt(struct skcipher_request *req)
197 {
198         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
199         struct rctx *rctx = skcipher_request_ctx(req);
200         struct priv *ctx = crypto_skcipher_ctx(tfm);
201         be128 *buf = rctx->ext ?: rctx->buf;
202         struct skcipher_request *subreq;
203         const int bs = LRW_BLOCK_SIZE;
204         struct skcipher_walk w;
205         struct scatterlist *sg;
206         unsigned cryptlen;
207         unsigned offset;
208         be128 *iv;
209         bool more;
210         int err;
211
212         subreq = &rctx->subreq;
213         skcipher_request_set_tfm(subreq, tfm);
214
215         cryptlen = subreq->cryptlen;
216         more = rctx->left > cryptlen;
217         if (!more)
218                 cryptlen = rctx->left;
219
220         skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
221                                    cryptlen, req->iv);
222
223         err = skcipher_walk_virt(&w, subreq, false);
224         iv = w.iv;
225
226         while (w.nbytes) {
227                 unsigned int avail = w.nbytes;
228                 be128 *wsrc;
229                 be128 *wdst;
230
231                 wsrc = w.src.virt.addr;
232                 wdst = w.dst.virt.addr;
233
234                 do {
235                         *buf++ = rctx->t;
236                         be128_xor(wdst++, &rctx->t, wsrc++);
237
238                         /* T <- I*Key2, using the optimization
239                          * discussed in the specification */
240                         be128_xor(&rctx->t, &rctx->t,
241                                   &ctx->table.mulinc[get_index128(iv)]);
242                         inc(iv);
243                 } while ((avail -= bs) >= bs);
244
245                 err = skcipher_walk_done(&w, avail);
246         }
247
248         skcipher_request_set_tfm(subreq, ctx->child);
249         skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
250                                    cryptlen, NULL);
251
252         if (err || !more)
253                 goto out;
254
255         rctx->src = rctx->srcbuf;
256
257         scatterwalk_done(&w.in, 0, 1);
258         sg = w.in.sg;
259         offset = w.in.offset;
260
261         if (rctx->src != sg) {
262                 rctx->src[0] = *sg;
263                 sg_unmark_end(rctx->src);
264                 scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
265         }
266         rctx->src[0].length -= offset - sg->offset;
267         rctx->src[0].offset = offset;
268
269 out:
270         return err;
271 }
272
273 static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
274 {
275         struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
276         struct rctx *rctx = skcipher_request_ctx(req);
277         struct skcipher_request *subreq;
278         gfp_t gfp;
279
280         subreq = &rctx->subreq;
281         skcipher_request_set_callback(subreq, req->base.flags, done, req);
282
283         gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
284                                                            GFP_ATOMIC;
285         rctx->ext = NULL;
286
287         subreq->cryptlen = LRW_BUFFER_SIZE;
288         if (req->cryptlen > LRW_BUFFER_SIZE) {
289                 unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
290
291                 rctx->ext = kmalloc(n, gfp);
292                 if (rctx->ext)
293                         subreq->cryptlen = n;
294         }
295
296         rctx->src = req->src;
297         rctx->dst = req->dst;
298         rctx->left = req->cryptlen;
299
300         /* calculate first value of T */
301         memcpy(&rctx->t, req->iv, sizeof(rctx->t));
302
303         /* T <- I*Key2 */
304         gf128mul_64k_bbe(&rctx->t, ctx->table.table);
305
306         return 0;
307 }
308
309 static void exit_crypt(struct skcipher_request *req)
310 {
311         struct rctx *rctx = skcipher_request_ctx(req);
312
313         rctx->left = 0;
314
315         if (rctx->ext)
316                 kfree(rctx->ext);
317 }
318
319 static int do_encrypt(struct skcipher_request *req, int err)
320 {
321         struct rctx *rctx = skcipher_request_ctx(req);
322         struct skcipher_request *subreq;
323
324         subreq = &rctx->subreq;
325
326         while (!err && rctx->left) {
327                 err = pre_crypt(req) ?:
328                       crypto_skcipher_encrypt(subreq) ?:
329                       post_crypt(req);
330
331                 if (err == -EINPROGRESS || err == -EBUSY)
332                         return err;
333         }
334
335         exit_crypt(req);
336         return err;
337 }
338
339 static void encrypt_done(struct crypto_async_request *areq, int err)
340 {
341         struct skcipher_request *req = areq->data;
342         struct skcipher_request *subreq;
343         struct rctx *rctx;
344
345         rctx = skcipher_request_ctx(req);
346
347         if (err == -EINPROGRESS) {
348                 if (rctx->left != req->cryptlen)
349                         return;
350                 goto out;
351         }
352
353         subreq = &rctx->subreq;
354         subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
355
356         err = do_encrypt(req, err ?: post_crypt(req));
357         if (rctx->left)
358                 return;
