Merge tag 'mlx5-updates-2018-05-17' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (blk_mq_tag_busy(data->hctx)) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time = jiffies;
313         rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315         rq->nr_integrity_segments = 0;
316 #endif
317         rq->special = NULL;
318         /* tag was already set */
319         rq->extra_len = 0;
320         rq->__deadline = 0;
321
322         INIT_LIST_HEAD(&rq->timeout_list);
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327         rq->next_rq = NULL;
328
329 #ifdef CONFIG_BLK_CGROUP
330         rq->rl = NULL;
331         set_start_time_ns(rq);
332         rq->io_start_time_ns = 0;
333 #endif
334
335         data->ctx->rq_dispatched[op_is_sync(op)]++;
336         return rq;
337 }
338
339 static struct request *blk_mq_get_request(struct request_queue *q,
340                 struct bio *bio, unsigned int op,
341                 struct blk_mq_alloc_data *data)
342 {
343         struct elevator_queue *e = q->elevator;
344         struct request *rq;
345         unsigned int tag;
346         bool put_ctx_on_error = false;
347
348         blk_queue_enter_live(q);
349         data->q = q;
350         if (likely(!data->ctx)) {
351                 data->ctx = blk_mq_get_ctx(q);
352                 put_ctx_on_error = true;
353         }
354         if (likely(!data->hctx))
355                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356         if (op & REQ_NOWAIT)
357                 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359         if (e) {
360                 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362                 /*
363                  * Flush requests are special and go directly to the
364                  * dispatch list.
365                  */
366                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
367                         e->type->ops.mq.limit_depth(op, data);
368         }
369
370         tag = blk_mq_get_tag(data);
371         if (tag == BLK_MQ_TAG_FAIL) {
372                 if (put_ctx_on_error) {
373                         blk_mq_put_ctx(data->ctx);
374                         data->ctx = NULL;
375                 }
376                 blk_queue_exit(q);
377                 return NULL;
378         }
379
380         rq = blk_mq_rq_ctx_init(data, tag, op);
381         if (!op_is_flush(op)) {
382                 rq->elv.icq = NULL;
383                 if (e && e->type->ops.mq.prepare_request) {
384                         if (e->type->icq_cache && rq_ioc(bio))
385                                 blk_mq_sched_assign_ioc(rq, bio);
386
387                         e->type->ops.mq.prepare_request(rq, bio);
388                         rq->rq_flags |= RQF_ELVPRIV;
389                 }
390         }
391         data->hctx->queued++;
392         return rq;
393 }
394
395 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
396                 blk_mq_req_flags_t flags)
397 {
398         struct blk_mq_alloc_data alloc_data = { .flags = flags };
399         struct request *rq;
400         int ret;
401
402         ret = blk_queue_enter(q, flags);
403         if (ret)
404                 return ERR_PTR(ret);
405
406         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
407         blk_queue_exit(q);
408
409         if (!rq)
410                 return ERR_PTR(-EWOULDBLOCK);
411
412         blk_mq_put_ctx(alloc_data.ctx);
413
414         rq->__data_len = 0;
415         rq->__sector = (sector_t) -1;
416         rq->bio = rq->biotail = NULL;
417         return rq;
418 }
419 EXPORT_SYMBOL(blk_mq_alloc_request);
420
421 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
422         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
423 {
424         struct blk_mq_alloc_data alloc_data = { .flags = flags };
425         struct request *rq;
426         unsigned int cpu;
427         int ret;
428
429         /*
430          * If the tag allocator sleeps we could get an allocation for a
431          * different hardware context.  No need to complicate the low level
432          * allocator for this for the rare use case of a command tied to
433          * a specific queue.
434          */
435         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
436                 return ERR_PTR(-EINVAL);
437
438         if (hctx_idx >= q->nr_hw_queues)
439                 return ERR_PTR(-EIO);
440
441         ret = blk_queue_enter(q, flags);
442         if (ret)
443                 return ERR_PTR(ret);
444
445         /*
446          * Check if the hardware context is actually mapped to anything.
447          * If not tell the caller that it should skip this queue.
448          */
449         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
450         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
451                 blk_queue_exit(q);
452                 return ERR_PTR(-EXDEV);
453         }
454         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
455         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
456
457         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
458         blk_queue_exit(q);
459
460         if (!rq)
461                 return ERR_PTR(-EWOULDBLOCK);
462
463         return rq;
464 }
465 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
466
467 void blk_mq_free_request(struct request *rq)
468 {
469         struct request_queue *q = rq->q;
470         struct elevator_queue *e = q->elevator;
471         struct blk_mq_ctx *ctx = rq->mq_ctx;
472         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
473         const int sched_tag = rq->internal_tag;
474
475         if (rq->rq_flags & RQF_ELVPRIV) {
476                 if (e && e->type->ops.mq.finish_request)
477                         e->type->ops.mq.finish_request(rq);
478                 if (rq->elv.icq) {
479                         put_io_context(rq->elv.icq->ioc);
480                         rq->elv.icq = NULL;
481                 }
482         }
483
484         ctx->rq_completed[rq_is_sync(rq)]++;
485         if (rq->rq_flags & RQF_MQ_INFLIGHT)
486                 atomic_dec(&hctx->nr_active);
487
488         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
489                 laptop_io_completion(q->backing_dev_info);
490
491         wbt_done(q->rq_wb, &rq->issue_stat);
492
493         if (blk_rq_rl(rq))
494                 blk_put_rl(blk_rq_rl(rq));
495
496         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
497         if (rq->tag != -1)
498                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
499         if (sched_tag != -1)
500                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
501         blk_mq_sched_restart(hctx);
502         blk_queue_exit(q);
503 }
504 EXPORT_SYMBOL_GPL(blk_mq_free_request);
505
506 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
507 {
508         blk_account_io_done(rq);
509
510         if (rq->end_io) {
511                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
512                 rq->end_io(rq, error);
513         } else {
514                 if (unlikely(blk_bidi_rq(rq)))
515                         blk_mq_free_request(rq->next_rq);
516                 blk_mq_free_request(rq);
517         }
518 }
519 EXPORT_SYMBOL(__blk_mq_end_request);
520
521 void blk_mq_end_request(struct request *rq, blk_status_t error)
522 {
523         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
524                 BUG();
525         __blk_mq_end_request(rq, error);
526 }
527 EXPORT_SYMBOL(blk_mq_end_request);
528
529 static void __blk_mq_complete_request_remote(void *data)
530 {
531         struct request *rq = data;
532
533         rq->q->softirq_done_fn(rq);
534 }
535
536 static void __blk_mq_complete_request(struct request *rq)
537 {
538         struct blk_mq_ctx *ctx = rq->mq_ctx;
539         bool shared = false;
540         int cpu;
541
542         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
543         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
544
545         if (rq->internal_tag != -1)
546                 blk_mq_sched_completed_request(rq);
547         if (rq->rq_flags & RQF_STATS) {
548                 blk_mq_poll_stats_start(rq->q);
549                 blk_stat_add(rq);
550         }
551
552         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
553                 rq->q->softirq_done_fn(rq);
554                 return;
555         }
556
557         cpu = get_cpu();
558         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
559                 shared = cpus_share_cache(cpu, ctx->cpu);
560
561         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
562                 rq->csd.func = __blk_mq_complete_request_remote;
563                 rq->csd.info = rq;
564                 rq->csd.flags = 0;
565                 smp_call_function_single_async(ctx->cpu, &rq->csd);
566         } else {
567                 rq->q->softirq_done_fn(rq);
568         }
569         put_cpu();
570 }
571
572 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
573         __releases(hctx->srcu)
574 {
575         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
576                 rcu_read_unlock();
577         else
578                 srcu_read_unlock(hctx->srcu, srcu_idx);
579 }
580
581 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
582         __acquires(hctx->srcu)
583 {
584         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
585                 /* shut up gcc false positive */
586                 *srcu_idx = 0;
587                 rcu_read_lock();
588         } else
589                 *srcu_idx = srcu_read_lock(hctx->srcu);
590 }
591
592 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
593 {
594         unsigned long flags;
595
596         /*
597          * blk_mq_rq_aborted_gstate() is used from the completion path and
598          * can thus be called from irq context.  u64_stats_fetch in the
599          * middle of update on the same CPU leads to lockup.  Disable irq
600          * while updating.
601          */
602         local_irq_save(flags);
603         u64_stats_update_begin(&rq->aborted_gstate_sync);
604         rq->aborted_gstate = gstate;
605         u64_stats_update_end(&rq->aborted_gstate_sync);
606         local_irq_restore(flags);
607 }
608
609 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
610 {
611         unsigned int start;
612         u64 aborted_gstate;
613
614         do {
615                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
616                 aborted_gstate = rq->aborted_gstate;
617         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
618
619         return aborted_gstate;
620 }
621
622 /**
623  * blk_mq_complete_request - end I/O on a request
624  * @rq:         the request being processed
625  *
626  * Description:
627  *      Ends all I/O on a request. It does not handle partial completions.
628  *      The actual completion happens out-of-order, through a IPI handler.
629  **/
630 void blk_mq_complete_request(struct request *rq)
631 {
632         struct request_queue *q = rq->q;
633         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
634         int srcu_idx;
635
636         if (unlikely(blk_should_fake_timeout(q)))
637                 return;
638
639         /*
640          * If @rq->aborted_gstate equals the current instance, timeout is
641          * claiming @rq and we lost.  This is synchronized through
642          * hctx_lock().  See blk_mq_timeout_work() for details.
643          *
644          * Completion path never blocks and we can directly use RCU here
645          * instead of hctx_lock() which can be either RCU or SRCU.
646          * However, that would complicate paths which want to synchronize
647          * against us.  Let stay in sync with the issue path so that
648          * hctx_lock() covers both issue and completion paths.
649          */
650         hctx_lock(hctx, &srcu_idx);
651         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
652                 __blk_mq_complete_request(rq);
653         hctx_unlock(hctx, srcu_idx);
654 }
655 EXPORT_SYMBOL(blk_mq_complete_request);
656
657 int blk_mq_request_started(struct request *rq)
658 {
659         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
660 }
661 EXPORT_SYMBOL_GPL(blk_mq_request_started);
662
663 void blk_mq_start_request(struct request *rq)
664 {
665         struct request_queue *q = rq->q;
666
667         blk_mq_sched_started_request(rq);
668
669         trace_block_rq_issue(q, rq);
670
671         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
672                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
673                 rq->rq_flags |= RQF_STATS;
674                 wbt_issue(q->rq_wb, &rq->issue_stat);
675         }
676
677         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
678
679         /*
680          * Mark @rq in-flight which also advances the generation number,
681          * and register for timeout.  Protect with a seqcount to allow the
682          * timeout path to read both @rq->gstate and @rq->deadline
683          * coherently.
