drm/prime: Actually remove DRIVER_PRIME everywhere
[sfrench/cifs-2.6.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <crypto/engine.h>
13 #include <uapi/linux/sched/types.h>
14 #include "internal.h"
15
16 #define CRYPTO_ENGINE_MAX_QLEN 10
17
18 /**
19  * crypto_finalize_request - finalize one request if the request is done
20  * @engine: the hardware engine
21  * @req: the request need to be finalized
22  * @err: error number
23  */
24 static void crypto_finalize_request(struct crypto_engine *engine,
25                              struct crypto_async_request *req, int err)
26 {
27         unsigned long flags;
28         bool finalize_cur_req = false;
29         int ret;
30         struct crypto_engine_ctx *enginectx;
31
32         spin_lock_irqsave(&engine->queue_lock, flags);
33         if (engine->cur_req == req)
34                 finalize_cur_req = true;
35         spin_unlock_irqrestore(&engine->queue_lock, flags);
36
37         if (finalize_cur_req) {
38                 enginectx = crypto_tfm_ctx(req->tfm);
39                 if (engine->cur_req_prepared &&
40                     enginectx->op.unprepare_request) {
41                         ret = enginectx->op.unprepare_request(engine, req);
42                         if (ret)
43                                 dev_err(engine->dev, "failed to unprepare request\n");
44                 }
45                 spin_lock_irqsave(&engine->queue_lock, flags);
46                 engine->cur_req = NULL;
47                 engine->cur_req_prepared = false;
48                 spin_unlock_irqrestore(&engine->queue_lock, flags);
49         }
50
51         req->complete(req, err);
52
53         kthread_queue_work(engine->kworker, &engine->pump_requests);
54 }
55
56 /**
57  * crypto_pump_requests - dequeue one request from engine queue to process
58  * @engine: the hardware engine
59  * @in_kthread: true if we are in the context of the request pump thread
60  *
61  * This function checks if there is any request in the engine queue that
62  * needs processing and if so call out to the driver to initialize hardware
63  * and handle each request.
64  */
65 static void crypto_pump_requests(struct crypto_engine *engine,
66                                  bool in_kthread)
67 {
68         struct crypto_async_request *async_req, *backlog;
69         unsigned long flags;
70         bool was_busy = false;
71         int ret;
72         struct crypto_engine_ctx *enginectx;
73
74         spin_lock_irqsave(&engine->queue_lock, flags);
75
76         /* Make sure we are not already running a request */
77         if (engine->cur_req)
78                 goto out;
79
80         /* If another context is idling then defer */
81         if (engine->idling) {
82                 kthread_queue_work(engine->kworker, &engine->pump_requests);
83                 goto out;
84         }
85
86         /* Check if the engine queue is idle */
87         if (!crypto_queue_len(&engine->queue) || !engine->running) {
88                 if (!engine->busy)
89                         goto out;
90
91                 /* Only do teardown in the thread */
92                 if (!in_kthread) {
93                         kthread_queue_work(engine->kworker,
94                                            &engine->pump_requests);
95                         goto out;
96                 }
97
98                 engine->busy = false;
99                 engine->idling = true;
100                 spin_unlock_irqrestore(&engine->queue_lock, flags);
101
102                 if (engine->unprepare_crypt_hardware &&
103                     engine->unprepare_crypt_hardware(engine))
104                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
105
106                 spin_lock_irqsave(&engine->queue_lock, flags);
107                 engine->idling = false;
108                 goto out;
109         }
110
111         /* Get the fist request from the engine queue to handle */
112         backlog = crypto_get_backlog(&engine->queue);
113         async_req = crypto_dequeue_request(&engine->queue);
114         if (!async_req)
115                 goto out;
116
117         engine->cur_req = async_req;
118         if (backlog)
119                 backlog->complete(backlog, -EINPROGRESS);
120
121         if (engine->busy)
122                 was_busy = true;
123         else
124                 engine->busy = true;
125
126         spin_unlock_irqrestore(&engine->queue_lock, flags);
127
128         /* Until here we get the request need to be encrypted successfully */
129         if (!was_busy && engine->prepare_crypt_hardware) {
130                 ret = engine->prepare_crypt_hardware(engine);
131                 if (ret) {
132                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
133                         goto req_err;
134                 }
135         }
136
137         enginectx = crypto_tfm_ctx(async_req->tfm);
138
139         if (enginectx->op.prepare_request) {
140                 ret = enginectx->op.prepare_request(engine, async_req);
141                 if (ret) {
142                         dev_err(engine->dev, "failed to prepare request: %d\n",
143                                 ret);
144                         goto req_err;
145                 }
146                 engine->cur_req_prepared = true;
147         }
148         if (!enginectx->op.do_one_request) {
149                 dev_err(engine->dev, "failed to do request\n");
150                 ret = -EINVAL;
151                 goto req_err;
152         }
153         ret = enginectx->op.do_one_request(engine, async_req);
154         if (ret) {
155                 dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret);
156                 goto req_err;
157         }
158         return;
159
160 req_err:
161         crypto_finalize_request(engine, async_req, ret);
162         return;
163
164 out:
165         spin_unlock_irqrestore(&engine->queue_lock, flags);
166 }
167
168 static void crypto_pump_work(struct kthread_work *work)
169 {
170         struct crypto_engine *engine =
171                 container_of(work, struct crypto_engine, pump_requests);
172
173         crypto_pump_requests(engine, true);
174 }
175
176 /**
177  * crypto_transfer_request - transfer the new request into the engine queue
178  * @engine: the hardware engine
179  * @req: the request need to be listed into the engine queue
180  */
181 static int crypto_transfer_request(struct crypto_engine *engine,
182                                    struct crypto_async_request *req,
