Merge tag 'driver-core-3.18-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / block / genhd.c
1 /*
2  *  gendisk handling
3  */
4
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/mutex.h>
19 #include <linux/idr.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22
23 #include "blk.h"
24
25 static DEFINE_MUTEX(block_class_lock);
26 struct kobject *block_depr;
27
28 /* for extended dynamic devt allocation, currently only one major is used */
29 #define NR_EXT_DEVT             (1 << MINORBITS)
30
31 /* For extended devt allocation.  ext_devt_lock prevents look up
32  * results from going away underneath its user.
33  */
34 static DEFINE_SPINLOCK(ext_devt_lock);
35 static DEFINE_IDR(ext_devt_idr);
36
37 static struct device_type disk_type;
38
39 static void disk_check_events(struct disk_events *ev,
40                               unsigned int *clearing_ptr);
41 static void disk_alloc_events(struct gendisk *disk);
42 static void disk_add_events(struct gendisk *disk);
43 static void disk_del_events(struct gendisk *disk);
44 static void disk_release_events(struct gendisk *disk);
45
46 /**
47  * disk_get_part - get partition
48  * @disk: disk to look partition from
49  * @partno: partition number
50  *
51  * Look for partition @partno from @disk.  If found, increment
52  * reference count and return it.
53  *
54  * CONTEXT:
55  * Don't care.
56  *
57  * RETURNS:
58  * Pointer to the found partition on success, NULL if not found.
59  */
60 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
61 {
62         struct hd_struct *part = NULL;
63         struct disk_part_tbl *ptbl;
64
65         if (unlikely(partno < 0))
66                 return NULL;
67
68         rcu_read_lock();
69
70         ptbl = rcu_dereference(disk->part_tbl);
71         if (likely(partno < ptbl->len)) {
72                 part = rcu_dereference(ptbl->part[partno]);
73                 if (part)
74                         get_device(part_to_dev(part));
75         }
76
77         rcu_read_unlock();
78
79         return part;
80 }
81 EXPORT_SYMBOL_GPL(disk_get_part);
82
83 /**
84  * disk_part_iter_init - initialize partition iterator
85  * @piter: iterator to initialize
86  * @disk: disk to iterate over
87  * @flags: DISK_PITER_* flags
88  *
89  * Initialize @piter so that it iterates over partitions of @disk.
90  *
91  * CONTEXT:
92  * Don't care.
93  */
94 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
95                           unsigned int flags)
96 {
97         struct disk_part_tbl *ptbl;
98
99         rcu_read_lock();
100         ptbl = rcu_dereference(disk->part_tbl);
101
102         piter->disk = disk;
103         piter->part = NULL;
104
105         if (flags & DISK_PITER_REVERSE)
106                 piter->idx = ptbl->len - 1;
107         else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
108                 piter->idx = 0;
109         else
110                 piter->idx = 1;
111
112         piter->flags = flags;
113
114         rcu_read_unlock();
115 }
116 EXPORT_SYMBOL_GPL(disk_part_iter_init);
117
118 /**
119  * disk_part_iter_next - proceed iterator to the next partition and return it
120  * @piter: iterator of interest
121  *
122  * Proceed @piter to the next partition and return it.
123  *
124  * CONTEXT:
125  * Don't care.
126  */
127 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
128 {
129         struct disk_part_tbl *ptbl;
130         int inc, end;
131
132         /* put the last partition */
133         disk_put_part(piter->part);
134         piter->part = NULL;
135
136         /* get part_tbl */
137         rcu_read_lock();
138         ptbl = rcu_dereference(piter->disk->part_tbl);
139
140         /* determine iteration parameters */
141         if (piter->flags & DISK_PITER_REVERSE) {
142                 inc = -1;
143                 if (piter->flags & (DISK_PITER_INCL_PART0 |
144                                     DISK_PITER_INCL_EMPTY_PART0))
145                         end = -1;
146                 else
147                         end = 0;
148         } else {
149                 inc = 1;
150                 end = ptbl->len;
151         }
152
153         /* iterate to the next partition */
154         for (; piter->idx != end; piter->idx += inc) {
155                 struct hd_struct *part;
156
157                 part = rcu_dereference(ptbl->part[piter->idx]);
158                 if (!part)
159                         continue;
160                 if (!part_nr_sects_read(part) &&
161                     !(piter->flags & DISK_PITER_INCL_EMPTY) &&
162                     !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
163                       piter->idx == 0))
164                         continue;
165
166                 get_device(part_to_dev(part));
167                 piter->part = part;
168                 piter->idx += inc;
169                 break;
170         }
171
172         rcu_read_unlock();
173
174         return piter->part;
175 }
176 EXPORT_SYMBOL_GPL(disk_part_iter_next);
177
178 /**
179  * disk_part_iter_exit - finish up partition iteration
180  * @piter: iter of interest
181  *
182  * Called when iteration is over.  Cleans up @piter.
183  *
184  * CONTEXT:
185  * Don't care.
186  */
187 void disk_part_iter_exit(struct disk_part_iter *piter)
188 {
189         disk_put_part(piter->part);
190         piter->part = NULL;
191 }
192 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
193
194 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
195 {
196         return part->start_sect <= sector &&
197                 sector < part->start_sect + part_nr_sects_read(part);
198 }
199
200 /**
201  * disk_map_sector_rcu - map sector to partition
202  * @disk: gendisk of interest
203  * @sector: sector to map
204  *
205  * Find out which partition @sector maps to on @disk.  This is
206  * primarily used for stats accounting.
207  *
208  * CONTEXT:
209  * RCU read locked.  The returned partition pointer is valid only
210  * while preemption is disabled.
211  *
212  * RETURNS:
213  * Found partition on success, part0 is returned if no partition matches
214  */
215 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
216 {
217         struct disk_part_tbl *ptbl;
218         struct hd_struct *part;
219         int i;
220
221         ptbl = rcu_dereference(disk->part_tbl);
222
223         part = rcu_dereference(ptbl->last_lookup);
224         if (part && sector_in_part(part, sector))
225                 return part;
226
227         for (i = 1; i < ptbl->len; i++) {
228                 part = rcu_dereference(ptbl->part[i]);
229
230                 if (part && sector_in_part(part, sector)) {
231                         rcu_assign_pointer(ptbl->last_lookup, part);
232                         return part;
233                 }
234         }
235         return &disk->part0;
236 }
237 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
238
239 /*
240  * Can be deleted altogether. Later.
