2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 int ddir, bytes, bucket;
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
50 bucket = ddir + 2*(ilog2(bytes) - 9);
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
61 * Check if any of the ctx's have pending work in this hardware queue
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
71 * Mark this ctx as having pending work in this hardware queue
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 void blk_freeze_queue_start(struct request_queue *q)
90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91 if (freeze_depth == 1) {
92 percpu_ref_kill(&q->q_usage_counter);
93 blk_mq_run_hw_queues(q, false);
96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
98 void blk_mq_freeze_queue_wait(struct request_queue *q)
100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105 unsigned long timeout)
107 return wait_event_timeout(q->mq_freeze_wq,
108 percpu_ref_is_zero(&q->q_usage_counter),
111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
117 void blk_freeze_queue(struct request_queue *q)
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
126 blk_freeze_queue_start(q);
127 blk_mq_freeze_queue_wait(q);
130 void blk_mq_freeze_queue(struct request_queue *q)
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
140 void blk_mq_unfreeze_queue(struct request_queue *q)
144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145 WARN_ON_ONCE(freeze_depth < 0);
147 percpu_ref_reinit(&q->q_usage_counter);
148 wake_up_all(&q->mq_freeze_wq);
151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
157 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
161 spin_lock_irqsave(q->queue_lock, flags);
162 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163 spin_unlock_irqrestore(q->queue_lock, flags);
165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
171 * Note: this function does not prevent that the struct request end_io()
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
176 void blk_mq_quiesce_queue(struct request_queue *q)
178 struct blk_mq_hw_ctx *hctx;
182 blk_mq_quiesce_queue_nowait(q);
184 queue_for_each_hw_ctx(q, hctx, i) {
185 if (hctx->flags & BLK_MQ_F_BLOCKING)
186 synchronize_srcu(hctx->queue_rq_srcu);
193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
202 void blk_mq_unquiesce_queue(struct request_queue *q)
206 spin_lock_irqsave(q->queue_lock, flags);
207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208 spin_unlock_irqrestore(q->queue_lock, flags);
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q, true);
213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
215 void blk_mq_wake_waiters(struct request_queue *q)
217 struct blk_mq_hw_ctx *hctx;
220 queue_for_each_hw_ctx(q, hctx, i)
221 if (blk_mq_hw_queue_mapped(hctx))
222 blk_mq_tag_wakeup_all(hctx->tags, true);
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
229 wake_up_all(&q->mq_freeze_wq);
232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
234 return blk_mq_has_free_tags(hctx->tags);
236 EXPORT_SYMBOL(blk_mq_can_queue);
238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239 unsigned int tag, unsigned int op)
241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242 struct request *rq = tags->static_rqs[tag];
246 if (data->flags & BLK_MQ_REQ_INTERNAL) {
248 rq->internal_tag = tag;
250 if (blk_mq_tag_busy(data->hctx)) {
251 rq->rq_flags = RQF_MQ_INFLIGHT;
252 atomic_inc(&data->hctx->nr_active);
255 rq->internal_tag = -1;
256 data->hctx->tags->rqs[rq->tag] = rq;
259 INIT_LIST_HEAD(&rq->queuelist);
260 /* csd/requeue_work/fifo_time is initialized before use */
262 rq->mq_ctx = data->ctx;
264 if (blk_queue_io_stat(data->q))
265 rq->rq_flags |= RQF_IO_STAT;
266 /* do not touch atomic flags, it needs atomic ops against the timer */
268 INIT_HLIST_NODE(&rq->hash);
269 RB_CLEAR_NODE(&rq->rb_node);
272 rq->start_time = jiffies;
273 #ifdef CONFIG_BLK_CGROUP
275 set_start_time_ns(rq);
276 rq->io_start_time_ns = 0;
278 rq->nr_phys_segments = 0;
279 #if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq->nr_integrity_segments = 0;
283 /* tag was already set */
286 INIT_LIST_HEAD(&rq->timeout_list);
290 rq->end_io_data = NULL;
293 data->ctx->rq_dispatched[op_is_sync(op)]++;
297 static struct request *blk_mq_get_request(struct request_queue *q,
298 struct bio *bio, unsigned int op,
299 struct blk_mq_alloc_data *data)
301 struct elevator_queue *e = q->elevator;
305 blk_queue_enter_live(q);
307 if (likely(!data->ctx))
308 data->ctx = blk_mq_get_ctx(q);
309 if (likely(!data->hctx))
310 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
312 data->flags |= BLK_MQ_REQ_NOWAIT;
315 data->flags |= BLK_MQ_REQ_INTERNAL;
318 * Flush requests are special and go directly to the
321 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
322 e->type->ops.mq.limit_depth(op, data);
325 tag = blk_mq_get_tag(data);
326 if (tag == BLK_MQ_TAG_FAIL) {
331 rq = blk_mq_rq_ctx_init(data, tag, op);
332 if (!op_is_flush(op)) {
334 if (e && e->type->ops.mq.prepare_request) {
335 if (e->type->icq_cache && rq_ioc(bio))
336 blk_mq_sched_assign_ioc(rq, bio);
338 e->type->ops.mq.prepare_request(rq, bio);
339 rq->rq_flags |= RQF_ELVPRIV;
342 data->hctx->queued++;
346 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
349 struct blk_mq_alloc_data alloc_data = { .flags = flags };
353 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
357 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
359 blk_mq_put_ctx(alloc_data.ctx);
363 return ERR_PTR(-EWOULDBLOCK);
366 rq->__sector = (sector_t) -1;
367 rq->bio = rq->biotail = NULL;
370 EXPORT_SYMBOL(blk_mq_alloc_request);
372 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
373 unsigned int op, unsigned int flags, unsigned int hctx_idx)
375 struct blk_mq_alloc_data alloc_data = { .flags = flags };
381 * If the tag allocator sleeps we could get an allocation for a
382 * different hardware context. No need to complicate the low level
383 * allocator for this for the rare use case of a command tied to
386 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
387 return ERR_PTR(-EINVAL);
389 if (hctx_idx >= q->nr_hw_queues)
390 return ERR_PTR(-EIO);
392 ret = blk_queue_enter(q, true);
397 * Check if the hardware context is actually mapped to anything.
398 * If not tell the caller that it should skip this queue.
