Merge tag 'f2fs-for-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         refcount_set(&rq->ref, 1);
336         return rq;
337 }
338
339 static struct request *blk_mq_get_request(struct request_queue *q,
340                 struct bio *bio, unsigned int op,
341                 struct blk_mq_alloc_data *data)
342 {
343         struct elevator_queue *e = q->elevator;
344         struct request *rq;
345         unsigned int tag;
346         bool put_ctx_on_error = false;
347
348         blk_queue_enter_live(q);
349         data->q = q;
350         if (likely(!data->ctx)) {
351                 data->ctx = blk_mq_get_ctx(q);
352                 put_ctx_on_error = true;
353         }
354         if (likely(!data->hctx))
355                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356         if (op & REQ_NOWAIT)
357                 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359         if (e) {
360                 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362                 /*
363                  * Flush requests are special and go directly to the
364                  * dispatch list. Don't include reserved tags in the
365                  * limiting, as it isn't useful.
366                  */
367                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368                     !(data->flags & BLK_MQ_REQ_RESERVED))
369                         e->type->ops.mq.limit_depth(op, data);
370         } else {
371                 blk_mq_tag_busy(data->hctx);
372         }
373
374         tag = blk_mq_get_tag(data);
375         if (tag == BLK_MQ_TAG_FAIL) {
376                 if (put_ctx_on_error) {
377                         blk_mq_put_ctx(data->ctx);
378                         data->ctx = NULL;
379                 }
380                 blk_queue_exit(q);
381                 return NULL;
382         }
383
384         rq = blk_mq_rq_ctx_init(data, tag, op);
385         if (!op_is_flush(op)) {
386                 rq->elv.icq = NULL;
387                 if (e && e->type->ops.mq.prepare_request) {
388                         if (e->type->icq_cache && rq_ioc(bio))
389                                 blk_mq_sched_assign_ioc(rq, bio);
390
391                         e->type->ops.mq.prepare_request(rq, bio);
392                         rq->rq_flags |= RQF_ELVPRIV;
393                 }
394         }
395         data->hctx->queued++;
396         return rq;
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400                 blk_mq_req_flags_t flags)
401 {
402         struct blk_mq_alloc_data alloc_data = { .flags = flags };
403         struct request *rq;
404         int ret;
405
406         ret = blk_queue_enter(q, flags);
407         if (ret)
408                 return ERR_PTR(ret);
409
410         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411         blk_queue_exit(q);
412
413         if (!rq)
414                 return ERR_PTR(-EWOULDBLOCK);
415
416         blk_mq_put_ctx(alloc_data.ctx);
417
418         rq->__data_len = 0;
419         rq->__sector = (sector_t) -1;
420         rq->bio = rq->biotail = NULL;
421         return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428         struct blk_mq_alloc_data alloc_data = { .flags = flags };
429         struct request *rq;
430         unsigned int cpu;
431         int ret;
432
433         /*
434          * If the tag allocator sleeps we could get an allocation for a
435          * different hardware context.  No need to complicate the low level
436          * allocator for this for the rare use case of a command tied to
437          * a specific queue.
438          */
439         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440                 return ERR_PTR(-EINVAL);
441
442         if (hctx_idx >= q->nr_hw_queues)
443                 return ERR_PTR(-EIO);
444
445         ret = blk_queue_enter(q, flags);
446         if (ret)
447                 return ERR_PTR(ret);
448
449         /*
450          * Check if the hardware context is actually mapped to anything.
451          * If not tell the caller that it should skip this queue.
452          */
453         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455                 blk_queue_exit(q);
456                 return ERR_PTR(-EXDEV);
457         }
458         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460
461         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462         blk_queue_exit(q);
463
464         if (!rq)
465                 return ERR_PTR(-EWOULDBLOCK);
466
467         return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470
471 static void __blk_mq_free_request(struct request *rq)
472 {
473         struct request_queue *q = rq->q;
474         struct blk_mq_ctx *ctx = rq->mq_ctx;
475         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476         const int sched_tag = rq->internal_tag;
477
478         if (rq->tag != -1)
479                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480         if (sched_tag != -1)
481                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482         blk_mq_sched_restart(hctx);
483         blk_queue_exit(q);
484 }
485
486 void blk_mq_free_request(struct request *rq)
487 {
488         struct request_queue *q = rq->q;
489         struct elevator_queue *e = q->elevator;
490         struct blk_mq_ctx *ctx = rq->mq_ctx;
491         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492
493         if (rq->rq_flags & RQF_ELVPRIV) {
494                 if (e && e->type->ops.mq.finish_request)
495                         e->type->ops.mq.finish_request(rq);
496                 if (rq->elv.icq) {
497                         put_io_context(rq->elv.icq->ioc);
498                         rq->elv.icq = NULL;
499                 }
500         }
501
502         ctx->rq_completed[rq_is_sync(rq)]++;
503         if (rq->rq_flags & RQF_MQ_INFLIGHT)
504                 atomic_dec(&hctx->nr_active);
505
506         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507                 laptop_io_completion(q->backing_dev_info);
508
509         rq_qos_done(q, rq);
510
511         if (blk_rq_rl(rq))
512                 blk_put_rl(blk_rq_rl(rq));
513
514         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515         if (refcount_dec_and_test(&rq->ref))
516                 __blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522         u64 now = ktime_get_ns();
523
524         if (rq->rq_flags & RQF_STATS) {
525                 blk_mq_poll_stats_start(rq->q);
526                 blk_stat_add(rq, now);
527         }
528
529         blk_account_io_done(rq, now);
530
531         if (rq->end_io) {
532                 rq_qos_done(rq->q, rq);
533                 rq->end_io(rq, error);
534         } else {
535                 if (unlikely(blk_bidi_rq(rq)))
536                         blk_mq_free_request(rq->next_rq);
537                 blk_mq_free_request(rq);
538         }
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545                 BUG();
546         __blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549
550 static void __blk_mq_complete_request_remote(void *data)
551 {
552         struct request *rq = data;
553
554         rq->q->softirq_done_fn(rq);
555 }
556
557 static void __blk_mq_complete_request(struct request *rq)
558 {
559         struct blk_mq_ctx *ctx = rq->mq_ctx;
560         bool shared = false;
561         int cpu;
562
563         if (!blk_mq_mark_complete(rq))
564                 return;
565         if (rq->internal_tag != -1)
566                 blk_mq_sched_completed_request(rq);
567
568         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569                 rq->q->softirq_done_fn(rq);
570                 return;
571         }
572
573         cpu = get_cpu();
574         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575                 shared = cpus_share_cache(cpu, ctx->cpu);
576
577         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578                 rq->csd.func = __blk_mq_complete_request_remote;
579                 rq->csd.info = rq;
580                 rq->csd.flags = 0;
581                 smp_call_function_single_async(ctx->cpu, &rq->csd);
582         } else {
583                 rq->q->softirq_done_fn(rq);
584         }
585         put_cpu();
586 }
587
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589         __releases(hctx->srcu)
590 {
591         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592                 rcu_read_unlock();
593         else
594                 srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598         __acquires(hctx->srcu)
599 {
600         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601                 /* shut up gcc false positive */
602                 *srcu_idx = 0;
603                 rcu_read_lock();
604         } else
605                 *srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:         the request being processed
611  *
612  * Description:
613  *      Ends all I/O on a request. It does not handle partial completions.
614  *      The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618         if (unlikely(blk_should_fake_timeout(rq->q)))
619                 return;
620         __blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623
624 int blk_mq_request_started(struct request *rq)
625 {
626         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629
630 void blk_mq_start_request(struct request *rq)
631 {
632         struct request_queue *q = rq->q;
633
634         blk_mq_sched_started_request(rq);
635
636         trace_block_rq_issue(q, rq);
637
638         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639                 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641                 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643                 rq->rq_flags |= RQF_STATS;
644                 rq_qos_issue(q, rq);
645         }
646
647         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648
649         blk_add_timer(rq);
650         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651
652         if (q->dma_drain_size && blk_rq_bytes(rq)) {
653                 /*
654                  * Make sure space for the drain appears.  We know we can do
655                  * this because max_hw_segments has been adjusted to be one
656                  * fewer than the device can handle.
