Merge tag 'meminit-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[sfrench/cifs-2.6.git] / block / kyber-iosched.c
1 /*
2  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
3  * scalable techniques.
4  *
5  * Copyright (C) 2017 Facebook
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public
9  * License v2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <https://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
26
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/kyber.h>
35
36 /*
37  * Scheduling domains: the device is divided into multiple domains based on the
38  * request type.
39  */
40 enum {
41         KYBER_READ,
42         KYBER_WRITE,
43         KYBER_DISCARD,
44         KYBER_OTHER,
45         KYBER_NUM_DOMAINS,
46 };
47
48 static const char *kyber_domain_names[] = {
49         [KYBER_READ] = "READ",
50         [KYBER_WRITE] = "WRITE",
51         [KYBER_DISCARD] = "DISCARD",
52         [KYBER_OTHER] = "OTHER",
53 };
54
55 enum {
56         /*
57          * In order to prevent starvation of synchronous requests by a flood of
58          * asynchronous requests, we reserve 25% of requests for synchronous
59          * operations.
60          */
61         KYBER_ASYNC_PERCENT = 75,
62 };
63
64 /*
65  * Maximum device-wide depth for each scheduling domain.
66  *
67  * Even for fast devices with lots of tags like NVMe, you can saturate the
68  * device with only a fraction of the maximum possible queue depth. So, we cap
69  * these to a reasonable value.
70  */
71 static const unsigned int kyber_depth[] = {
72         [KYBER_READ] = 256,
73         [KYBER_WRITE] = 128,
74         [KYBER_DISCARD] = 64,
75         [KYBER_OTHER] = 16,
76 };
77
78 /*
79  * Default latency targets for each scheduling domain.
80  */
81 static const u64 kyber_latency_targets[] = {
82         [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
83         [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
84         [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
85 };
86
87 /*
88  * Batch size (number of requests we'll dispatch in a row) for each scheduling
89  * domain.
90  */
91 static const unsigned int kyber_batch_size[] = {
92         [KYBER_READ] = 16,
93         [KYBER_WRITE] = 8,
94         [KYBER_DISCARD] = 1,
95         [KYBER_OTHER] = 1,
96 };
97
98 /*
99  * Requests latencies are recorded in a histogram with buckets defined relative
100  * to the target latency:
101  *
102  * <= 1/4 * target latency
103  * <= 1/2 * target latency
104  * <= 3/4 * target latency
105  * <= target latency
106  * <= 1 1/4 * target latency
107  * <= 1 1/2 * target latency
108  * <= 1 3/4 * target latency
109  * > 1 3/4 * target latency
110  */
111 enum {
112         /*
113          * The width of the latency histogram buckets is
114          * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
115          */
116         KYBER_LATENCY_SHIFT = 2,
117         /*
118          * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
119          * thus, "good".
120          */
121         KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
122         /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
123         KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
124 };
125
126 /*
127  * We measure both the total latency and the I/O latency (i.e., latency after
128  * submitting to the device).
129  */
130 enum {
131         KYBER_TOTAL_LATENCY,
132         KYBER_IO_LATENCY,
133 };
134
135 static const char *kyber_latency_type_names[] = {
136         [KYBER_TOTAL_LATENCY] = "total",
137         [KYBER_IO_LATENCY] = "I/O",
138 };
139
140 /*
141  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
142  * domain except for KYBER_OTHER.
143  */
144 struct kyber_cpu_latency {
145         atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
146 };
147
148 /*
149  * There is a same mapping between ctx & hctx and kcq & khd,
150  * we use request->mq_ctx->index_hw to index the kcq in khd.
151  */
152 struct kyber_ctx_queue {
153         /*
154          * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
155          * Also protect the rqs on rq_list when merge.
156          */
157         spinlock_t lock;
158         struct list_head rq_list[KYBER_NUM_DOMAINS];
159 } ____cacheline_aligned_in_smp;
160
161 struct kyber_queue_data {
162         struct request_queue *q;
163
164         /*
165          * Each scheduling domain has a limited number of in-flight requests
166          * device-wide, limited by these tokens.
167          */
168         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
169
170         /*
171          * Async request percentage, converted to per-word depth for
172          * sbitmap_get_shallow().
