Merge remote-tracking branch 'asoc/fix/mtk' into asoc-linus
[sfrench/cifs-2.6.git] / block / kyber-iosched.c
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32 #include "blk-stat.h"
33
34 /* Scheduling domains. */
35 enum {
36         KYBER_READ,
37         KYBER_SYNC_WRITE,
38         KYBER_OTHER, /* Async writes, discard, etc. */
39         KYBER_NUM_DOMAINS,
40 };
41
42 enum {
43         KYBER_MIN_DEPTH = 256,
44
45         /*
46          * In order to prevent starvation of synchronous requests by a flood of
47          * asynchronous requests, we reserve 25% of requests for synchronous
48          * operations.
49          */
50         KYBER_ASYNC_PERCENT = 75,
51 };
52
53 /*
54  * Initial device-wide depths for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate
57  * the device with only a fraction of the maximum possible queue depth.
58  * So, we cap these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61         [KYBER_READ] = 256,
62         [KYBER_SYNC_WRITE] = 128,
63         [KYBER_OTHER] = 64,
64 };
65
66 /*
67  * Scheduling domain batch sizes. We favor reads.
68  */
69 static const unsigned int kyber_batch_size[] = {
70         [KYBER_READ] = 16,
71         [KYBER_SYNC_WRITE] = 8,
72         [KYBER_OTHER] = 8,
73 };
74
75 struct kyber_queue_data {
76         struct request_queue *q;
77
78         struct blk_stat_callback *cb;
79
80         /*
81          * The device is divided into multiple scheduling domains based on the
82          * request type. Each domain has a fixed number of in-flight requests of
83          * that type device-wide, limited by these tokens.
84          */
85         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
86
87         /*
88          * Async request percentage, converted to per-word depth for
89          * sbitmap_get_shallow().
90          */
91         unsigned int async_depth;
92
93         /* Target latencies in nanoseconds. */
94         u64 read_lat_nsec, write_lat_nsec;
95 };
96
97 struct kyber_hctx_data {
98         spinlock_t lock;
99         struct list_head rqs[KYBER_NUM_DOMAINS];
100         unsigned int cur_domain;
101         unsigned int batching;
102         wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
103         struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
104         atomic_t wait_index[KYBER_NUM_DOMAINS];
105 };
106
107 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
108                              void *key);
109
110 static int rq_sched_domain(const struct request *rq)
111 {
112         unsigned int op = rq->cmd_flags;
113
114         if ((op & REQ_OP_MASK) == REQ_OP_READ)
115                 return KYBER_READ;
116         else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
117                 return KYBER_SYNC_WRITE;
118         else
119                 return KYBER_OTHER;
120 }
121
122 enum {
123         NONE = 0,
124         GOOD = 1,
125         GREAT = 2,
126         BAD = -1,
127         AWFUL = -2,
128 };
129
130 #define IS_GOOD(status) ((status) > 0)
131 #define IS_BAD(status) ((status) < 0)
132
133 static int kyber_lat_status(struct blk_stat_callback *cb,
134                             unsigned int sched_domain, u64 target)
135 {
136         u64 latency;
137
138         if (!cb->stat[sched_domain].nr_samples)
139                 return NONE;
140
141         latency = cb->stat[sched_domain].mean;
142         if (latency >= 2 * target)
143                 return AWFUL;
144         else if (latency > target)
145                 return BAD;
146         else if (latency <= target / 2)
147                 return GREAT;
148         else /* (latency <= target) */
149                 return GOOD;
150 }
151
152 /*
153  * Adjust the read or synchronous write depth given the status of reads and
154  * writes. The goal is that the latencies of the two domains are fair (i.e., if
155  * one is good, then the other is good).
156  */
157 static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
158                                   unsigned int sched_domain, int this_status,
159                                   int other_status)
160 {
161         unsigned int orig_depth, depth;
162
163         /*
164          * If this domain had no samples, or reads and writes are both good or
165          * both bad, don't adjust the depth.