400 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
401 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
403 return ERR_PTR(-EXDEV);
405 cpu = cpumask_first(alloc_data.hctx->cpumask);
406 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
408 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
413 return ERR_PTR(-EWOULDBLOCK);
417 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
419 void blk_mq_free_request(struct request *rq)
421 struct request_queue *q = rq->q;
422 struct elevator_queue *e = q->elevator;
423 struct blk_mq_ctx *ctx = rq->mq_ctx;
424 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
425 const int sched_tag = rq->internal_tag;
427 if (rq->rq_flags & RQF_ELVPRIV) {
428 if (e && e->type->ops.mq.finish_request)
429 e->type->ops.mq.finish_request(rq);
431 put_io_context(rq->elv.icq->ioc);
436 ctx->rq_completed[rq_is_sync(rq)]++;
437 if (rq->rq_flags & RQF_MQ_INFLIGHT)
438 atomic_dec(&hctx->nr_active);
440 wbt_done(q->rq_wb, &rq->issue_stat);
442 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
445 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
447 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
448 blk_mq_sched_restart(hctx);
451 EXPORT_SYMBOL_GPL(blk_mq_free_request);
453 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
455 blk_account_io_done(rq);
458 wbt_done(rq->q->rq_wb, &rq->issue_stat);
459 rq->end_io(rq, error);
461 if (unlikely(blk_bidi_rq(rq)))
462 blk_mq_free_request(rq->next_rq);
463 blk_mq_free_request(rq);
466 EXPORT_SYMBOL(__blk_mq_end_request);
468 void blk_mq_end_request(struct request *rq, blk_status_t error)
470 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
472 __blk_mq_end_request(rq, error);
474 EXPORT_SYMBOL(blk_mq_end_request);
476 static void __blk_mq_complete_request_remote(void *data)
478 struct request *rq = data;
480 rq->q->softirq_done_fn(rq);
483 static void __blk_mq_complete_request(struct request *rq)
485 struct blk_mq_ctx *ctx = rq->mq_ctx;
489 if (rq->internal_tag != -1)
490 blk_mq_sched_completed_request(rq);
491 if (rq->rq_flags & RQF_STATS) {
492 blk_mq_poll_stats_start(rq->q);
496 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
497 rq->q->softirq_done_fn(rq);
502 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
503 shared = cpus_share_cache(cpu, ctx->cpu);
505 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
506 rq->csd.func = __blk_mq_complete_request_remote;
509 smp_call_function_single_async(ctx->cpu, &rq->csd);
511 rq->q->softirq_done_fn(rq);
517 * blk_mq_complete_request - end I/O on a request
518 * @rq: the request being processed
521 * Ends all I/O on a request. It does not handle partial completions.
522 * The actual completion happens out-of-order, through a IPI handler.
524 void blk_mq_complete_request(struct request *rq)
526 struct request_queue *q = rq->q;
528 if (unlikely(blk_should_fake_timeout(q)))
530 if (!blk_mark_rq_complete(rq))
531 __blk_mq_complete_request(rq);
533 EXPORT_SYMBOL(blk_mq_complete_request);
535 int blk_mq_request_started(struct request *rq)
537 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
539 EXPORT_SYMBOL_GPL(blk_mq_request_started);
541 void blk_mq_start_request(struct request *rq)
543 struct request_queue *q = rq->q;
545 blk_mq_sched_started_request(rq);
547 trace_block_rq_issue(q, rq);
549 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
550 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
551 rq->rq_flags |= RQF_STATS;
552 wbt_issue(q->rq_wb, &rq->issue_stat);
558 * Ensure that ->deadline is visible before set the started
559 * flag and clear the completed flag.
561 smp_mb__before_atomic();
564 * Mark us as started and clear complete. Complete might have been
565 * set if requeue raced with timeout, which then marked it as
566 * complete. So be sure to clear complete again when we start
567 * the request, otherwise we'll ignore the completion event.
569 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
570 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
571 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
572 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
574 if (q->dma_drain_size && blk_rq_bytes(rq)) {
576 * Make sure space for the drain appears. We know we can do
577 * this because max_hw_segments has been adjusted to be one
578 * fewer than the device can handle.
580 rq->nr_phys_segments++;
583 EXPORT_SYMBOL(blk_mq_start_request);
586 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
587 * flag isn't set yet, so there may be race with timeout handler,
588 * but given rq->deadline is just set in .queue_rq() under
589 * this situation, the race won't be possible in reality because
590 * rq->timeout should be set as big enough to cover the window
591 * between blk_mq_start_request() called from .queue_rq() and
592 * clearing REQ_ATOM_STARTED here.
594 static void __blk_mq_requeue_request(struct request *rq)
596 struct request_queue *q = rq->q;
598 trace_block_rq_requeue(q, rq);
599 wbt_requeue(q->rq_wb, &rq->issue_stat);
600 blk_mq_sched_requeue_request(rq);
602 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
603 if (q->dma_drain_size && blk_rq_bytes(rq))
604 rq->nr_phys_segments--;
608 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
610 __blk_mq_requeue_request(rq);
612 BUG_ON(blk_queued_rq(rq));
613 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
615 EXPORT_SYMBOL(blk_mq_requeue_request);
617 static void blk_mq_requeue_work(struct work_struct *work)
619 struct request_queue *q =
620 container_of(work, struct request_queue, requeue_work.work);
622 struct request *rq, *next;
624 spin_lock_irq(&q->requeue_lock);
625 list_splice_init(&q->requeue_list, &rq_list);
626 spin_unlock_irq(&q->requeue_lock);
628 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
629 if (!(rq->rq_flags & RQF_SOFTBARRIER))
632 rq->rq_flags &= ~RQF_SOFTBARRIER;
633 list_del_init(&rq->queuelist);
634 blk_mq_sched_insert_request(rq, true, false, false, true);
637 while (!list_empty(&rq_list)) {
638 rq = list_entry(rq_list.next, struct request, queuelist);
639 list_del_init(&rq->queuelist);
640 blk_mq_sched_insert_request(rq, false, false, false, true);
643 blk_mq_run_hw_queues(q, false);
646 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
647 bool kick_requeue_list)
649 struct request_queue *q = rq->q;
653 * We abuse this flag that is otherwise used by the I/O scheduler to
654 * request head insertation from the workqueue.
656 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
658 spin_lock_irqsave(&q->requeue_lock, flags);
660 rq->rq_flags |= RQF_SOFTBARRIER;
661 list_add(&rq->queuelist, &q->requeue_list);
663 list_add_tail(&rq->queuelist, &q->requeue_list);
665 spin_unlock_irqrestore(&q->requeue_lock, flags);
667 if (kick_requeue_list)
668 blk_mq_kick_requeue_list(q);
670 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
672 void blk_mq_kick_requeue_list(struct request_queue *q)
674 kblockd_schedule_delayed_work(&q->requeue_work, 0);
676 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
678 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
681 kblockd_schedule_delayed_work(&q->requeue_work,
682 msecs_to_jiffies(msecs));
684 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
686 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
688 if (tag < tags->nr_tags) {
689 prefetch(tags->rqs[tag]);
690 return tags->rqs[tag];
695 EXPORT_SYMBOL(blk_mq_tag_to_rq);
697 struct blk_mq_timeout_data {
699 unsigned int next_set;
702 void blk_mq_rq_timed_out(struct request *req, bool reserved)
704 const struct blk_mq_ops *ops = req->q->mq_ops;
705 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
708 * We know that complete is set at this point. If STARTED isn't set
709 * anymore, then the request isn't active and the "timeout" should
710 * just be ignored. This can happen due to the bitflag ordering.
711 * Timeout first checks if STARTED is set, and if it is, assumes
712 * the request is active. But if we race with completion, then
713 * both flags will get cleared. So check here again, and ignore
714 * a timeout event with a request that isn't active.
716 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
720 ret = ops->timeout(req, reserved);
724 __blk_mq_complete_request(req);
726 case BLK_EH_RESET_TIMER:
728 blk_clear_rq_complete(req);
730 case BLK_EH_NOT_HANDLED:
733 printk(KERN_ERR "block: bad eh return: %d\n", ret);
738 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
739 struct request *rq, void *priv, bool reserved)
741 struct blk_mq_timeout_data *data = priv;
743 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
747 * The rq being checked may have been freed and reallocated
748 * out already here, we avoid this race by checking rq->deadline
749 * and REQ_ATOM_COMPLETE flag together:
751 * - if rq->deadline is observed as new value because of
752 * reusing, the rq won't be timed out because of timing.