241  *
242  */
243 static struct blk_major_name {
244         struct blk_major_name *next;
245         int major;
246         char name[16];
247 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
248
249 /* index in the above - for now: assume no multimajor ranges */
250 static inline int major_to_index(unsigned major)
251 {
252         return major % BLKDEV_MAJOR_HASH_SIZE;
253 }
254
255 #ifdef CONFIG_PROC_FS
256 void blkdev_show(struct seq_file *seqf, off_t offset)
257 {
258         struct blk_major_name *dp;
259
260         if (offset < BLKDEV_MAJOR_HASH_SIZE) {
261                 mutex_lock(&block_class_lock);
262                 for (dp = major_names[offset]; dp; dp = dp->next)
263                         seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
264                 mutex_unlock(&block_class_lock);
265         }
266 }
267 #endif /* CONFIG_PROC_FS */
268
269 /**
270  * register_blkdev - register a new block device
271  *
272  * @major: the requested major device number [1..255]. If @major=0, try to
273  *         allocate any unused major number.
274  * @name: the name of the new block device as a zero terminated string
275  *
276  * The @name must be unique within the system.
277  *
278  * The return value depends on the @major input parameter.
279  *  - if a major device number was requested in range [1..255] then the
280  *    function returns zero on success, or a negative error code
281  *  - if any unused major number was requested with @major=0 parameter
282  *    then the return value is the allocated major number in range
283  *    [1..255] or a negative error code otherwise
284  */
285 int register_blkdev(unsigned int major, const char *name)
286 {
287         struct blk_major_name **n, *p;
288         int index, ret = 0;
289
290         mutex_lock(&block_class_lock);
291
292         /* temporary */
293         if (major == 0) {
294                 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
295                         if (major_names[index] == NULL)
296                                 break;
297                 }
298
299                 if (index == 0) {
300                         printk("register_blkdev: failed to get major for %s\n",
301                                name);
302                         ret = -EBUSY;
303                         goto out;
304                 }
305                 major = index;
306                 ret = major;
307         }
308
309         p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
310         if (p == NULL) {
311                 ret = -ENOMEM;
312                 goto out;
313         }
314
315         p->major = major;
316         strlcpy(p->name, name, sizeof(p->name));
317         p->next = NULL;
318         index = major_to_index(major);
319
320         for (n = &major_names[index]; *n; n = &(*n)->next) {
321                 if ((*n)->major == major)
322                         break;
323         }
324         if (!*n)
325                 *n = p;
326         else
327                 ret = -EBUSY;
328
329         if (ret < 0) {
330                 printk("register_blkdev: cannot get major %d for %s\n",
331                        major, name);
332                 kfree(p);
333         }
334 out:
335         mutex_unlock(&block_class_lock);
336         return ret;
337 }
338
339 EXPORT_SYMBOL(register_blkdev);
340
341 void unregister_blkdev(unsigned int major, const char *name)
342 {
343         struct blk_major_name **n;
344         struct blk_major_name *p = NULL;
345         int index = major_to_index(major);
346
347         mutex_lock(&block_class_lock);
348         for (n = &major_names[index]; *n; n = &(*n)->next)
349                 if ((*n)->major == major)
350                         break;
351         if (!*n || strcmp((*n)->name, name)) {
352                 WARN_ON(1);
353         } else {
354                 p = *n;
355                 *n = p->next;
356         }
357         mutex_unlock(&block_class_lock);
358         kfree(p);
359 }
360
361 EXPORT_SYMBOL(unregister_blkdev);
362
363 static struct kobj_map *bdev_map;
364
365 /**
366  * blk_mangle_minor - scatter minor numbers apart
367  * @minor: minor number to mangle
368  *
369  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
370  * is enabled.  Mangling twice gives the original value.
371  *
372  * RETURNS:
373  * Mangled value.
374  *
375  * CONTEXT:
376  * Don't care.
377  */
378 static int blk_mangle_minor(int minor)
379 {
380 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
381         int i;
382
383         for (i = 0; i < MINORBITS / 2; i++) {
384                 int low = minor & (1 << i);
385                 int high = minor & (1 << (MINORBITS - 1 - i));
386                 int distance = MINORBITS - 1 - 2 * i;
387
388                 minor ^= low | high;    /* clear both bits */
389                 low <<= distance;       /* swap the positions */
390                 high >>= distance;
391                 minor |= low | high;    /* and set */
392         }
393 #endif
394         return minor;
395 }
396
397 /**
398  * blk_alloc_devt - allocate a dev_t for a partition
399  * @part: partition to allocate dev_t for
400  * @devt: out parameter for resulting dev_t
401  *
402  * Allocate a dev_t for block device.
403  *
404  * RETURNS:
405  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
406  * failure.
407  *
408  * CONTEXT:
409  * Might sleep.
410  */
411 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
412 {
413         struct gendisk *disk = part_to_disk(part);
414         int idx;
415
416         /* in consecutive minor range? */
417         if (part->partno < disk->minors) {
418                 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
419                 return 0;
420         }
421
422         /* allocate ext devt */
423         idr_preload(GFP_KERNEL);
424
425         spin_lock(&ext_devt_lock);
426         idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
427         spin_unlock(&ext_devt_lock);
428
429         idr_preload_end();
430         if (idx < 0)
431                 return idx == -ENOSPC ? -EBUSY : idx;
432
433         *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
434         return 0;
435 }
436
437 /**
438  * blk_free_devt - free a dev_t
439  * @devt: dev_t to free
440  *
441  * Free @devt which was allocated using blk_alloc_devt().
442  *
443  * CONTEXT:
444  * Might sleep.
445  */
446 void blk_free_devt(dev_t devt)
447 {
448         if (devt == MKDEV(0, 0))
449                 return;
450
451         if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
452                 spin_lock(&ext_devt_lock);
453                 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
454                 spin_unlock(&ext_devt_lock);
455         }
456 }
457
458 static char *bdevt_str(dev_t devt, char *buf)
459 {
460         if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
461                 char tbuf[BDEVT_SIZE];
462                 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
463                 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
464         } else
465                 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
466
467         return buf;
468 }
469
470 /*
471  * Register device numbers dev..(dev+range-1)
472  * range must be nonzero
473  * The hash chain is sorted on range, so that subranges can override.