684          *
685          * This is the only place where a request is marked in-flight.  If
686          * the timeout path reads an in-flight @rq->gstate, the
687          * @rq->deadline it reads together under @rq->gstate_seq is
688          * guaranteed to be the matching one.
689          */
690         preempt_disable();
691         write_seqcount_begin(&rq->gstate_seq);
692
693         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
694         blk_add_timer(rq);
695
696         write_seqcount_end(&rq->gstate_seq);
697         preempt_enable();
698
699         if (q->dma_drain_size && blk_rq_bytes(rq)) {
700                 /*
701                  * Make sure space for the drain appears.  We know we can do
702                  * this because max_hw_segments has been adjusted to be one
703                  * fewer than the device can handle.
704                  */
705                 rq->nr_phys_segments++;
706         }
707 }
708 EXPORT_SYMBOL(blk_mq_start_request);
709
710 /*
711  * When we reach here because queue is busy, it's safe to change the state
712  * to IDLE without checking @rq->aborted_gstate because we should still be
713  * holding the RCU read lock and thus protected against timeout.
714  */
715 static void __blk_mq_requeue_request(struct request *rq)
716 {
717         struct request_queue *q = rq->q;
718
719         blk_mq_put_driver_tag(rq);
720
721         trace_block_rq_requeue(q, rq);
722         wbt_requeue(q->rq_wb, &rq->issue_stat);
723
724         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
725                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
726                 if (q->dma_drain_size && blk_rq_bytes(rq))
727                         rq->nr_phys_segments--;
728         }
729 }
730
731 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
732 {
733         __blk_mq_requeue_request(rq);
734
735         /* this request will be re-inserted to io scheduler queue */
736         blk_mq_sched_requeue_request(rq);
737
738         BUG_ON(blk_queued_rq(rq));
739         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
740 }
741 EXPORT_SYMBOL(blk_mq_requeue_request);
742
743 static void blk_mq_requeue_work(struct work_struct *work)
744 {
745         struct request_queue *q =
746                 container_of(work, struct request_queue, requeue_work.work);
747         LIST_HEAD(rq_list);
748         struct request *rq, *next;
749
750         spin_lock_irq(&q->requeue_lock);
751         list_splice_init(&q->requeue_list, &rq_list);
752         spin_unlock_irq(&q->requeue_lock);
753
754         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
755                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
756                         continue;
757
758                 rq->rq_flags &= ~RQF_SOFTBARRIER;
759                 list_del_init(&rq->queuelist);
760                 blk_mq_sched_insert_request(rq, true, false, false);
761         }
762
763         while (!list_empty(&rq_list)) {
764                 rq = list_entry(rq_list.next, struct request, queuelist);
765                 list_del_init(&rq->queuelist);
766                 blk_mq_sched_insert_request(rq, false, false, false);
767         }
768
769         blk_mq_run_hw_queues(q, false);
770 }
771
772 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
773                                 bool kick_requeue_list)
774 {
775         struct request_queue *q = rq->q;
776         unsigned long flags;
777
778         /*
779          * We abuse this flag that is otherwise used by the I/O scheduler to
780          * request head insertion from the workqueue.
781          */
782         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
783
784         spin_lock_irqsave(&q->requeue_lock, flags);
785         if (at_head) {
786                 rq->rq_flags |= RQF_SOFTBARRIER;
787                 list_add(&rq->queuelist, &q->requeue_list);
788         } else {
789                 list_add_tail(&rq->queuelist, &q->requeue_list);
790         }
791         spin_unlock_irqrestore(&q->requeue_lock, flags);
792
793         if (kick_requeue_list)
794                 blk_mq_kick_requeue_list(q);
795 }
796 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
797
798 void blk_mq_kick_requeue_list(struct request_queue *q)
799 {
800         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
801 }
802 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
803
804 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
805                                     unsigned long msecs)
806 {
807         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
808                                     msecs_to_jiffies(msecs));
809 }
810 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
811
812 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
813 {
814         if (tag < tags->nr_tags) {
815                 prefetch(tags->rqs[tag]);
816                 return tags->rqs[tag];
817         }
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(blk_mq_tag_to_rq);
822
823 struct blk_mq_timeout_data {
824         unsigned long next;
825         unsigned int next_set;
826         unsigned int nr_expired;
827 };
828
829 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
830 {
831         const struct blk_mq_ops *ops = req->q->mq_ops;
832         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
833
834         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
835
836         if (ops->timeout)
837                 ret = ops->timeout(req, reserved);
838
839         switch (ret) {
840         case BLK_EH_HANDLED:
841                 __blk_mq_complete_request(req);
842                 break;
843         case BLK_EH_RESET_TIMER:
844                 /*
845                  * As nothing prevents from completion happening while
846                  * ->aborted_gstate is set, this may lead to ignored
847                  * completions and further spurious timeouts.
848                  */
849                 blk_mq_rq_update_aborted_gstate(req, 0);
850                 blk_add_timer(req);
851                 break;
852         case BLK_EH_NOT_HANDLED:
853                 break;
854         default:
855                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
856                 break;
857         }
858 }
859
860 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
861                 struct request *rq, void *priv, bool reserved)
862 {
863         struct blk_mq_timeout_data *data = priv;
864         unsigned long gstate, deadline;
865         int start;
866
867         might_sleep();
868
869         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
870                 return;
871
872         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
873         while (true) {
874                 start = read_seqcount_begin(&rq->gstate_seq);
875                 gstate = READ_ONCE(rq->gstate);
876                 deadline = blk_rq_deadline(rq);
877                 if (!read_seqcount_retry(&rq->gstate_seq, start))
878                         break;
879                 cond_resched();
880         }
881
882         /* if in-flight && overdue, mark for abortion */
883         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
884             time_after_eq(jiffies, deadline)) {
885                 blk_mq_rq_update_aborted_gstate(rq, gstate);
886                 data->nr_expired++;
887                 hctx->nr_expired++;
888         } else if (!data->next_set || time_after(data->next, deadline)) {
889                 data->next = deadline;
890                 data->next_set = 1;
891         }
892 }
893
894 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
895                 struct request *rq, void *priv, bool reserved)
896 {
897         /*
898          * We marked @rq->aborted_gstate and waited for RCU.  If there were
899          * completions that we lost to, they would have finished and
900          * updated @rq->gstate by now; otherwise, the completion path is
901          * now guaranteed to see @rq->aborted_gstate and yield.  If
902          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
903          */
904         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
905             READ_ONCE(rq->gstate) == rq->aborted_gstate)
906                 blk_mq_rq_timed_out(rq, reserved);
907 }
908
909 static void blk_mq_timeout_work(struct work_struct *work)
910 {
911         struct request_queue *q =
912                 container_of(work, struct request_queue, timeout_work);
913         struct blk_mq_timeout_data data = {
914                 .next           = 0,
915                 .next_set       = 0,
916                 .nr_expired     = 0,
917         };
918         struct blk_mq_hw_ctx *hctx;
919         int i;
920
921         /* A deadlock might occur if a request is stuck requiring a
922          * timeout at the same time a queue freeze is waiting
923          * completion, since the timeout code would not be able to
924          * acquire the queue reference here.
925          *
926          * That's why we don't use blk_queue_enter here; instead, we use
927          * percpu_ref_tryget directly, because we need to be able to
928          * obtain a reference even in the short window between the queue
929          * starting to freeze, by dropping the first reference in
930          * blk_freeze_queue_start, and the moment the last request is
931          * consumed, marked by the instant q_usage_counter reaches
932          * zero.
933          */
934         if (!percpu_ref_tryget(&q->q_usage_counter))
935                 return;
936
937         /* scan for the expired ones and set their ->aborted_gstate */
938         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
939
940         if (data.nr_expired) {
941                 bool has_rcu = false;
942
943                 /*
944                  * Wait till everyone sees ->aborted_gstate.  The
945                  * sequential waits for SRCUs aren't ideal.  If this ever
946                  * becomes a problem, we can add per-hw_ctx rcu_head and
947                  * wait in parallel.
948                  */
949                 queue_for_each_hw_ctx(q, hctx, i) {
950                         if (!hctx->nr_expired)
951                                 continue;
952
953                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
954                                 has_rcu = true;
955                         else
956                                 synchronize_srcu(hctx->srcu);
957
958                         hctx->nr_expired = 0;
959                 }
960                 if (has_rcu)
961                         synchronize_rcu();
962
963                 /* terminate the ones we won */
964                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
965         }
966
967         if (data.next_set) {
968                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
969                 mod_timer(&q->timeout, data.next);
970         } else {
971                 /*
972                  * Request timeouts are handled as a forward rolling timer. If
973                  * we end up here it means that no requests are pending and
974                  * also that no request has been pending for a while. Mark
975                  * each hctx as idle.