753 * - if rq->deadline is observed as previous value,
754 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
755 * because we put a barrier between setting rq->deadline
756 * and clearing the flag in blk_mq_start_request(), so
757 * this rq won't be timed out too.
759 if (time_after_eq(jiffies, rq->deadline)) {
760 if (!blk_mark_rq_complete(rq))
761 blk_mq_rq_timed_out(rq, reserved);
762 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
763 data->next = rq->deadline;
768 static void blk_mq_timeout_work(struct work_struct *work)
770 struct request_queue *q =
771 container_of(work, struct request_queue, timeout_work);
772 struct blk_mq_timeout_data data = {
778 /* A deadlock might occur if a request is stuck requiring a
779 * timeout at the same time a queue freeze is waiting
780 * completion, since the timeout code would not be able to
781 * acquire the queue reference here.
783 * That's why we don't use blk_queue_enter here; instead, we use
784 * percpu_ref_tryget directly, because we need to be able to
785 * obtain a reference even in the short window between the queue
786 * starting to freeze, by dropping the first reference in
787 * blk_freeze_queue_start, and the moment the last request is
788 * consumed, marked by the instant q_usage_counter reaches
791 if (!percpu_ref_tryget(&q->q_usage_counter))
794 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
797 data.next = blk_rq_timeout(round_jiffies_up(data.next));
798 mod_timer(&q->timeout, data.next);
800 struct blk_mq_hw_ctx *hctx;
802 queue_for_each_hw_ctx(q, hctx, i) {
803 /* the hctx may be unmapped, so check it here */
804 if (blk_mq_hw_queue_mapped(hctx))
805 blk_mq_tag_idle(hctx);
811 struct flush_busy_ctx_data {
812 struct blk_mq_hw_ctx *hctx;
813 struct list_head *list;
816 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
818 struct flush_busy_ctx_data *flush_data = data;
819 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
820 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
822 sbitmap_clear_bit(sb, bitnr);
823 spin_lock(&ctx->lock);
824 list_splice_tail_init(&ctx->rq_list, flush_data->list);
825 spin_unlock(&ctx->lock);
830 * Process software queues that have been marked busy, splicing them
831 * to the for-dispatch
833 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
835 struct flush_busy_ctx_data data = {
840 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
842 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
844 static inline unsigned int queued_to_index(unsigned int queued)
849 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
852 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
855 struct blk_mq_alloc_data data = {
857 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
858 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
861 might_sleep_if(wait);
866 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
867 data.flags |= BLK_MQ_REQ_RESERVED;
869 rq->tag = blk_mq_get_tag(&data);
871 if (blk_mq_tag_busy(data.hctx)) {
872 rq->rq_flags |= RQF_MQ_INFLIGHT;
873 atomic_inc(&data.hctx->nr_active);
875 data.hctx->tags->rqs[rq->tag] = rq;
881 return rq->tag != -1;
884 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
887 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
890 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
891 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
892 atomic_dec(&hctx->nr_active);
896 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
899 if (rq->tag == -1 || rq->internal_tag == -1)
902 __blk_mq_put_driver_tag(hctx, rq);
905 static void blk_mq_put_driver_tag(struct request *rq)
907 struct blk_mq_hw_ctx *hctx;
909 if (rq->tag == -1 || rq->internal_tag == -1)
912 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
913 __blk_mq_put_driver_tag(hctx, rq);
917 * If we fail getting a driver tag because all the driver tags are already
918 * assigned and on the dispatch list, BUT the first entry does not have a
919 * tag, then we could deadlock. For that case, move entries with assigned
920 * driver tags to the front, leaving the set of tagged requests in the
921 * same order, and the untagged set in the same order.
923 static bool reorder_tags_to_front(struct list_head *list)
925 struct request *rq, *tmp, *first = NULL;
927 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
931 list_move(&rq->queuelist, list);
937 return first != NULL;
940 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
943 struct blk_mq_hw_ctx *hctx;
945 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
947 list_del(&wait->entry);
948 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
949 blk_mq_run_hw_queue(hctx, true);
953 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
955 struct sbq_wait_state *ws;
958 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
959 * The thread which wins the race to grab this bit adds the hardware
960 * queue to the wait queue.
962 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
963 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
966 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
967 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
970 * As soon as this returns, it's no longer safe to fiddle with
971 * hctx->dispatch_wait, since a completion can wake up the wait queue
972 * and unlock the bit.
974 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
978 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
980 struct blk_mq_hw_ctx *hctx;
984 if (list_empty(list))
988 * Now process all the entries, sending them to the driver.
992 struct blk_mq_queue_data bd;
995 rq = list_first_entry(list, struct request, queuelist);
996 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
997 if (!queued && reorder_tags_to_front(list))
1001 * The initial allocation attempt failed, so we need to
1002 * rerun the hardware queue when a tag is freed.
1004 if (!blk_mq_dispatch_wait_add(hctx))
1008 * It's possible that a tag was freed in the window
1009 * between the allocation failure and adding the
1010 * hardware queue to the wait queue.
1012 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016 list_del_init(&rq->queuelist);
1021 * Flag last if we have no more requests, or if we have more
1022 * but can't assign a driver tag to it.
1024 if (list_empty(list))
1027 struct request *nxt;
1029 nxt = list_first_entry(list, struct request, queuelist);
1030 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1033 ret = q->mq_ops->queue_rq(hctx, &bd);
1034 if (ret == BLK_STS_RESOURCE) {
1035 blk_mq_put_driver_tag_hctx(hctx, rq);
1036 list_add(&rq->queuelist, list);
1037 __blk_mq_requeue_request(rq);
1041 if (unlikely(ret != BLK_STS_OK)) {
1043 blk_mq_end_request(rq, BLK_STS_IOERR);
1048 } while (!list_empty(list));
1050 hctx->dispatched[queued_to_index(queued)]++;
1053 * Any items that need requeuing? Stuff them into hctx->dispatch,
1054 * that is where we will continue on next queue run.
1056 if (!list_empty(list)) {
1058 * If an I/O scheduler has been configured and we got a driver
1059 * tag for the next request already, free it again.
1061 rq = list_first_entry(list, struct request, queuelist);
1062 blk_mq_put_driver_tag(rq);
1064 spin_lock(&hctx->lock);
1065 list_splice_init(list, &hctx->dispatch);
1066 spin_unlock(&hctx->lock);
1069 * If SCHED_RESTART was set by the caller of this function and
1070 * it is no longer set that means that it was cleared by another
1071 * thread and hence that a queue rerun is needed.
1073 * If TAG_WAITING is set that means that an I/O scheduler has
1074 * been configured and another thread is waiting for a driver
1075 * tag. To guarantee fairness, do not rerun this hardware queue
1076 * but let the other thread grab the driver tag.
1078 * If no I/O scheduler has been configured it is possible that
1079 * the hardware queue got stopped and restarted before requests
1080 * were pushed back onto the dispatch list. Rerun the queue to
1081 * avoid starvation. Notes:
1082 * - blk_mq_run_hw_queue() checks whether or not a queue has
1083 * been stopped before rerunning a queue.