474  */
475 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
476                          struct kobject *(*probe)(dev_t, int *, void *),
477                          int (*lock)(dev_t, void *), void *data)
478 {
479         kobj_map(bdev_map, devt, range, module, probe, lock, data);
480 }
481
482 EXPORT_SYMBOL(blk_register_region);
483
484 void blk_unregister_region(dev_t devt, unsigned long range)
485 {
486         kobj_unmap(bdev_map, devt, range);
487 }
488
489 EXPORT_SYMBOL(blk_unregister_region);
490
491 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
492 {
493         struct gendisk *p = data;
494
495         return &disk_to_dev(p)->kobj;
496 }
497
498 static int exact_lock(dev_t devt, void *data)
499 {
500         struct gendisk *p = data;
501
502         if (!get_disk(p))
503                 return -1;
504         return 0;
505 }
506
507 static void register_disk(struct gendisk *disk)
508 {
509         struct device *ddev = disk_to_dev(disk);
510         struct block_device *bdev;
511         struct disk_part_iter piter;
512         struct hd_struct *part;
513         int err;
514
515         ddev->parent = disk->driverfs_dev;
516
517         dev_set_name(ddev, "%s", disk->disk_name);
518
519         /* delay uevents, until we scanned partition table */
520         dev_set_uevent_suppress(ddev, 1);
521
522         if (device_add(ddev))
523                 return;
524         if (!sysfs_deprecated) {
525                 err = sysfs_create_link(block_depr, &ddev->kobj,
526                                         kobject_name(&ddev->kobj));
527                 if (err) {
528                         device_del(ddev);
529                         return;
530                 }
531         }
532
533         /*
534          * avoid probable deadlock caused by allocating memory with
535          * GFP_KERNEL in runtime_resume callback of its all ancestor
536          * devices
537          */
538         pm_runtime_set_memalloc_noio(ddev, true);
539
540         disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
541         disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
542
543         /* No minors to use for partitions */
544         if (!disk_part_scan_enabled(disk))
545                 goto exit;
546
547         /* No such device (e.g., media were just removed) */
548         if (!get_capacity(disk))
549                 goto exit;
550
551         bdev = bdget_disk(disk, 0);
552         if (!bdev)
553                 goto exit;
554
555         bdev->bd_invalidated = 1;
556         err = blkdev_get(bdev, FMODE_READ, NULL);
557         if (err < 0)
558                 goto exit;
559         blkdev_put(bdev, FMODE_READ);
560
561 exit:
562         /* announce disk after possible partitions are created */
563         dev_set_uevent_suppress(ddev, 0);
564         kobject_uevent(&ddev->kobj, KOBJ_ADD);
565
566         /* announce possible partitions */
567         disk_part_iter_init(&piter, disk, 0);
568         while ((part = disk_part_iter_next(&piter)))
569                 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
570         disk_part_iter_exit(&piter);
571 }
572
573 /**
574  * add_disk - add partitioning information to kernel list
575  * @disk: per-device partitioning information
576  *
577  * This function registers the partitioning information in @disk
578  * with the kernel.
579  *
580  * FIXME: error handling
581  */
582 void add_disk(struct gendisk *disk)
583 {
584         struct backing_dev_info *bdi;
585         dev_t devt;
586         int retval;
587
588         /* minors == 0 indicates to use ext devt from part0 and should
589          * be accompanied with EXT_DEVT flag.  Make sure all
590          * parameters make sense.
591          */
592         WARN_ON(disk->minors && !(disk->major || disk->first_minor));
593         WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
594
595         disk->flags |= GENHD_FL_UP;
596
597         retval = blk_alloc_devt(&disk->part0, &devt);
598         if (retval) {
599                 WARN_ON(1);
600                 return;
601         }
602         disk_to_dev(disk)->devt = devt;
603
604         /* ->major and ->first_minor aren't supposed to be
605          * dereferenced from here on, but set them just in case.
606          */
607         disk->major = MAJOR(devt);
608         disk->first_minor = MINOR(devt);
609
610         disk_alloc_events(disk);
611
612         /* Register BDI before referencing it from bdev */
613         bdi = &disk->queue->backing_dev_info;
614         bdi_register_dev(bdi, disk_devt(disk));
615
616         blk_register_region(disk_devt(disk), disk->minors, NULL,
617                             exact_match, exact_lock, disk);
618         register_disk(disk);
619         blk_register_queue(disk);
620
621         /*
622          * Take an extra ref on queue which will be put on disk_release()
623          * so that it sticks around as long as @disk is there.
624          */
625         WARN_ON_ONCE(!blk_get_queue(disk->queue));
626
627         retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
628                                    "bdi");
629         WARN_ON(retval);
630
631         disk_add_events(disk);
632 }
633 EXPORT_SYMBOL(add_disk);
634
635 void del_gendisk(struct gendisk *disk)
636 {
637         struct disk_part_iter piter;
638         struct hd_struct *part;
639
640         disk_del_events(disk);
641
642         /* invalidate stuff */
643         disk_part_iter_init(&piter, disk,
644                              DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
645         while ((part = disk_part_iter_next(&piter))) {
646                 invalidate_partition(disk, part->partno);
647                 delete_partition(disk, part->partno);
648         }
649         disk_part_iter_exit(&piter);
650
651         invalidate_partition(disk, 0);
652         set_capacity(disk, 0);
653         disk->flags &= ~GENHD_FL_UP;
654
655         sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
656         bdi_unregister(&disk->queue->backing_dev_info);
657         blk_unregister_queue(disk);
658         blk_unregister_region(disk_devt(disk), disk->minors);
659
660         part_stat_set_all(&disk->part0, 0);
661         disk->part0.stamp = 0;
662
663         kobject_put(disk->part0.holder_dir);
664         kobject_put(disk->slave_dir);
665         disk->driverfs_dev = NULL;
666         if (!sysfs_deprecated)
667                 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
668         pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
669         device_del(disk_to_dev(disk));
670 }
671 EXPORT_SYMBOL(del_gendisk);
672
673 /**
674  * get_gendisk - get partitioning information for a given device
675  * @devt: device to get partitioning information for
676  * @partno: returned partition index
677  *
678  * This function gets the structure containing partitioning
679  * information for the given device @devt.
680  */
681 struct gendisk *get_gendisk(dev_t devt, int *partno)
682 {
683         struct gendisk *disk = NULL;
684
685         if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
686                 struct kobject *kobj;
687
688                 kobj = kobj_lookup(bdev_map, devt, partno);
689                 if (kobj)
690                         disk = dev_to_disk(kobj_to_dev(kobj));
691         } else {
692                 struct hd_struct *part;
693
694                 spin_lock(&ext_devt_lock);
695                 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
696                 if (part && get_disk(part_to_disk(part))) {
697                         *partno = part->partno;
698                         disk = part_to_disk(part);
699                 }
700                 spin_unlock(&ext_devt_lock);
701         }
702
703         return disk;
704 }
705 EXPORT_SYMBOL(get_gendisk);
706
707 /**
708  * bdget_disk - do bdget() by gendisk and partition number
709  * @disk: gendisk of interest
710  * @partno: partition number
711  *
712  * Find partition @partno from @disk, do bdget() on it.
713  *
714  * CONTEXT:
715  * Don't care.
716  *
717  * RETURNS:
718  * Resulting block_device on success, NULL on failure.
719  */
720 struct block_device *bdget_disk(struct gendisk *disk, int partno)
721 {
722         struct hd_struct *part;
723         struct block_device *bdev = NULL;
724
725         part = disk_get_part(disk, partno);
726         if (part)
727                 bdev = bdget(part_devt(part));
728         disk_put_part(part);
729
730         return bdev;
731 }
732 EXPORT_SYMBOL(bdget_disk);
733
734 /*
735  * print a full list of all partitions - intended for places where the root
736  * filesystem can't be mounted and thus to give the victim some idea of what
737  * went wrong
738  */
739 void __init printk_all_partitions(void)
740 {
741         struct class_dev_iter iter;
742         struct device *dev;
743
744         class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
745         while ((dev = class_dev_iter_next(&iter))) {
746                 struct gendisk *disk = dev_to_disk(dev);
747                 struct disk_part_iter piter;
748                 struct hd_struct *part;
749                 char name_buf[BDEVNAME_SIZE];
750                 char devt_buf[BDEVT_SIZE];
751
752                 /*
753                  * Don't show empty devices or things that have been
754                  * suppressed
755                  */
756                 if (get_capacity(disk) == 0 ||
757                     (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
758                         continue;
759
760                 /*
761                  * Note, unlike /proc/partitions, I am showing the
762                  * numbers in hex - the same format as the root=
763                  * option takes.