173          */
174         unsigned int async_depth;
175
176         struct kyber_cpu_latency __percpu *cpu_latency;
177
178         /* Timer for stats aggregation and adjusting domain tokens. */
179         struct timer_list timer;
180
181         unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
182
183         unsigned long latency_timeout[KYBER_OTHER];
184
185         int domain_p99[KYBER_OTHER];
186
187         /* Target latencies in nanoseconds. */
188         u64 latency_targets[KYBER_OTHER];
189 };
190
191 struct kyber_hctx_data {
192         spinlock_t lock;
193         struct list_head rqs[KYBER_NUM_DOMAINS];
194         unsigned int cur_domain;
195         unsigned int batching;
196         struct kyber_ctx_queue *kcqs;
197         struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
198         struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
199         struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
200         atomic_t wait_index[KYBER_NUM_DOMAINS];
201 };
202
203 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
204                              void *key);
205
206 static unsigned int kyber_sched_domain(unsigned int op)
207 {
208         switch (op & REQ_OP_MASK) {
209         case REQ_OP_READ:
210                 return KYBER_READ;
211         case REQ_OP_WRITE:
212                 return KYBER_WRITE;
213         case REQ_OP_DISCARD:
214                 return KYBER_DISCARD;
215         default:
216                 return KYBER_OTHER;
217         }
218 }
219
220 static void flush_latency_buckets(struct kyber_queue_data *kqd,
221                                   struct kyber_cpu_latency *cpu_latency,
222                                   unsigned int sched_domain, unsigned int type)
223 {
224         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
225         atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
226         unsigned int bucket;
227
228         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
229                 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
230 }
231
232 /*
233  * Calculate the histogram bucket with the given percentile rank, or -1 if there
234  * aren't enough samples yet.
235  */
236 static int calculate_percentile(struct kyber_queue_data *kqd,
237                                 unsigned int sched_domain, unsigned int type,
238                                 unsigned int percentile)
239 {
240         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
241         unsigned int bucket, samples = 0, percentile_samples;
242
243         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
244                 samples += buckets[bucket];
245
246         if (!samples)
247                 return -1;
248
249         /*
250          * We do the calculation once we have 500 samples or one second passes
251          * since the first sample was recorded, whichever comes first.
252          */
253         if (!kqd->latency_timeout[sched_domain])
254                 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
255         if (samples < 500 &&
256             time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
257                 return -1;
258         }
259         kqd->latency_timeout[sched_domain] = 0;
260
261         percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
262         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
263                 if (buckets[bucket] >= percentile_samples)
264                         break;
265                 percentile_samples -= buckets[bucket];
266         }
267         memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
268
269         trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
270                             kyber_latency_type_names[type], percentile,
271                             bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
272
273         return bucket;
274 }
275
276 static void kyber_resize_domain(struct kyber_queue_data *kqd,
277                                 unsigned int sched_domain, unsigned int depth)
278 {
279         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
280         if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
281                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
282                 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
283                                    depth);
284         }
285 }
286
287 static void kyber_timer_fn(struct timer_list *t)
288 {
289         struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
290         unsigned int sched_domain;
291         int cpu;
292         bool bad = false;
293
294         /* Sum all of the per-cpu latency histograms. */
295         for_each_online_cpu(cpu) {
296                 struct kyber_cpu_latency *cpu_latency;
297
298                 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
299                 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
300                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
301                                               KYBER_TOTAL_LATENCY);
302                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
303                                               KYBER_IO_LATENCY);
304                 }
305         }
306
307         /*
308          * Check if any domains have a high I/O latency, which might indicate
309          * congestion in the device. Note that we use the p90; we don't want to
310          * be too sensitive to outliers here.
311          */
312         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
313                 int p90;
314
315                 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
316                                            90);
317                 if (p90 >= KYBER_GOOD_BUCKETS)
318                         bad = true;
319         }
320
321         /*
322          * Adjust the scheduling domain depths. If we determined that there was
323          * congestion, we throttle all domains with good latencies. Either way,
324          * we ease up on throttling domains with bad latencies.
325          */
326         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
327                 unsigned int orig_depth, depth;
328                 int p99;
329
330                 p99 = calculate_percentile(kqd, sched_domain,
331                                            KYBER_TOTAL_LATENCY, 99);
332                 /*
333                  * This is kind of subtle: different domains will not
334                  * necessarily have enough samples to calculate the latency
335                  * percentiles during the same window, so we have to remember
336                  * the p99 for the next time we observe congestion; once we do,
337                  * we don't want to throttle again until we get more data, so we
338                  * reset it to -1.