976                  */
977                 queue_for_each_hw_ctx(q, hctx, i) {
978                         /* the hctx may be unmapped, so check it here */
979                         if (blk_mq_hw_queue_mapped(hctx))
980                                 blk_mq_tag_idle(hctx);
981                 }
982         }
983         blk_queue_exit(q);
984 }
985
986 struct flush_busy_ctx_data {
987         struct blk_mq_hw_ctx *hctx;
988         struct list_head *list;
989 };
990
991 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
992 {
993         struct flush_busy_ctx_data *flush_data = data;
994         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
995         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
996
997         spin_lock(&ctx->lock);
998         list_splice_tail_init(&ctx->rq_list, flush_data->list);
999         sbitmap_clear_bit(sb, bitnr);
1000         spin_unlock(&ctx->lock);
1001         return true;
1002 }
1003
1004 /*
1005  * Process software queues that have been marked busy, splicing them
1006  * to the for-dispatch
1007  */
1008 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1009 {
1010         struct flush_busy_ctx_data data = {
1011                 .hctx = hctx,
1012                 .list = list,
1013         };
1014
1015         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1016 }
1017 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1018
1019 struct dispatch_rq_data {
1020         struct blk_mq_hw_ctx *hctx;
1021         struct request *rq;
1022 };
1023
1024 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1025                 void *data)
1026 {
1027         struct dispatch_rq_data *dispatch_data = data;
1028         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1029         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1030
1031         spin_lock(&ctx->lock);
1032         if (unlikely(!list_empty(&ctx->rq_list))) {
1033                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1034                 list_del_init(&dispatch_data->rq->queuelist);
1035                 if (list_empty(&ctx->rq_list))
1036                         sbitmap_clear_bit(sb, bitnr);
1037         }
1038         spin_unlock(&ctx->lock);
1039
1040         return !dispatch_data->rq;
1041 }
1042
1043 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1044                                         struct blk_mq_ctx *start)
1045 {
1046         unsigned off = start ? start->index_hw : 0;
1047         struct dispatch_rq_data data = {
1048                 .hctx = hctx,
1049                 .rq   = NULL,
1050         };
1051
1052         __sbitmap_for_each_set(&hctx->ctx_map, off,
1053                                dispatch_rq_from_ctx, &data);
1054
1055         return data.rq;
1056 }
1057
1058 static inline unsigned int queued_to_index(unsigned int queued)
1059 {
1060         if (!queued)
1061                 return 0;
1062
1063         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1064 }
1065
1066 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1067                            bool wait)
1068 {
1069         struct blk_mq_alloc_data data = {
1070                 .q = rq->q,
1071                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1072                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1073         };
1074
1075         might_sleep_if(wait);
1076
1077         if (rq->tag != -1)
1078                 goto done;
1079
1080         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1081                 data.flags |= BLK_MQ_REQ_RESERVED;
1082
1083         rq->tag = blk_mq_get_tag(&data);
1084         if (rq->tag >= 0) {
1085                 if (blk_mq_tag_busy(data.hctx)) {
1086                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1087                         atomic_inc(&data.hctx->nr_active);
1088                 }
1089                 data.hctx->tags->rqs[rq->tag] = rq;
1090         }
1091
1092 done:
1093         if (hctx)
1094                 *hctx = data.hctx;
1095         return rq->tag != -1;
1096 }
1097
1098 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1099                                 int flags, void *key)
1100 {
1101         struct blk_mq_hw_ctx *hctx;
1102
1103         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1104
1105         list_del_init(&wait->entry);
1106         blk_mq_run_hw_queue(hctx, true);
1107         return 1;
1108 }
1109
1110 /*
1111  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1112  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1113  * restart. For both cases, take care to check the condition again after
1114  * marking us as waiting.
1115  */
1116 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1117                                  struct request *rq)
1118 {
1119         struct blk_mq_hw_ctx *this_hctx = *hctx;
1120         struct sbq_wait_state *ws;
1121         wait_queue_entry_t *wait;
1122         bool ret;
1123
1124         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1125                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1126                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1127
1128                 /*
1129                  * It's possible that a tag was freed in the window between the
1130                  * allocation failure and adding the hardware queue to the wait
1131                  * queue.
1132                  *
1133                  * Don't clear RESTART here, someone else could have set it.
1134                  * At most this will cost an extra queue run.
1135                  */
1136                 return blk_mq_get_driver_tag(rq, hctx, false);
1137         }
1138
1139         wait = &this_hctx->dispatch_wait;
1140         if (!list_empty_careful(&wait->entry))
1141                 return false;
1142
1143         spin_lock(&this_hctx->lock);
1144         if (!list_empty(&wait->entry)) {
1145                 spin_unlock(&this_hctx->lock);
1146                 return false;
1147         }
1148
1149         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1150         add_wait_queue(&ws->wait, wait);
1151
1152         /*
1153          * It's possible that a tag was freed in the window between the
1154          * allocation failure and adding the hardware queue to the wait
1155          * queue.
1156          */
1157         ret = blk_mq_get_driver_tag(rq, hctx, false);
1158         if (!ret) {
1159                 spin_unlock(&this_hctx->lock);
1160                 return false;
1161         }
1162
1163         /*
1164          * We got a tag, remove ourselves from the wait queue to ensure
1165          * someone else gets the wakeup.
1166          */
1167         spin_lock_irq(&ws->wait.lock);
1168         list_del_init(&wait->entry);
1169         spin_unlock_irq(&ws->wait.lock);
1170         spin_unlock(&this_hctx->lock);
1171
1172         return true;
1173 }
1174
1175 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1176
1177 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1178                              bool got_budget)
1179 {
1180         struct blk_mq_hw_ctx *hctx;
1181         struct request *rq, *nxt;
1182         bool no_tag = false;
1183         int errors, queued;
1184         blk_status_t ret = BLK_STS_OK;
1185
1186         if (list_empty(list))
1187                 return false;
1188
1189         WARN_ON(!list_is_singular(list) && got_budget);
1190
1191         /*
1192          * Now process all the entries, sending them to the driver.
1193          */
1194         errors = queued = 0;
1195         do {
1196                 struct blk_mq_queue_data bd;
1197
1198                 rq = list_first_entry(list, struct request, queuelist);
1199
1200                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1201                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1202                         break;
1203
1204                 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1205                         /*
1206                          * The initial allocation attempt failed, so we need to
1207                          * rerun the hardware queue when a tag is freed. The
1208                          * waitqueue takes care of that. If the queue is run
1209                          * before we add this entry back on the dispatch list,
1210                          * we'll re-run it below.
1211                          */
1212                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1213                                 blk_mq_put_dispatch_budget(hctx);
1214                                 /*
1215                                  * For non-shared tags, the RESTART check
1216                                  * will suffice.
1217                                  */
1218                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1219                                         no_tag = true;
1220                                 break;
1221                         }
1222                 }
1223
1224                 list_del_init(&rq->queuelist);
1225
1226                 bd.rq = rq;
1227
1228                 /*
1229                  * Flag last if we have no more requests, or if we have more
1230                  * but can't assign a driver tag to it.
1231                  */
1232                 if (list_empty(list))
1233                         bd.last = true;
1234                 else {
1235                         nxt = list_first_entry(list, struct request, queuelist);
1236                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1237                 }
1238
1239                 ret = q->mq_ops->queue_rq(hctx, &bd);
1240                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1241                         /*
1242                          * If an I/O scheduler has been configured and we got a
1243                          * driver tag for the next request already, free it
1244                          * again.
1245                          */
1246                         if (!list_empty(list)) {
1247                                 nxt = list_first_entry(list, struct request, queuelist);
1248                                 blk_mq_put_driver_tag(nxt);
1249                         }
1250                         list_add(&rq->queuelist, list);
1251                         __blk_mq_requeue_request(rq);
1252                         break;
1253                 }
1254
1255                 if (unlikely(ret != BLK_STS_OK)) {
1256                         errors++;
1257                         blk_mq_end_request(rq, BLK_STS_IOERR);
1258                         continue;
1259                 }
1260
1261                 queued++;
1262         } while (!list_empty(list));
1263
1264         hctx->dispatched[queued_to_index(queued)]++;
1265
1266         /*
1267          * Any items that need requeuing? Stuff them into hctx->dispatch,
1268          * that is where we will continue on next queue run.
1269          */
1270         if (!list_empty(list)) {
1271                 bool needs_restart;
1272
1273                 spin_lock(&hctx->lock);
1274                 list_splice_init(list, &hctx->dispatch);
1275                 spin_unlock(&hctx->lock);
1276
1277                 /*
1278                  * If SCHED_RESTART was set by the caller of this function and
1279                  * it is no longer set that means that it was cleared by another
1280                  * thread and hence that a queue rerun is needed.
1281                  *
1282                  * If 'no_tag' is set, that means that we failed getting
1283                  * a driver tag with an I/O scheduler attached. If our dispatch
1284                  * waitqueue is no longer active, ensure that we run the queue
1285                  * AFTER adding our entries back to the list.
1286                  *
1287                  * If no I/O scheduler has been configured it is possible that
1288                  * the hardware queue got stopped and restarted before requests
1289                  * were pushed back onto the dispatch list. Rerun the queue to
1290                  * avoid starvation. Notes:
1291                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1292                  *   been stopped before rerunning a queue.
1293                  * - Some but not all block drivers stop a queue before
1294                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1295                  *   and dm-rq.
1296                  *
1297                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1298                  * bit is set, run queue after a delay to avoid IO stalls
1299                  * that could otherwise occur if the queue is idle.
1300                  */
1301                 needs_restart = blk_mq_sched_needs_restart(hctx);
1302                 if (!needs_restart ||
1303                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1304                         blk_mq_run_hw_queue(hctx, true);
1305                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1306                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1307         }
1308
1309         return (queued + errors) != 0;
1310 }
1311
1312 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1313 {
1314         int srcu_idx;
1315
1316         /*
1317          * We should be running this queue from one of the CPUs that
1318          * are mapped to it.
1319          *
1320          * There are at least two related races now between setting
1321          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1322          * __blk_mq_run_hw_queue():
1323          *
1324          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1325          *   but later it becomes online, then this warning is harmless
1326          *   at all
1327          *
1328          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1329          *   but later it becomes offline, then the warning can't be
1330          *   triggered, and we depend on blk-mq timeout handler to
1331          *   handle dispatched requests to this hctx
1332          */
1333         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1334                 cpu_online(hctx->next_cpu)) {
1335                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1336                         raw_smp_processor_id(),
1337                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1338                 dump_stack();
1339         }
1340
1341         /*
1342          * We can't run the queue inline with ints disabled. Ensure that
1343          * we catch bad users of this early.
1344          */
1345         WARN_ON_ONCE(in_interrupt());
1346
1347         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1348
1349         hctx_lock(hctx, &srcu_idx);
1350         blk_mq_sched_dispatch_requests(hctx);
1351         hctx_unlock(hctx, srcu_idx);
1352 }
1353
1354 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1355 {
1356         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1357
1358         if (cpu >= nr_cpu_ids)
1359                 cpu = cpumask_first(hctx->cpumask);
1360         return cpu;
1361 }
1362
1363 /*
1364  * It'd be great if the workqueue API had a way to pass
1365  * in a mask and had some smarts for more clever placement.
1366  * For now we just round-robin here, switching for every
1367  * BLK_MQ_CPU_WORK_BATCH queued items.
1368  */
1369 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1370 {
1371         bool tried = false;
1372         int next_cpu = hctx->next_cpu;
1373
1374         if (hctx->queue->nr_hw_queues == 1)
1375                 return WORK_CPU_UNBOUND;
1376
1377         if (--hctx->next_cpu_batch <= 0) {
1378 select_cpu:
1379                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1380                                 cpu_online_mask);
1381                 if (next_cpu >= nr_cpu_ids)
1382                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1383                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1384         }
1385
1386         /*
1387          * Do unbound schedule if we can't find a online CPU for this hctx,
1388          * and it should only happen in the path of handling CPU DEAD.