166          */
167         if (this_status == NONE ||
168             (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
169             (IS_BAD(this_status) && IS_BAD(other_status)))
170                 return;
171
172         orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
173
174         if (other_status == NONE) {
175                 depth++;
176         } else {
177                 switch (this_status) {
178                 case GOOD:
179                         if (other_status == AWFUL)
180                                 depth -= max(depth / 4, 1U);
181                         else
182                                 depth -= max(depth / 8, 1U);
183                         break;
184                 case GREAT:
185                         if (other_status == AWFUL)
186                                 depth /= 2;
187                         else
188                                 depth -= max(depth / 4, 1U);
189                         break;
190                 case BAD:
191                         depth++;
192                         break;
193                 case AWFUL:
194                         if (other_status == GREAT)
195                                 depth += 2;
196                         else
197                                 depth++;
198                         break;
199                 }
200         }
201
202         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
203         if (depth != orig_depth)
204                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
205 }
206
207 /*
208  * Adjust the depth of other requests given the status of reads and synchronous
209  * writes. As long as either domain is doing fine, we don't throttle, but if
210  * both domains are doing badly, we throttle heavily.
211  */
212 static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
213                                      int read_status, int write_status,
214                                      bool have_samples)
215 {
216         unsigned int orig_depth, depth;
217         int status;
218
219         orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
220
221         if (read_status == NONE && write_status == NONE) {
222                 depth += 2;
223         } else if (have_samples) {
224                 if (read_status == NONE)
225                         status = write_status;
226                 else if (write_status == NONE)
227                         status = read_status;
228                 else
229                         status = max(read_status, write_status);
230                 switch (status) {
231                 case GREAT:
232                         depth += 2;
233                         break;
234                 case GOOD:
235                         depth++;
236                         break;
237                 case BAD:
238                         depth -= max(depth / 4, 1U);
239                         break;
240                 case AWFUL:
241                         depth /= 2;
242                         break;
243                 }
244         }
245
246         depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
247         if (depth != orig_depth)
248                 sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
249 }
250
251 /*
252  * Apply heuristics for limiting queue depths based on gathered latency
253  * statistics.
254  */
255 static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
256 {
257         struct kyber_queue_data *kqd = cb->data;
258         int read_status, write_status;
259
260         read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
261         write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
262
263         kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
264         kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
265         kyber_adjust_other_depth(kqd, read_status, write_status,
266                                  cb->stat[KYBER_OTHER].nr_samples != 0);
267
268         /*
269          * Continue monitoring latencies if we aren't hitting the targets or
270          * we're still throttling other requests.
271          */
272         if (!blk_stat_is_active(kqd->cb) &&
273             ((IS_BAD(read_status) || IS_BAD(write_status) ||
274               kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
275                 blk_stat_activate_msecs(kqd->cb, 100);
276 }
277
278 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
279 {
280         /*
281          * All of the hardware queues have the same depth, so we can just grab
282          * the shift of the first one.
283          */
284         return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
285 }
286
287 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
288 {
289         struct kyber_queue_data *kqd;
290         unsigned int max_tokens;
291         unsigned int shift;
292         int ret = -ENOMEM;
293         int i;
294
295         kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
296         if (!kqd)
297                 goto err;
298         kqd->q = q;
299
300         kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
301                                           KYBER_NUM_DOMAINS, kqd);
302         if (!kqd->cb)
303                 goto err_kqd;
304
305         /*
306          * The maximum number of tokens for any scheduling domain is at least
307          * the queue depth of a single hardware queue. If the hardware doesn't
308          * have many tags, still provide a reasonable number.