657                  */
658                 rq->nr_phys_segments++;
659         }
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665         struct request_queue *q = rq->q;
666
667         blk_mq_put_driver_tag(rq);
668
669         trace_block_rq_requeue(q, rq);
670         rq_qos_requeue(q, rq);
671
672         if (blk_mq_request_started(rq)) {
673                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674                 rq->rq_flags &= ~RQF_TIMED_OUT;
675                 if (q->dma_drain_size && blk_rq_bytes(rq))
676                         rq->nr_phys_segments--;
677         }
678 }
679
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682         __blk_mq_requeue_request(rq);
683
684         /* this request will be re-inserted to io scheduler queue */
685         blk_mq_sched_requeue_request(rq);
686
687         BUG_ON(blk_queued_rq(rq));
688         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694         struct request_queue *q =
695                 container_of(work, struct request_queue, requeue_work.work);
696         LIST_HEAD(rq_list);
697         struct request *rq, *next;
698
699         spin_lock_irq(&q->requeue_lock);
700         list_splice_init(&q->requeue_list, &rq_list);
701         spin_unlock_irq(&q->requeue_lock);
702
703         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
705                         continue;
706
707                 rq->rq_flags &= ~RQF_SOFTBARRIER;
708                 list_del_init(&rq->queuelist);
709                 blk_mq_sched_insert_request(rq, true, false, false);
710         }
711
712         while (!list_empty(&rq_list)) {
713                 rq = list_entry(rq_list.next, struct request, queuelist);
714                 list_del_init(&rq->queuelist);
715                 blk_mq_sched_insert_request(rq, false, false, false);
716         }
717
718         blk_mq_run_hw_queues(q, false);
719 }
720
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722                                 bool kick_requeue_list)
723 {
724         struct request_queue *q = rq->q;
725         unsigned long flags;
726
727         /*
728          * We abuse this flag that is otherwise used by the I/O scheduler to
729          * request head insertion from the workqueue.
730          */
731         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732
733         spin_lock_irqsave(&q->requeue_lock, flags);
734         if (at_head) {
735                 rq->rq_flags |= RQF_SOFTBARRIER;
736                 list_add(&rq->queuelist, &q->requeue_list);
737         } else {
738                 list_add_tail(&rq->queuelist, &q->requeue_list);
739         }
740         spin_unlock_irqrestore(&q->requeue_lock, flags);
741
742         if (kick_requeue_list)
743                 blk_mq_kick_requeue_list(q);
744 }
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
746
747 void blk_mq_kick_requeue_list(struct request_queue *q)
748 {
749         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 }
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
752
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754                                     unsigned long msecs)
755 {
756         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757                                     msecs_to_jiffies(msecs));
758 }
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
760
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
762 {
763         if (tag < tags->nr_tags) {
764                 prefetch(tags->rqs[tag]);
765                 return tags->rqs[tag];
766         }
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
771
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773 {
774         req->rq_flags |= RQF_TIMED_OUT;
775         if (req->q->mq_ops->timeout) {
776                 enum blk_eh_timer_return ret;
777
778                 ret = req->q->mq_ops->timeout(req, reserved);
779                 if (ret == BLK_EH_DONE)
780                         return;
781                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782         }
783
784         blk_add_timer(req);
785 }
786
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788 {
789         unsigned long deadline;
790
791         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
792                 return false;
793         if (rq->rq_flags & RQF_TIMED_OUT)
794                 return false;
795
796         deadline = blk_rq_deadline(rq);
797         if (time_after_eq(jiffies, deadline))
798                 return true;
799
800         if (*next == 0)
801                 *next = deadline;
802         else if (time_after(*next, deadline))
803                 *next = deadline;
804         return false;
805 }
806
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808                 struct request *rq, void *priv, bool reserved)
809 {
810         unsigned long *next = priv;
811
812         /*
813          * Just do a quick check if it is expired before locking the request in
814          * so we're not unnecessarilly synchronizing across CPUs.
815          */
816         if (!blk_mq_req_expired(rq, next))
817                 return;
818
819         /*
820          * We have reason to believe the request may be expired. Take a
821          * reference on the request to lock this request lifetime into its
822          * currently allocated context to prevent it from being reallocated in
823          * the event the completion by-passes this timeout handler.
824          *
825          * If the reference was already released, then the driver beat the
826          * timeout handler to posting a natural completion.
827          */
828         if (!refcount_inc_not_zero(&rq->ref))
829                 return;
830
831         /*
832          * The request is now locked and cannot be reallocated underneath the
833          * timeout handler's processing. Re-verify this exact request is truly
834          * expired; if it is not expired, then the request was completed and
835          * reallocated as a new request.
836          */
837         if (blk_mq_req_expired(rq, next))
838                 blk_mq_rq_timed_out(rq, reserved);
839         if (refcount_dec_and_test(&rq->ref))
840                 __blk_mq_free_request(rq);
841 }
842
843 static void blk_mq_timeout_work(struct work_struct *work)
844 {
845         struct request_queue *q =
846                 container_of(work, struct request_queue, timeout_work);
847         unsigned long next = 0;
848         struct blk_mq_hw_ctx *hctx;
849         int i;
850
851         /* A deadlock might occur if a request is stuck requiring a
852          * timeout at the same time a queue freeze is waiting
853          * completion, since the timeout code would not be able to
854          * acquire the queue reference here.
855          *
856          * That's why we don't use blk_queue_enter here; instead, we use
857          * percpu_ref_tryget directly, because we need to be able to
858          * obtain a reference even in the short window between the queue
859          * starting to freeze, by dropping the first reference in
860          * blk_freeze_queue_start, and the moment the last request is
861          * consumed, marked by the instant q_usage_counter reaches
862          * zero.
863          */
864         if (!percpu_ref_tryget(&q->q_usage_counter))
865                 return;
866
867         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868
869         if (next != 0) {
870                 mod_timer(&q->timeout, next);
871         } else {
872                 /*
873                  * Request timeouts are handled as a forward rolling timer. If
874                  * we end up here it means that no requests are pending and
875                  * also that no request has been pending for a while. Mark
876                  * each hctx as idle.
877                  */
878                 queue_for_each_hw_ctx(q, hctx, i) {
879                         /* the hctx may be unmapped, so check it here */
880                         if (blk_mq_hw_queue_mapped(hctx))
881                                 blk_mq_tag_idle(hctx);
882                 }
883         }
884         blk_queue_exit(q);
885 }
886
887 struct flush_busy_ctx_data {
888         struct blk_mq_hw_ctx *hctx;
889         struct list_head *list;
890 };
891
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894         struct flush_busy_ctx_data *flush_data = data;
895         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897
898         spin_lock(&ctx->lock);
899         list_splice_tail_init(&ctx->rq_list, flush_data->list);
900         sbitmap_clear_bit(sb, bitnr);
901         spin_unlock(&ctx->lock);
902         return true;
903 }
904
905 /*
906  * Process software queues that have been marked busy, splicing them
907  * to the for-dispatch
908  */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911         struct flush_busy_ctx_data data = {
912                 .hctx = hctx,
913                 .list = list,
914         };
915
916         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919
920 struct dispatch_rq_data {
921         struct blk_mq_hw_ctx *hctx;
922         struct request *rq;
923 };
924
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926                 void *data)
927 {
928         struct dispatch_rq_data *dispatch_data = data;
929         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931
932         spin_lock(&ctx->lock);
933         if (!list_empty(&ctx->rq_list)) {
934                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935                 list_del_init(&dispatch_data->rq->queuelist);
936                 if (list_empty(&ctx->rq_list))
937                         sbitmap_clear_bit(sb, bitnr);
938         }
939         spin_unlock(&ctx->lock);
940
941         return !dispatch_data->rq;
942 }
943
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945                                         struct blk_mq_ctx *start)
946 {
947         unsigned off = start ? start->index_hw : 0;
948         struct dispatch_rq_data data = {
949                 .hctx = hctx,
950                 .rq   = NULL,
951         };
952
953         __sbitmap_for_each_set(&hctx->ctx_map, off,
954                                dispatch_rq_from_ctx, &data);
955
956         return data.rq;
957 }
958
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961         if (!queued)
962                 return 0;
963
964         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966
967 bool blk_mq_get_driver_tag(struct request *rq)
968 {
969         struct blk_mq_alloc_data data = {
970                 .q = rq->q,
971                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
972                 .flags = BLK_MQ_REQ_NOWAIT,
973         };
974         bool shared;
975
976         if (rq->tag != -1)
977                 goto done;
978
979         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980                 data.flags |= BLK_MQ_REQ_RESERVED;
981
982         shared = blk_mq_tag_busy(data.hctx);
983         rq->tag = blk_mq_get_tag(&data);
984         if (rq->tag >= 0) {
985                 if (shared) {
986                         rq->rq_flags |= RQF_MQ_INFLIGHT;
987                         atomic_inc(&data.hctx->nr_active);
988                 }
989                 data.hctx->tags->rqs[rq->tag] = rq;
990         }
991
992 done:
993         return rq->tag != -1;
994 }
995
996 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
997                                 int flags, void *key)
998 {
999         struct blk_mq_hw_ctx *hctx;
1000
1001         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1002
1003         spin_lock(&hctx->dispatch_wait_lock);
1004         list_del_init(&wait->entry);
1005         spin_unlock(&hctx->dispatch_wait_lock);
1006
1007         blk_mq_run_hw_queue(hctx, true);
1008         return 1;
1009 }
1010
1011 /*
1012  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014  * restart. For both cases, take care to check the condition again after
1015  * marking us as waiting.