183                                    bool need_pump)
184 {
185         unsigned long flags;
186         int ret;
187
188         spin_lock_irqsave(&engine->queue_lock, flags);
189
190         if (!engine->running) {
191                 spin_unlock_irqrestore(&engine->queue_lock, flags);
192                 return -ESHUTDOWN;
193         }
194
195         ret = crypto_enqueue_request(&engine->queue, req);
196
197         if (!engine->busy && need_pump)
198                 kthread_queue_work(engine->kworker, &engine->pump_requests);
199
200         spin_unlock_irqrestore(&engine->queue_lock, flags);
201         return ret;
202 }
203
204 /**
205  * crypto_transfer_request_to_engine - transfer one request to list
206  * into the engine queue
207  * @engine: the hardware engine
208  * @req: the request need to be listed into the engine queue
209  */
210 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
211                                              struct crypto_async_request *req)
212 {
213         return crypto_transfer_request(engine, req, true);
214 }
215
216 /**
217  * crypto_transfer_ablkcipher_request_to_engine - transfer one ablkcipher_request
218  * to list into the engine queue
219  * @engine: the hardware engine
220  * @req: the request need to be listed into the engine queue
221  * TODO: Remove this function when skcipher conversion is finished
222  */
223 int crypto_transfer_ablkcipher_request_to_engine(struct crypto_engine *engine,
224                                                  struct ablkcipher_request *req)
225 {
226         return crypto_transfer_request_to_engine(engine, &req->base);
227 }
228 EXPORT_SYMBOL_GPL(crypto_transfer_ablkcipher_request_to_engine);
229
230 /**
231  * crypto_transfer_aead_request_to_engine - transfer one aead_request
232  * to list into the engine queue
233  * @engine: the hardware engine
234  * @req: the request need to be listed into the engine queue
235  */
236 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
237                                            struct aead_request *req)
238 {
239         return crypto_transfer_request_to_engine(engine, &req->base);
240 }
241 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
242
243 /**
244  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
245  * to list into the engine queue
246  * @engine: the hardware engine
247  * @req: the request need to be listed into the engine queue
248  */
249 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
250                                                struct akcipher_request *req)
251 {
252         return crypto_transfer_request_to_engine(engine, &req->base);
253 }
254 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
255
256 /**
257  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
258  * to list into the engine queue
259  * @engine: the hardware engine
260  * @req: the request need to be listed into the engine queue
261  */
262 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
263                                            struct ahash_request *req)
264 {
265         return crypto_transfer_request_to_engine(engine, &req->base);
266 }
267 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
268
269 /**
270  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
271  * to list into the engine queue
272  * @engine: the hardware engine
273  * @req: the request need to be listed into the engine queue
274  */
275 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
276                                                struct skcipher_request *req)
277 {
278         return crypto_transfer_request_to_engine(engine, &req->base);
279 }
280 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
281
282 /**
283  * crypto_finalize_ablkcipher_request - finalize one ablkcipher_request if
284  * the request is done
285  * @engine: the hardware engine
286  * @req: the request need to be finalized
287  * @err: error number
288  * TODO: Remove this function when skcipher conversion is finished
289  */
290 void crypto_finalize_ablkcipher_request(struct crypto_engine *engine,
291                                         struct ablkcipher_request *req, int err)
292 {
293         return crypto_finalize_request(engine, &req->base, err);
294 }
295 EXPORT_SYMBOL_GPL(crypto_finalize_ablkcipher_request);
296
297 /**
298  * crypto_finalize_aead_request - finalize one aead_request if
299  * the request is done
300  * @engine: the hardware engine
301  * @req: the request need to be finalized
302  * @err: error number
303  */
304 void crypto_finalize_aead_request(struct crypto_engine *engine,
305                                   struct aead_request *req, int err)
306 {
307         return crypto_finalize_request(engine, &req->base, err);
308 }
309 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
310
311 /**
312  * crypto_finalize_akcipher_request - finalize one akcipher_request if
313  * the request is done
314  * @engine: the hardware engine
315  * @req: the request need to be finalized
316  * @err: error number
317  */
318 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
319                                       struct akcipher_request *req, int err)
320 {
321         return crypto_finalize_request(engine, &req->base, err);
322 }
323 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
324
325 /**
326  * crypto_finalize_hash_request - finalize one ahash_request if
327  * the request is done
328  * @engine: the hardware engine
329  * @req: the request need to be finalized
330  * @err: error number
331  */
332 void crypto_finalize_hash_request(struct crypto_engine *engine,
333                                   struct ahash_request *req, int err)
334 {
335         return crypto_finalize_request(engine, &req->base, err);
336 }
337 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
338
339 /**
340  * crypto_finalize_skcipher_request - finalize one skcipher_request if
341  * the request is done
342  * @engine: the hardware engine
343  * @req: the request need to be finalized
344  * @err: error number
345  */
346 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
347                                       struct skcipher_request *req, int err)
348 {
349         return crypto_finalize_request(engine, &req->base, err);
350 }
351 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
352
353 /**
354  * crypto_engine_start - start the hardware engine
355  * @engine: the hardware engine need to be started
356  *
357  * Return 0 on success, else on fail.