1084 * - Some but not all block drivers stop a queue before
1085 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1088 if (!blk_mq_sched_needs_restart(hctx) &&
1089 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1090 blk_mq_run_hw_queue(hctx, true);
1093 return (queued + errors) != 0;
1096 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1101 * We should be running this queue from one of the CPUs that
1104 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1105 cpu_online(hctx->next_cpu));
1108 * We can't run the queue inline with ints disabled. Ensure that
1109 * we catch bad users of this early.
1111 WARN_ON_ONCE(in_interrupt());
1113 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1115 blk_mq_sched_dispatch_requests(hctx);
1120 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1121 blk_mq_sched_dispatch_requests(hctx);
1122 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1127 * It'd be great if the workqueue API had a way to pass
1128 * in a mask and had some smarts for more clever placement.
1129 * For now we just round-robin here, switching for every
1130 * BLK_MQ_CPU_WORK_BATCH queued items.
1132 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1134 if (hctx->queue->nr_hw_queues == 1)
1135 return WORK_CPU_UNBOUND;
1137 if (--hctx->next_cpu_batch <= 0) {
1140 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1141 if (next_cpu >= nr_cpu_ids)
1142 next_cpu = cpumask_first(hctx->cpumask);
1144 hctx->next_cpu = next_cpu;
1145 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1148 return hctx->next_cpu;
1151 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1152 unsigned long msecs)
1154 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1157 if (unlikely(blk_mq_hctx_stopped(hctx)))
1160 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1161 int cpu = get_cpu();
1162 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1163 __blk_mq_run_hw_queue(hctx);
1171 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1173 msecs_to_jiffies(msecs));
1176 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1178 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1180 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1182 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1184 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1186 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1188 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1190 struct blk_mq_hw_ctx *hctx;
1193 queue_for_each_hw_ctx(q, hctx, i) {
1194 if (!blk_mq_hctx_has_pending(hctx) ||
1195 blk_mq_hctx_stopped(hctx))
1198 blk_mq_run_hw_queue(hctx, async);
1201 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1204 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205 * @q: request queue.
1207 * The caller is responsible for serializing this function against
1208 * blk_mq_{start,stop}_hw_queue().
1210 bool blk_mq_queue_stopped(struct request_queue *q)
1212 struct blk_mq_hw_ctx *hctx;
1215 queue_for_each_hw_ctx(q, hctx, i)
1216 if (blk_mq_hctx_stopped(hctx))
1221 EXPORT_SYMBOL(blk_mq_queue_stopped);
1224 * This function is often used for pausing .queue_rq() by driver when
1225 * there isn't enough resource or some conditions aren't satisfied, and
1226 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1228 * We do not guarantee that dispatch can be drained or blocked
1229 * after blk_mq_stop_hw_queue() returns. Please use
1230 * blk_mq_quiesce_queue() for that requirement.
1232 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1234 cancel_delayed_work(&hctx->run_work);
1236 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1238 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1241 * This function is often used for pausing .queue_rq() by driver when
1242 * there isn't enough resource or some conditions aren't satisfied, and
1243 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1245 * We do not guarantee that dispatch can be drained or blocked
1246 * after blk_mq_stop_hw_queues() returns. Please use
1247 * blk_mq_quiesce_queue() for that requirement.
1249 void blk_mq_stop_hw_queues(struct request_queue *q)
1251 struct blk_mq_hw_ctx *hctx;
1254 queue_for_each_hw_ctx(q, hctx, i)
1255 blk_mq_stop_hw_queue(hctx);
1257 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1259 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1261 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1263 blk_mq_run_hw_queue(hctx, false);
1265 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1267 void blk_mq_start_hw_queues(struct request_queue *q)
1269 struct blk_mq_hw_ctx *hctx;
1272 queue_for_each_hw_ctx(q, hctx, i)
1273 blk_mq_start_hw_queue(hctx);
1275 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1277 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1279 if (!blk_mq_hctx_stopped(hctx))
1282 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1283 blk_mq_run_hw_queue(hctx, async);
1285 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1287 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1289 struct blk_mq_hw_ctx *hctx;
1292 queue_for_each_hw_ctx(q, hctx, i)
1293 blk_mq_start_stopped_hw_queue(hctx, async);
1295 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1297 static void blk_mq_run_work_fn(struct work_struct *work)
1299 struct blk_mq_hw_ctx *hctx;
1301 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1304 * If we are stopped, don't run the queue. The exception is if
1305 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1306 * the STOPPED bit and run it.
1308 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1309 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1312 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1313 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1316 __blk_mq_run_hw_queue(hctx);
1320 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1322 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1326 * Stop the hw queue, then modify currently delayed work.
1327 * This should prevent us from running the queue prematurely.
1328 * Mark the queue as auto-clearing STOPPED when it runs.
1330 blk_mq_stop_hw_queue(hctx);
1331 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1332 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1334 msecs_to_jiffies(msecs));
1336 EXPORT_SYMBOL(blk_mq_delay_queue);
1338 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1342 struct blk_mq_ctx *ctx = rq->mq_ctx;
1344 lockdep_assert_held(&ctx->lock);
1346 trace_block_rq_insert(hctx->queue, rq);
1349 list_add(&rq->queuelist, &ctx->rq_list);
1351 list_add_tail(&rq->queuelist, &ctx->rq_list);
1354 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1357 struct blk_mq_ctx *ctx = rq->mq_ctx;
1359 lockdep_assert_held(&ctx->lock);
1361 __blk_mq_insert_req_list(hctx, rq, at_head);
1362 blk_mq_hctx_mark_pending(hctx, ctx);
1365 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1366 struct list_head *list)
1370 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1373 spin_lock(&ctx->lock);
1374 while (!list_empty(list)) {
1377 rq = list_first_entry(list, struct request, queuelist);
1378 BUG_ON(rq->mq_ctx != ctx);
1379 list_del_init(&rq->queuelist);
1380 __blk_mq_insert_req_list(hctx, rq, false);
1382 blk_mq_hctx_mark_pending(hctx, ctx);
1383 spin_unlock(&ctx->lock);
1386 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1388 struct request *rqa = container_of(a, struct request, queuelist);
1389 struct request *rqb = container_of(b, struct request, queuelist);
1391 return !(rqa->mq_ctx < rqb->mq_ctx ||
1392 (rqa->mq_ctx == rqb->mq_ctx &&
1393 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1396 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1398 struct blk_mq_ctx *this_ctx;
1399 struct request_queue *this_q;
1402 LIST_HEAD(ctx_list);
1405 list_splice_init(&plug->mq_list, &list);
1407 list_sort(NULL, &list, plug_ctx_cmp);
1413 while (!list_empty(&list)) {
1414 rq = list_entry_rq(list.next);
1415 list_del_init(&rq->queuelist);
1417 if (rq->mq_ctx != this_ctx) {
1419 trace_block_unplug(this_q, depth, from_schedule);
1420 blk_mq_sched_insert_requests(this_q, this_ctx,
1425 this_ctx = rq->mq_ctx;
1431 list_add_tail(&rq->queuelist, &ctx_list);
1435 * If 'this_ctx' is set, we know we have entries to complete
1436 * on 'ctx_list'. Do those.