1016  */
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1018                                  struct request *rq)
1019 {
1020         struct wait_queue_head *wq;
1021         wait_queue_entry_t *wait;
1022         bool ret;
1023
1024         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1025                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1026                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1027
1028                 /*
1029                  * It's possible that a tag was freed in the window between the
1030                  * allocation failure and adding the hardware queue to the wait
1031                  * queue.
1032                  *
1033                  * Don't clear RESTART here, someone else could have set it.
1034                  * At most this will cost an extra queue run.
1035                  */
1036                 return blk_mq_get_driver_tag(rq);
1037         }
1038
1039         wait = &hctx->dispatch_wait;
1040         if (!list_empty_careful(&wait->entry))
1041                 return false;
1042
1043         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1044
1045         spin_lock_irq(&wq->lock);
1046         spin_lock(&hctx->dispatch_wait_lock);
1047         if (!list_empty(&wait->entry)) {
1048                 spin_unlock(&hctx->dispatch_wait_lock);
1049                 spin_unlock_irq(&wq->lock);
1050                 return false;
1051         }
1052
1053         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1054         __add_wait_queue(wq, wait);
1055
1056         /*
1057          * It's possible that a tag was freed in the window between the
1058          * allocation failure and adding the hardware queue to the wait
1059          * queue.
1060          */
1061         ret = blk_mq_get_driver_tag(rq);
1062         if (!ret) {
1063                 spin_unlock(&hctx->dispatch_wait_lock);
1064                 spin_unlock_irq(&wq->lock);
1065                 return false;
1066         }
1067
1068         /*
1069          * We got a tag, remove ourselves from the wait queue to ensure
1070          * someone else gets the wakeup.
1071          */
1072         list_del_init(&wait->entry);
1073         spin_unlock(&hctx->dispatch_wait_lock);
1074         spin_unlock_irq(&wq->lock);
1075
1076         return true;
1077 }
1078
1079 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1080 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1081 /*
1082  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1083  * - EWMA is one simple way to compute running average value
1084  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1085  * - take 4 as factor for avoiding to get too small(0) result, and this
1086  *   factor doesn't matter because EWMA decreases exponentially
1087  */
1088 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1089 {
1090         unsigned int ewma;
1091
1092         if (hctx->queue->elevator)
1093                 return;
1094
1095         ewma = hctx->dispatch_busy;
1096
1097         if (!ewma && !busy)
1098                 return;
1099
1100         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1101         if (busy)
1102                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1103         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1104
1105         hctx->dispatch_busy = ewma;
1106 }
1107
1108 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1109
1110 /*
1111  * Returns true if we did some work AND can potentially do more.
1112  */
1113 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1114                              bool got_budget)
1115 {
1116         struct blk_mq_hw_ctx *hctx;
1117         struct request *rq, *nxt;
1118         bool no_tag = false;
1119         int errors, queued;
1120         blk_status_t ret = BLK_STS_OK;
1121
1122         if (list_empty(list))
1123                 return false;
1124
1125         WARN_ON(!list_is_singular(list) && got_budget);
1126
1127         /*
1128          * Now process all the entries, sending them to the driver.
1129          */
1130         errors = queued = 0;
1131         do {
1132                 struct blk_mq_queue_data bd;
1133
1134                 rq = list_first_entry(list, struct request, queuelist);
1135
1136                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1137                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1138                         break;
1139
1140                 if (!blk_mq_get_driver_tag(rq)) {
1141                         /*
1142                          * The initial allocation attempt failed, so we need to
1143                          * rerun the hardware queue when a tag is freed. The
1144                          * waitqueue takes care of that. If the queue is run
1145                          * before we add this entry back on the dispatch list,
1146                          * we'll re-run it below.
1147                          */
1148                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1149                                 blk_mq_put_dispatch_budget(hctx);
1150                                 /*
1151                                  * For non-shared tags, the RESTART check
1152                                  * will suffice.
1153                                  */
1154                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1155                                         no_tag = true;
1156                                 break;
1157                         }
1158                 }
1159
1160                 list_del_init(&rq->queuelist);
1161
1162                 bd.rq = rq;
1163
1164                 /*
1165                  * Flag last if we have no more requests, or if we have more
1166                  * but can't assign a driver tag to it.
1167                  */
1168                 if (list_empty(list))
1169                         bd.last = true;
1170                 else {
1171                         nxt = list_first_entry(list, struct request, queuelist);
1172                         bd.last = !blk_mq_get_driver_tag(nxt);
1173                 }
1174
1175                 ret = q->mq_ops->queue_rq(hctx, &bd);
1176                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1177                         /*
1178                          * If an I/O scheduler has been configured and we got a
1179                          * driver tag for the next request already, free it
1180                          * again.
1181                          */
1182                         if (!list_empty(list)) {
1183                                 nxt = list_first_entry(list, struct request, queuelist);
1184                                 blk_mq_put_driver_tag(nxt);
1185                         }
1186                         list_add(&rq->queuelist, list);
1187                         __blk_mq_requeue_request(rq);
1188                         break;
1189                 }
1190
1191                 if (unlikely(ret != BLK_STS_OK)) {
1192                         errors++;
1193                         blk_mq_end_request(rq, BLK_STS_IOERR);
1194                         continue;
1195                 }
1196
1197                 queued++;
1198         } while (!list_empty(list));
1199
1200         hctx->dispatched[queued_to_index(queued)]++;
1201
1202         /*
1203          * Any items that need requeuing? Stuff them into hctx->dispatch,
1204          * that is where we will continue on next queue run.
1205          */
1206         if (!list_empty(list)) {
1207                 bool needs_restart;
1208
1209                 spin_lock(&hctx->lock);
1210                 list_splice_init(list, &hctx->dispatch);
1211                 spin_unlock(&hctx->lock);
1212
1213                 /*
1214                  * If SCHED_RESTART was set by the caller of this function and
1215                  * it is no longer set that means that it was cleared by another
1216                  * thread and hence that a queue rerun is needed.
1217                  *
1218                  * If 'no_tag' is set, that means that we failed getting
1219                  * a driver tag with an I/O scheduler attached. If our dispatch
1220                  * waitqueue is no longer active, ensure that we run the queue
1221                  * AFTER adding our entries back to the list.
1222                  *
1223                  * If no I/O scheduler has been configured it is possible that
1224                  * the hardware queue got stopped and restarted before requests
1225                  * were pushed back onto the dispatch list. Rerun the queue to
1226                  * avoid starvation. Notes:
1227                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1228                  *   been stopped before rerunning a queue.
1229                  * - Some but not all block drivers stop a queue before
1230                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1231                  *   and dm-rq.
1232                  *
1233                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1234                  * bit is set, run queue after a delay to avoid IO stalls
1235                  * that could otherwise occur if the queue is idle.
1236                  */
1237                 needs_restart = blk_mq_sched_needs_restart(hctx);
1238                 if (!needs_restart ||
1239                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1240                         blk_mq_run_hw_queue(hctx, true);
1241                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1242                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1243
1244                 blk_mq_update_dispatch_busy(hctx, true);
1245                 return false;
1246         } else
1247                 blk_mq_update_dispatch_busy(hctx, false);
1248
1249         /*
1250          * If the host/device is unable to accept more work, inform the
1251          * caller of that.