309          */
310         max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
311                            KYBER_MIN_DEPTH);
312         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
313                 WARN_ON(!kyber_depth[i]);
314                 WARN_ON(!kyber_batch_size[i]);
315                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
316                                               max_tokens, -1, false, GFP_KERNEL,
317                                               q->node);
318                 if (ret) {
319                         while (--i >= 0)
320                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
321                         goto err_cb;
322                 }
323                 sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
324         }
325
326         shift = kyber_sched_tags_shift(kqd);
327         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
328
329         kqd->read_lat_nsec = 2000000ULL;
330         kqd->write_lat_nsec = 10000000ULL;
331
332         return kqd;
333
334 err_cb:
335         blk_stat_free_callback(kqd->cb);
336 err_kqd:
337         kfree(kqd);
338 err:
339         return ERR_PTR(ret);
340 }
341
342 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
343 {
344         struct kyber_queue_data *kqd;
345         struct elevator_queue *eq;
346
347         eq = elevator_alloc(q, e);
348         if (!eq)
349                 return -ENOMEM;
350
351         kqd = kyber_queue_data_alloc(q);
352         if (IS_ERR(kqd)) {
353                 kobject_put(&eq->kobj);
354                 return PTR_ERR(kqd);
355         }
356
357         eq->elevator_data = kqd;
358         q->elevator = eq;
359
360         blk_stat_add_callback(q, kqd->cb);
361
362         return 0;
363 }
364
365 static void kyber_exit_sched(struct elevator_queue *e)
366 {
367         struct kyber_queue_data *kqd = e->elevator_data;
368         struct request_queue *q = kqd->q;
369         int i;
370
371         blk_stat_remove_callback(q, kqd->cb);
372
373         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
374                 sbitmap_queue_free(&kqd->domain_tokens[i]);
375         blk_stat_free_callback(kqd->cb);
376         kfree(kqd);
377 }
378
379 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381         struct kyber_hctx_data *khd;
382         int i;
383
384         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
385         if (!khd)
386                 return -ENOMEM;
387
388         spin_lock_init(&khd->lock);
389
390         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
391                 INIT_LIST_HEAD(&khd->rqs[i]);
392                 init_waitqueue_func_entry(&khd->domain_wait[i],
393                                           kyber_domain_wake);
394                 khd->domain_wait[i].private = hctx;
395                 INIT_LIST_HEAD(&khd->domain_wait[i].entry);
396                 atomic_set(&khd->wait_index[i], 0);
397         }
398
399         khd->cur_domain = 0;
400         khd->batching = 0;
401
402         hctx->sched_data = khd;
403
404         return 0;
405 }
406
407 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
408 {
409         kfree(hctx->sched_data);
410 }
411
412 static int rq_get_domain_token(struct request *rq)
413 {
414         return (long)rq->elv.priv[0];
415 }
416
417 static void rq_set_domain_token(struct request *rq, int token)
418 {
419         rq->elv.priv[0] = (void *)(long)token;
420 }
421
422 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
423                                   struct request *rq)
424 {
425         unsigned int sched_domain;
426         int nr;
427
428         nr = rq_get_domain_token(rq);
429         if (nr != -1) {
430                 sched_domain = rq_sched_domain(rq);
431                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
432                                     rq->mq_ctx->cpu);
433         }
434 }
435
436 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
437 {
438         /*
439          * We use the scheduler tags as per-hardware queue queueing tokens.
440          * Async requests can be limited at this stage.
441          */
442         if (!op_is_sync(op)) {
443                 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
444
445                 data->shallow_depth = kqd->async_depth;
446         }
447 }
448
449 static void kyber_prepare_request(struct request *rq, struct bio *bio)
450 {
451         rq_set_domain_token(rq, -1);
452 }
453
454 static void kyber_finish_request(struct request *rq)
455 {
456         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
457
458         rq_clear_domain_token(kqd, rq);
459 }
460
461 static void kyber_completed_request(struct request *rq)
462 {
463         struct request_queue *q = rq->q;
464         struct kyber_queue_data *kqd = q->elevator->elevator_data;
465         unsigned int sched_domain;
466         u64 now, latency, target;
467
468         /*
469          * Check if this request met our latency goal. If not, quickly gather
470          * some statistics and start throttling.