339                  */
340                 if (bad) {
341                         if (p99 < 0)
342                                 p99 = kqd->domain_p99[sched_domain];
343                         kqd->domain_p99[sched_domain] = -1;
344                 } else if (p99 >= 0) {
345                         kqd->domain_p99[sched_domain] = p99;
346                 }
347                 if (p99 < 0)
348                         continue;
349
350                 /*
351                  * If this domain has bad latency, throttle less. Otherwise,
352                  * throttle more iff we determined that there is congestion.
353                  *
354                  * The new depth is scaled linearly with the p99 latency vs the
355                  * latency target. E.g., if the p99 is 3/4 of the target, then
356                  * we throttle down to 3/4 of the current depth, and if the p99
357                  * is 2x the target, then we double the depth.
358                  */
359                 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
360                         orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
361                         depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
362                         kyber_resize_domain(kqd, sched_domain, depth);
363                 }
364         }
365 }
366
367 static unsigned int kyber_sched_tags_shift(struct request_queue *q)
368 {
369         /*
370          * All of the hardware queues have the same depth, so we can just grab
371          * the shift of the first one.
372          */
373         return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
374 }
375
376 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
377 {
378         struct kyber_queue_data *kqd;
379         unsigned int shift;
380         int ret = -ENOMEM;
381         int i;
382
383         kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
384         if (!kqd)
385                 goto err;
386
387         kqd->q = q;
388
389         kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
390                                             GFP_KERNEL | __GFP_ZERO);
391         if (!kqd->cpu_latency)
392                 goto err_kqd;
393
394         timer_setup(&kqd->timer, kyber_timer_fn, 0);
395
396         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
397                 WARN_ON(!kyber_depth[i]);
398                 WARN_ON(!kyber_batch_size[i]);
399                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
400                                               kyber_depth[i], -1, false,
401                                               GFP_KERNEL, q->node);
402                 if (ret) {
403                         while (--i >= 0)
404                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
405                         goto err_buckets;
406                 }
407         }
408
409         for (i = 0; i < KYBER_OTHER; i++) {
410                 kqd->domain_p99[i] = -1;
411                 kqd->latency_targets[i] = kyber_latency_targets[i];
412         }
413
414         shift = kyber_sched_tags_shift(q);
415         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
416
417         return kqd;
418
419 err_buckets:
420         free_percpu(kqd->cpu_latency);
421 err_kqd:
422         kfree(kqd);
423 err:
424         return ERR_PTR(ret);
425 }
426
427 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
428 {
429         struct kyber_queue_data *kqd;
430         struct elevator_queue *eq;
431
432         eq = elevator_alloc(q, e);
433         if (!eq)
434                 return -ENOMEM;
435
436         kqd = kyber_queue_data_alloc(q);
437         if (IS_ERR(kqd)) {
438                 kobject_put(&eq->kobj);
439                 return PTR_ERR(kqd);
440         }
441
442         blk_stat_enable_accounting(q);
443
444         eq->elevator_data = kqd;
445         q->elevator = eq;
446
447         return 0;
448 }
449
450 static void kyber_exit_sched(struct elevator_queue *e)
451 {
452         struct kyber_queue_data *kqd = e->elevator_data;
453         int i;
454
455         del_timer_sync(&kqd->timer);
456
457         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458                 sbitmap_queue_free(&kqd->domain_tokens[i]);
459         free_percpu(kqd->cpu_latency);
460         kfree(kqd);
461 }
462
463 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
464 {
465         unsigned int i;
466
467         spin_lock_init(&kcq->lock);
468         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
469                 INIT_LIST_HEAD(&kcq->rq_list[i]);
470 }
471
472 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
473 {
474         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
475         struct kyber_hctx_data *khd;
476         int i;
477
478         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
479         if (!khd)
480                 return -ENOMEM;
481
482         khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
483                                        sizeof(struct kyber_ctx_queue),
484                                        GFP_KERNEL, hctx->numa_node);
485         if (!khd->kcqs)
486                 goto err_khd;
487
488         for (i = 0; i < hctx->nr_ctx; i++)
489                 kyber_ctx_queue_init(&khd->kcqs[i]);
490