1252          */
1253         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1254                 return false;
1255
1256         return (queued + errors) != 0;
1257 }
1258
1259 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1260 {
1261         int srcu_idx;
1262
1263         /*
1264          * We should be running this queue from one of the CPUs that
1265          * are mapped to it.
1266          *
1267          * There are at least two related races now between setting
1268          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1269          * __blk_mq_run_hw_queue():
1270          *
1271          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1272          *   but later it becomes online, then this warning is harmless
1273          *   at all
1274          *
1275          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1276          *   but later it becomes offline, then the warning can't be
1277          *   triggered, and we depend on blk-mq timeout handler to
1278          *   handle dispatched requests to this hctx
1279          */
1280         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1281                 cpu_online(hctx->next_cpu)) {
1282                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1283                         raw_smp_processor_id(),
1284                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1285                 dump_stack();
1286         }
1287
1288         /*
1289          * We can't run the queue inline with ints disabled. Ensure that
1290          * we catch bad users of this early.
1291          */
1292         WARN_ON_ONCE(in_interrupt());
1293
1294         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1295
1296         hctx_lock(hctx, &srcu_idx);
1297         blk_mq_sched_dispatch_requests(hctx);
1298         hctx_unlock(hctx, srcu_idx);
1299 }
1300
1301 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1302 {
1303         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1304
1305         if (cpu >= nr_cpu_ids)
1306                 cpu = cpumask_first(hctx->cpumask);
1307         return cpu;
1308 }
1309
1310 /*
1311  * It'd be great if the workqueue API had a way to pass
1312  * in a mask and had some smarts for more clever placement.
1313  * For now we just round-robin here, switching for every
1314  * BLK_MQ_CPU_WORK_BATCH queued items.
1315  */
1316 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1317 {
1318         bool tried = false;
1319         int next_cpu = hctx->next_cpu;
1320
1321         if (hctx->queue->nr_hw_queues == 1)
1322                 return WORK_CPU_UNBOUND;
1323
1324         if (--hctx->next_cpu_batch <= 0) {
1325 select_cpu:
1326                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1327                                 cpu_online_mask);
1328                 if (next_cpu >= nr_cpu_ids)
1329                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1330                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1331         }
1332
1333         /*
1334          * Do unbound schedule if we can't find a online CPU for this hctx,
1335          * and it should only happen in the path of handling CPU DEAD.
1336          */
1337         if (!cpu_online(next_cpu)) {
1338                 if (!tried) {
1339                         tried = true;
1340                         goto select_cpu;
1341                 }
1342
1343                 /*
1344                  * Make sure to re-select CPU next time once after CPUs
1345                  * in hctx->cpumask become online again.
1346                  */
1347                 hctx->next_cpu = next_cpu;
1348                 hctx->next_cpu_batch = 1;
1349                 return WORK_CPU_UNBOUND;
1350         }
1351
1352         hctx->next_cpu = next_cpu;
1353         return next_cpu;
1354 }
1355
1356 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1357                                         unsigned long msecs)
1358 {
1359         if (unlikely(blk_mq_hctx_stopped(hctx)))
1360                 return;
1361
1362         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1363                 int cpu = get_cpu();
1364                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1365                         __blk_mq_run_hw_queue(hctx);
1366                         put_cpu();
1367                         return;
1368                 }
1369
1370                 put_cpu();
1371         }
1372
1373         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1374                                     msecs_to_jiffies(msecs));
1375 }
1376
1377 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1378 {
1379         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1380 }
1381 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1382
1383 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1384 {
1385         int srcu_idx;
1386         bool need_run;
1387
1388         /*
1389          * When queue is quiesced, we may be switching io scheduler, or
1390          * updating nr_hw_queues, or other things, and we can't run queue
1391          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1392          *
1393          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1394          * quiesced.
1395          */
1396         hctx_lock(hctx, &srcu_idx);
1397         need_run = !blk_queue_quiesced(hctx->queue) &&
1398                 blk_mq_hctx_has_pending(hctx);
1399         hctx_unlock(hctx, srcu_idx);
1400
1401         if (need_run) {
1402                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1403                 return true;
1404         }
1405
1406         return false;
1407 }
1408 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1409
1410 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1411 {
1412         struct blk_mq_hw_ctx *hctx;
1413         int i;
1414
1415         queue_for_each_hw_ctx(q, hctx, i) {
1416                 if (blk_mq_hctx_stopped(hctx))
1417                         continue;
1418
1419                 blk_mq_run_hw_queue(hctx, async);
1420         }
1421 }
1422 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1423
1424 /**
1425  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1426  * @q: request queue.
1427  *
1428  * The caller is responsible for serializing this function against
1429  * blk_mq_{start,stop}_hw_queue().
1430  */
1431 bool blk_mq_queue_stopped(struct request_queue *q)
1432 {
1433         struct blk_mq_hw_ctx *hctx;
1434         int i;
1435
1436         queue_for_each_hw_ctx(q, hctx, i)
1437                 if (blk_mq_hctx_stopped(hctx))
1438                         return true;
1439
1440         return false;
1441 }
1442 EXPORT_SYMBOL(blk_mq_queue_stopped);
1443
1444 /*
1445  * This function is often used for pausing .queue_rq() by driver when
1446  * there isn't enough resource or some conditions aren't satisfied, and
1447  * BLK_STS_RESOURCE is usually returned.
1448  *
1449  * We do not guarantee that dispatch can be drained or blocked
1450  * after blk_mq_stop_hw_queue() returns. Please use
1451  * blk_mq_quiesce_queue() for that requirement.
1452  */
1453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1454 {
1455         cancel_delayed_work(&hctx->run_work);
1456
1457         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1458 }
1459 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1460
1461 /*
1462  * This function is often used for pausing .queue_rq() by driver when
1463  * there isn't enough resource or some conditions aren't satisfied, and
1464  * BLK_STS_RESOURCE is usually returned.
1465  *
1466  * We do not guarantee that dispatch can be drained or blocked
1467  * after blk_mq_stop_hw_queues() returns. Please use
1468  * blk_mq_quiesce_queue() for that requirement.
1469  */
1470 void blk_mq_stop_hw_queues(struct request_queue *q)
1471 {
1472         struct blk_mq_hw_ctx *hctx;
1473         int i;
1474
1475         queue_for_each_hw_ctx(q, hctx, i)
1476                 blk_mq_stop_hw_queue(hctx);
1477 }
1478 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1479
1480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1481 {
1482         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1483
1484         blk_mq_run_hw_queue(hctx, false);
1485 }
1486 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1487
1488 void blk_mq_start_hw_queues(struct request_queue *q)
1489 {
1490         struct blk_mq_hw_ctx *hctx;
1491         int i;
1492
1493         queue_for_each_hw_ctx(q, hctx, i)
1494                 blk_mq_start_hw_queue(hctx);
1495 }
1496 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1497
1498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1499 {
1500         if (!blk_mq_hctx_stopped(hctx))
1501                 return;
1502
1503         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1504         blk_mq_run_hw_queue(hctx, async);
1505 }
1506 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1507
1508 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1509 {
1510         struct blk_mq_hw_ctx *hctx;
1511         int i;
1512
1513         queue_for_each_hw_ctx(q, hctx, i)
1514                 blk_mq_start_stopped_hw_queue(hctx, async);
1515 }
1516 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1517
1518 static void blk_mq_run_work_fn(struct work_struct *work)
1519 {
1520         struct blk_mq_hw_ctx *hctx;
1521
1522         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1523
1524         /*
1525          * If we are stopped, don't run the queue.