359
360 out:
361         skcipher_request_complete(req, err);
362 }
363
364 static int encrypt(struct skcipher_request *req)
365 {
366         return do_encrypt(req, init_crypt(req, encrypt_done));
367 }
368
369 static int do_decrypt(struct skcipher_request *req, int err)
370 {
371         struct rctx *rctx = skcipher_request_ctx(req);
372         struct skcipher_request *subreq;
373
374         subreq = &rctx->subreq;
375
376         while (!err && rctx->left) {
377                 err = pre_crypt(req) ?:
378                       crypto_skcipher_decrypt(subreq) ?:
379                       post_crypt(req);
380
381                 if (err == -EINPROGRESS || err == -EBUSY)
382                         return err;
383         }
384
385         exit_crypt(req);
386         return err;
387 }
388
389 static void decrypt_done(struct crypto_async_request *areq, int err)
390 {
391         struct skcipher_request *req = areq->data;
392         struct skcipher_request *subreq;
393         struct rctx *rctx;
394
395         rctx = skcipher_request_ctx(req);
396
397         if (err == -EINPROGRESS) {
398                 if (rctx->left != req->cryptlen)
399                         return;
400                 goto out;
401         }
402
403         subreq = &rctx->subreq;
404         subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
405
406         err = do_decrypt(req, err ?: post_crypt(req));
407         if (rctx->left)
408                 return;
409
410 out:
411         skcipher_request_complete(req, err);
412 }
413
414 static int decrypt(struct skcipher_request *req)
415 {
416         return do_decrypt(req, init_crypt(req, decrypt_done));
417 }
418
419 int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
420               struct scatterlist *ssrc, unsigned int nbytes,
421               struct lrw_crypt_req *req)
422 {
423         const unsigned int bsize = LRW_BLOCK_SIZE;
424         const unsigned int max_blks = req->tbuflen / bsize;
425         struct lrw_table_ctx *ctx = req->table_ctx;
426         struct blkcipher_walk walk;
427         unsigned int nblocks;
428         be128 *iv, *src, *dst, *t;
429         be128 *t_buf = req->tbuf;
430         int err, i;
431
432         BUG_ON(max_blks < 1);
433
434         blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
435
436         err = blkcipher_walk_virt(desc, &walk);
437         nbytes = walk.nbytes;
438         if (!nbytes)
439                 return err;
440
441         nblocks = min(walk.nbytes / bsize, max_blks);
442         src = (be128 *)walk.src.virt.addr;
443         dst = (be128 *)walk.dst.virt.addr;
444
445         /* calculate first value of T */
446         iv = (be128 *)walk.iv;
447         t_buf[0] = *iv;
448
449         /* T <- I*Key2 */
450         gf128mul_64k_bbe(&t_buf[0], ctx->table);
451
452         i = 0;
453         goto first;
454
455         for (;;) {
456                 do {
457                         for (i = 0; i < nblocks; i++) {
458                                 /* T <- I*Key2, using the optimization
459                                  * discussed in the specification */
460                                 be128_xor(&t_buf[i], t,
461                                                 &ctx->mulinc[get_index128(iv)]);
462                                 inc(iv);
463 first:
464                                 t = &t_buf[i];
465
466                                 /* PP <- T xor P */
467                                 be128_xor(dst + i, t, src + i);
468                         }
469
470                         /* CC <- E(Key2,PP) */
471                         req->crypt_fn(req->crypt_ctx, (u8 *)dst,
472                                       nblocks * bsize);
473
474                         /* C <- T xor CC */
475                         for (i = 0; i < nblocks; i++)
476                                 be128_xor(dst + i, dst + i, &t_buf[i]);
477
478                         src += nblocks;
479                         dst += nblocks;
480                         nbytes -= nblocks * bsize;
481                         nblocks = min(nbytes / bsize, max_blks);
482                 } while (nblocks > 0);
483
484                 err = blkcipher_walk_done(desc, &walk, nbytes);
485                 nbytes = walk.nbytes;
486                 if (!nbytes)
487                         break;
488
489                 nblocks = min(nbytes / bsize, max_blks);
490                 src = (be128 *)walk.src.virt.addr;
491                 dst = (be128 *)walk.dst.virt.addr;
492         }
493
494         return err;
495 }
496 EXPORT_SYMBOL_GPL(lrw_crypt);
497
498 static int init_tfm(struct crypto_skcipher *tfm)
499 {
500         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
501         struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
502         struct priv *ctx = crypto_skcipher_ctx(tfm);
503         struct crypto_skcipher *cipher;
504
505         cipher = crypto_spawn_skcipher(spawn);
506         if (IS_ERR(cipher))
507                 return PTR_ERR(cipher);
508
509         ctx->child = cipher;
510
511         crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
512                                          sizeof(struct rctx));
513
514         return 0;
515 }
516
517 static void exit_tfm(struct crypto_skcipher *tfm)
518 {