1389          */
1390         if (!cpu_online(next_cpu)) {
1391                 if (!tried) {
1392                         tried = true;
1393                         goto select_cpu;
1394                 }
1395
1396                 /*
1397                  * Make sure to re-select CPU next time once after CPUs
1398                  * in hctx->cpumask become online again.
1399                  */
1400                 hctx->next_cpu = next_cpu;
1401                 hctx->next_cpu_batch = 1;
1402                 return WORK_CPU_UNBOUND;
1403         }
1404
1405         hctx->next_cpu = next_cpu;
1406         return next_cpu;
1407 }
1408
1409 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1410                                         unsigned long msecs)
1411 {
1412         if (unlikely(blk_mq_hctx_stopped(hctx)))
1413                 return;
1414
1415         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1416                 int cpu = get_cpu();
1417                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1418                         __blk_mq_run_hw_queue(hctx);
1419                         put_cpu();
1420                         return;
1421                 }
1422
1423                 put_cpu();
1424         }
1425
1426         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1427                                     msecs_to_jiffies(msecs));
1428 }
1429
1430 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431 {
1432         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1433 }
1434 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1435
1436 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1437 {
1438         int srcu_idx;
1439         bool need_run;
1440
1441         /*
1442          * When queue is quiesced, we may be switching io scheduler, or
1443          * updating nr_hw_queues, or other things, and we can't run queue
1444          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1445          *
1446          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1447          * quiesced.
1448          */
1449         hctx_lock(hctx, &srcu_idx);
1450         need_run = !blk_queue_quiesced(hctx->queue) &&
1451                 blk_mq_hctx_has_pending(hctx);
1452         hctx_unlock(hctx, srcu_idx);
1453
1454         if (need_run) {
1455                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1456                 return true;
1457         }
1458
1459         return false;
1460 }
1461 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1462
1463 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1464 {
1465         struct blk_mq_hw_ctx *hctx;
1466         int i;
1467
1468         queue_for_each_hw_ctx(q, hctx, i) {
1469                 if (blk_mq_hctx_stopped(hctx))
1470                         continue;
1471
1472                 blk_mq_run_hw_queue(hctx, async);
1473         }
1474 }
1475 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1476
1477 /**
1478  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1479  * @q: request queue.
1480  *
1481  * The caller is responsible for serializing this function against
1482  * blk_mq_{start,stop}_hw_queue().
1483  */
1484 bool blk_mq_queue_stopped(struct request_queue *q)
1485 {
1486         struct blk_mq_hw_ctx *hctx;
1487         int i;
1488
1489         queue_for_each_hw_ctx(q, hctx, i)
1490                 if (blk_mq_hctx_stopped(hctx))
1491                         return true;
1492
1493         return false;
1494 }
1495 EXPORT_SYMBOL(blk_mq_queue_stopped);
1496
1497 /*
1498  * This function is often used for pausing .queue_rq() by driver when
1499  * there isn't enough resource or some conditions aren't satisfied, and
1500  * BLK_STS_RESOURCE is usually returned.
1501  *
1502  * We do not guarantee that dispatch can be drained or blocked
1503  * after blk_mq_stop_hw_queue() returns. Please use
1504  * blk_mq_quiesce_queue() for that requirement.
1505  */
1506 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1507 {
1508         cancel_delayed_work(&hctx->run_work);
1509
1510         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511 }
1512 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1513
1514 /*
1515  * This function is often used for pausing .queue_rq() by driver when
1516  * there isn't enough resource or some conditions aren't satisfied, and
1517  * BLK_STS_RESOURCE is usually returned.
1518  *
1519  * We do not guarantee that dispatch can be drained or blocked
1520  * after blk_mq_stop_hw_queues() returns. Please use
1521  * blk_mq_quiesce_queue() for that requirement.
1522  */
1523 void blk_mq_stop_hw_queues(struct request_queue *q)
1524 {
1525         struct blk_mq_hw_ctx *hctx;
1526         int i;
1527
1528         queue_for_each_hw_ctx(q, hctx, i)
1529                 blk_mq_stop_hw_queue(hctx);
1530 }
1531 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1532
1533 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1534 {
1535         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536
1537         blk_mq_run_hw_queue(hctx, false);
1538 }
1539 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1540
1541 void blk_mq_start_hw_queues(struct request_queue *q)
1542 {
1543         struct blk_mq_hw_ctx *hctx;
1544         int i;
1545
1546         queue_for_each_hw_ctx(q, hctx, i)
1547                 blk_mq_start_hw_queue(hctx);
1548 }
1549 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1550
1551 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1552 {
1553         if (!blk_mq_hctx_stopped(hctx))
1554                 return;
1555
1556         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1557         blk_mq_run_hw_queue(hctx, async);
1558 }
1559 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1560
1561 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1562 {
1563         struct blk_mq_hw_ctx *hctx;
1564         int i;
1565
1566         queue_for_each_hw_ctx(q, hctx, i)
1567                 blk_mq_start_stopped_hw_queue(hctx, async);
1568 }
1569 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1570
1571 static void blk_mq_run_work_fn(struct work_struct *work)
1572 {
1573         struct blk_mq_hw_ctx *hctx;
1574
1575         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1576
1577         /*
1578          * If we are stopped, don't run the queue.
1579          */
1580         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1581                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582
1583         __blk_mq_run_hw_queue(hctx);
1584 }
1585
1586 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1587                                             struct request *rq,
1588                                             bool at_head)
1589 {
1590         struct blk_mq_ctx *ctx = rq->mq_ctx;
1591
1592         lockdep_assert_held(&ctx->lock);
1593
1594         trace_block_rq_insert(hctx->queue, rq);
1595
1596         if (at_head)
1597                 list_add(&rq->queuelist, &ctx->rq_list);
1598         else
1599                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1600 }
1601
1602 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1603                              bool at_head)
1604 {
1605         struct blk_mq_ctx *ctx = rq->mq_ctx;
1606
1607         lockdep_assert_held(&ctx->lock);
1608
1609         __blk_mq_insert_req_list(hctx, rq, at_head);
1610         blk_mq_hctx_mark_pending(hctx, ctx);
1611 }
1612
1613 /*
1614  * Should only be used carefully, when the caller knows we want to
1615  * bypass a potential IO scheduler on the target device.
1616  */
1617 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1618 {
1619         struct blk_mq_ctx *ctx = rq->mq_ctx;
1620         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1621
1622         spin_lock(&hctx->lock);
1623         list_add_tail(&rq->queuelist, &hctx->dispatch);
1624         spin_unlock(&hctx->lock);
1625
1626         if (run_queue)
1627                 blk_mq_run_hw_queue(hctx, false);
1628 }
1629
1630 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1631                             struct list_head *list)
1632
1633 {
1634         /*
1635          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1636          * offline now
1637          */
1638         spin_lock(&ctx->lock);
1639         while (!list_empty(list)) {
1640                 struct request *rq;
1641
1642                 rq = list_first_entry(list, struct request, queuelist);
1643                 BUG_ON(rq->mq_ctx != ctx);
1644                 list_del_init(&rq->queuelist);
1645                 __blk_mq_insert_req_list(hctx, rq, false);
1646         }
1647         blk_mq_hctx_mark_pending(hctx, ctx);
1648         spin_unlock(&ctx->lock);
1649 }
1650
1651 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1652 {
1653         struct request *rqa = container_of(a, struct request, queuelist);
1654         struct request *rqb = container_of(b, struct request, queuelist);
1655
1656         return !(rqa->mq_ctx < rqb->mq_ctx ||
1657                  (rqa->mq_ctx == rqb->mq_ctx &&
1658                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1659 }
1660
1661 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1662 {
1663         struct blk_mq_ctx *this_ctx;
1664         struct request_queue *this_q;
1665         struct request *rq;
1666         LIST_HEAD(list);
1667         LIST_HEAD(ctx_list);
1668         unsigned int depth;
1669
1670         list_splice_init(&plug->mq_list, &list);
1671
1672         list_sort(NULL, &list, plug_ctx_cmp);
1673
1674         this_q = NULL;
1675         this_ctx = NULL;
1676         depth = 0;
1677
1678         while (!list_empty(&list)) {
1679                 rq = list_entry_rq(list.next);
1680                 list_del_init(&rq->queuelist);
1681                 BUG_ON(!rq->q);
1682                 if (rq->mq_ctx != this_ctx) {
1683                         if (this_ctx) {
1684                                 trace_block_unplug(this_q, depth, from_schedule);
1685                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1686                                                                 &ctx_list,
1687                                                                 from_schedule);
1688                         }
1689
1690                         this_ctx = rq->mq_ctx;
1691                         this_q = rq->q;
1692                         depth = 0;
1693                 }
1694
1695                 depth++;
1696                 list_add_tail(&rq->queuelist, &ctx_list);
1697         }
1698
1699         /*
1700          * If 'this_ctx' is set, we know we have entries to complete
1701          * on 'ctx_list'. Do those.
1702          */
1703         if (this_ctx) {
1704                 trace_block_unplug(this_q, depth, from_schedule);
1705                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1706                                                 from_schedule);
1707         }
1708 }
1709
1710 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1711 {
1712         blk_init_request_from_bio(rq, bio);
1713
1714         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1715
1716         blk_account_io_start(rq, true);
1717 }
1718
1719 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1720                                    struct blk_mq_ctx *ctx,
1721                                    struct request *rq)
1722 {
1723         spin_lock(&ctx->lock);
1724         __blk_mq_insert_request(hctx, rq, false);
1725         spin_unlock(&ctx->lock);
1726 }
1727
1728 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1729 {
1730         if (rq->tag != -1)
1731                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1732
1733         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1734 }
1735
1736 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1737                                             struct request *rq,
1738                                             blk_qc_t *cookie)
1739 {
1740         struct request_queue *q = rq->q;
1741         struct blk_mq_queue_data bd = {
1742                 .rq = rq,
1743                 .last = true,
1744         };
1745         blk_qc_t new_cookie;
1746         blk_status_t ret;
1747
1748         new_cookie = request_to_qc_t(hctx, rq);
1749
1750         /*
1751          * For OK queue, we are done. For error, caller may kill it.
1752          * Any other error (busy), just add it to our list as we
1753          * previously would have done.