1526          */
1527         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1528                 return;
1529
1530         __blk_mq_run_hw_queue(hctx);
1531 }
1532
1533 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1534                                             struct request *rq,
1535                                             bool at_head)
1536 {
1537         struct blk_mq_ctx *ctx = rq->mq_ctx;
1538
1539         lockdep_assert_held(&ctx->lock);
1540
1541         trace_block_rq_insert(hctx->queue, rq);
1542
1543         if (at_head)
1544                 list_add(&rq->queuelist, &ctx->rq_list);
1545         else
1546                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1547 }
1548
1549 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1550                              bool at_head)
1551 {
1552         struct blk_mq_ctx *ctx = rq->mq_ctx;
1553
1554         lockdep_assert_held(&ctx->lock);
1555
1556         __blk_mq_insert_req_list(hctx, rq, at_head);
1557         blk_mq_hctx_mark_pending(hctx, ctx);
1558 }
1559
1560 /*
1561  * Should only be used carefully, when the caller knows we want to
1562  * bypass a potential IO scheduler on the target device.
1563  */
1564 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1565 {
1566         struct blk_mq_ctx *ctx = rq->mq_ctx;
1567         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1568
1569         spin_lock(&hctx->lock);
1570         list_add_tail(&rq->queuelist, &hctx->dispatch);
1571         spin_unlock(&hctx->lock);
1572
1573         if (run_queue)
1574                 blk_mq_run_hw_queue(hctx, false);
1575 }
1576
1577 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1578                             struct list_head *list)
1579
1580 {
1581         struct request *rq;
1582
1583         /*
1584          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1585          * offline now
1586          */
1587         list_for_each_entry(rq, list, queuelist) {
1588                 BUG_ON(rq->mq_ctx != ctx);
1589                 trace_block_rq_insert(hctx->queue, rq);
1590         }
1591
1592         spin_lock(&ctx->lock);
1593         list_splice_tail_init(list, &ctx->rq_list);
1594         blk_mq_hctx_mark_pending(hctx, ctx);
1595         spin_unlock(&ctx->lock);
1596 }
1597
1598 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1599 {
1600         struct request *rqa = container_of(a, struct request, queuelist);
1601         struct request *rqb = container_of(b, struct request, queuelist);
1602
1603         return !(rqa->mq_ctx < rqb->mq_ctx ||
1604                  (rqa->mq_ctx == rqb->mq_ctx &&
1605                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1606 }
1607
1608 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1609 {
1610         struct blk_mq_ctx *this_ctx;
1611         struct request_queue *this_q;
1612         struct request *rq;
1613         LIST_HEAD(list);
1614         LIST_HEAD(ctx_list);
1615         unsigned int depth;
1616
1617         list_splice_init(&plug->mq_list, &list);
1618
1619         list_sort(NULL, &list, plug_ctx_cmp);
1620
1621         this_q = NULL;
1622         this_ctx = NULL;
1623         depth = 0;
1624
1625         while (!list_empty(&list)) {
1626                 rq = list_entry_rq(list.next);
1627                 list_del_init(&rq->queuelist);
1628                 BUG_ON(!rq->q);
1629                 if (rq->mq_ctx != this_ctx) {
1630                         if (this_ctx) {
1631                                 trace_block_unplug(this_q, depth, from_schedule);
1632                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1633                                                                 &ctx_list,
1634                                                                 from_schedule);
1635                         }
1636
1637                         this_ctx = rq->mq_ctx;
1638                         this_q = rq->q;
1639                         depth = 0;
1640                 }
1641
1642                 depth++;
1643                 list_add_tail(&rq->queuelist, &ctx_list);
1644         }
1645
1646         /*
1647          * If 'this_ctx' is set, we know we have entries to complete
1648          * on 'ctx_list'. Do those.
1649          */
1650         if (this_ctx) {
1651                 trace_block_unplug(this_q, depth, from_schedule);
1652                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1653                                                 from_schedule);
1654         }
1655 }
1656
1657 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1658 {
1659         blk_init_request_from_bio(rq, bio);
1660
1661         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1662
1663         blk_account_io_start(rq, true);
1664 }
1665
1666 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1667 {
1668         if (rq->tag != -1)
1669                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1670
1671         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1672 }
1673
1674 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1675                                             struct request *rq,
1676                                             blk_qc_t *cookie)
1677 {
1678         struct request_queue *q = rq->q;
1679         struct blk_mq_queue_data bd = {
1680                 .rq = rq,
1681                 .last = true,
1682         };
1683         blk_qc_t new_cookie;
1684         blk_status_t ret;
1685
1686         new_cookie = request_to_qc_t(hctx, rq);
1687
1688         /*
1689          * For OK queue, we are done. For error, caller may kill it.
1690          * Any other error (busy), just add it to our list as we
1691          * previously would have done.
1692          */
1693         ret = q->mq_ops->queue_rq(hctx, &bd);
1694         switch (ret) {
1695         case BLK_STS_OK:
1696                 blk_mq_update_dispatch_busy(hctx, false);
1697                 *cookie = new_cookie;
1698                 break;
1699         case BLK_STS_RESOURCE:
1700         case BLK_STS_DEV_RESOURCE:
1701                 blk_mq_update_dispatch_busy(hctx, true);
1702                 __blk_mq_requeue_request(rq);
1703                 break;
1704         default:
1705                 blk_mq_update_dispatch_busy(hctx, false);
1706                 *cookie = BLK_QC_T_NONE;
1707                 break;
1708         }
1709
1710         return ret;
1711 }
1712
1713 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1714                                                 struct request *rq,
1715                                                 blk_qc_t *cookie,
1716                                                 bool bypass_insert)
1717 {
1718         struct request_queue *q = rq->q;
1719         bool run_queue = true;
1720
1721         /*
1722          * RCU or SRCU read lock is needed before checking quiesced flag.
1723          *
1724          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1725          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1726          * and avoid driver to try to dispatch again.
1727          */
1728         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1729                 run_queue = false;
1730                 bypass_insert = false;
1731                 goto insert;
1732         }
1733
1734         if (q->elevator && !bypass_insert)
1735                 goto insert;
1736
1737         if (!blk_mq_get_dispatch_budget(hctx))
1738                 goto insert;
1739
1740         if (!blk_mq_get_driver_tag(rq)) {
1741                 blk_mq_put_dispatch_budget(hctx);
1742                 goto insert;
1743         }
1744
1745         return __blk_mq_issue_directly(hctx, rq, cookie);
1746 insert:
1747         if (bypass_insert)
1748                 return BLK_STS_RESOURCE;
1749
1750         blk_mq_sched_insert_request(rq, false, run_queue, false);
1751         return BLK_STS_OK;
1752 }
1753
1754 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1755                 struct request *rq, blk_qc_t *cookie)
1756 {
1757         blk_status_t ret;
1758         int srcu_idx;
1759
1760         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1761
1762         hctx_lock(hctx, &srcu_idx);
1763
1764         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1765         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1766                 blk_mq_sched_insert_request(rq, false, true, false);
1767         else if (ret != BLK_STS_OK)
1768                 blk_mq_end_request(rq, ret);
1769
1770         hctx_unlock(hctx, srcu_idx);
1771 }
1772
1773 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1774 {
1775         blk_status_t ret;
1776         int srcu_idx;
1777         blk_qc_t unused_cookie;
1778         struct blk_mq_ctx *ctx = rq->mq_ctx;
1779         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1780
1781         hctx_lock(hctx, &srcu_idx);
1782         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1783         hctx_unlock(hctx, srcu_idx);
1784
1785         return ret;
1786 }
1787
1788 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1789                 struct list_head *list)
1790 {
1791         while (!list_empty(list)) {
1792                 blk_status_t ret;
1793                 struct request *rq = list_first_entry(list, struct request,
1794                                 queuelist);
1795
1796                 list_del_init(&rq->queuelist);
1797                 ret = blk_mq_request_issue_directly(rq);
1798                 if (ret != BLK_STS_OK) {
1799                         if (ret == BLK_STS_RESOURCE ||
1800                                         ret == BLK_STS_DEV_RESOURCE) {
1801                                 list_add(&rq->queuelist, list);
1802                                 break;
1803                         }
1804                         blk_mq_end_request(rq, ret);
1805                 }
1806         }
1807 }
1808
1809 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1810 {
1811         const int is_sync = op_is_sync(bio->bi_opf);
1812         const int is_flush_fua = op_is_flush(bio->bi_opf);
1813         struct blk_mq_alloc_data data = { .flags = 0 };
1814         struct request *rq;
1815         unsigned int request_count = 0;
1816         struct blk_plug *plug;
1817         struct request *same_queue_rq = NULL;
1818         blk_qc_t cookie;
1819
1820         blk_queue_bounce(q, &bio);
1821
1822         blk_queue_split(q, &bio);
1823
1824         if (!bio_integrity_prep(bio))
1825                 return BLK_QC_T_NONE;
1826
1827         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1828             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1829                 return BLK_QC_T_NONE;
1830
1831         if (blk_mq_sched_bio_merge(q, bio))
1832                 return BLK_QC_T_NONE;
1833
1834         rq_qos_throttle(q, bio, NULL);
1835
1836         trace_block_getrq(q, bio, bio->bi_opf);
1837
1838         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1839         if (unlikely(!rq)) {
1840                 rq_qos_cleanup(q, bio);
1841                 if (bio->bi_opf & REQ_NOWAIT)
1842                         bio_wouldblock_error(bio);
1843                 return BLK_QC_T_NONE;
1844         }
1845
1846         rq_qos_track(q, rq, bio);
1847
1848         cookie = request_to_qc_t(data.hctx, rq);
1849
1850         plug = current->plug;
1851         if (unlikely(is_flush_fua)) {
1852                 blk_mq_put_ctx(data.ctx);
1853                 blk_mq_bio_to_request(rq, bio);
1854
1855                 /* bypass scheduler for flush rq */
1856                 blk_insert_flush(rq);
1857                 blk_mq_run_hw_queue(data.hctx, true);
1858         } else if (plug && q->nr_hw_queues == 1) {
1859                 struct request *last = NULL;
1860
1861                 blk_mq_put_ctx(data.ctx);
1862                 blk_mq_bio_to_request(rq, bio);
1863
1864                 /*
1865                  * @request_count may become stale because of schedule
1866                  * out, so check the list again.