519         struct priv *ctx = crypto_skcipher_ctx(tfm);
520
521         lrw_free_table(&ctx->table);
522         crypto_free_skcipher(ctx->child);
523 }
524
525 static void free(struct skcipher_instance *inst)
526 {
527         crypto_drop_skcipher(skcipher_instance_ctx(inst));
528         kfree(inst);
529 }
530
531 static int create(struct crypto_template *tmpl, struct rtattr **tb)
532 {
533         struct crypto_skcipher_spawn *spawn;
534         struct skcipher_instance *inst;
535         struct crypto_attr_type *algt;
536         struct skcipher_alg *alg;
537         const char *cipher_name;
538         char ecb_name[CRYPTO_MAX_ALG_NAME];
539         int err;
540
541         algt = crypto_get_attr_type(tb);
542         if (IS_ERR(algt))
543                 return PTR_ERR(algt);
544
545         if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
546                 return -EINVAL;
547
548         cipher_name = crypto_attr_alg_name(tb[1]);
549         if (IS_ERR(cipher_name))
550                 return PTR_ERR(cipher_name);
551
552         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
553         if (!inst)
554                 return -ENOMEM;
555
556         spawn = skcipher_instance_ctx(inst);
557
558         crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
559         err = crypto_grab_skcipher(spawn, cipher_name, 0,
560                                    crypto_requires_sync(algt->type,
561                                                         algt->mask));
562         if (err == -ENOENT) {
563                 err = -ENAMETOOLONG;
564                 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
565                              cipher_name) >= CRYPTO_MAX_ALG_NAME)
566                         goto err_free_inst;
567
568                 err = crypto_grab_skcipher(spawn, ecb_name, 0,
569                                            crypto_requires_sync(algt->type,
570                                                                 algt->mask));
571         }
572
573         if (err)
574                 goto err_free_inst;
575
576         alg = crypto_skcipher_spawn_alg(spawn);
577
578         err = -EINVAL;
579         if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
580                 goto err_drop_spawn;
581
582         if (crypto_skcipher_alg_ivsize(alg))
583                 goto err_drop_spawn;
584
585         err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
586                                   &alg->base);
587         if (err)
588                 goto err_drop_spawn;
589
590         err = -EINVAL;
591         cipher_name = alg->base.cra_name;
592
593         /* Alas we screwed up the naming so we have to mangle the
594          * cipher name.
595          */
596         if (!strncmp(cipher_name, "ecb(", 4)) {
597                 unsigned len;
598
599                 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
600                 if (len < 2 || len >= sizeof(ecb_name))
601                         goto err_drop_spawn;
602
603                 if (ecb_name[len - 1] != ')')
604                         goto err_drop_spawn;
605
606                 ecb_name[len - 1] = 0;
607
608                 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
609                              "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
610                         err = -ENAMETOOLONG;
611                         goto err_drop_spawn;
612                 }
613         } else
614                 goto err_drop_spawn;
615
616         inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
617         inst->alg.base.cra_priority = alg->base.cra_priority;
618         inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
619         inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
620                                        (__alignof__(u64) - 1);
621
622         inst->alg.ivsize = LRW_BLOCK_SIZE;
623         inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
624                                 LRW_BLOCK_SIZE;
625         inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
626                                 LRW_BLOCK_SIZE;
627
628         inst->alg.base.cra_ctxsize = sizeof(struct priv);
629
630         inst->alg.init = init_tfm;
631         inst->alg.exit = exit_tfm;
632
633         inst->alg.setkey = setkey;
634         inst->alg.encrypt = encrypt;
635         inst->alg.decrypt = decrypt;
636
637         inst->free = free;
638
639         err = skcipher_register_instance(tmpl, inst);
640         if (err)
641                 goto err_drop_spawn;
642
643 out:
644         return err;
645
646 err_drop_spawn:
647         crypto_drop_skcipher(spawn);
648 err_free_inst:
649         kfree(inst);
650         goto out;
651 }
652
653 static struct crypto_template crypto_tmpl = {
654         .name = "lrw",
655         .create = create,
656         .module = THIS_MODULE,
657 };
658
659 static int __init crypto_module_init(void)
660 {
661         return crypto_register_template(&crypto_tmpl);
662 }
663
664 static void __exit crypto_module_exit(void)
665 {
666         crypto_unregister_template(&crypto_tmpl);
667 }
668
669 module_init(crypto_module_init);
670 module_exit(crypto_module_exit);
671
672 MODULE_LICENSE("GPL");
673 MODULE_DESCRIPTION("LRW block cipher mode");
674 MODULE_ALIAS_CRYPTO("lrw");