1754          */
1755         ret = q->mq_ops->queue_rq(hctx, &bd);
1756         switch (ret) {
1757         case BLK_STS_OK:
1758                 *cookie = new_cookie;
1759                 break;
1760         case BLK_STS_RESOURCE:
1761         case BLK_STS_DEV_RESOURCE:
1762                 __blk_mq_requeue_request(rq);
1763                 break;
1764         default:
1765                 *cookie = BLK_QC_T_NONE;
1766                 break;
1767         }
1768
1769         return ret;
1770 }
1771
1772 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1773                                                 struct request *rq,
1774                                                 blk_qc_t *cookie,
1775                                                 bool bypass_insert)
1776 {
1777         struct request_queue *q = rq->q;
1778         bool run_queue = true;
1779
1780         /*
1781          * RCU or SRCU read lock is needed before checking quiesced flag.
1782          *
1783          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1784          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1785          * and avoid driver to try to dispatch again.
1786          */
1787         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1788                 run_queue = false;
1789                 bypass_insert = false;
1790                 goto insert;
1791         }
1792
1793         if (q->elevator && !bypass_insert)
1794                 goto insert;
1795
1796         if (!blk_mq_get_dispatch_budget(hctx))
1797                 goto insert;
1798
1799         if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1800                 blk_mq_put_dispatch_budget(hctx);
1801                 goto insert;
1802         }
1803
1804         return __blk_mq_issue_directly(hctx, rq, cookie);
1805 insert:
1806         if (bypass_insert)
1807                 return BLK_STS_RESOURCE;
1808
1809         blk_mq_sched_insert_request(rq, false, run_queue, false);
1810         return BLK_STS_OK;
1811 }
1812
1813 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814                 struct request *rq, blk_qc_t *cookie)
1815 {
1816         blk_status_t ret;
1817         int srcu_idx;
1818
1819         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1820
1821         hctx_lock(hctx, &srcu_idx);
1822
1823         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1824         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1825                 blk_mq_sched_insert_request(rq, false, true, false);
1826         else if (ret != BLK_STS_OK)
1827                 blk_mq_end_request(rq, ret);
1828
1829         hctx_unlock(hctx, srcu_idx);
1830 }
1831
1832 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1833 {
1834         blk_status_t ret;
1835         int srcu_idx;
1836         blk_qc_t unused_cookie;
1837         struct blk_mq_ctx *ctx = rq->mq_ctx;
1838         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1839
1840         hctx_lock(hctx, &srcu_idx);
1841         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1842         hctx_unlock(hctx, srcu_idx);
1843
1844         return ret;
1845 }
1846
1847 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1848 {
1849         const int is_sync = op_is_sync(bio->bi_opf);
1850         const int is_flush_fua = op_is_flush(bio->bi_opf);
1851         struct blk_mq_alloc_data data = { .flags = 0 };
1852         struct request *rq;
1853         unsigned int request_count = 0;
1854         struct blk_plug *plug;
1855         struct request *same_queue_rq = NULL;
1856         blk_qc_t cookie;
1857         unsigned int wb_acct;
1858
1859         blk_queue_bounce(q, &bio);
1860
1861         blk_queue_split(q, &bio);
1862
1863         if (!bio_integrity_prep(bio))
1864                 return BLK_QC_T_NONE;
1865
1866         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1867             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1868                 return BLK_QC_T_NONE;
1869
1870         if (blk_mq_sched_bio_merge(q, bio))
1871                 return BLK_QC_T_NONE;
1872
1873         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1874
1875         trace_block_getrq(q, bio, bio->bi_opf);
1876
1877         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1878         if (unlikely(!rq)) {
1879                 __wbt_done(q->rq_wb, wb_acct);
1880                 if (bio->bi_opf & REQ_NOWAIT)
1881                         bio_wouldblock_error(bio);
1882                 return BLK_QC_T_NONE;
1883         }
1884
1885         wbt_track(&rq->issue_stat, wb_acct);
1886
1887         cookie = request_to_qc_t(data.hctx, rq);
1888
1889         plug = current->plug;
1890         if (unlikely(is_flush_fua)) {
1891                 blk_mq_put_ctx(data.ctx);
1892                 blk_mq_bio_to_request(rq, bio);
1893
1894                 /* bypass scheduler for flush rq */
1895                 blk_insert_flush(rq);
1896                 blk_mq_run_hw_queue(data.hctx, true);
1897         } else if (plug && q->nr_hw_queues == 1) {
1898                 struct request *last = NULL;
1899
1900                 blk_mq_put_ctx(data.ctx);
1901                 blk_mq_bio_to_request(rq, bio);
1902
1903                 /*
1904                  * @request_count may become stale because of schedule
1905                  * out, so check the list again.
1906                  */
1907                 if (list_empty(&plug->mq_list))
1908                         request_count = 0;
1909                 else if (blk_queue_nomerges(q))
1910                         request_count = blk_plug_queued_count(q);
1911
1912                 if (!request_count)
1913                         trace_block_plug(q);
1914                 else
1915                         last = list_entry_rq(plug->mq_list.prev);
1916
1917                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1918                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1919                         blk_flush_plug_list(plug, false);
1920                         trace_block_plug(q);
1921                 }
1922
1923                 list_add_tail(&rq->queuelist, &plug->mq_list);
1924         } else if (plug && !blk_queue_nomerges(q)) {
1925                 blk_mq_bio_to_request(rq, bio);
1926
1927                 /*
1928                  * We do limited plugging. If the bio can be merged, do that.
1929                  * Otherwise the existing request in the plug list will be
1930                  * issued. So the plug list will have one request at most
1931                  * The plug list might get flushed before this. If that happens,
1932                  * the plug list is empty, and same_queue_rq is invalid.
1933                  */
1934                 if (list_empty(&plug->mq_list))
1935                         same_queue_rq = NULL;
1936                 if (same_queue_rq)
1937                         list_del_init(&same_queue_rq->queuelist);
1938                 list_add_tail(&rq->queuelist, &plug->mq_list);
1939
1940                 blk_mq_put_ctx(data.ctx);
1941
1942                 if (same_queue_rq) {
1943                         data.hctx = blk_mq_map_queue(q,
1944                                         same_queue_rq->mq_ctx->cpu);
1945                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1946                                         &cookie);
1947                 }
1948         } else if (q->nr_hw_queues > 1 && is_sync) {
1949                 blk_mq_put_ctx(data.ctx);
1950                 blk_mq_bio_to_request(rq, bio);
1951                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1952         } else if (q->elevator) {
1953                 blk_mq_put_ctx(data.ctx);
1954                 blk_mq_bio_to_request(rq, bio);
1955                 blk_mq_sched_insert_request(rq, false, true, true);
1956         } else {
1957                 blk_mq_put_ctx(data.ctx);
1958                 blk_mq_bio_to_request(rq, bio);
1959                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1960                 blk_mq_run_hw_queue(data.hctx, true);
1961         }
1962
1963         return cookie;
1964 }
1965
1966 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1967                      unsigned int hctx_idx)
1968 {
1969         struct page *page;
1970
1971         if (tags->rqs && set->ops->exit_request) {
1972                 int i;
1973
1974                 for (i = 0; i < tags->nr_tags; i++) {
1975                         struct request *rq = tags->static_rqs[i];
1976
1977                         if (!rq)
1978                                 continue;
1979                         set->ops->exit_request(set, rq, hctx_idx);
1980                         tags->static_rqs[i] = NULL;
1981                 }
1982         }
1983
1984         while (!list_empty(&tags->page_list)) {
1985                 page = list_first_entry(&tags->page_list, struct page, lru);
1986                 list_del_init(&page->lru);
1987                 /*
1988                  * Remove kmemleak object previously allocated in
1989                  * blk_mq_init_rq_map().
1990                  */
1991                 kmemleak_free(page_address(page));
1992                 __free_pages(page, page->private);
1993         }
1994 }
1995
1996 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1997 {
1998         kfree(tags->rqs);
1999         tags->rqs = NULL;
2000         kfree(tags->static_rqs);
2001         tags->static_rqs = NULL;
2002
2003         blk_mq_free_tags(tags);
2004 }
2005
2006 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2007                                         unsigned int hctx_idx,
2008                                         unsigned int nr_tags,
2009                                         unsigned int reserved_tags)
2010 {
2011         struct blk_mq_tags *tags;
2012         int node;
2013
2014         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2015         if (node == NUMA_NO_NODE)
2016                 node = set->numa_node;
2017
2018         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2019                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2020         if (!tags)
2021                 return NULL;
2022
2023         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2024                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2025                                  node);
2026         if (!tags->rqs) {
2027                 blk_mq_free_tags(tags);
2028                 return NULL;
2029         }
2030
2031         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2032                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2033                                  node);
2034         if (!tags->static_rqs) {
2035                 kfree(tags->rqs);
2036                 blk_mq_free_tags(tags);
2037                 return NULL;
2038         }
2039
2040         return tags;
2041 }
2042
2043 static size_t order_to_size(unsigned int order)
2044 {
2045         return (size_t)PAGE_SIZE << order;
2046 }
2047
2048 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2049                                unsigned int hctx_idx, int node)
2050 {
2051         int ret;
2052
2053         if (set->ops->init_request) {
2054                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2055                 if (ret)
2056                         return ret;
2057         }
2058
2059         seqcount_init(&rq->gstate_seq);
2060         u64_stats_init(&rq->aborted_gstate_sync);
2061         /*
2062          * start gstate with gen 1 instead of 0, otherwise it will be equal
2063          * to aborted_gstate, and be identified timed out by
2064          * blk_mq_terminate_expired.
2065          */
2066         WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2067
2068         return 0;
2069 }
2070
2071 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2072                      unsigned int hctx_idx, unsigned int depth)
2073 {
2074         unsigned int i, j, entries_per_page, max_order = 4;
2075         size_t rq_size, left;
2076         int node;
2077
2078         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2079         if (node == NUMA_NO_NODE)
2080                 node = set->numa_node;
2081
2082         INIT_LIST_HEAD(&tags->page_list);
2083
2084         /*
2085          * rq_size is the size of the request plus driver payload, rounded
2086          * to the cacheline size
2087          */
2088         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2089                                 cache_line_size());
2090         left = rq_size * depth;
2091
2092         for (i = 0; i < depth; ) {
2093                 int this_order = max_order;
2094                 struct page *page;
2095                 int to_do;
2096                 void *p;
2097
2098                 while (this_order && left < order_to_size(this_order - 1))
2099                         this_order--;
2100
2101                 do {
2102                         page = alloc_pages_node(node,
2103                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2104                                 this_order);
2105                         if (page)
2106                                 break;
2107                         if (!this_order--)
2108                                 break;
2109                         if (order_to_size(this_order) < rq_size)
2110                                 break;
2111                 } while (1);
2112
2113                 if (!page)
2114                         goto fail;
2115
2116                 page->private = this_order;
2117                 list_add_tail(&page->lru, &tags->page_list);
2118
2119                 p = page_address(page);
2120                 /*
2121                  * Allow kmemleak to scan these pages as they contain pointers
2122                  * to additional allocations like via ops->init_request().