1867                  */
1868                 if (list_empty(&plug->mq_list))
1869                         request_count = 0;
1870                 else if (blk_queue_nomerges(q))
1871                         request_count = blk_plug_queued_count(q);
1872
1873                 if (!request_count)
1874                         trace_block_plug(q);
1875                 else
1876                         last = list_entry_rq(plug->mq_list.prev);
1877
1878                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1879                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1880                         blk_flush_plug_list(plug, false);
1881                         trace_block_plug(q);
1882                 }
1883
1884                 list_add_tail(&rq->queuelist, &plug->mq_list);
1885         } else if (plug && !blk_queue_nomerges(q)) {
1886                 blk_mq_bio_to_request(rq, bio);
1887
1888                 /*
1889                  * We do limited plugging. If the bio can be merged, do that.
1890                  * Otherwise the existing request in the plug list will be
1891                  * issued. So the plug list will have one request at most
1892                  * The plug list might get flushed before this. If that happens,
1893                  * the plug list is empty, and same_queue_rq is invalid.
1894                  */
1895                 if (list_empty(&plug->mq_list))
1896                         same_queue_rq = NULL;
1897                 if (same_queue_rq)
1898                         list_del_init(&same_queue_rq->queuelist);
1899                 list_add_tail(&rq->queuelist, &plug->mq_list);
1900
1901                 blk_mq_put_ctx(data.ctx);
1902
1903                 if (same_queue_rq) {
1904                         data.hctx = blk_mq_map_queue(q,
1905                                         same_queue_rq->mq_ctx->cpu);
1906                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1907                                         &cookie);
1908                 }
1909         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1910                         !data.hctx->dispatch_busy)) {
1911                 blk_mq_put_ctx(data.ctx);
1912                 blk_mq_bio_to_request(rq, bio);
1913                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1914         } else {
1915                 blk_mq_put_ctx(data.ctx);
1916                 blk_mq_bio_to_request(rq, bio);
1917                 blk_mq_sched_insert_request(rq, false, true, true);
1918         }
1919
1920         return cookie;
1921 }
1922
1923 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1924                      unsigned int hctx_idx)
1925 {
1926         struct page *page;
1927
1928         if (tags->rqs && set->ops->exit_request) {
1929                 int i;
1930
1931                 for (i = 0; i < tags->nr_tags; i++) {
1932                         struct request *rq = tags->static_rqs[i];
1933
1934                         if (!rq)
1935                                 continue;
1936                         set->ops->exit_request(set, rq, hctx_idx);
1937                         tags->static_rqs[i] = NULL;
1938                 }
1939         }
1940
1941         while (!list_empty(&tags->page_list)) {
1942                 page = list_first_entry(&tags->page_list, struct page, lru);
1943                 list_del_init(&page->lru);
1944                 /*
1945                  * Remove kmemleak object previously allocated in
1946                  * blk_mq_init_rq_map().
1947                  */
1948                 kmemleak_free(page_address(page));
1949                 __free_pages(page, page->private);
1950         }
1951 }
1952
1953 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1954 {
1955         kfree(tags->rqs);
1956         tags->rqs = NULL;
1957         kfree(tags->static_rqs);
1958         tags->static_rqs = NULL;
1959
1960         blk_mq_free_tags(tags);
1961 }
1962
1963 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1964                                         unsigned int hctx_idx,
1965                                         unsigned int nr_tags,
1966                                         unsigned int reserved_tags)
1967 {
1968         struct blk_mq_tags *tags;
1969         int node;
1970
1971         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1972         if (node == NUMA_NO_NODE)
1973                 node = set->numa_node;
1974
1975         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1976                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1977         if (!tags)
1978                 return NULL;
1979
1980         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1981                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1982                                  node);
1983         if (!tags->rqs) {
1984                 blk_mq_free_tags(tags);
1985                 return NULL;
1986         }
1987
1988         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1989                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1990                                         node);
1991         if (!tags->static_rqs) {
1992                 kfree(tags->rqs);
1993                 blk_mq_free_tags(tags);
1994                 return NULL;
1995         }
1996
1997         return tags;
1998 }
1999
2000 static size_t order_to_size(unsigned int order)
2001 {
2002         return (size_t)PAGE_SIZE << order;
2003 }
2004
2005 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2006                                unsigned int hctx_idx, int node)
2007 {
2008         int ret;
2009
2010         if (set->ops->init_request) {
2011                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2012                 if (ret)
2013                         return ret;
2014         }
2015
2016         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2017         return 0;
2018 }
2019
2020 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2021                      unsigned int hctx_idx, unsigned int depth)
2022 {
2023         unsigned int i, j, entries_per_page, max_order = 4;
2024         size_t rq_size, left;
2025         int node;
2026
2027         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2028         if (node == NUMA_NO_NODE)
2029                 node = set->numa_node;
2030
2031         INIT_LIST_HEAD(&tags->page_list);
2032
2033         /*
2034          * rq_size is the size of the request plus driver payload, rounded
2035          * to the cacheline size
2036          */
2037         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2038                                 cache_line_size());
2039         left = rq_size * depth;
2040
2041         for (i = 0; i < depth; ) {
2042                 int this_order = max_order;
2043                 struct page *page;
2044                 int to_do;
2045                 void *p;
2046
2047                 while (this_order && left < order_to_size(this_order - 1))
2048                         this_order--;
2049
2050                 do {
2051                         page = alloc_pages_node(node,
2052                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2053                                 this_order);
2054                         if (page)
2055                                 break;
2056                         if (!this_order--)
2057                                 break;
2058                         if (order_to_size(this_order) < rq_size)
2059                                 break;
2060                 } while (1);
2061
2062                 if (!page)
2063                         goto fail;
2064
2065                 page->private = this_order;
2066                 list_add_tail(&page->lru, &tags->page_list);
2067
2068                 p = page_address(page);
2069                 /*
2070                  * Allow kmemleak to scan these pages as they contain pointers
2071                  * to additional allocations like via ops->init_request().
2072                  */
2073                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2074                 entries_per_page = order_to_size(this_order) / rq_size;
2075                 to_do = min(entries_per_page, depth - i);
2076                 left -= to_do * rq_size;
2077                 for (j = 0; j < to_do; j++) {
2078                         struct request *rq = p;
2079
2080                         tags->static_rqs[i] = rq;
2081                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2082                                 tags->static_rqs[i] = NULL;
2083                                 goto fail;
2084                         }
2085
2086                         p += rq_size;
2087                         i++;
2088                 }
2089         }
2090         return 0;
2091
2092 fail:
2093         blk_mq_free_rqs(set, tags, hctx_idx);
2094         return -ENOMEM;
2095 }
2096
2097 /*
2098  * 'cpu' is going away. splice any existing rq_list entries from this
2099  * software queue to the hw queue dispatch list, and ensure that it
2100  * gets run.