471          */
472         sched_domain = rq_sched_domain(rq);
473         switch (sched_domain) {
474         case KYBER_READ:
475                 target = kqd->read_lat_nsec;
476                 break;
477         case KYBER_SYNC_WRITE:
478                 target = kqd->write_lat_nsec;
479                 break;
480         default:
481                 return;
482         }
483
484         /* If we are already monitoring latencies, don't check again. */
485         if (blk_stat_is_active(kqd->cb))
486                 return;
487
488         now = __blk_stat_time(ktime_to_ns(ktime_get()));
489         if (now < blk_stat_time(&rq->issue_stat))
490                 return;
491
492         latency = now - blk_stat_time(&rq->issue_stat);
493
494         if (latency > target)
495                 blk_stat_activate_msecs(kqd->cb, 10);
496 }
497
498 static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
499                                   struct blk_mq_hw_ctx *hctx)
500 {
501         LIST_HEAD(rq_list);
502         struct request *rq, *next;
503
504         blk_mq_flush_busy_ctxs(hctx, &rq_list);
505         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
506                 unsigned int sched_domain;
507
508                 sched_domain = rq_sched_domain(rq);
509                 list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
510         }
511 }
512
513 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
514                              void *key)
515 {
516         struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
517
518         list_del_init(&wait->entry);
519         blk_mq_run_hw_queue(hctx, true);
520         return 1;
521 }
522
523 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
524                                   struct kyber_hctx_data *khd,
525                                   struct blk_mq_hw_ctx *hctx)
526 {
527         unsigned int sched_domain = khd->cur_domain;
528         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
529         wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
530         struct sbq_wait_state *ws;
531         int nr;
532
533         nr = __sbitmap_queue_get(domain_tokens);
534
535         /*
536          * If we failed to get a domain token, make sure the hardware queue is
537          * run when one becomes available. Note that this is serialized on
538          * khd->lock, but we still need to be careful about the waker.
539          */
540         if (nr < 0 && list_empty_careful(&wait->entry)) {
541                 ws = sbq_wait_ptr(domain_tokens,
542                                   &khd->wait_index[sched_domain]);
543                 khd->domain_ws[sched_domain] = ws;
544                 add_wait_queue(&ws->wait, wait);
545
546                 /*
547                  * Try again in case a token was freed before we got on the wait
548                  * queue.
549                  */
550                 nr = __sbitmap_queue_get(domain_tokens);
551         }
552
553         /*
554          * If we got a token while we were on the wait queue, remove ourselves
555          * from the wait queue to ensure that all wake ups make forward
556          * progress. It's possible that the waker already deleted the entry
557          * between the !list_empty_careful() check and us grabbing the lock, but
558          * list_del_init() is okay with that.
559          */
560         if (nr >= 0 && !list_empty_careful(&wait->entry)) {
561                 ws = khd->domain_ws[sched_domain];
562                 spin_lock_irq(&ws->wait.lock);
563                 list_del_init(&wait->entry);
564                 spin_unlock_irq(&ws->wait.lock);
565         }
566
567         return nr;
568 }
569
570 static struct request *
571 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
572                           struct kyber_hctx_data *khd,
573                           struct blk_mq_hw_ctx *hctx,
574                           bool *flushed)
575 {
576         struct list_head *rqs;
577         struct request *rq;
578         int nr;
579
580         rqs = &khd->rqs[khd->cur_domain];
581         rq = list_first_entry_or_null(rqs, struct request, queuelist);
582
583         /*
584          * If there wasn't already a pending request and we haven't flushed the
585          * software queues yet, flush the software queues and check again.
586          */
587         if (!rq && !*flushed) {
588                 kyber_flush_busy_ctxs(khd, hctx);
589                 *flushed = true;
590                 rq = list_first_entry_or_null(rqs, struct request, queuelist);
591         }
592
593         if (rq) {
594                 nr = kyber_get_domain_token(kqd, khd, hctx);
595                 if (nr >= 0) {
596                         khd->batching++;
597                         rq_set_domain_token(rq, nr);
598                         list_del_init(&rq->queuelist);
599                         return rq;
600                 }
601         }
602
603         /* There were either no pending requests or no tokens. */
604         return NULL;
605 }
606
607 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
608 {
609         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
610         struct kyber_hctx_data *khd = hctx->sched_data;
611         bool flushed = false;
612         struct request *rq;
613         int i;
614
615         spin_lock(&khd->lock);
616
617         /*
618          * First, if we are still entitled to batch, try to dispatch a request
619          * from the batch.