1439 trace_block_unplug(this_q, depth, from_schedule);
1440 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1445 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1447 blk_init_request_from_bio(rq, bio);
1449 blk_account_io_start(rq, true);
1452 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1454 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1455 !blk_queue_nomerges(hctx->queue);
1458 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1459 struct blk_mq_ctx *ctx,
1462 spin_lock(&ctx->lock);
1463 __blk_mq_insert_request(hctx, rq, false);
1464 spin_unlock(&ctx->lock);
1467 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1470 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1472 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1475 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1477 blk_qc_t *cookie, bool may_sleep)
1479 struct request_queue *q = rq->q;
1480 struct blk_mq_queue_data bd = {
1484 blk_qc_t new_cookie;
1486 bool run_queue = true;
1488 /* RCU or SRCU read lock is needed before checking quiesced flag */
1489 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1497 if (!blk_mq_get_driver_tag(rq, NULL, false))
1500 new_cookie = request_to_qc_t(hctx, rq);
1503 * For OK queue, we are done. For error, kill it. Any other
1504 * error (busy), just add it to our list as we previously
1507 ret = q->mq_ops->queue_rq(hctx, &bd);
1510 *cookie = new_cookie;
1512 case BLK_STS_RESOURCE:
1513 __blk_mq_requeue_request(rq);
1516 *cookie = BLK_QC_T_NONE;
1517 blk_mq_end_request(rq, ret);
1522 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1525 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1526 struct request *rq, blk_qc_t *cookie)
1528 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1530 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1533 unsigned int srcu_idx;
1537 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1538 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1539 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1543 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1545 const int is_sync = op_is_sync(bio->bi_opf);
1546 const int is_flush_fua = op_is_flush(bio->bi_opf);
1547 struct blk_mq_alloc_data data = { .flags = 0 };
1549 unsigned int request_count = 0;
1550 struct blk_plug *plug;
1551 struct request *same_queue_rq = NULL;
1553 unsigned int wb_acct;
1555 blk_queue_bounce(q, &bio);
1557 blk_queue_split(q, &bio);
1559 if (!bio_integrity_prep(bio))
1560 return BLK_QC_T_NONE;
1562 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1563 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1564 return BLK_QC_T_NONE;
1566 if (blk_mq_sched_bio_merge(q, bio))
1567 return BLK_QC_T_NONE;
1569 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1571 trace_block_getrq(q, bio, bio->bi_opf);
1573 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1574 if (unlikely(!rq)) {
1575 __wbt_done(q->rq_wb, wb_acct);
1576 if (bio->bi_opf & REQ_NOWAIT)
1577 bio_wouldblock_error(bio);
1578 return BLK_QC_T_NONE;
1581 wbt_track(&rq->issue_stat, wb_acct);
1583 cookie = request_to_qc_t(data.hctx, rq);
1585 plug = current->plug;
1586 if (unlikely(is_flush_fua)) {
1587 blk_mq_put_ctx(data.ctx);
1588 blk_mq_bio_to_request(rq, bio);
1590 blk_mq_sched_insert_request(rq, false, true, true,
1593 blk_insert_flush(rq);
1594 blk_mq_run_hw_queue(data.hctx, true);
1596 } else if (plug && q->nr_hw_queues == 1) {
1597 struct request *last = NULL;
1599 blk_mq_put_ctx(data.ctx);
1600 blk_mq_bio_to_request(rq, bio);
1603 * @request_count may become stale because of schedule
1604 * out, so check the list again.
1606 if (list_empty(&plug->mq_list))
1608 else if (blk_queue_nomerges(q))
1609 request_count = blk_plug_queued_count(q);
1612 trace_block_plug(q);
1614 last = list_entry_rq(plug->mq_list.prev);
1616 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1617 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1618 blk_flush_plug_list(plug, false);
1619 trace_block_plug(q);
1622 list_add_tail(&rq->queuelist, &plug->mq_list);
1623 } else if (plug && !blk_queue_nomerges(q)) {
1624 blk_mq_bio_to_request(rq, bio);
1627 * We do limited plugging. If the bio can be merged, do that.
1628 * Otherwise the existing request in the plug list will be
1629 * issued. So the plug list will have one request at most
1630 * The plug list might get flushed before this. If that happens,
1631 * the plug list is empty, and same_queue_rq is invalid.
1633 if (list_empty(&plug->mq_list))
1634 same_queue_rq = NULL;
1636 list_del_init(&same_queue_rq->queuelist);
1637 list_add_tail(&rq->queuelist, &plug->mq_list);
1639 blk_mq_put_ctx(data.ctx);
1641 if (same_queue_rq) {
1642 data.hctx = blk_mq_map_queue(q,
1643 same_queue_rq->mq_ctx->cpu);
1644 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1647 } else if (q->nr_hw_queues > 1 && is_sync) {
1648 blk_mq_put_ctx(data.ctx);
1649 blk_mq_bio_to_request(rq, bio);
1650 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1651 } else if (q->elevator) {
1652 blk_mq_put_ctx(data.ctx);
1653 blk_mq_bio_to_request(rq, bio);
1654 blk_mq_sched_insert_request(rq, false, true, true, true);
1656 blk_mq_put_ctx(data.ctx);
1657 blk_mq_bio_to_request(rq, bio);
1658 blk_mq_queue_io(data.hctx, data.ctx, rq);
1659 blk_mq_run_hw_queue(data.hctx, true);
1665 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1666 unsigned int hctx_idx)
1670 if (tags->rqs && set->ops->exit_request) {
1673 for (i = 0; i < tags->nr_tags; i++) {
1674 struct request *rq = tags->static_rqs[i];
1678 set->ops->exit_request(set, rq, hctx_idx);
1679 tags->static_rqs[i] = NULL;
1683 while (!list_empty(&tags->page_list)) {
1684 page = list_first_entry(&tags->page_list, struct page, lru);
1685 list_del_init(&page->lru);
1687 * Remove kmemleak object previously allocated in
1688 * blk_mq_init_rq_map().
1690 kmemleak_free(page_address(page));
1691 __free_pages(page, page->private);
1695 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1699 kfree(tags->static_rqs);
1700 tags->static_rqs = NULL;
1702 blk_mq_free_tags(tags);
1705 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1706 unsigned int hctx_idx,
1707 unsigned int nr_tags,
1708 unsigned int reserved_tags)
1710 struct blk_mq_tags *tags;
1713 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1714 if (node == NUMA_NO_NODE)
1715 node = set->numa_node;
1717 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1718 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1722 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1723 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1726 blk_mq_free_tags(tags);
1730 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1731 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1733 if (!tags->static_rqs) {
1735 blk_mq_free_tags(tags);
1742 static size_t order_to_size(unsigned int order)
1744 return (size_t)PAGE_SIZE << order;
1747 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1748 unsigned int hctx_idx, unsigned int depth)
1750 unsigned int i, j, entries_per_page, max_order = 4;
1751 size_t rq_size, left;
1754 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1755 if (node == NUMA_NO_NODE)
1756 node = set->numa_node;
1758 INIT_LIST_HEAD(&tags->page_list);
1761 * rq_size is the size of the request plus driver payload, rounded
1762 * to the cacheline size
1764 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1766 left = rq_size * depth;
1768 for (i = 0; i < depth; ) {
1769 int this_order = max_order;
1774 while (this_order && left < order_to_size(this_order - 1))
1778 page = alloc_pages_node(node,
1779 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1785 if (order_to_size(this_order) < rq_size)
1792 page->private = this_order;
1793 list_add_tail(&page->lru, &tags->page_list);
1795 p = page_address(page);
1797 * Allow kmemleak to scan these pages as they contain pointers
1798 * to additional allocations like via ops->init_request().