2123                  */
2124                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2125                 entries_per_page = order_to_size(this_order) / rq_size;
2126                 to_do = min(entries_per_page, depth - i);
2127                 left -= to_do * rq_size;
2128                 for (j = 0; j < to_do; j++) {
2129                         struct request *rq = p;
2130
2131                         tags->static_rqs[i] = rq;
2132                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2133                                 tags->static_rqs[i] = NULL;
2134                                 goto fail;
2135                         }
2136
2137                         p += rq_size;
2138                         i++;
2139                 }
2140         }
2141         return 0;
2142
2143 fail:
2144         blk_mq_free_rqs(set, tags, hctx_idx);
2145         return -ENOMEM;
2146 }
2147
2148 /*
2149  * 'cpu' is going away. splice any existing rq_list entries from this
2150  * software queue to the hw queue dispatch list, and ensure that it
2151  * gets run.
2152  */
2153 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2154 {
2155         struct blk_mq_hw_ctx *hctx;
2156         struct blk_mq_ctx *ctx;
2157         LIST_HEAD(tmp);
2158
2159         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2160         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2161
2162         spin_lock(&ctx->lock);
2163         if (!list_empty(&ctx->rq_list)) {
2164                 list_splice_init(&ctx->rq_list, &tmp);
2165                 blk_mq_hctx_clear_pending(hctx, ctx);
2166         }
2167         spin_unlock(&ctx->lock);
2168
2169         if (list_empty(&tmp))
2170                 return 0;
2171
2172         spin_lock(&hctx->lock);
2173         list_splice_tail_init(&tmp, &hctx->dispatch);
2174         spin_unlock(&hctx->lock);
2175
2176         blk_mq_run_hw_queue(hctx, true);
2177         return 0;
2178 }
2179
2180 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2181 {
2182         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2183                                             &hctx->cpuhp_dead);
2184 }
2185
2186 /* hctx->ctxs will be freed in queue's release handler */
2187 static void blk_mq_exit_hctx(struct request_queue *q,
2188                 struct blk_mq_tag_set *set,
2189                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2190 {
2191         blk_mq_debugfs_unregister_hctx(hctx);
2192
2193         if (blk_mq_hw_queue_mapped(hctx))
2194                 blk_mq_tag_idle(hctx);
2195
2196         if (set->ops->exit_request)
2197                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2198
2199         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2200
2201         if (set->ops->exit_hctx)
2202                 set->ops->exit_hctx(hctx, hctx_idx);
2203
2204         if (hctx->flags & BLK_MQ_F_BLOCKING)
2205                 cleanup_srcu_struct(hctx->srcu);
2206
2207         blk_mq_remove_cpuhp(hctx);
2208         blk_free_flush_queue(hctx->fq);
2209         sbitmap_free(&hctx->ctx_map);
2210 }
2211
2212 static void blk_mq_exit_hw_queues(struct request_queue *q,
2213                 struct blk_mq_tag_set *set, int nr_queue)
2214 {
2215         struct blk_mq_hw_ctx *hctx;
2216         unsigned int i;
2217
2218         queue_for_each_hw_ctx(q, hctx, i) {
2219                 if (i == nr_queue)
2220                         break;
2221                 blk_mq_exit_hctx(q, set, hctx, i);
2222         }
2223 }
2224
2225 static int blk_mq_init_hctx(struct request_queue *q,
2226                 struct blk_mq_tag_set *set,
2227                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228 {
2229         int node;
2230
2231         node = hctx->numa_node;
2232         if (node == NUMA_NO_NODE)
2233                 node = hctx->numa_node = set->numa_node;
2234
2235         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2236         spin_lock_init(&hctx->lock);
2237         INIT_LIST_HEAD(&hctx->dispatch);
2238         hctx->queue = q;
2239         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240
2241         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242
2243         hctx->tags = set->tags[hctx_idx];
2244
2245         /*
2246          * Allocate space for all possible cpus to avoid allocation at
2247          * runtime
2248          */
2249         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250                                         GFP_KERNEL, node);
2251         if (!hctx->ctxs)
2252                 goto unregister_cpu_notifier;
2253
2254         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2255                               node))
2256                 goto free_ctxs;
2257
2258         hctx->nr_ctx = 0;
2259
2260         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2261         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2262
2263         if (set->ops->init_hctx &&
2264             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2265                 goto free_bitmap;
2266
2267         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2268                 goto exit_hctx;
2269
2270         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2271         if (!hctx->fq)
2272                 goto sched_exit_hctx;
2273
2274         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2275                 goto free_fq;
2276
2277         if (hctx->flags & BLK_MQ_F_BLOCKING)
2278                 init_srcu_struct(hctx->srcu);
2279
2280         blk_mq_debugfs_register_hctx(q, hctx);
2281
2282         return 0;
2283
2284  free_fq:
2285         kfree(hctx->fq);
2286  sched_exit_hctx:
2287         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2288  exit_hctx:
2289         if (set->ops->exit_hctx)
2290                 set->ops->exit_hctx(hctx, hctx_idx);
2291  free_bitmap:
2292         sbitmap_free(&hctx->ctx_map);
2293  free_ctxs:
2294         kfree(hctx->ctxs);
2295  unregister_cpu_notifier:
2296         blk_mq_remove_cpuhp(hctx);
2297         return -1;
2298 }
2299
2300 static void blk_mq_init_cpu_queues(struct request_queue *q,
2301                                    unsigned int nr_hw_queues)
2302 {
2303         unsigned int i;
2304
2305         for_each_possible_cpu(i) {
2306                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2307                 struct blk_mq_hw_ctx *hctx;
2308
2309                 __ctx->cpu = i;
2310                 spin_lock_init(&__ctx->lock);
2311                 INIT_LIST_HEAD(&__ctx->rq_list);
2312                 __ctx->queue = q;
2313
2314                 /*
2315                  * Set local node, IFF we have more than one hw queue. If
2316                  * not, we remain on the home node of the device
2317                  */
2318                 hctx = blk_mq_map_queue(q, i);
2319                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2320                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2321         }
2322 }
2323
2324 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2325 {
2326         int ret = 0;
2327
2328         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2329                                         set->queue_depth, set->reserved_tags);
2330         if (!set->tags[hctx_idx])
2331                 return false;
2332
2333         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2334                                 set->queue_depth);
2335         if (!ret)
2336                 return true;
2337
2338         blk_mq_free_rq_map(set->tags[hctx_idx]);
2339         set->tags[hctx_idx] = NULL;
2340         return false;
2341 }
2342
2343 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2344                                          unsigned int hctx_idx)
2345 {
2346         if (set->tags[hctx_idx]) {
2347                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2348                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2349                 set->tags[hctx_idx] = NULL;
2350         }
2351 }
2352
2353 static void blk_mq_map_swqueue(struct request_queue *q)
2354 {
2355         unsigned int i, hctx_idx;
2356         struct blk_mq_hw_ctx *hctx;
2357         struct blk_mq_ctx *ctx;
2358         struct blk_mq_tag_set *set = q->tag_set;
2359
2360         /*
2361          * Avoid others reading imcomplete hctx->cpumask through sysfs
2362          */
2363         mutex_lock(&q->sysfs_lock);
2364
2365         queue_for_each_hw_ctx(q, hctx, i) {
2366                 cpumask_clear(hctx->cpumask);
2367                 hctx->nr_ctx = 0;
2368         }
2369
2370         /*
2371          * Map software to hardware queues.
2372          *
2373          * If the cpu isn't present, the cpu is mapped to first hctx.
2374          */
2375         for_each_possible_cpu(i) {
2376                 hctx_idx = q->mq_map[i];
2377                 /* unmapped hw queue can be remapped after CPU topo changed */
2378                 if (!set->tags[hctx_idx] &&
2379                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2380                         /*
2381                          * If tags initialization fail for some hctx,
2382                          * that hctx won't be brought online.  In this
2383                          * case, remap the current ctx to hctx[0] which
2384                          * is guaranteed to always have tags allocated
2385                          */
2386                         q->mq_map[i] = 0;
2387                 }
2388
2389                 ctx = per_cpu_ptr(q->queue_ctx, i);
2390                 hctx = blk_mq_map_queue(q, i);
2391
2392                 cpumask_set_cpu(i, hctx->cpumask);
2393                 ctx->index_hw = hctx->nr_ctx;
2394                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2395         }
2396
2397         mutex_unlock(&q->sysfs_lock);
2398
2399         queue_for_each_hw_ctx(q, hctx, i) {
2400                 /*
2401                  * If no software queues are mapped to this hardware queue,
2402                  * disable it and free the request entries.
2403                  */
2404                 if (!hctx->nr_ctx) {
2405                         /* Never unmap queue 0.  We need it as a
2406                          * fallback in case of a new remap fails
2407                          * allocation
2408                          */
2409                         if (i && set->tags[i])
2410                                 blk_mq_free_map_and_requests(set, i);
2411
2412                         hctx->tags = NULL;
2413                         continue;
2414                 }
2415
2416                 hctx->tags = set->tags[i];
2417                 WARN_ON(!hctx->tags);
2418
2419                 /*
2420                  * Set the map size to the number of mapped software queues.
2421                  * This is more accurate and more efficient than looping
2422                  * over all possibly mapped software queues.
2423                  */
2424                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2425
2426                 /*
2427                  * Initialize batch roundrobin counts
2428                  */
2429                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2430                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2431         }
2432 }
2433
2434 /*
2435  * Caller needs to ensure that we're either frozen/quiesced, or that
2436  * the queue isn't live yet.