491         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492                 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
493                                       ilog2(8), GFP_KERNEL, hctx->numa_node)) {
494                         while (--i >= 0)
495                                 sbitmap_free(&khd->kcq_map[i]);
496                         goto err_kcqs;
497                 }
498         }
499
500         spin_lock_init(&khd->lock);
501
502         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
503                 INIT_LIST_HEAD(&khd->rqs[i]);
504                 khd->domain_wait[i].sbq = NULL;
505                 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
506                                           kyber_domain_wake);
507                 khd->domain_wait[i].wait.private = hctx;
508                 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
509                 atomic_set(&khd->wait_index[i], 0);
510         }
511
512         khd->cur_domain = 0;
513         khd->batching = 0;
514
515         hctx->sched_data = khd;
516         sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
517                                         kqd->async_depth);
518
519         return 0;
520
521 err_kcqs:
522         kfree(khd->kcqs);
523 err_khd:
524         kfree(khd);
525         return -ENOMEM;
526 }
527
528 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
529 {
530         struct kyber_hctx_data *khd = hctx->sched_data;
531         int i;
532
533         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
534                 sbitmap_free(&khd->kcq_map[i]);
535         kfree(khd->kcqs);
536         kfree(hctx->sched_data);
537 }
538
539 static int rq_get_domain_token(struct request *rq)
540 {
541         return (long)rq->elv.priv[0];
542 }
543
544 static void rq_set_domain_token(struct request *rq, int token)
545 {
546         rq->elv.priv[0] = (void *)(long)token;
547 }
548
549 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
550                                   struct request *rq)
551 {
552         unsigned int sched_domain;
553         int nr;
554
555         nr = rq_get_domain_token(rq);
556         if (nr != -1) {
557                 sched_domain = kyber_sched_domain(rq->cmd_flags);
558                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
559                                     rq->mq_ctx->cpu);
560         }
561 }
562
563 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
564 {
565         /*
566          * We use the scheduler tags as per-hardware queue queueing tokens.
567          * Async requests can be limited at this stage.
568          */
569         if (!op_is_sync(op)) {
570                 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
571
572                 data->shallow_depth = kqd->async_depth;
573         }
574 }
575
576 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
577 {
578         struct kyber_hctx_data *khd = hctx->sched_data;
579         struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
580         struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
581         unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
582         struct list_head *rq_list = &kcq->rq_list[sched_domain];
583         bool merged;
584
585         spin_lock(&kcq->lock);
586         merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio);
587         spin_unlock(&kcq->lock);
588         blk_mq_put_ctx(ctx);
589
590         return merged;
591 }
592
593 static void kyber_prepare_request(struct request *rq, struct bio *bio)
594 {
595         rq_set_domain_token(rq, -1);
596 }
597
598 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
599                                   struct list_head *rq_list, bool at_head)
600 {
601         struct kyber_hctx_data *khd = hctx->sched_data;
602         struct request *rq, *next;
603
604         list_for_each_entry_safe(rq, next, rq_list, queuelist) {
605                 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
606                 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
607                 struct list_head *head = &kcq->rq_list[sched_domain];
608
609                 spin_lock(&kcq->lock);
610                 if (at_head)
611                         list_move(&rq->queuelist, head);
612                 else
613                         list_move_tail(&rq->queuelist, head);
614                 sbitmap_set_bit(&khd->kcq_map[sched_domain],
615                                 rq->mq_ctx->index_hw[hctx->type]);
616                 blk_mq_sched_request_inserted(rq);
617                 spin_unlock(&kcq->lock);
618         }
619 }
620
621 static void kyber_finish_request(struct request *rq)
622 {
623         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
624
625         rq_clear_domain_token(kqd, rq);
626 }
627
628 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
629                                unsigned int sched_domain, unsigned int type,
630                                u64 target, u64 latency)
631 {
632         unsigned int bucket;
633         u64 divisor;
634
635         if (latency > 0) {
636                 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
637                 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
638                                KYBER_LATENCY_BUCKETS - 1);
639         } else {
640                 bucket = 0;