764                  */
765                 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
766                 while ((part = disk_part_iter_next(&piter))) {
767                         bool is_part0 = part == &disk->part0;
768
769                         printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
770                                bdevt_str(part_devt(part), devt_buf),
771                                (unsigned long long)part_nr_sects_read(part) >> 1
772                                , disk_name(disk, part->partno, name_buf),
773                                part->info ? part->info->uuid : "");
774                         if (is_part0) {
775                                 if (disk->driverfs_dev != NULL &&
776                                     disk->driverfs_dev->driver != NULL)
777                                         printk(" driver: %s\n",
778                                               disk->driverfs_dev->driver->name);
779                                 else
780                                         printk(" (driver?)\n");
781                         } else
782                                 printk("\n");
783                 }
784                 disk_part_iter_exit(&piter);
785         }
786         class_dev_iter_exit(&iter);
787 }
788
789 #ifdef CONFIG_PROC_FS
790 /* iterator */
791 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
792 {
793         loff_t skip = *pos;
794         struct class_dev_iter *iter;
795         struct device *dev;
796
797         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
798         if (!iter)
799                 return ERR_PTR(-ENOMEM);
800
801         seqf->private = iter;
802         class_dev_iter_init(iter, &block_class, NULL, &disk_type);
803         do {
804                 dev = class_dev_iter_next(iter);
805                 if (!dev)
806                         return NULL;
807         } while (skip--);
808
809         return dev_to_disk(dev);
810 }
811
812 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
813 {
814         struct device *dev;
815
816         (*pos)++;
817         dev = class_dev_iter_next(seqf->private);
818         if (dev)
819                 return dev_to_disk(dev);
820
821         return NULL;
822 }
823
824 static void disk_seqf_stop(struct seq_file *seqf, void *v)
825 {
826         struct class_dev_iter *iter = seqf->private;
827
828         /* stop is called even after start failed :-( */
829         if (iter) {
830                 class_dev_iter_exit(iter);
831                 kfree(iter);
832         }
833 }
834
835 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
836 {
837         void *p;
838
839         p = disk_seqf_start(seqf, pos);
840         if (!IS_ERR_OR_NULL(p) && !*pos)
841                 seq_puts(seqf, "major minor  #blocks  name\n\n");
842         return p;
843 }
844
845 static int show_partition(struct seq_file *seqf, void *v)
846 {
847         struct gendisk *sgp = v;
848         struct disk_part_iter piter;
849         struct hd_struct *part;
850         char buf[BDEVNAME_SIZE];
851
852         /* Don't show non-partitionable removeable devices or empty devices */
853         if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
854                                    (sgp->flags & GENHD_FL_REMOVABLE)))
855                 return 0;
856         if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
857                 return 0;
858
859         /* show the full disk and all non-0 size partitions of it */
860         disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
861         while ((part = disk_part_iter_next(&piter)))
862                 seq_printf(seqf, "%4d  %7d %10llu %s\n",
863                            MAJOR(part_devt(part)), MINOR(part_devt(part)),
864                            (unsigned long long)part_nr_sects_read(part) >> 1,
865                            disk_name(sgp, part->partno, buf));
866         disk_part_iter_exit(&piter);
867
868         return 0;
869 }
870
871 static const struct seq_operations partitions_op = {
872         .start  = show_partition_start,
873         .next   = disk_seqf_next,
874         .stop   = disk_seqf_stop,
875         .show   = show_partition
876 };
877
878 static int partitions_open(struct inode *inode, struct file *file)
879 {
880         return seq_open(file, &partitions_op);
881 }
882
883 static const struct file_operations proc_partitions_operations = {
884         .open           = partitions_open,
885         .read           = seq_read,
886         .llseek         = seq_lseek,
887         .release        = seq_release,
888 };
889 #endif
890
891
892 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
893 {
894         if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
895                 /* Make old-style 2.4 aliases work */
896                 request_module("block-major-%d", MAJOR(devt));
897         return NULL;
898 }
899
900 static int __init genhd_device_init(void)
901 {
902         int error;
903
904         block_class.dev_kobj = sysfs_dev_block_kobj;
905         error = class_register(&block_class);
906         if (unlikely(error))
907                 return error;
908         bdev_map = kobj_map_init(base_probe, &block_class_lock);
909         blk_dev_init();
910
911         register_blkdev(BLOCK_EXT_MAJOR, "blkext");
912
913         /* create top-level block dir */
914         if (!sysfs_deprecated)
915                 block_depr = kobject_create_and_add("block", NULL);
916         return 0;
917 }
918
919 subsys_initcall(genhd_device_init);
920
921 static ssize_t disk_range_show(struct device *dev,
922                                struct device_attribute *attr, char *buf)
923 {
924         struct gendisk *disk = dev_to_disk(dev);
925
926         return sprintf(buf, "%d\n", disk->minors);
927 }
928
929 static ssize_t disk_ext_range_show(struct device *dev,
930                                    struct device_attribute *attr, char *buf)
931 {
932         struct gendisk *disk = dev_to_disk(dev);
933
934         return sprintf(buf, "%d\n", disk_max_parts(disk));
935 }
936
937 static ssize_t disk_removable_show(struct device *dev,
938                                    struct device_attribute *attr, char *buf)
939 {
940         struct gendisk *disk = dev_to_disk(dev);
941
942         return sprintf(buf, "%d\n",
943                        (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
944 }
945
946 static ssize_t disk_ro_show(struct device *dev,
947                                    struct device_attribute *attr, char *buf)
948 {
949         struct gendisk *disk = dev_to_disk(dev);
950
951         return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
952 }
953
954 static ssize_t disk_capability_show(struct device *dev,
955                                     struct device_attribute *attr, char *buf)
956 {
957         struct gendisk *disk = dev_to_disk(dev);
958
959         return sprintf(buf, "%x\n", disk->flags);
960 }
961
962 static ssize_t disk_alignment_offset_show(struct device *dev,
963                                           struct device_attribute *attr,
964                                           char *buf)
965 {
966         struct gendisk *disk = dev_to_disk(dev);
967
968         return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
969 }
970
971 static ssize_t disk_discard_alignment_show(struct device *dev,
972                                            struct device_attribute *attr,
973                                            char *buf)
974 {
975         struct gendisk *disk = dev_to_disk(dev);
976
977         return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
978 }
979
980 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
981 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
982 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
983 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
984 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
985 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
986 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
987                    NULL);
988 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
989 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
990 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
991 #ifdef CONFIG_FAIL_MAKE_REQUEST
992 static struct device_attribute dev_attr_fail =
993         __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
994 #endif
995 #ifdef CONFIG_FAIL_IO_TIMEOUT
996 static struct device_attribute dev_attr_fail_timeout =
997         __ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
998                 part_timeout_store);
999 #endif
1000
1001 static struct attribute *disk_attrs[] = {
1002         &dev_attr_range.attr,
1003         &dev_attr_ext_range.attr,
1004         &dev_attr_removable.attr,
1005         &dev_attr_ro.attr,
1006         &dev_attr_size.attr,
1007         &dev_attr_alignment_offset.attr,
1008         &dev_attr_discard_alignment.attr,
1009         &dev_attr_capability.attr,
1010         &dev_attr_stat.attr,
1011         &dev_attr_inflight.attr,
1012 #ifdef CONFIG_FAIL_MAKE_REQUEST
1013         &dev_attr_fail.attr,
1014 #endif
1015 #ifdef CONFIG_FAIL_IO_TIMEOUT
1016         &dev_attr_fail_timeout.attr,
1017 #endif
1018         NULL
1019 };
1020
1021 static struct attribute_group disk_attr_group = {
1022         .attrs = disk_attrs,
1023 };
1024
1025 static const struct attribute_group *disk_attr_groups[] = {
1026         &disk_attr_group,
1027         NULL
1028 };
1029
1030 /**
1031  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1032  * @disk: disk to replace part_tbl for
1033  * @new_ptbl: new part_tbl to install
1034  *
1035  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1036  * original ptbl is freed using RCU callback.