2437  */
2438 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2439 {
2440         struct blk_mq_hw_ctx *hctx;
2441         int i;
2442
2443         queue_for_each_hw_ctx(q, hctx, i) {
2444                 if (shared) {
2445                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2446                                 atomic_inc(&q->shared_hctx_restart);
2447                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2448                 } else {
2449                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2450                                 atomic_dec(&q->shared_hctx_restart);
2451                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2452                 }
2453         }
2454 }
2455
2456 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2457                                         bool shared)
2458 {
2459         struct request_queue *q;
2460
2461         lockdep_assert_held(&set->tag_list_lock);
2462
2463         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2464                 blk_mq_freeze_queue(q);
2465                 queue_set_hctx_shared(q, shared);
2466                 blk_mq_unfreeze_queue(q);
2467         }
2468 }
2469
2470 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2471 {
2472         struct blk_mq_tag_set *set = q->tag_set;
2473
2474         mutex_lock(&set->tag_list_lock);
2475         list_del_rcu(&q->tag_set_list);
2476         INIT_LIST_HEAD(&q->tag_set_list);
2477         if (list_is_singular(&set->tag_list)) {
2478                 /* just transitioned to unshared */
2479                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2480                 /* update existing queue */
2481                 blk_mq_update_tag_set_depth(set, false);
2482         }
2483         mutex_unlock(&set->tag_list_lock);
2484
2485         synchronize_rcu();
2486 }
2487
2488 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2489                                      struct request_queue *q)
2490 {
2491         q->tag_set = set;
2492
2493         mutex_lock(&set->tag_list_lock);
2494
2495         /*
2496          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2497          */
2498         if (!list_empty(&set->tag_list) &&
2499             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2500                 set->flags |= BLK_MQ_F_TAG_SHARED;
2501                 /* update existing queue */
2502                 blk_mq_update_tag_set_depth(set, true);
2503         }
2504         if (set->flags & BLK_MQ_F_TAG_SHARED)
2505                 queue_set_hctx_shared(q, true);
2506         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2507
2508         mutex_unlock(&set->tag_list_lock);
2509 }
2510
2511 /*
2512  * It is the actual release handler for mq, but we do it from
2513  * request queue's release handler for avoiding use-after-free
2514  * and headache because q->mq_kobj shouldn't have been introduced,
2515  * but we can't group ctx/kctx kobj without it.
2516  */
2517 void blk_mq_release(struct request_queue *q)
2518 {
2519         struct blk_mq_hw_ctx *hctx;
2520         unsigned int i;
2521
2522         /* hctx kobj stays in hctx */
2523         queue_for_each_hw_ctx(q, hctx, i) {
2524                 if (!hctx)
2525                         continue;
2526                 kobject_put(&hctx->kobj);
2527         }
2528
2529         q->mq_map = NULL;
2530
2531         kfree(q->queue_hw_ctx);
2532
2533         /*
2534          * release .mq_kobj and sw queue's kobject now because
2535          * both share lifetime with request queue.
2536          */
2537         blk_mq_sysfs_deinit(q);
2538
2539         free_percpu(q->queue_ctx);
2540 }
2541
2542 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2543 {
2544         struct request_queue *uninit_q, *q;
2545
2546         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2547         if (!uninit_q)
2548                 return ERR_PTR(-ENOMEM);
2549
2550         q = blk_mq_init_allocated_queue(set, uninit_q);
2551         if (IS_ERR(q))
2552                 blk_cleanup_queue(uninit_q);
2553
2554         return q;
2555 }
2556 EXPORT_SYMBOL(blk_mq_init_queue);
2557
2558 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2559 {
2560         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2561
2562         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2563                            __alignof__(struct blk_mq_hw_ctx)) !=
2564                      sizeof(struct blk_mq_hw_ctx));
2565
2566         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2567                 hw_ctx_size += sizeof(struct srcu_struct);
2568
2569         return hw_ctx_size;
2570 }
2571
2572 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2573                                                 struct request_queue *q)
2574 {
2575         int i, j;
2576         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2577
2578         blk_mq_sysfs_unregister(q);
2579
2580         /* protect against switching io scheduler  */
2581         mutex_lock(&q->sysfs_lock);
2582         for (i = 0; i < set->nr_hw_queues; i++) {
2583                 int node;
2584
2585                 if (hctxs[i])
2586                         continue;
2587
2588                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2589                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2590                                         GFP_KERNEL, node);
2591                 if (!hctxs[i])
2592                         break;
2593
2594                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2595                                                 node)) {
2596                         kfree(hctxs[i]);
2597                         hctxs[i] = NULL;
2598                         break;
2599                 }
2600
2601                 atomic_set(&hctxs[i]->nr_active, 0);
2602                 hctxs[i]->numa_node = node;
2603                 hctxs[i]->queue_num = i;
2604
2605                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2606                         free_cpumask_var(hctxs[i]->cpumask);
2607                         kfree(hctxs[i]);
2608                         hctxs[i] = NULL;
2609                         break;
2610                 }
2611                 blk_mq_hctx_kobj_init(hctxs[i]);
2612         }
2613         for (j = i; j < q->nr_hw_queues; j++) {
2614                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2615
2616                 if (hctx) {
2617                         if (hctx->tags)
2618                                 blk_mq_free_map_and_requests(set, j);
2619                         blk_mq_exit_hctx(q, set, hctx, j);
2620                         kobject_put(&hctx->kobj);
2621                         hctxs[j] = NULL;
2622
2623                 }
2624         }
2625         q->nr_hw_queues = i;
2626         mutex_unlock(&q->sysfs_lock);
2627         blk_mq_sysfs_register(q);
2628 }
2629
2630 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2631                                                   struct request_queue *q)
2632 {
2633         /* mark the queue as mq asap */
2634         q->mq_ops = set->ops;
2635
2636         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2637                                              blk_mq_poll_stats_bkt,
2638                                              BLK_MQ_POLL_STATS_BKTS, q);
2639         if (!q->poll_cb)
2640                 goto err_exit;
2641
2642         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2643         if (!q->queue_ctx)
2644                 goto err_exit;
2645
2646         /* init q->mq_kobj and sw queues' kobjects */
2647         blk_mq_sysfs_init(q);
2648
2649         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2650                                                 GFP_KERNEL, set->numa_node);
2651         if (!q->queue_hw_ctx)
2652                 goto err_percpu;
2653
2654         q->mq_map = set->mq_map;
2655
2656         blk_mq_realloc_hw_ctxs(set, q);
2657         if (!q->nr_hw_queues)
2658                 goto err_hctxs;
2659
2660         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2661         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2662
2663         q->nr_queues = nr_cpu_ids;
2664
2665         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2666
2667         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2668                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2669
2670         q->sg_reserved_size = INT_MAX;
2671
2672         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2673         INIT_LIST_HEAD(&q->requeue_list);
2674         spin_lock_init(&q->requeue_lock);
2675
2676         blk_queue_make_request(q, blk_mq_make_request);
2677         if (q->mq_ops->poll)
2678                 q->poll_fn = blk_mq_poll;
2679
2680         /*
2681          * Do this after blk_queue_make_request() overrides it...
2682          */
2683         q->nr_requests = set->queue_depth;
2684
2685         /*
2686          * Default to classic polling
2687          */
2688         q->poll_nsec = -1;
2689
2690         if (set->ops->complete)
2691                 blk_queue_softirq_done(q, set->ops->complete);
2692
2693         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2694         blk_mq_add_queue_tag_set(set, q);
2695         blk_mq_map_swqueue(q);
2696
2697         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2698                 int ret;
2699
2700                 ret = blk_mq_sched_init(q);
2701                 if (ret)
2702                         return ERR_PTR(ret);
2703         }
2704
2705         return q;
2706
2707 err_hctxs:
2708         kfree(q->queue_hw_ctx);
2709 err_percpu:
2710         free_percpu(q->queue_ctx);
2711 err_exit:
2712         q->mq_ops = NULL;
2713         return ERR_PTR(-ENOMEM);
2714 }
2715 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2716
2717 void blk_mq_free_queue(struct request_queue *q)
2718 {
2719         struct blk_mq_tag_set   *set = q->tag_set;
2720
2721         blk_mq_del_queue_tag_set(q);
2722         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2723 }
2724
2725 /* Basically redo blk_mq_init_queue with queue frozen */
2726 static void blk_mq_queue_reinit(struct request_queue *q)
2727 {
2728         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2729
2730         blk_mq_debugfs_unregister_hctxs(q);
2731         blk_mq_sysfs_unregister(q);
2732
2733         /*
2734          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2735          * we should change hctx numa_node according to the new topology (this
2736          * involves freeing and re-allocating memory, worth doing?)
2737          */
2738         blk_mq_map_swqueue(q);
2739
2740         blk_mq_sysfs_register(q);
2741         blk_mq_debugfs_register_hctxs(q);
2742 }
2743
2744 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2745 {
2746         int i;
2747
2748         for (i = 0; i < set->nr_hw_queues; i++)
2749                 if (!__blk_mq_alloc_rq_map(set, i))
2750                         goto out_unwind;
2751
2752         return 0;
2753
2754 out_unwind:
2755         while (--i >= 0)
2756                 blk_mq_free_rq_map(set->tags[i]);
2757
2758         return -ENOMEM;
2759 }
2760
2761 /*
2762  * Allocate the request maps associated with this tag_set. Note that this
2763  * may reduce the depth asked for, if memory is tight. set->queue_depth
2764  * will be updated to reflect the allocated depth.
2765  */
2766 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2767 {
2768         unsigned int depth;
2769         int err;
2770
2771         depth = set->queue_depth;
2772         do {
2773                 err = __blk_mq_alloc_rq_maps(set);
2774                 if (!err)
2775                         break;
2776
2777                 set->queue_depth >>= 1;
2778                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2779                         err = -ENOMEM;
2780                         break;
2781                 }
2782         } while (set->queue_depth);
2783
2784         if (!set->queue_depth || err) {
2785                 pr_err("blk-mq: failed to allocate request map\n");
2786                 return -ENOMEM;
2787         }
2788
2789         if (depth != set->queue_depth)
2790                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2791                                                 depth, set->queue_depth);
2792
2793         return 0;
2794 }
2795
2796 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2797 {
2798         if (set->ops->map_queues) {
2799                 int cpu;
2800                 /*
2801                  * transport .map_queues is usually done in the following
2802                  * way:
2803                  *
2804                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2805                  *      mask = get_cpu_mask(queue)
2806                  *      for_each_cpu(cpu, mask)
2807                  *              set->mq_map[cpu] = queue;
2808                  * }
2809                  *
2810                  * When we need to remap, the table has to be cleared for
2811                  * killing stale mapping since one CPU may not be mapped
2812                  * to any hw queue.
2813                  */
2814                 for_each_possible_cpu(cpu)
2815                         set->mq_map[cpu] = 0;
2816
2817                 return set->ops->map_queues(set);
2818         } else
2819                 return blk_mq_map_queues(set);
2820 }
2821
2822 /*
2823  * Alloc a tag set to be associated with one or more request queues.