620          */
621         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
622                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
623                 if (rq)
624                         goto out;
625         }
626
627         /*
628          * Either,
629          * 1. We were no longer entitled to a batch.
630          * 2. The domain we were batching didn't have any requests.
631          * 3. The domain we were batching was out of tokens.
632          *
633          * Start another batch. Note that this wraps back around to the original
634          * domain if no other domains have requests or tokens.
635          */
636         khd->batching = 0;
637         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
638                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
639                         khd->cur_domain = 0;
640                 else
641                         khd->cur_domain++;
642
643                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
644                 if (rq)
645                         goto out;
646         }
647
648         rq = NULL;
649 out:
650         spin_unlock(&khd->lock);
651         return rq;
652 }
653
654 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
655 {
656         struct kyber_hctx_data *khd = hctx->sched_data;
657         int i;
658
659         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
660                 if (!list_empty_careful(&khd->rqs[i]))
661                         return true;
662         }
663         return sbitmap_any_bit_set(&hctx->ctx_map);
664 }
665
666 #define KYBER_LAT_SHOW_STORE(op)                                        \
667 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,          \
668                                      char *page)                        \
669 {                                                                       \
670         struct kyber_queue_data *kqd = e->elevator_data;                \
671                                                                         \
672         return sprintf(page, "%llu\n", kqd->op##_lat_nsec);             \
673 }                                                                       \
674                                                                         \
675 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,         \
676                                       const char *page, size_t count)   \
677 {                                                                       \
678         struct kyber_queue_data *kqd = e->elevator_data;                \
679         unsigned long long nsec;                                        \
680         int ret;                                                        \
681                                                                         \
682         ret = kstrtoull(page, 10, &nsec);                               \
683         if (ret)                                                        \
684                 return ret;                                             \
685                                                                         \
686         kqd->op##_lat_nsec = nsec;                                      \
687                                                                         \
688         return count;                                                   \
689 }
690 KYBER_LAT_SHOW_STORE(read);
691 KYBER_LAT_SHOW_STORE(write);
692 #undef KYBER_LAT_SHOW_STORE
693
694 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
695 static struct elv_fs_entry kyber_sched_attrs[] = {
696         KYBER_LAT_ATTR(read),
697         KYBER_LAT_ATTR(write),
698         __ATTR_NULL
699 };
700 #undef KYBER_LAT_ATTR
701
702 #ifdef CONFIG_BLK_DEBUG_FS
703 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
704 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
705 {                                                                       \
706         struct request_queue *q = data;                                 \
707         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
708                                                                         \
709         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
710         return 0;                                                       \
711 }                                                                       \
712                                                                         \
713 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
714         __acquires(&khd->lock)                                          \
715 {                                                                       \
716         struct blk_mq_hw_ctx *hctx = m->private;                        \
717         struct kyber_hctx_data *khd = hctx->sched_data;                 \
718                                                                         \
719         spin_lock(&khd->lock);                                          \
720         return seq_list_start(&khd->rqs[domain], *pos);                 \
721 }                                                                       \
722                                                                         \
723 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
724                                      loff_t *pos)                       \
725 {                                                                       \
726         struct blk_mq_hw_ctx *hctx = m->private;                        \
727         struct kyber_hctx_data *khd = hctx->sched_data;                 \
728                                                                         \
729         return seq_list_next(v, &khd->rqs[domain], pos);                \