1800 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1801 entries_per_page = order_to_size(this_order) / rq_size;
1802 to_do = min(entries_per_page, depth - i);
1803 left -= to_do * rq_size;
1804 for (j = 0; j < to_do; j++) {
1805 struct request *rq = p;
1807 tags->static_rqs[i] = rq;
1808 if (set->ops->init_request) {
1809 if (set->ops->init_request(set, rq, hctx_idx,
1811 tags->static_rqs[i] = NULL;
1823 blk_mq_free_rqs(set, tags, hctx_idx);
1828 * 'cpu' is going away. splice any existing rq_list entries from this
1829 * software queue to the hw queue dispatch list, and ensure that it
1832 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1834 struct blk_mq_hw_ctx *hctx;
1835 struct blk_mq_ctx *ctx;
1838 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1839 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1841 spin_lock(&ctx->lock);
1842 if (!list_empty(&ctx->rq_list)) {
1843 list_splice_init(&ctx->rq_list, &tmp);
1844 blk_mq_hctx_clear_pending(hctx, ctx);
1846 spin_unlock(&ctx->lock);
1848 if (list_empty(&tmp))
1851 spin_lock(&hctx->lock);
1852 list_splice_tail_init(&tmp, &hctx->dispatch);
1853 spin_unlock(&hctx->lock);
1855 blk_mq_run_hw_queue(hctx, true);
1859 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1861 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1865 /* hctx->ctxs will be freed in queue's release handler */
1866 static void blk_mq_exit_hctx(struct request_queue *q,
1867 struct blk_mq_tag_set *set,
1868 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1870 blk_mq_debugfs_unregister_hctx(hctx);
1872 blk_mq_tag_idle(hctx);
1874 if (set->ops->exit_request)
1875 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1877 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1879 if (set->ops->exit_hctx)
1880 set->ops->exit_hctx(hctx, hctx_idx);
1882 if (hctx->flags & BLK_MQ_F_BLOCKING)
1883 cleanup_srcu_struct(hctx->queue_rq_srcu);
1885 blk_mq_remove_cpuhp(hctx);
1886 blk_free_flush_queue(hctx->fq);
1887 sbitmap_free(&hctx->ctx_map);
1890 static void blk_mq_exit_hw_queues(struct request_queue *q,
1891 struct blk_mq_tag_set *set, int nr_queue)
1893 struct blk_mq_hw_ctx *hctx;
1896 queue_for_each_hw_ctx(q, hctx, i) {
1899 blk_mq_exit_hctx(q, set, hctx, i);
1903 static int blk_mq_init_hctx(struct request_queue *q,
1904 struct blk_mq_tag_set *set,
1905 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1909 node = hctx->numa_node;
1910 if (node == NUMA_NO_NODE)
1911 node = hctx->numa_node = set->numa_node;
1913 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1914 spin_lock_init(&hctx->lock);
1915 INIT_LIST_HEAD(&hctx->dispatch);
1917 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1919 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1921 hctx->tags = set->tags[hctx_idx];
1924 * Allocate space for all possible cpus to avoid allocation at
1927 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1930 goto unregister_cpu_notifier;
1932 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1938 if (set->ops->init_hctx &&
1939 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1942 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1945 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1947 goto sched_exit_hctx;
1949 if (set->ops->init_request &&
1950 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1954 if (hctx->flags & BLK_MQ_F_BLOCKING)
1955 init_srcu_struct(hctx->queue_rq_srcu);
1957 blk_mq_debugfs_register_hctx(q, hctx);
1964 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1966 if (set->ops->exit_hctx)
1967 set->ops->exit_hctx(hctx, hctx_idx);
1969 sbitmap_free(&hctx->ctx_map);
1972 unregister_cpu_notifier:
1973 blk_mq_remove_cpuhp(hctx);
1977 static void blk_mq_init_cpu_queues(struct request_queue *q,
1978 unsigned int nr_hw_queues)
1982 for_each_possible_cpu(i) {
1983 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1984 struct blk_mq_hw_ctx *hctx;
1987 spin_lock_init(&__ctx->lock);
1988 INIT_LIST_HEAD(&__ctx->rq_list);
1991 /* If the cpu isn't present, the cpu is mapped to first hctx */
1992 if (!cpu_present(i))
1995 hctx = blk_mq_map_queue(q, i);
1998 * Set local node, IFF we have more than one hw queue. If
1999 * not, we remain on the home node of the device
2001 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2002 hctx->numa_node = local_memory_node(cpu_to_node(i));
2006 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2010 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2011 set->queue_depth, set->reserved_tags);
2012 if (!set->tags[hctx_idx])
2015 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2020 blk_mq_free_rq_map(set->tags[hctx_idx]);
2021 set->tags[hctx_idx] = NULL;
2025 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2026 unsigned int hctx_idx)
2028 if (set->tags[hctx_idx]) {
2029 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2030 blk_mq_free_rq_map(set->tags[hctx_idx]);
2031 set->tags[hctx_idx] = NULL;
2035 static void blk_mq_map_swqueue(struct request_queue *q)
2037 unsigned int i, hctx_idx;
2038 struct blk_mq_hw_ctx *hctx;
2039 struct blk_mq_ctx *ctx;
2040 struct blk_mq_tag_set *set = q->tag_set;
2043 * Avoid others reading imcomplete hctx->cpumask through sysfs
2045 mutex_lock(&q->sysfs_lock);
2047 queue_for_each_hw_ctx(q, hctx, i) {
2048 cpumask_clear(hctx->cpumask);
2053 * Map software to hardware queues.
2055 * If the cpu isn't present, the cpu is mapped to first hctx.
2057 for_each_present_cpu(i) {
2058 hctx_idx = q->mq_map[i];
2059 /* unmapped hw queue can be remapped after CPU topo changed */
2060 if (!set->tags[hctx_idx] &&
2061 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2063 * If tags initialization fail for some hctx,
2064 * that hctx won't be brought online. In this
2065 * case, remap the current ctx to hctx[0] which
2066 * is guaranteed to always have tags allocated
2071 ctx = per_cpu_ptr(q->queue_ctx, i);
2072 hctx = blk_mq_map_queue(q, i);
2074 cpumask_set_cpu(i, hctx->cpumask);
2075 ctx->index_hw = hctx->nr_ctx;
2076 hctx->ctxs[hctx->nr_ctx++] = ctx;
2079 mutex_unlock(&q->sysfs_lock);
2081 queue_for_each_hw_ctx(q, hctx, i) {
2083 * If no software queues are mapped to this hardware queue,
2084 * disable it and free the request entries.
2086 if (!hctx->nr_ctx) {
2087 /* Never unmap queue 0. We need it as a
2088 * fallback in case of a new remap fails
2091 if (i && set->tags[i])
2092 blk_mq_free_map_and_requests(set, i);
2098 hctx->tags = set->tags[i];
2099 WARN_ON(!hctx->tags);
2102 * Set the map size to the number of mapped software queues.
2103 * This is more accurate and more efficient than looping
2104 * over all possibly mapped software queues.