2824  * May fail with EINVAL for various error conditions. May adjust the
2825  * requested depth down, if if it too large. In that case, the set
2826  * value will be stored in set->queue_depth.
2827  */
2828 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2829 {
2830         int ret;
2831
2832         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2833
2834         if (!set->nr_hw_queues)
2835                 return -EINVAL;
2836         if (!set->queue_depth)
2837                 return -EINVAL;
2838         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2839                 return -EINVAL;
2840
2841         if (!set->ops->queue_rq)
2842                 return -EINVAL;
2843
2844         if (!set->ops->get_budget ^ !set->ops->put_budget)
2845                 return -EINVAL;
2846
2847         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2848                 pr_info("blk-mq: reduced tag depth to %u\n",
2849                         BLK_MQ_MAX_DEPTH);
2850                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2851         }
2852
2853         /*
2854          * If a crashdump is active, then we are potentially in a very
2855          * memory constrained environment. Limit us to 1 queue and
2856          * 64 tags to prevent using too much memory.
2857          */
2858         if (is_kdump_kernel()) {
2859                 set->nr_hw_queues = 1;
2860                 set->queue_depth = min(64U, set->queue_depth);
2861         }
2862         /*
2863          * There is no use for more h/w queues than cpus.
2864          */
2865         if (set->nr_hw_queues > nr_cpu_ids)
2866                 set->nr_hw_queues = nr_cpu_ids;
2867
2868         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2869                                  GFP_KERNEL, set->numa_node);
2870         if (!set->tags)
2871                 return -ENOMEM;
2872
2873         ret = -ENOMEM;
2874         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2875                         GFP_KERNEL, set->numa_node);
2876         if (!set->mq_map)
2877                 goto out_free_tags;
2878
2879         ret = blk_mq_update_queue_map(set);
2880         if (ret)
2881                 goto out_free_mq_map;
2882
2883         ret = blk_mq_alloc_rq_maps(set);
2884         if (ret)
2885                 goto out_free_mq_map;
2886
2887         mutex_init(&set->tag_list_lock);
2888         INIT_LIST_HEAD(&set->tag_list);
2889
2890         return 0;
2891
2892 out_free_mq_map:
2893         kfree(set->mq_map);
2894         set->mq_map = NULL;
2895 out_free_tags:
2896         kfree(set->tags);
2897         set->tags = NULL;
2898         return ret;
2899 }
2900 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2901
2902 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2903 {
2904         int i;
2905
2906         for (i = 0; i < nr_cpu_ids; i++)
2907                 blk_mq_free_map_and_requests(set, i);
2908
2909         kfree(set->mq_map);
2910         set->mq_map = NULL;
2911
2912         kfree(set->tags);
2913         set->tags = NULL;
2914 }
2915 EXPORT_SYMBOL(blk_mq_free_tag_set);
2916
2917 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2918 {
2919         struct blk_mq_tag_set *set = q->tag_set;
2920         struct blk_mq_hw_ctx *hctx;
2921         int i, ret;
2922
2923         if (!set)
2924                 return -EINVAL;
2925
2926         blk_mq_freeze_queue(q);
2927         blk_mq_quiesce_queue(q);
2928
2929         ret = 0;
2930         queue_for_each_hw_ctx(q, hctx, i) {
2931                 if (!hctx->tags)
2932                         continue;
2933                 /*
2934                  * If we're using an MQ scheduler, just update the scheduler
2935                  * queue depth. This is similar to what the old code would do.
2936                  */
2937                 if (!hctx->sched_tags) {
2938                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2939                                                         false);
2940                 } else {
2941                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2942                                                         nr, true);
2943                 }
2944                 if (ret)
2945                         break;
2946         }
2947
2948         if (!ret)
2949                 q->nr_requests = nr;
2950
2951         blk_mq_unquiesce_queue(q);
2952         blk_mq_unfreeze_queue(q);
2953
2954         return ret;
2955 }
2956
2957 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2958                                                         int nr_hw_queues)
2959 {
2960         struct request_queue *q;
2961
2962         lockdep_assert_held(&set->tag_list_lock);
2963
2964         if (nr_hw_queues > nr_cpu_ids)
2965                 nr_hw_queues = nr_cpu_ids;
2966         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2967                 return;
2968
2969         list_for_each_entry(q, &set->tag_list, tag_set_list)
2970                 blk_mq_freeze_queue(q);
2971
2972         set->nr_hw_queues = nr_hw_queues;
2973         blk_mq_update_queue_map(set);
2974         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2975                 blk_mq_realloc_hw_ctxs(set, q);
2976                 blk_mq_queue_reinit(q);
2977         }
2978
2979         list_for_each_entry(q, &set->tag_list, tag_set_list)
2980                 blk_mq_unfreeze_queue(q);
2981 }
2982
2983 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2984 {
2985         mutex_lock(&set->tag_list_lock);
2986         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2987         mutex_unlock(&set->tag_list_lock);
2988 }
2989 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2990
2991 /* Enable polling stats and return whether they were already enabled. */
2992 static bool blk_poll_stats_enable(struct request_queue *q)
2993 {
2994         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2995             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2996                 return true;
2997         blk_stat_add_callback(q, q->poll_cb);
2998         return false;
2999 }
3000
3001 static void blk_mq_poll_stats_start(struct request_queue *q)
3002 {
3003         /*
3004          * We don't arm the callback if polling stats are not enabled or the
3005          * callback is already active.
3006          */
3007         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3008             blk_stat_is_active(q->poll_cb))
3009                 return;
3010
3011         blk_stat_activate_msecs(q->poll_cb, 100);
3012 }
3013
3014 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3015 {
3016         struct request_queue *q = cb->data;
3017         int bucket;
3018
3019         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3020                 if (cb->stat[bucket].nr_samples)
3021                         q->poll_stat[bucket] = cb->stat[bucket];
3022         }
3023 }
3024
3025 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3026                                        struct blk_mq_hw_ctx *hctx,
3027                                        struct request *rq)
3028 {
3029         unsigned long ret = 0;
3030         int bucket;
3031
3032         /*
3033          * If stats collection isn't on, don't sleep but turn it on for
3034          * future users
3035          */
3036         if (!blk_poll_stats_enable(q))
3037                 return 0;
3038
3039         /*
3040          * As an optimistic guess, use half of the mean service time
3041          * for this type of request. We can (and should) make this smarter.
3042          * For instance, if the completion latencies are tight, we can
3043          * get closer than just half the mean. This is especially
3044          * important on devices where the completion latencies are longer
3045          * than ~10 usec. We do use the stats for the relevant IO size
3046          * if available which does lead to better estimates.
3047          */
3048         bucket = blk_mq_poll_stats_bkt(rq);
3049         if (bucket < 0)
3050                 return ret;
3051
3052         if (q->poll_stat[bucket].nr_samples)
3053                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3054
3055         return ret;
3056 }
3057
3058 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3059                                      struct blk_mq_hw_ctx *hctx,
3060                                      struct request *rq)
3061 {
3062         struct hrtimer_sleeper hs;
3063         enum hrtimer_mode mode;
3064         unsigned int nsecs;
3065         ktime_t kt;
3066
3067         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3068                 return false;
3069
3070         /*
3071          * poll_nsec can be:
3072          *
3073          * -1:  don't ever hybrid sleep
3074          *  0:  use half of prev avg
3075          * >0:  use this specific value
3076          */
3077         if (q->poll_nsec == -1)
3078                 return false;
3079         else if (q->poll_nsec > 0)
3080                 nsecs = q->poll_nsec;
3081         else
3082                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3083
3084         if (!nsecs)
3085                 return false;
3086
3087         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3088
3089         /*
3090          * This will be replaced with the stats tracking code, using
3091          * 'avg_completion_time / 2' as the pre-sleep target.
3092          */
3093         kt = nsecs;
3094
3095         mode = HRTIMER_MODE_REL;
3096         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3097         hrtimer_set_expires(&hs.timer, kt);
3098
3099         hrtimer_init_sleeper(&hs, current);
3100         do {
3101                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3102                         break;
3103                 set_current_state(TASK_UNINTERRUPTIBLE);
3104                 hrtimer_start_expires(&hs.timer, mode);
3105                 if (hs.task)
3106                         io_schedule();
3107                 hrtimer_cancel(&hs.timer);
3108                 mode = HRTIMER_MODE_ABS;
3109         } while (hs.task && !signal_pending(current));
3110
3111         __set_current_state(TASK_RUNNING);
3112         destroy_hrtimer_on_stack(&hs.timer);
3113         return true;
3114 }
3115
3116 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3117 {
3118         struct request_queue *q = hctx->queue;
3119         long state;
3120
3121         /*
3122          * If we sleep, have the caller restart the poll loop to reset
3123          * the state. Like for the other success return cases, the
3124          * caller is responsible for checking if the IO completed. If
3125          * the IO isn't complete, we'll get called again and will go
3126          * straight to the busy poll loop.
3127          */
3128         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3129                 return true;
3130
3131         hctx->poll_considered++;
3132
3133         state = current->state;
3134         while (!need_resched()) {
3135                 int ret;
3136
3137                 hctx->poll_invoked++;
3138
3139                 ret = q->mq_ops->poll(hctx, rq->tag);
3140                 if (ret > 0) {
3141                         hctx->poll_success++;
3142                         set_current_state(TASK_RUNNING);
3143                         return true;
3144                 }
3145
3146                 if (signal_pending_state(state, current))
3147                         set_current_state(TASK_RUNNING);
3148
3149                 if (current->state == TASK_RUNNING)
3150                         return true;
3151                 if (ret < 0)
3152                         break;
3153                 cpu_relax();
3154         }
3155
3156         __set_current_state(TASK_RUNNING);
3157         return false;
3158 }
3159
3160 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3161 {
3162         struct blk_mq_hw_ctx *hctx;
3163         struct request *rq;
3164
3165         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3166                 return false;
3167
3168         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3169         if (!blk_qc_t_is_internal(cookie))
3170                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3171         else {
3172                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3173                 /*
3174                  * With scheduling, if the request has completed, we'll
3175                  * get a NULL return here, as we clear the sched tag when
3176                  * that happens. The request still remains valid, like always,
3177                  * so we should be safe with just the NULL check.
3178                  */
3179                 if (!rq)
3180                         return false;
3181         }
3182
3183         return __blk_mq_poll(hctx, rq);
3184 }
3185
3186 static int __init blk_mq_init(void)
3187 {
3188         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3189                                 blk_mq_hctx_notify_dead);
3190         return 0;
3191 }
3192 subsys_initcall(blk_mq_init);