641         }
642
643         atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
644 }
645
646 static void kyber_completed_request(struct request *rq, u64 now)
647 {
648         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
649         struct kyber_cpu_latency *cpu_latency;
650         unsigned int sched_domain;
651         u64 target;
652
653         sched_domain = kyber_sched_domain(rq->cmd_flags);
654         if (sched_domain == KYBER_OTHER)
655                 return;
656
657         cpu_latency = get_cpu_ptr(kqd->cpu_latency);
658         target = kqd->latency_targets[sched_domain];
659         add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
660                            target, now - rq->start_time_ns);
661         add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
662                            now - rq->io_start_time_ns);
663         put_cpu_ptr(kqd->cpu_latency);
664
665         timer_reduce(&kqd->timer, jiffies + HZ / 10);
666 }
667
668 struct flush_kcq_data {
669         struct kyber_hctx_data *khd;
670         unsigned int sched_domain;
671         struct list_head *list;
672 };
673
674 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
675 {
676         struct flush_kcq_data *flush_data = data;
677         struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
678
679         spin_lock(&kcq->lock);
680         list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
681                               flush_data->list);
682         sbitmap_clear_bit(sb, bitnr);
683         spin_unlock(&kcq->lock);
684
685         return true;
686 }
687
688 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
689                                   unsigned int sched_domain,
690                                   struct list_head *list)
691 {
692         struct flush_kcq_data data = {
693                 .khd = khd,
694                 .sched_domain = sched_domain,
695                 .list = list,
696         };
697
698         sbitmap_for_each_set(&khd->kcq_map[sched_domain],
699                              flush_busy_kcq, &data);
700 }
701
702 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
703                              void *key)
704 {
705         struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
706         struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
707
708         sbitmap_del_wait_queue(wait);
709         blk_mq_run_hw_queue(hctx, true);
710         return 1;
711 }
712
713 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
714                                   struct kyber_hctx_data *khd,
715                                   struct blk_mq_hw_ctx *hctx)
716 {
717         unsigned int sched_domain = khd->cur_domain;
718         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
719         struct sbq_wait *wait = &khd->domain_wait[sched_domain];
720         struct sbq_wait_state *ws;
721         int nr;
722
723         nr = __sbitmap_queue_get(domain_tokens);
724
725         /*
726          * If we failed to get a domain token, make sure the hardware queue is
727          * run when one becomes available. Note that this is serialized on
728          * khd->lock, but we still need to be careful about the waker.
729          */
730         if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
731                 ws = sbq_wait_ptr(domain_tokens,
732                                   &khd->wait_index[sched_domain]);
733                 khd->domain_ws[sched_domain] = ws;
734                 sbitmap_add_wait_queue(domain_tokens, ws, wait);
735
736                 /*
737                  * Try again in case a token was freed before we got on the wait
738                  * queue.
739                  */
740                 nr = __sbitmap_queue_get(domain_tokens);
741         }
742
743         /*
744          * If we got a token while we were on the wait queue, remove ourselves
745          * from the wait queue to ensure that all wake ups make forward
746          * progress. It's possible that the waker already deleted the entry
747          * between the !list_empty_careful() check and us grabbing the lock, but
748          * list_del_init() is okay with that.
749          */
750         if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
751                 ws = khd->domain_ws[sched_domain];
752                 spin_lock_irq(&ws->wait.lock);
753                 sbitmap_del_wait_queue(wait);
754                 spin_unlock_irq(&ws->wait.lock);
755         }
756
757         return nr;
758 }
759
760 static struct request *
761 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
762                           struct kyber_hctx_data *khd,
763                           struct blk_mq_hw_ctx *hctx)
764 {
765         struct list_head *rqs;
766         struct request *rq;
767         int nr;
768
769         rqs = &khd->rqs[khd->cur_domain];
770
771         /*
772          * If we already have a flushed request, then we just need to get a
773          * token for it. Otherwise, if there are pending requests in the kcqs,
774          * flush the kcqs, but only if we can get a token. If not, we should
775          * leave the requests in the kcqs so that they can be merged. Note that
776          * khd->lock serializes the flushes, so if we observed any bit set in
777          * the kcq_map, we will always get a request.