2106 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2109 * Initialize batch roundrobin counts
2111 hctx->next_cpu = cpumask_first(hctx->cpumask);
2112 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2117 * Caller needs to ensure that we're either frozen/quiesced, or that
2118 * the queue isn't live yet.
2120 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2122 struct blk_mq_hw_ctx *hctx;
2125 queue_for_each_hw_ctx(q, hctx, i) {
2127 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2128 atomic_inc(&q->shared_hctx_restart);
2129 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2131 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2132 atomic_dec(&q->shared_hctx_restart);
2133 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2138 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2141 struct request_queue *q;
2143 lockdep_assert_held(&set->tag_list_lock);
2145 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2146 blk_mq_freeze_queue(q);
2147 queue_set_hctx_shared(q, shared);
2148 blk_mq_unfreeze_queue(q);
2152 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2154 struct blk_mq_tag_set *set = q->tag_set;
2156 mutex_lock(&set->tag_list_lock);
2157 list_del_rcu(&q->tag_set_list);
2158 INIT_LIST_HEAD(&q->tag_set_list);
2159 if (list_is_singular(&set->tag_list)) {
2160 /* just transitioned to unshared */
2161 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2162 /* update existing queue */
2163 blk_mq_update_tag_set_depth(set, false);
2165 mutex_unlock(&set->tag_list_lock);
2170 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2171 struct request_queue *q)
2175 mutex_lock(&set->tag_list_lock);
2177 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2178 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2179 set->flags |= BLK_MQ_F_TAG_SHARED;
2180 /* update existing queue */
2181 blk_mq_update_tag_set_depth(set, true);
2183 if (set->flags & BLK_MQ_F_TAG_SHARED)
2184 queue_set_hctx_shared(q, true);
2185 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2187 mutex_unlock(&set->tag_list_lock);
2191 * It is the actual release handler for mq, but we do it from
2192 * request queue's release handler for avoiding use-after-free
2193 * and headache because q->mq_kobj shouldn't have been introduced,
2194 * but we can't group ctx/kctx kobj without it.
2196 void blk_mq_release(struct request_queue *q)
2198 struct blk_mq_hw_ctx *hctx;
2201 /* hctx kobj stays in hctx */
2202 queue_for_each_hw_ctx(q, hctx, i) {
2205 kobject_put(&hctx->kobj);
2210 kfree(q->queue_hw_ctx);
2213 * release .mq_kobj and sw queue's kobject now because
2214 * both share lifetime with request queue.
2216 blk_mq_sysfs_deinit(q);
2218 free_percpu(q->queue_ctx);
2221 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2223 struct request_queue *uninit_q, *q;
2225 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2227 return ERR_PTR(-ENOMEM);
2229 q = blk_mq_init_allocated_queue(set, uninit_q);
2231 blk_cleanup_queue(uninit_q);
2235 EXPORT_SYMBOL(blk_mq_init_queue);
2237 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2239 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2241 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2242 __alignof__(struct blk_mq_hw_ctx)) !=
2243 sizeof(struct blk_mq_hw_ctx));
2245 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2246 hw_ctx_size += sizeof(struct srcu_struct);
2251 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2252 struct request_queue *q)
2255 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2257 blk_mq_sysfs_unregister(q);
2258 for (i = 0; i < set->nr_hw_queues; i++) {
2264 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2265 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2270 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2277 atomic_set(&hctxs[i]->nr_active, 0);
2278 hctxs[i]->numa_node = node;
2279 hctxs[i]->queue_num = i;
2281 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2282 free_cpumask_var(hctxs[i]->cpumask);
2287 blk_mq_hctx_kobj_init(hctxs[i]);
2289 for (j = i; j < q->nr_hw_queues; j++) {
2290 struct blk_mq_hw_ctx *hctx = hctxs[j];
2294 blk_mq_free_map_and_requests(set, j);
2295 blk_mq_exit_hctx(q, set, hctx, j);
2296 kobject_put(&hctx->kobj);
2301 q->nr_hw_queues = i;
2302 blk_mq_sysfs_register(q);
2305 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2306 struct request_queue *q)
2308 /* mark the queue as mq asap */
2309 q->mq_ops = set->ops;
2311 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2312 blk_mq_poll_stats_bkt,
2313 BLK_MQ_POLL_STATS_BKTS, q);
2317 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2321 /* init q->mq_kobj and sw queues' kobjects */
2322 blk_mq_sysfs_init(q);
2324 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2325 GFP_KERNEL, set->numa_node);
2326 if (!q->queue_hw_ctx)
2329 q->mq_map = set->mq_map;
2331 blk_mq_realloc_hw_ctxs(set, q);
2332 if (!q->nr_hw_queues)
2335 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2336 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2338 q->nr_queues = nr_cpu_ids;
2340 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2342 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2343 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2345 q->sg_reserved_size = INT_MAX;
2347 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2348 INIT_LIST_HEAD(&q->requeue_list);
2349 spin_lock_init(&q->requeue_lock);
2351 blk_queue_make_request(q, blk_mq_make_request);
2354 * Do this after blk_queue_make_request() overrides it...
2356 q->nr_requests = set->queue_depth;
2359 * Default to classic polling
2363 if (set->ops->complete)
2364 blk_queue_softirq_done(q, set->ops->complete);
2366 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2367 blk_mq_add_queue_tag_set(set, q);
2368 blk_mq_map_swqueue(q);
2370 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2373 ret = blk_mq_sched_init(q);
2375 return ERR_PTR(ret);
2381 kfree(q->queue_hw_ctx);
2383 free_percpu(q->queue_ctx);
2386 return ERR_PTR(-ENOMEM);
2388 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2390 void blk_mq_free_queue(struct request_queue *q)
2392 struct blk_mq_tag_set *set = q->tag_set;
2394 blk_mq_del_queue_tag_set(q);
2395 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2398 /* Basically redo blk_mq_init_queue with queue frozen */
2399 static void blk_mq_queue_reinit(struct request_queue *q)
2401 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2403 blk_mq_debugfs_unregister_hctxs(q);
2404 blk_mq_sysfs_unregister(q);
2407 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2408 * we should change hctx numa_node according to new topology (this
2409 * involves free and re-allocate memory, worthy doing?)
2412 blk_mq_map_swqueue(q);
2414 blk_mq_sysfs_register(q);
2415 blk_mq_debugfs_register_hctxs(q);
2418 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2422 for (i = 0; i < set->nr_hw_queues; i++)
2423 if (!__blk_mq_alloc_rq_map(set, i))
2430 blk_mq_free_rq_map(set->tags[i]);
2436 * Allocate the request maps associated with this tag_set. Note that this
2437 * may reduce the depth asked for, if memory is tight. set->queue_depth
2438 * will be updated to reflect the allocated depth.
2440 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2445 depth = set->queue_depth;
2447 err = __blk_mq_alloc_rq_maps(set);
2451 set->queue_depth >>= 1;
2452 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2456 } while (set->queue_depth);
2458 if (!set->queue_depth || err) {
2459 pr_err("blk-mq: failed to allocate request map\n");
2463 if (depth != set->queue_depth)
2464 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2465 depth, set->queue_depth);
2470 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2472 if (set->ops->map_queues)
2473 return set->ops->map_queues(set);
2475 return blk_mq_map_queues(set);
2479 * Alloc a tag set to be associated with one or more request queues.