1037  *
1038  * LOCKING:
1039  * Matching bd_mutx locked.
1040  */
1041 static void disk_replace_part_tbl(struct gendisk *disk,
1042                                   struct disk_part_tbl *new_ptbl)
1043 {
1044         struct disk_part_tbl *old_ptbl = disk->part_tbl;
1045
1046         rcu_assign_pointer(disk->part_tbl, new_ptbl);
1047
1048         if (old_ptbl) {
1049                 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1050                 kfree_rcu(old_ptbl, rcu_head);
1051         }
1052 }
1053
1054 /**
1055  * disk_expand_part_tbl - expand disk->part_tbl
1056  * @disk: disk to expand part_tbl for
1057  * @partno: expand such that this partno can fit in
1058  *
1059  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1060  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1061  *
1062  * LOCKING:
1063  * Matching bd_mutex locked, might sleep.
1064  *
1065  * RETURNS:
1066  * 0 on success, -errno on failure.
1067  */
1068 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1069 {
1070         struct disk_part_tbl *old_ptbl = disk->part_tbl;
1071         struct disk_part_tbl *new_ptbl;
1072         int len = old_ptbl ? old_ptbl->len : 0;
1073         int target = partno + 1;
1074         size_t size;
1075         int i;
1076
1077         /* disk_max_parts() is zero during initialization, ignore if so */
1078         if (disk_max_parts(disk) && target > disk_max_parts(disk))
1079                 return -EINVAL;
1080
1081         if (target <= len)
1082                 return 0;
1083
1084         size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1085         new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1086         if (!new_ptbl)
1087                 return -ENOMEM;
1088
1089         new_ptbl->len = target;
1090
1091         for (i = 0; i < len; i++)
1092                 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1093
1094         disk_replace_part_tbl(disk, new_ptbl);
1095         return 0;
1096 }
1097
1098 static void disk_release(struct device *dev)
1099 {
1100         struct gendisk *disk = dev_to_disk(dev);
1101
1102         blk_free_devt(dev->devt);
1103         disk_release_events(disk);
1104         kfree(disk->random);
1105         disk_replace_part_tbl(disk, NULL);
1106         free_part_stats(&disk->part0);
1107         free_part_info(&disk->part0);
1108         if (disk->queue)
1109                 blk_put_queue(disk->queue);
1110         kfree(disk);
1111 }
1112 struct class block_class = {
1113         .name           = "block",
1114 };
1115
1116 static char *block_devnode(struct device *dev, umode_t *mode,
1117                            kuid_t *uid, kgid_t *gid)
1118 {
1119         struct gendisk *disk = dev_to_disk(dev);
1120
1121         if (disk->devnode)
1122                 return disk->devnode(disk, mode);
1123         return NULL;
1124 }
1125
1126 static struct device_type disk_type = {
1127         .name           = "disk",
1128         .groups         = disk_attr_groups,
1129         .release        = disk_release,
1130         .devnode        = block_devnode,
1131 };
1132
1133 #ifdef CONFIG_PROC_FS
1134 /*
1135  * aggregate disk stat collector.  Uses the same stats that the sysfs
1136  * entries do, above, but makes them available through one seq_file.
1137  *
1138  * The output looks suspiciously like /proc/partitions with a bunch of
1139  * extra fields.
1140  */
1141 static int diskstats_show(struct seq_file *seqf, void *v)
1142 {
1143         struct gendisk *gp = v;
1144         struct disk_part_iter piter;
1145         struct hd_struct *hd;
1146         char buf[BDEVNAME_SIZE];
1147         int cpu;
1148
1149         /*
1150         if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1151                 seq_puts(seqf,  "major minor name"
1152                                 "     rio rmerge rsect ruse wio wmerge "
1153                                 "wsect wuse running use aveq"
1154                                 "\n\n");
1155         */
1156
1157         disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1158         while ((hd = disk_part_iter_next(&piter))) {
1159                 cpu = part_stat_lock();
1160                 part_round_stats(cpu, hd);
1161                 part_stat_unlock();
1162                 seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1163                            "%u %lu %lu %lu %u %u %u %u\n",
1164                            MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1165                            disk_name(gp, hd->partno, buf),
1166                            part_stat_read(hd, ios[READ]),
1167                            part_stat_read(hd, merges[READ]),
1168                            part_stat_read(hd, sectors[READ]),
1169                            jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1170                            part_stat_read(hd, ios[WRITE]),
1171                            part_stat_read(hd, merges[WRITE]),
1172                            part_stat_read(hd, sectors[WRITE]),
1173                            jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1174                            part_in_flight(hd),
1175                            jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1176                            jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1177                         );
1178         }
1179         disk_part_iter_exit(&piter);
1180
1181         return 0;
1182 }
1183
1184 static const struct seq_operations diskstats_op = {
1185         .start  = disk_seqf_start,
1186         .next   = disk_seqf_next,
1187         .stop   = disk_seqf_stop,
1188         .show   = diskstats_show
1189 };
1190
1191 static int diskstats_open(struct inode *inode, struct file *file)
1192 {
1193         return seq_open(file, &diskstats_op);
1194 }
1195
1196 static const struct file_operations proc_diskstats_operations = {
1197         .open           = diskstats_open,
1198         .read           = seq_read,
1199         .llseek         = seq_lseek,
1200         .release        = seq_release,
1201 };
1202
1203 static int __init proc_genhd_init(void)
1204 {
1205         proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1206         proc_create("partitions", 0, NULL, &proc_partitions_operations);
1207         return 0;
1208 }
1209 module_init(proc_genhd_init);
1210 #endif /* CONFIG_PROC_FS */
1211
1212 dev_t blk_lookup_devt(const char *name, int partno)
1213 {
1214         dev_t devt = MKDEV(0, 0);
1215         struct class_dev_iter iter;
1216         struct device *dev;
1217
1218         class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1219         while ((dev = class_dev_iter_next(&iter))) {
1220                 struct gendisk *disk = dev_to_disk(dev);
1221                 struct hd_struct *part;
1222
1223                 if (strcmp(dev_name(dev), name))
1224                         continue;
1225
1226                 if (partno < disk->minors) {
1227                         /* We need to return the right devno, even
1228                          * if the partition doesn't exist yet.