2101  */
2102 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2103 {
2104         struct blk_mq_hw_ctx *hctx;
2105         struct blk_mq_ctx *ctx;
2106         LIST_HEAD(tmp);
2107
2108         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2109         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2110
2111         spin_lock(&ctx->lock);
2112         if (!list_empty(&ctx->rq_list)) {
2113                 list_splice_init(&ctx->rq_list, &tmp);
2114                 blk_mq_hctx_clear_pending(hctx, ctx);
2115         }
2116         spin_unlock(&ctx->lock);
2117
2118         if (list_empty(&tmp))
2119                 return 0;
2120
2121         spin_lock(&hctx->lock);
2122         list_splice_tail_init(&tmp, &hctx->dispatch);
2123         spin_unlock(&hctx->lock);
2124
2125         blk_mq_run_hw_queue(hctx, true);
2126         return 0;
2127 }
2128
2129 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2130 {
2131         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2132                                             &hctx->cpuhp_dead);
2133 }
2134
2135 /* hctx->ctxs will be freed in queue's release handler */
2136 static void blk_mq_exit_hctx(struct request_queue *q,
2137                 struct blk_mq_tag_set *set,
2138                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2139 {
2140         blk_mq_debugfs_unregister_hctx(hctx);
2141
2142         if (blk_mq_hw_queue_mapped(hctx))
2143                 blk_mq_tag_idle(hctx);
2144
2145         if (set->ops->exit_request)
2146                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2147
2148         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2149
2150         if (set->ops->exit_hctx)
2151                 set->ops->exit_hctx(hctx, hctx_idx);
2152
2153         if (hctx->flags & BLK_MQ_F_BLOCKING)
2154                 cleanup_srcu_struct(hctx->srcu);
2155
2156         blk_mq_remove_cpuhp(hctx);
2157         blk_free_flush_queue(hctx->fq);
2158         sbitmap_free(&hctx->ctx_map);
2159 }
2160
2161 static void blk_mq_exit_hw_queues(struct request_queue *q,
2162                 struct blk_mq_tag_set *set, int nr_queue)
2163 {
2164         struct blk_mq_hw_ctx *hctx;
2165         unsigned int i;
2166
2167         queue_for_each_hw_ctx(q, hctx, i) {
2168                 if (i == nr_queue)
2169                         break;
2170                 blk_mq_exit_hctx(q, set, hctx, i);
2171         }
2172 }
2173
2174 static int blk_mq_init_hctx(struct request_queue *q,
2175                 struct blk_mq_tag_set *set,
2176                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2177 {
2178         int node;
2179
2180         node = hctx->numa_node;
2181         if (node == NUMA_NO_NODE)
2182                 node = hctx->numa_node = set->numa_node;
2183
2184         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2185         spin_lock_init(&hctx->lock);
2186         INIT_LIST_HEAD(&hctx->dispatch);
2187         hctx->queue = q;
2188         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2189
2190         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2191
2192         hctx->tags = set->tags[hctx_idx];
2193
2194         /*
2195          * Allocate space for all possible cpus to avoid allocation at
2196          * runtime
2197          */
2198         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2199                                         GFP_KERNEL, node);
2200         if (!hctx->ctxs)
2201                 goto unregister_cpu_notifier;
2202
2203         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2204                               node))
2205                 goto free_ctxs;
2206
2207         hctx->nr_ctx = 0;
2208
2209         spin_lock_init(&hctx->dispatch_wait_lock);
2210         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2211         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2212
2213         if (set->ops->init_hctx &&
2214             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2215                 goto free_bitmap;
2216
2217         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2218                 goto exit_hctx;
2219
2220         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2221         if (!hctx->fq)
2222                 goto sched_exit_hctx;
2223
2224         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2225                 goto free_fq;
2226
2227         if (hctx->flags & BLK_MQ_F_BLOCKING)
2228                 init_srcu_struct(hctx->srcu);
2229
2230         blk_mq_debugfs_register_hctx(q, hctx);
2231
2232         return 0;
2233
2234  free_fq:
2235         kfree(hctx->fq);
2236  sched_exit_hctx:
2237         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2238  exit_hctx:
2239         if (set->ops->exit_hctx)
2240                 set->ops->exit_hctx(hctx, hctx_idx);
2241  free_bitmap:
2242         sbitmap_free(&hctx->ctx_map);
2243  free_ctxs:
2244         kfree(hctx->ctxs);
2245  unregister_cpu_notifier:
2246         blk_mq_remove_cpuhp(hctx);
2247         return -1;
2248 }
2249
2250 static void blk_mq_init_cpu_queues(struct request_queue *q,
2251                                    unsigned int nr_hw_queues)
2252 {
2253         unsigned int i;
2254
2255         for_each_possible_cpu(i) {
2256                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2257                 struct blk_mq_hw_ctx *hctx;
2258
2259                 __ctx->cpu = i;
2260                 spin_lock_init(&__ctx->lock);
2261                 INIT_LIST_HEAD(&__ctx->rq_list);
2262                 __ctx->queue = q;
2263
2264                 /*
2265                  * Set local node, IFF we have more than one hw queue. If
2266                  * not, we remain on the home node of the device
2267                  */
2268                 hctx = blk_mq_map_queue(q, i);
2269                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2270                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2271         }
2272 }
2273
2274 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2275 {
2276         int ret = 0;
2277
2278         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2279                                         set->queue_depth, set->reserved_tags);
2280         if (!set->tags[hctx_idx])
2281                 return false;
2282
2283         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2284                                 set->queue_depth);
2285         if (!ret)
2286                 return true;
2287
2288         blk_mq_free_rq_map(set->tags[hctx_idx]);
2289         set->tags[hctx_idx] = NULL;
2290         return false;
2291 }
2292
2293 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2294                                          unsigned int hctx_idx)
2295 {
2296         if (set->tags[hctx_idx]) {
2297                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2298                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2299                 set->tags[hctx_idx] = NULL;
2300         }
2301 }
2302
2303 static void blk_mq_map_swqueue(struct request_queue *q)
2304 {
2305         unsigned int i, hctx_idx;
2306         struct blk_mq_hw_ctx *hctx;
2307         struct blk_mq_ctx *ctx;
2308         struct blk_mq_tag_set *set = q->tag_set;
2309
2310         /*
2311          * Avoid others reading imcomplete hctx->cpumask through sysfs
2312          */
2313         mutex_lock(&q->sysfs_lock);
2314
2315         queue_for_each_hw_ctx(q, hctx, i) {
2316                 cpumask_clear(hctx->cpumask);
2317                 hctx->nr_ctx = 0;
2318                 hctx->dispatch_from = NULL;
2319         }
2320
2321         /*
2322          * Map software to hardware queues.
2323          *
2324          * If the cpu isn't present, the cpu is mapped to first hctx.
2325          */
2326         for_each_possible_cpu(i) {
2327                 hctx_idx = q->mq_map[i];
2328                 /* unmapped hw queue can be remapped after CPU topo changed */
2329                 if (!set->tags[hctx_idx] &&
2330                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2331                         /*
2332                          * If tags initialization fail for some hctx,
2333                          * that hctx won't be brought online.  In this
2334                          * case, remap the current ctx to hctx[0] which
2335                          * is guaranteed to always have tags allocated
2336                          */
2337                         q->mq_map[i] = 0;
2338                 }
2339
2340                 ctx = per_cpu_ptr(q->queue_ctx, i);
2341                 hctx = blk_mq_map_queue(q, i);
2342
2343                 cpumask_set_cpu(i, hctx->cpumask);
2344                 ctx->index_hw = hctx->nr_ctx;
2345                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2346         }
2347
2348         mutex_unlock(&q->sysfs_lock);
2349
2350         queue_for_each_hw_ctx(q, hctx, i) {
2351                 /*
2352                  * If no software queues are mapped to this hardware queue,
2353                  * disable it and free the request entries.