730 }                                                                       \
731                                                                         \
732 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
733         __releases(&khd->lock)                                          \
734 {                                                                       \
735         struct blk_mq_hw_ctx *hctx = m->private;                        \
736         struct kyber_hctx_data *khd = hctx->sched_data;                 \
737                                                                         \
738         spin_unlock(&khd->lock);                                        \
739 }                                                                       \
740                                                                         \
741 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
742         .start  = kyber_##name##_rqs_start,                             \
743         .next   = kyber_##name##_rqs_next,                              \
744         .stop   = kyber_##name##_rqs_stop,                              \
745         .show   = blk_mq_debugfs_rq_show,                               \
746 };                                                                      \
747                                                                         \
748 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
749 {                                                                       \
750         struct blk_mq_hw_ctx *hctx = data;                              \
751         struct kyber_hctx_data *khd = hctx->sched_data;                 \
752         wait_queue_entry_t *wait = &khd->domain_wait[domain];           \
753                                                                         \
754         seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
755         return 0;                                                       \
756 }
757 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
758 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
759 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
760 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
761
762 static int kyber_async_depth_show(void *data, struct seq_file *m)
763 {
764         struct request_queue *q = data;
765         struct kyber_queue_data *kqd = q->elevator->elevator_data;
766
767         seq_printf(m, "%u\n", kqd->async_depth);
768         return 0;
769 }
770
771 static int kyber_cur_domain_show(void *data, struct seq_file *m)
772 {
773         struct blk_mq_hw_ctx *hctx = data;
774         struct kyber_hctx_data *khd = hctx->sched_data;
775
776         switch (khd->cur_domain) {
777         case KYBER_READ:
778                 seq_puts(m, "READ\n");
779                 break;
780         case KYBER_SYNC_WRITE:
781                 seq_puts(m, "SYNC_WRITE\n");
782                 break;
783         case KYBER_OTHER:
784                 seq_puts(m, "OTHER\n");
785                 break;
786         default:
787                 seq_printf(m, "%u\n", khd->cur_domain);
788                 break;
789         }
790         return 0;
791 }
792
793 static int kyber_batching_show(void *data, struct seq_file *m)
794 {
795         struct blk_mq_hw_ctx *hctx = data;
796         struct kyber_hctx_data *khd = hctx->sched_data;
797
798         seq_printf(m, "%u\n", khd->batching);
799         return 0;
800 }
801
802 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
803         {#name "_tokens", 0400, kyber_##name##_tokens_show}
804 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
805         KYBER_QUEUE_DOMAIN_ATTRS(read),
806         KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
807         KYBER_QUEUE_DOMAIN_ATTRS(other),
808         {"async_depth", 0400, kyber_async_depth_show},
809         {},
810 };
811 #undef KYBER_QUEUE_DOMAIN_ATTRS
812
813 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
814         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
815         {#name "_waiting", 0400, kyber_##name##_waiting_show}
816 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
817         KYBER_HCTX_DOMAIN_ATTRS(read),
818         KYBER_HCTX_DOMAIN_ATTRS(sync_write),
819         KYBER_HCTX_DOMAIN_ATTRS(other),
820         {"cur_domain", 0400, kyber_cur_domain_show},
821         {"batching", 0400, kyber_batching_show},
822         {},
823 };
824 #undef KYBER_HCTX_DOMAIN_ATTRS
825 #endif
826
827 static struct elevator_type kyber_sched = {
828         .ops.mq = {
829                 .init_sched = kyber_init_sched,
830                 .exit_sched = kyber_exit_sched,
831                 .init_hctx = kyber_init_hctx,
832                 .exit_hctx = kyber_exit_hctx,
833                 .limit_depth = kyber_limit_depth,
834                 .prepare_request = kyber_prepare_request,
835                 .finish_request = kyber_finish_request,
836                 .completed_request = kyber_completed_request,
837                 .dispatch_request = kyber_dispatch_request,
838                 .has_work = kyber_has_work,
839         },
840         .uses_mq = true,
841 #ifdef CONFIG_BLK_DEBUG_FS
842         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
843         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
844 #endif
845         .elevator_attrs = kyber_sched_attrs,
846         .elevator_name = "kyber",
847         .elevator_owner = THIS_MODULE,
848 };
849
850 static int __init kyber_init(void)
851 {
852         return elv_register(&kyber_sched);
853 }
854
855 static void __exit kyber_exit(void)
856 {
857         elv_unregister(&kyber_sched);
858 }
859
860 module_init(kyber_init);
861 module_exit(kyber_exit);
862
863 MODULE_AUTHOR("Omar Sandoval");
864 MODULE_LICENSE("GPL");
865 MODULE_DESCRIPTION("Kyber I/O scheduler");