1229                          */
1230                         devt = MKDEV(MAJOR(dev->devt),
1231                                      MINOR(dev->devt) + partno);
1232                         break;
1233                 }
1234                 part = disk_get_part(disk, partno);
1235                 if (part) {
1236                         devt = part_devt(part);
1237                         disk_put_part(part);
1238                         break;
1239                 }
1240                 disk_put_part(part);
1241         }
1242         class_dev_iter_exit(&iter);
1243         return devt;
1244 }
1245 EXPORT_SYMBOL(blk_lookup_devt);
1246
1247 struct gendisk *alloc_disk(int minors)
1248 {
1249         return alloc_disk_node(minors, NUMA_NO_NODE);
1250 }
1251 EXPORT_SYMBOL(alloc_disk);
1252
1253 struct gendisk *alloc_disk_node(int minors, int node_id)
1254 {
1255         struct gendisk *disk;
1256
1257         disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1258         if (disk) {
1259                 if (!init_part_stats(&disk->part0)) {
1260                         kfree(disk);
1261                         return NULL;
1262                 }
1263                 disk->node_id = node_id;
1264                 if (disk_expand_part_tbl(disk, 0)) {
1265                         free_part_stats(&disk->part0);
1266                         kfree(disk);
1267                         return NULL;
1268                 }
1269                 disk->part_tbl->part[0] = &disk->part0;
1270
1271                 /*
1272                  * set_capacity() and get_capacity() currently don't use
1273                  * seqcounter to read/update the part0->nr_sects. Still init
1274                  * the counter as we can read the sectors in IO submission
1275                  * patch using seqence counters.
1276                  *
1277                  * TODO: Ideally set_capacity() and get_capacity() should be
1278                  * converted to make use of bd_mutex and sequence counters.
1279                  */
1280                 seqcount_init(&disk->part0.nr_sects_seq);
1281                 hd_ref_init(&disk->part0);
1282
1283                 disk->minors = minors;
1284                 rand_initialize_disk(disk);
1285                 disk_to_dev(disk)->class = &block_class;
1286                 disk_to_dev(disk)->type = &disk_type;
1287                 device_initialize(disk_to_dev(disk));
1288         }
1289         return disk;
1290 }
1291 EXPORT_SYMBOL(alloc_disk_node);
1292
1293 struct kobject *get_disk(struct gendisk *disk)
1294 {
1295         struct module *owner;
1296         struct kobject *kobj;
1297
1298         if (!disk->fops)
1299                 return NULL;
1300         owner = disk->fops->owner;
1301         if (owner && !try_module_get(owner))
1302                 return NULL;
1303         kobj = kobject_get(&disk_to_dev(disk)->kobj);
1304         if (kobj == NULL) {
1305                 module_put(owner);
1306                 return NULL;
1307         }
1308         return kobj;
1309
1310 }
1311
1312 EXPORT_SYMBOL(get_disk);
1313
1314 void put_disk(struct gendisk *disk)
1315 {
1316         if (disk)
1317                 kobject_put(&disk_to_dev(disk)->kobj);
1318 }
1319
1320 EXPORT_SYMBOL(put_disk);
1321
1322 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1323 {
1324         char event[] = "DISK_RO=1";
1325         char *envp[] = { event, NULL };
1326
1327         if (!ro)
1328                 event[8] = '0';
1329         kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1330 }
1331
1332 void set_device_ro(struct block_device *bdev, int flag)
1333 {
1334         bdev->bd_part->policy = flag;
1335 }
1336
1337 EXPORT_SYMBOL(set_device_ro);
1338
1339 void set_disk_ro(struct gendisk *disk, int flag)
1340 {
1341         struct disk_part_iter piter;
1342         struct hd_struct *part;
1343
1344         if (disk->part0.policy != flag) {
1345                 set_disk_ro_uevent(disk, flag);
1346                 disk->part0.policy = flag;
1347         }
1348
1349         disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1350         while ((part = disk_part_iter_next(&piter)))
1351                 part->policy = flag;
1352         disk_part_iter_exit(&piter);
1353 }
1354
1355 EXPORT_SYMBOL(set_disk_ro);
1356
1357 int bdev_read_only(struct block_device *bdev)
1358 {
1359         if (!bdev)
1360                 return 0;
1361         return bdev->bd_part->policy;
1362 }
1363
1364 EXPORT_SYMBOL(bdev_read_only);
1365
1366 int invalidate_partition(struct gendisk *disk, int partno)
1367 {
1368         int res = 0;
1369         struct block_device *bdev = bdget_disk(disk, partno);
1370         if (bdev) {
1371                 fsync_bdev(bdev);
1372                 res = __invalidate_device(bdev, true);
1373                 bdput(bdev);
1374         }
1375         return res;
1376 }
1377
1378 EXPORT_SYMBOL(invalidate_partition);
1379
1380 /*
1381  * Disk events - monitor disk events like media change and eject request.
1382  */
1383 struct disk_events {
1384         struct list_head        node;           /* all disk_event's */
1385         struct gendisk          *disk;          /* the associated disk */
1386         spinlock_t              lock;
1387
1388         struct mutex            block_mutex;    /* protects blocking */
1389         int                     block;          /* event blocking depth */
1390         unsigned int            pending;        /* events already sent out */
1391         unsigned int            clearing;       /* events being cleared */
1392
1393         long                    poll_msecs;     /* interval, -1 for default */
1394         struct delayed_work     dwork;
1395 };
1396
1397 static const char *disk_events_strs[] = {
1398         [ilog2(DISK_EVENT_MEDIA_CHANGE)]        = "media_change",
1399         [ilog2(DISK_EVENT_EJECT_REQUEST)]       = "eject_request",
1400 };
1401
1402 static char *disk_uevents[] = {
1403         [ilog2(DISK_EVENT_MEDIA_CHANGE)]        = "DISK_MEDIA_CHANGE=1",
1404         [ilog2(DISK_EVENT_EJECT_REQUEST)]       = "DISK_EJECT_REQUEST=1",
1405 };
1406
1407 /* list of all disk_events */
1408 static DEFINE_MUTEX(disk_events_mutex);
1409 static LIST_HEAD(disk_events);
1410
1411 /* disable in-kernel polling by default */
1412 static unsigned long disk_events_dfl_poll_msecs = 0;
1413
1414 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1415 {
1416         struct disk_events *ev = disk->ev;
1417         long intv_msecs = 0;
1418
1419         /*
1420          * If device-specific poll interval is set, always use it.  If
1421          * the default is being used, poll iff there are events which
1422          * can't be monitored asynchronously.