2480 * May fail with EINVAL for various error conditions. May adjust the
2481 * requested depth down, if if it too large. In that case, the set
2482 * value will be stored in set->queue_depth.
2484 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2488 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2490 if (!set->nr_hw_queues)
2492 if (!set->queue_depth)
2494 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2497 if (!set->ops->queue_rq)
2500 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2501 pr_info("blk-mq: reduced tag depth to %u\n",
2503 set->queue_depth = BLK_MQ_MAX_DEPTH;
2507 * If a crashdump is active, then we are potentially in a very
2508 * memory constrained environment. Limit us to 1 queue and
2509 * 64 tags to prevent using too much memory.
2511 if (is_kdump_kernel()) {
2512 set->nr_hw_queues = 1;
2513 set->queue_depth = min(64U, set->queue_depth);
2516 * There is no use for more h/w queues than cpus.
2518 if (set->nr_hw_queues > nr_cpu_ids)
2519 set->nr_hw_queues = nr_cpu_ids;
2521 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2522 GFP_KERNEL, set->numa_node);
2527 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2528 GFP_KERNEL, set->numa_node);
2532 ret = blk_mq_update_queue_map(set);
2534 goto out_free_mq_map;
2536 ret = blk_mq_alloc_rq_maps(set);
2538 goto out_free_mq_map;
2540 mutex_init(&set->tag_list_lock);
2541 INIT_LIST_HEAD(&set->tag_list);
2553 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2555 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2559 for (i = 0; i < nr_cpu_ids; i++)
2560 blk_mq_free_map_and_requests(set, i);
2568 EXPORT_SYMBOL(blk_mq_free_tag_set);
2570 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2572 struct blk_mq_tag_set *set = q->tag_set;
2573 struct blk_mq_hw_ctx *hctx;
2579 blk_mq_freeze_queue(q);
2582 queue_for_each_hw_ctx(q, hctx, i) {
2586 * If we're using an MQ scheduler, just update the scheduler
2587 * queue depth. This is similar to what the old code would do.
2589 if (!hctx->sched_tags) {
2590 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2591 min(nr, set->queue_depth),
2594 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2602 q->nr_requests = nr;
2604 blk_mq_unfreeze_queue(q);
2609 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2612 struct request_queue *q;
2614 lockdep_assert_held(&set->tag_list_lock);
2616 if (nr_hw_queues > nr_cpu_ids)
2617 nr_hw_queues = nr_cpu_ids;
2618 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2621 list_for_each_entry(q, &set->tag_list, tag_set_list)
2622 blk_mq_freeze_queue(q);
2624 set->nr_hw_queues = nr_hw_queues;
2625 blk_mq_update_queue_map(set);
2626 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2627 blk_mq_realloc_hw_ctxs(set, q);
2628 blk_mq_queue_reinit(q);
2631 list_for_each_entry(q, &set->tag_list, tag_set_list)
2632 blk_mq_unfreeze_queue(q);
2635 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2637 mutex_lock(&set->tag_list_lock);
2638 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2639 mutex_unlock(&set->tag_list_lock);
2641 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2643 /* Enable polling stats and return whether they were already enabled. */
2644 static bool blk_poll_stats_enable(struct request_queue *q)
2646 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2647 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2649 blk_stat_add_callback(q, q->poll_cb);
2653 static void blk_mq_poll_stats_start(struct request_queue *q)
2656 * We don't arm the callback if polling stats are not enabled or the
2657 * callback is already active.
2659 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2660 blk_stat_is_active(q->poll_cb))
2663 blk_stat_activate_msecs(q->poll_cb, 100);
2666 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2668 struct request_queue *q = cb->data;
2671 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2672 if (cb->stat[bucket].nr_samples)
2673 q->poll_stat[bucket] = cb->stat[bucket];
2677 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2678 struct blk_mq_hw_ctx *hctx,
2681 unsigned long ret = 0;
2685 * If stats collection isn't on, don't sleep but turn it on for
2688 if (!blk_poll_stats_enable(q))
2692 * As an optimistic guess, use half of the mean service time
2693 * for this type of request. We can (and should) make this smarter.
2694 * For instance, if the completion latencies are tight, we can
2695 * get closer than just half the mean. This is especially
2696 * important on devices where the completion latencies are longer
2697 * than ~10 usec. We do use the stats for the relevant IO size
2698 * if available which does lead to better estimates.
2700 bucket = blk_mq_poll_stats_bkt(rq);
2704 if (q->poll_stat[bucket].nr_samples)
2705 ret = (q->poll_stat[bucket].mean + 1) / 2;
2710 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2711 struct blk_mq_hw_ctx *hctx,
2714 struct hrtimer_sleeper hs;
2715 enum hrtimer_mode mode;
2719 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2725 * -1: don't ever hybrid sleep
2726 * 0: use half of prev avg
2727 * >0: use this specific value
2729 if (q->poll_nsec == -1)
2731 else if (q->poll_nsec > 0)
2732 nsecs = q->poll_nsec;
2734 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2739 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2742 * This will be replaced with the stats tracking code, using
2743 * 'avg_completion_time / 2' as the pre-sleep target.
2747 mode = HRTIMER_MODE_REL;
2748 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2749 hrtimer_set_expires(&hs.timer, kt);
2751 hrtimer_init_sleeper(&hs, current);
2753 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2755 set_current_state(TASK_UNINTERRUPTIBLE);
2756 hrtimer_start_expires(&hs.timer, mode);
2759 hrtimer_cancel(&hs.timer);
2760 mode = HRTIMER_MODE_ABS;
2761 } while (hs.task && !signal_pending(current));
2763 __set_current_state(TASK_RUNNING);
2764 destroy_hrtimer_on_stack(&hs.timer);
2768 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2770 struct request_queue *q = hctx->queue;
2774 * If we sleep, have the caller restart the poll loop to reset
2775 * the state. Like for the other success return cases, the
2776 * caller is responsible for checking if the IO completed. If
2777 * the IO isn't complete, we'll get called again and will go
2778 * straight to the busy poll loop.
2780 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2783 hctx->poll_considered++;
2785 state = current->state;
2786 while (!need_resched()) {
2789 hctx->poll_invoked++;
2791 ret = q->mq_ops->poll(hctx, rq->tag);
2793 hctx->poll_success++;
2794 set_current_state(TASK_RUNNING);
2798 if (signal_pending_state(state, current))
2799 set_current_state(TASK_RUNNING);
2801 if (current->state == TASK_RUNNING)
2811 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2813 struct blk_mq_hw_ctx *hctx;
2814 struct blk_plug *plug;
2817 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2818 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2821 plug = current->plug;
2823 blk_flush_plug_list(plug, false);
2825 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2826 if (!blk_qc_t_is_internal(cookie))
2827 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2829 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2831 * With scheduling, if the request has completed, we'll
2832 * get a NULL return here, as we clear the sched tag when
2833 * that happens. The request still remains valid, like always,
2834 * so we should be safe with just the NULL check.
2840 return __blk_mq_poll(hctx, rq);
2842 EXPORT_SYMBOL_GPL(blk_mq_poll);
2844 static int __init blk_mq_init(void)
2846 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2847 blk_mq_hctx_notify_dead);
2850 subsys_initcall(blk_mq_init);