358  */
359 int crypto_engine_start(struct crypto_engine *engine)
360 {
361         unsigned long flags;
362
363         spin_lock_irqsave(&engine->queue_lock, flags);
364
365         if (engine->running || engine->busy) {
366                 spin_unlock_irqrestore(&engine->queue_lock, flags);
367                 return -EBUSY;
368         }
369
370         engine->running = true;
371         spin_unlock_irqrestore(&engine->queue_lock, flags);
372
373         kthread_queue_work(engine->kworker, &engine->pump_requests);
374
375         return 0;
376 }
377 EXPORT_SYMBOL_GPL(crypto_engine_start);
378
379 /**
380  * crypto_engine_stop - stop the hardware engine
381  * @engine: the hardware engine need to be stopped
382  *
383  * Return 0 on success, else on fail.
384  */
385 int crypto_engine_stop(struct crypto_engine *engine)
386 {
387         unsigned long flags;
388         unsigned int limit = 500;
389         int ret = 0;
390
391         spin_lock_irqsave(&engine->queue_lock, flags);
392
393         /*
394          * If the engine queue is not empty or the engine is on busy state,
395          * we need to wait for a while to pump the requests of engine queue.
396          */
397         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
398                 spin_unlock_irqrestore(&engine->queue_lock, flags);
399                 msleep(20);
400                 spin_lock_irqsave(&engine->queue_lock, flags);
401         }
402
403         if (crypto_queue_len(&engine->queue) || engine->busy)
404                 ret = -EBUSY;
405         else
406                 engine->running = false;
407
408         spin_unlock_irqrestore(&engine->queue_lock, flags);
409
410         if (ret)
411                 dev_warn(engine->dev, "could not stop engine\n");
412
413         return ret;
414 }
415 EXPORT_SYMBOL_GPL(crypto_engine_stop);
416
417 /**
418  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
419  * initialize it.
420  * @dev: the device attached with one hardware engine
421  * @rt: whether this queue is set to run as a realtime task
422  *
423  * This must be called from context that can sleep.
424  * Return: the crypto engine structure on success, else NULL.
425  */
426 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
427 {
428         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
429         struct crypto_engine *engine;
430
431         if (!dev)
432                 return NULL;
433
434         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
435         if (!engine)
436                 return NULL;
437
438         engine->dev = dev;
439         engine->rt = rt;
440         engine->running = false;
441         engine->busy = false;
442         engine->idling = false;
443         engine->cur_req_prepared = false;
444         engine->priv_data = dev;
445         snprintf(engine->name, sizeof(engine->name),
446                  "%s-engine", dev_name(dev));
447
448         crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
449         spin_lock_init(&engine->queue_lock);
450
451         engine->kworker = kthread_create_worker(0, "%s", engine->name);
452         if (IS_ERR(engine->kworker)) {
453                 dev_err(dev, "failed to create crypto request pump task\n");
454                 return NULL;
455         }
456         kthread_init_work(&engine->pump_requests, crypto_pump_work);
457
458         if (engine->rt) {
459                 dev_info(dev, "will run requests pump with realtime priority\n");
460                 sched_setscheduler(engine->kworker->task, SCHED_FIFO, &param);
461         }
462
463         return engine;
464 }
465 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
466
467 /**
468  * crypto_engine_exit - free the resources of hardware engine when exit
469  * @engine: the hardware engine need to be freed
470  *
471  * Return 0 for success.
472  */
473 int crypto_engine_exit(struct crypto_engine *engine)
474 {
475         int ret;
476
477         ret = crypto_engine_stop(engine);
478         if (ret)
479                 return ret;
480
481         kthread_destroy_worker(engine->kworker);
482
483         return 0;
484 }
485 EXPORT_SYMBOL_GPL(crypto_engine_exit);
486
487 MODULE_LICENSE("GPL");
488 MODULE_DESCRIPTION("Crypto hardware engine framework");