1423          */
1424         if (ev->poll_msecs >= 0)
1425                 intv_msecs = ev->poll_msecs;
1426         else if (disk->events & ~disk->async_events)
1427                 intv_msecs = disk_events_dfl_poll_msecs;
1428
1429         return msecs_to_jiffies(intv_msecs);
1430 }
1431
1432 /**
1433  * disk_block_events - block and flush disk event checking
1434  * @disk: disk to block events for
1435  *
1436  * On return from this function, it is guaranteed that event checking
1437  * isn't in progress and won't happen until unblocked by
1438  * disk_unblock_events().  Events blocking is counted and the actual
1439  * unblocking happens after the matching number of unblocks are done.
1440  *
1441  * Note that this intentionally does not block event checking from
1442  * disk_clear_events().
1443  *
1444  * CONTEXT:
1445  * Might sleep.
1446  */
1447 void disk_block_events(struct gendisk *disk)
1448 {
1449         struct disk_events *ev = disk->ev;
1450         unsigned long flags;
1451         bool cancel;
1452
1453         if (!ev)
1454                 return;
1455
1456         /*
1457          * Outer mutex ensures that the first blocker completes canceling
1458          * the event work before further blockers are allowed to finish.
1459          */
1460         mutex_lock(&ev->block_mutex);
1461
1462         spin_lock_irqsave(&ev->lock, flags);
1463         cancel = !ev->block++;
1464         spin_unlock_irqrestore(&ev->lock, flags);
1465
1466         if (cancel)
1467                 cancel_delayed_work_sync(&disk->ev->dwork);
1468
1469         mutex_unlock(&ev->block_mutex);
1470 }
1471
1472 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1473 {
1474         struct disk_events *ev = disk->ev;
1475         unsigned long intv;
1476         unsigned long flags;
1477
1478         spin_lock_irqsave(&ev->lock, flags);
1479
1480         if (WARN_ON_ONCE(ev->block <= 0))
1481                 goto out_unlock;
1482
1483         if (--ev->block)
1484                 goto out_unlock;
1485
1486         /*
1487          * Not exactly a latency critical operation, set poll timer
1488          * slack to 25% and kick event check.
1489          */
1490         intv = disk_events_poll_jiffies(disk);
1491         set_timer_slack(&ev->dwork.timer, intv / 4);
1492         if (check_now)
1493                 queue_delayed_work(system_freezable_power_efficient_wq,
1494                                 &ev->dwork, 0);
1495         else if (intv)
1496                 queue_delayed_work(system_freezable_power_efficient_wq,
1497                                 &ev->dwork, intv);
1498 out_unlock:
1499         spin_unlock_irqrestore(&ev->lock, flags);
1500 }
1501
1502 /**
1503  * disk_unblock_events - unblock disk event checking
1504  * @disk: disk to unblock events for
1505  *
1506  * Undo disk_block_events().  When the block count reaches zero, it
1507  * starts events polling if configured.
1508  *
1509  * CONTEXT:
1510  * Don't care.  Safe to call from irq context.
1511  */
1512 void disk_unblock_events(struct gendisk *disk)
1513 {
1514         if (disk->ev)
1515                 __disk_unblock_events(disk, false);
1516 }
1517
1518 /**
1519  * disk_flush_events - schedule immediate event checking and flushing
1520  * @disk: disk to check and flush events for
1521  * @mask: events to flush
1522  *
1523  * Schedule immediate event checking on @disk if not blocked.  Events in
1524  * @mask are scheduled to be cleared from the driver.  Note that this
1525  * doesn't clear the events from @disk->ev.
1526  *
1527  * CONTEXT:
1528  * If @mask is non-zero must be called with bdev->bd_mutex held.
1529  */
1530 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1531 {
1532         struct disk_events *ev = disk->ev;
1533
1534         if (!ev)
1535                 return;
1536
1537         spin_lock_irq(&ev->lock);
1538         ev->clearing |= mask;
1539         if (!ev->block)
1540                 mod_delayed_work(system_freezable_power_efficient_wq,
1541                                 &ev->dwork, 0);
1542         spin_unlock_irq(&ev->lock);
1543 }
1544
1545 /**
1546  * disk_clear_events - synchronously check, clear and return pending events
1547  * @disk: disk to fetch and clear events from
1548  * @mask: mask of events to be fetched and cleared
1549  *
1550  * Disk events are synchronously checked and pending events in @mask
1551  * are cleared and returned.  This ignores the block count.
1552  *
1553  * CONTEXT:
1554  * Might sleep.
1555  */
1556 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1557 {
1558         const struct block_device_operations *bdops = disk->fops;
1559         struct disk_events *ev = disk->ev;
1560         unsigned int pending;
1561         unsigned int clearing = mask;
1562
1563         if (!ev) {
1564                 /* for drivers still using the old ->media_changed method */
1565                 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1566                     bdops->media_changed && bdops->media_changed(disk))
1567                         return DISK_EVENT_MEDIA_CHANGE;
1568                 return 0;
1569         }
1570
1571         disk_block_events(disk);
1572
1573         /*
1574          * store the union of mask and ev->clearing on the stack so that the
1575          * race with disk_flush_events does not cause ambiguity (ev->clearing
1576          * can still be modified even if events are blocked).
1577          */
1578         spin_lock_irq(&ev->lock);
1579         clearing |= ev->clearing;
1580         ev->clearing = 0;
1581         spin_unlock_irq(&ev->lock);
1582
1583         disk_check_events(ev, &clearing);
1584         /*
1585          * if ev->clearing is not 0, the disk_flush_events got called in the
1586          * middle of this function, so we want to run the workfn without delay.
1587          */
1588         __disk_unblock_events(disk, ev->clearing ? true : false);
1589
1590         /* then, fetch and clear pending events */
1591         spin_lock_irq(&ev->lock);
1592         pending = ev->pending & mask;
1593         ev->pending &= ~mask;
1594         spin_unlock_irq(&ev->lock);
1595         WARN_ON_ONCE(clearing & mask);
1596
1597         return pending;
1598 }
1599
1600 /*
1601  * Separate this part out so that a different pointer for clearing_ptr can be
1602  * passed in for disk_clear_events.