778          */
779         rq = list_first_entry_or_null(rqs, struct request, queuelist);
780         if (rq) {
781                 nr = kyber_get_domain_token(kqd, khd, hctx);
782                 if (nr >= 0) {
783                         khd->batching++;
784                         rq_set_domain_token(rq, nr);
785                         list_del_init(&rq->queuelist);
786                         return rq;
787                 } else {
788                         trace_kyber_throttled(kqd->q,
789                                               kyber_domain_names[khd->cur_domain]);
790                 }
791         } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
792                 nr = kyber_get_domain_token(kqd, khd, hctx);
793                 if (nr >= 0) {
794                         kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
795                         rq = list_first_entry(rqs, struct request, queuelist);
796                         khd->batching++;
797                         rq_set_domain_token(rq, nr);
798                         list_del_init(&rq->queuelist);
799                         return rq;
800                 } else {
801                         trace_kyber_throttled(kqd->q,
802                                               kyber_domain_names[khd->cur_domain]);
803                 }
804         }
805
806         /* There were either no pending requests or no tokens. */
807         return NULL;
808 }
809
810 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
811 {
812         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
813         struct kyber_hctx_data *khd = hctx->sched_data;
814         struct request *rq;
815         int i;
816
817         spin_lock(&khd->lock);
818
819         /*
820          * First, if we are still entitled to batch, try to dispatch a request
821          * from the batch.
822          */
823         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
824                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
825                 if (rq)
826                         goto out;
827         }
828
829         /*
830          * Either,
831          * 1. We were no longer entitled to a batch.
832          * 2. The domain we were batching didn't have any requests.
833          * 3. The domain we were batching was out of tokens.
834          *
835          * Start another batch. Note that this wraps back around to the original
836          * domain if no other domains have requests or tokens.
837          */
838         khd->batching = 0;
839         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
840                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
841                         khd->cur_domain = 0;
842                 else
843                         khd->cur_domain++;
844
845                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
846                 if (rq)
847                         goto out;
848         }
849
850         rq = NULL;
851 out:
852         spin_unlock(&khd->lock);
853         return rq;
854 }
855
856 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
857 {
858         struct kyber_hctx_data *khd = hctx->sched_data;
859         int i;
860
861         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
862                 if (!list_empty_careful(&khd->rqs[i]) ||
863                     sbitmap_any_bit_set(&khd->kcq_map[i]))
864                         return true;
865         }
866
867         return false;
868 }
869
870 #define KYBER_LAT_SHOW_STORE(domain, name)                              \
871 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
872                                        char *page)                      \
873 {                                                                       \
874         struct kyber_queue_data *kqd = e->elevator_data;                \
875                                                                         \
876         return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
877 }                                                                       \
878                                                                         \
879 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
880                                         const char *page, size_t count) \
881 {                                                                       \
882         struct kyber_queue_data *kqd = e->elevator_data;                \
883         unsigned long long nsec;                                        \
884         int ret;                                                        \
885                                                                         \
886         ret = kstrtoull(page, 10, &nsec);                               \
887         if (ret)                                                        \
888                 return ret;                                             \
889                                                                         \
890         kqd->latency_targets[domain] = nsec;                            \
891                                                                         \
892         return count;                                                   \
893 }
894 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
895 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
896 #undef KYBER_LAT_SHOW_STORE
897
898 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
899 static struct elv_fs_entry kyber_sched_attrs[] = {
900         KYBER_LAT_ATTR(read),
901         KYBER_LAT_ATTR(write),
902         __ATTR_NULL
903 };
904 #undef KYBER_LAT_ATTR
905
906 #ifdef CONFIG_BLK_DEBUG_FS
907 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
908 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
909 {                                                                       \
910         struct request_queue *q = data;                                 \
911         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
912                                                                         \
913         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
914         return 0;                                                       \
915 }                                                                       \
916                                                                         \
917 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
918         __acquires(&khd->lock)                                          \
919 {                                                                       \
920         struct blk_mq_hw_ctx *hctx = m->private;                        \