1603  */
1604 static void disk_events_workfn(struct work_struct *work)
1605 {
1606         struct delayed_work *dwork = to_delayed_work(work);
1607         struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1608
1609         disk_check_events(ev, &ev->clearing);
1610 }
1611
1612 static void disk_check_events(struct disk_events *ev,
1613                               unsigned int *clearing_ptr)
1614 {
1615         struct gendisk *disk = ev->disk;
1616         char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1617         unsigned int clearing = *clearing_ptr;
1618         unsigned int events;
1619         unsigned long intv;
1620         int nr_events = 0, i;
1621
1622         /* check events */
1623         events = disk->fops->check_events(disk, clearing);
1624
1625         /* accumulate pending events and schedule next poll if necessary */
1626         spin_lock_irq(&ev->lock);
1627
1628         events &= ~ev->pending;
1629         ev->pending |= events;
1630         *clearing_ptr &= ~clearing;
1631
1632         intv = disk_events_poll_jiffies(disk);
1633         if (!ev->block && intv)
1634                 queue_delayed_work(system_freezable_power_efficient_wq,
1635                                 &ev->dwork, intv);
1636
1637         spin_unlock_irq(&ev->lock);
1638
1639         /*
1640          * Tell userland about new events.  Only the events listed in
1641          * @disk->events are reported.  Unlisted events are processed the
1642          * same internally but never get reported to userland.
1643          */
1644         for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1645                 if (events & disk->events & (1 << i))
1646                         envp[nr_events++] = disk_uevents[i];
1647
1648         if (nr_events)
1649                 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1650 }
1651
1652 /*
1653  * A disk events enabled device has the following sysfs nodes under
1654  * its /sys/block/X/ directory.
1655  *
1656  * events               : list of all supported events
1657  * events_async         : list of events which can be detected w/o polling
1658  * events_poll_msecs    : polling interval, 0: disable, -1: system default
1659  */
1660 static ssize_t __disk_events_show(unsigned int events, char *buf)
1661 {
1662         const char *delim = "";
1663         ssize_t pos = 0;
1664         int i;
1665
1666         for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1667                 if (events & (1 << i)) {
1668                         pos += sprintf(buf + pos, "%s%s",
1669                                        delim, disk_events_strs[i]);
1670                         delim = " ";
1671                 }
1672         if (pos)
1673                 pos += sprintf(buf + pos, "\n");
1674         return pos;
1675 }
1676
1677 static ssize_t disk_events_show(struct device *dev,
1678                                 struct device_attribute *attr, char *buf)
1679 {
1680         struct gendisk *disk = dev_to_disk(dev);
1681
1682         return __disk_events_show(disk->events, buf);
1683 }
1684
1685 static ssize_t disk_events_async_show(struct device *dev,
1686                                       struct device_attribute *attr, char *buf)
1687 {
1688         struct gendisk *disk = dev_to_disk(dev);
1689
1690         return __disk_events_show(disk->async_events, buf);
1691 }
1692
1693 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1694                                            struct device_attribute *attr,
1695                                            char *buf)
1696 {
1697         struct gendisk *disk = dev_to_disk(dev);
1698
1699         return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1700 }
1701
1702 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1703                                             struct device_attribute *attr,
1704                                             const char *buf, size_t count)
1705 {
1706         struct gendisk *disk = dev_to_disk(dev);
1707         long intv;
1708
1709         if (!count || !sscanf(buf, "%ld", &intv))
1710                 return -EINVAL;
1711
1712         if (intv < 0 && intv != -1)
1713                 return -EINVAL;
1714
1715         disk_block_events(disk);
1716         disk->ev->poll_msecs = intv;
1717         __disk_unblock_events(disk, true);
1718
1719         return count;
1720 }
1721
1722 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1723 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1724 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1725                          disk_events_poll_msecs_show,
1726                          disk_events_poll_msecs_store);
1727
1728 static const struct attribute *disk_events_attrs[] = {
1729         &dev_attr_events.attr,
1730         &dev_attr_events_async.attr,
1731         &dev_attr_events_poll_msecs.attr,
1732         NULL,
1733 };
1734
1735 /*
1736  * The default polling interval can be specified by the kernel
1737  * parameter block.events_dfl_poll_msecs which defaults to 0
1738  * (disable).  This can also be modified runtime by writing to
1739  * /sys/module/block/events_dfl_poll_msecs.
1740  */
1741 static int disk_events_set_dfl_poll_msecs(const char *val,
1742                                           const struct kernel_param *kp)
1743 {
1744         struct disk_events *ev;
1745         int ret;
1746
1747         ret = param_set_ulong(val, kp);
1748         if (ret < 0)
1749                 return ret;
1750
1751         mutex_lock(&disk_events_mutex);
1752
1753         list_for_each_entry(ev, &disk_events, node)
1754                 disk_flush_events(ev->disk, 0);
1755
1756         mutex_unlock(&disk_events_mutex);
1757
1758         return 0;
1759 }
1760
1761 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1762         .set    = disk_events_set_dfl_poll_msecs,
1763         .get    = param_get_ulong,
1764 };
1765
1766 #undef MODULE_PARAM_PREFIX
1767 #define MODULE_PARAM_PREFIX     "block."
1768
1769 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1770                 &disk_events_dfl_poll_msecs, 0644);
1771
1772 /*
1773  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1774  */
1775 static void disk_alloc_events(struct gendisk *disk)
1776 {
1777         struct disk_events *ev;
1778
1779         if (!disk->fops->check_events)
1780                 return;
1781
1782         ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1783         if (!ev) {
1784                 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1785                 return;
1786         }
1787
1788         INIT_LIST_HEAD(&ev->node);
1789         ev->disk = disk;
1790         spin_lock_init(&ev->lock);
1791         mutex_init(&ev->block_mutex);
1792         ev->block = 1;
1793         ev->poll_msecs = -1;
1794         INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1795
1796         disk->ev = ev;
1797 }
1798
1799 static void disk_add_events(struct gendisk *disk)
1800 {
1801         if (!disk->ev)
1802                 return;
1803
1804         /* FIXME: error handling */
1805         if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1806                 pr_warn("%s: failed to create sysfs files for events\n",
1807                         disk->disk_name);
1808
1809         mutex_lock(&disk_events_mutex);
1810         list_add_tail(&disk->ev->node, &disk_events);
1811         mutex_unlock(&disk_events_mutex);
1812
1813         /*
1814          * Block count is initialized to 1 and the following initial
1815          * unblock kicks it into action.
1816          */
1817         __disk_unblock_events(disk, true);
1818 }
1819
1820 static void disk_del_events(struct gendisk *disk)
1821 {
1822         if (!disk->ev)
1823                 return;
1824
1825         disk_block_events(disk);
1826
1827         mutex_lock(&disk_events_mutex);
1828         list_del_init(&disk->ev->node);
1829         mutex_unlock(&disk_events_mutex);
1830
1831         sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1832 }
1833
1834 static void disk_release_events(struct gendisk *disk)
1835 {
1836         /* the block count should be 1 from disk_del_events() */
1837         WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1838         kfree(disk->ev);
1839 }