921         struct kyber_hctx_data *khd = hctx->sched_data;                 \
922                                                                         \
923         spin_lock(&khd->lock);                                          \
924         return seq_list_start(&khd->rqs[domain], *pos);                 \
925 }                                                                       \
926                                                                         \
927 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
928                                      loff_t *pos)                       \
929 {                                                                       \
930         struct blk_mq_hw_ctx *hctx = m->private;                        \
931         struct kyber_hctx_data *khd = hctx->sched_data;                 \
932                                                                         \
933         return seq_list_next(v, &khd->rqs[domain], pos);                \
934 }                                                                       \
935                                                                         \
936 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
937         __releases(&khd->lock)                                          \
938 {                                                                       \
939         struct blk_mq_hw_ctx *hctx = m->private;                        \
940         struct kyber_hctx_data *khd = hctx->sched_data;                 \
941                                                                         \
942         spin_unlock(&khd->lock);                                        \
943 }                                                                       \
944                                                                         \
945 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
946         .start  = kyber_##name##_rqs_start,                             \
947         .next   = kyber_##name##_rqs_next,                              \
948         .stop   = kyber_##name##_rqs_stop,                              \
949         .show   = blk_mq_debugfs_rq_show,                               \
950 };                                                                      \
951                                                                         \
952 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
953 {                                                                       \
954         struct blk_mq_hw_ctx *hctx = data;                              \
955         struct kyber_hctx_data *khd = hctx->sched_data;                 \
956         wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
957                                                                         \
958         seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
959         return 0;                                                       \
960 }
961 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
962 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
963 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
964 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
965 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
966
967 static int kyber_async_depth_show(void *data, struct seq_file *m)
968 {
969         struct request_queue *q = data;
970         struct kyber_queue_data *kqd = q->elevator->elevator_data;
971
972         seq_printf(m, "%u\n", kqd->async_depth);
973         return 0;
974 }
975
976 static int kyber_cur_domain_show(void *data, struct seq_file *m)
977 {
978         struct blk_mq_hw_ctx *hctx = data;
979         struct kyber_hctx_data *khd = hctx->sched_data;
980
981         seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
982         return 0;
983 }
984
985 static int kyber_batching_show(void *data, struct seq_file *m)
986 {
987         struct blk_mq_hw_ctx *hctx = data;
988         struct kyber_hctx_data *khd = hctx->sched_data;
989
990         seq_printf(m, "%u\n", khd->batching);
991         return 0;
992 }
993
994 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
995         {#name "_tokens", 0400, kyber_##name##_tokens_show}
996 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
997         KYBER_QUEUE_DOMAIN_ATTRS(read),
998         KYBER_QUEUE_DOMAIN_ATTRS(write),
999         KYBER_QUEUE_DOMAIN_ATTRS(discard),
1000         KYBER_QUEUE_DOMAIN_ATTRS(other),
1001         {"async_depth", 0400, kyber_async_depth_show},
1002         {},
1003 };
1004 #undef KYBER_QUEUE_DOMAIN_ATTRS
1005
1006 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
1007         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
1008         {#name "_waiting", 0400, kyber_##name##_waiting_show}
1009 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1010         KYBER_HCTX_DOMAIN_ATTRS(read),
1011         KYBER_HCTX_DOMAIN_ATTRS(write),
1012         KYBER_HCTX_DOMAIN_ATTRS(discard),
1013         KYBER_HCTX_DOMAIN_ATTRS(other),
1014         {"cur_domain", 0400, kyber_cur_domain_show},
1015         {"batching", 0400, kyber_batching_show},
1016         {},
1017 };
1018 #undef KYBER_HCTX_DOMAIN_ATTRS
1019 #endif
1020
1021 static struct elevator_type kyber_sched = {
1022         .ops = {
1023                 .init_sched = kyber_init_sched,
1024                 .exit_sched = kyber_exit_sched,
1025                 .init_hctx = kyber_init_hctx,
1026                 .exit_hctx = kyber_exit_hctx,
1027                 .limit_depth = kyber_limit_depth,
1028                 .bio_merge = kyber_bio_merge,
1029                 .prepare_request = kyber_prepare_request,
1030                 .insert_requests = kyber_insert_requests,
1031                 .finish_request = kyber_finish_request,
1032                 .requeue_request = kyber_finish_request,
1033                 .completed_request = kyber_completed_request,
1034                 .dispatch_request = kyber_dispatch_request,
1035                 .has_work = kyber_has_work,
1036         },
1037 #ifdef CONFIG_BLK_DEBUG_FS
1038         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1039         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1040 #endif
1041         .elevator_attrs = kyber_sched_attrs,
1042         .elevator_name = "kyber",
1043         .elevator_owner = THIS_MODULE,
1044 };
1045
1046 static int __init kyber_init(void)
1047 {
1048         return elv_register(&kyber_sched);
1049 }
1050
1051 static void __exit kyber_exit(void)
1052 {
1053         elv_unregister(&kyber_sched);
1054 }
1055
1056 module_init(kyber_init);
1057 module_exit(kyber_exit);
1058
1059 MODULE_AUTHOR("Omar Sandoval");
1060 MODULE_LICENSE("GPL");
1061 MODULE_DESCRIPTION("Kyber I/O scheduler");