2354                  */
2355                 if (!hctx->nr_ctx) {
2356                         /* Never unmap queue 0.  We need it as a
2357                          * fallback in case of a new remap fails
2358                          * allocation
2359                          */
2360                         if (i && set->tags[i])
2361                                 blk_mq_free_map_and_requests(set, i);
2362
2363                         hctx->tags = NULL;
2364                         continue;
2365                 }
2366
2367                 hctx->tags = set->tags[i];
2368                 WARN_ON(!hctx->tags);
2369
2370                 /*
2371                  * Set the map size to the number of mapped software queues.
2372                  * This is more accurate and more efficient than looping
2373                  * over all possibly mapped software queues.
2374                  */
2375                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2376
2377                 /*
2378                  * Initialize batch roundrobin counts
2379                  */
2380                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2381                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2382         }
2383 }
2384
2385 /*
2386  * Caller needs to ensure that we're either frozen/quiesced, or that
2387  * the queue isn't live yet.
2388  */
2389 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2390 {
2391         struct blk_mq_hw_ctx *hctx;
2392         int i;
2393
2394         queue_for_each_hw_ctx(q, hctx, i) {
2395                 if (shared)
2396                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2397                 else
2398                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2399         }
2400 }
2401
2402 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2403                                         bool shared)
2404 {
2405         struct request_queue *q;
2406
2407         lockdep_assert_held(&set->tag_list_lock);
2408
2409         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2410                 blk_mq_freeze_queue(q);
2411                 queue_set_hctx_shared(q, shared);
2412                 blk_mq_unfreeze_queue(q);
2413         }
2414 }
2415
2416 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2417 {
2418         struct blk_mq_tag_set *set = q->tag_set;
2419
2420         mutex_lock(&set->tag_list_lock);
2421         list_del_rcu(&q->tag_set_list);
2422         if (list_is_singular(&set->tag_list)) {
2423                 /* just transitioned to unshared */
2424                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2425                 /* update existing queue */
2426                 blk_mq_update_tag_set_depth(set, false);
2427         }
2428         mutex_unlock(&set->tag_list_lock);
2429         INIT_LIST_HEAD(&q->tag_set_list);
2430 }
2431
2432 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2433                                      struct request_queue *q)
2434 {
2435         q->tag_set = set;
2436
2437         mutex_lock(&set->tag_list_lock);
2438
2439         /*
2440          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2441          */
2442         if (!list_empty(&set->tag_list) &&
2443             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2444                 set->flags |= BLK_MQ_F_TAG_SHARED;
2445                 /* update existing queue */
2446                 blk_mq_update_tag_set_depth(set, true);
2447         }
2448         if (set->flags & BLK_MQ_F_TAG_SHARED)
2449                 queue_set_hctx_shared(q, true);
2450         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2451
2452         mutex_unlock(&set->tag_list_lock);
2453 }
2454
2455 /*
2456  * It is the actual release handler for mq, but we do it from
2457  * request queue's release handler for avoiding use-after-free
2458  * and headache because q->mq_kobj shouldn't have been introduced,
2459  * but we can't group ctx/kctx kobj without it.
2460  */
2461 void blk_mq_release(struct request_queue *q)
2462 {
2463         struct blk_mq_hw_ctx *hctx;
2464         unsigned int i;
2465
2466         /* hctx kobj stays in hctx */
2467         queue_for_each_hw_ctx(q, hctx, i) {
2468                 if (!hctx)
2469                         continue;
2470                 kobject_put(&hctx->kobj);
2471         }
2472
2473         q->mq_map = NULL;
2474
2475         kfree(q->queue_hw_ctx);
2476
2477         /*
2478          * release .mq_kobj and sw queue's kobject now because
2479          * both share lifetime with request queue.
2480          */
2481         blk_mq_sysfs_deinit(q);
2482
2483         free_percpu(q->queue_ctx);
2484 }
2485
2486 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2487 {
2488         struct request_queue *uninit_q, *q;
2489
2490         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2491         if (!uninit_q)
2492                 return ERR_PTR(-ENOMEM);
2493
2494         q = blk_mq_init_allocated_queue(set, uninit_q);
2495         if (IS_ERR(q))
2496                 blk_cleanup_queue(uninit_q);
2497
2498         return q;
2499 }
2500 EXPORT_SYMBOL(blk_mq_init_queue);
2501
2502 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2503 {
2504         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2505
2506         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2507                            __alignof__(struct blk_mq_hw_ctx)) !=
2508                      sizeof(struct blk_mq_hw_ctx));
2509
2510         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2511                 hw_ctx_size += sizeof(struct srcu_struct);
2512
2513         return hw_ctx_size;
2514 }
2515
2516 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2517                                                 struct request_queue *q)
2518 {
2519         int i, j;
2520         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2521
2522         blk_mq_sysfs_unregister(q);
2523
2524         /* protect against switching io scheduler  */
2525         mutex_lock(&q->sysfs_lock);
2526         for (i = 0; i < set->nr_hw_queues; i++) {
2527                 int node;
2528
2529                 if (hctxs[i])
2530                         continue;
2531
2532                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2533                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2534                                         GFP_KERNEL, node);
2535                 if (!hctxs[i])
2536                         break;
2537
2538                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2539                                                 node)) {
2540                         kfree(hctxs[i]);
2541                         hctxs[i] = NULL;
2542                         break;
2543                 }
2544
2545                 atomic_set(&hctxs[i]->nr_active, 0);
2546                 hctxs[i]->numa_node = node;
2547                 hctxs[i]->queue_num = i;
2548
2549                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2550                         free_cpumask_var(hctxs[i]->cpumask);
2551                         kfree(hctxs[i]);
2552                         hctxs[i] = NULL;
2553                         break;
2554                 }
2555                 blk_mq_hctx_kobj_init(hctxs[i]);
2556         }
2557         for (j = i; j < q->nr_hw_queues; j++) {
2558                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2559
2560                 if (hctx) {
2561                         if (hctx->tags)
2562                                 blk_mq_free_map_and_requests(set, j);
2563                         blk_mq_exit_hctx(q, set, hctx, j);
2564                         kobject_put(&hctx->kobj);
2565                         hctxs[j] = NULL;
2566
2567                 }
2568         }
2569         q->nr_hw_queues = i;
2570         mutex_unlock(&q->sysfs_lock);
2571         blk_mq_sysfs_register(q);
2572 }
2573
2574 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2575                                                   struct request_queue *q)
2576 {
2577         /* mark the queue as mq asap */
2578         q->mq_ops = set->ops;
2579
2580         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2581                                              blk_mq_poll_stats_bkt,
2582                                              BLK_MQ_POLL_STATS_BKTS, q);
2583         if (!q->poll_cb)
2584                 goto err_exit;
2585
2586         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2587         if (!q->queue_ctx)
2588                 goto err_exit;
2589
2590         /* init q->mq_kobj and sw queues' kobjects */
2591         blk_mq_sysfs_init(q);
2592
2593         q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2594                                                 GFP_KERNEL, set->numa_node);
2595         if (!q->queue_hw_ctx)
2596                 goto err_percpu;
2597
2598         q->mq_map = set->mq_map;
2599
2600         blk_mq_realloc_hw_ctxs(set, q);
2601         if (!q->nr_hw_queues)
2602                 goto err_hctxs;
2603
2604         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2605         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2606
2607         q->nr_queues = nr_cpu_ids;
2608
2609         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2610
2611         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2612                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2613
2614         q->sg_reserved_size = INT_MAX;
2615
2616         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2617         INIT_LIST_HEAD(&q->requeue_list);
2618         spin_lock_init(&q->requeue_lock);
2619
2620         blk_queue_make_request(q, blk_mq_make_request);
2621         if (q->mq_ops->poll)
2622                 q->poll_fn = blk_mq_poll;
2623
2624         /*
2625          * Do this after blk_queue_make_request() overrides it...
2626          */
2627         q->nr_requests = set->queue_depth;
2628
2629         /*
2630          * Default to classic polling
2631          */
2632         q->poll_nsec = -1;
2633
2634         if (set->ops->complete)
2635                 blk_queue_softirq_done(q, set->ops->complete);
2636
2637         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2638         blk_mq_add_queue_tag_set(set, q);
2639         blk_mq_map_swqueue(q);
2640
2641         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2642                 int ret;
2643
2644                 ret = elevator_init_mq(q);
2645                 if (ret)
2646                         return ERR_PTR(ret);
2647         }
2648
2649         return q;
2650
2651 err_hctxs:
2652         kfree(q->queue_hw_ctx);
2653 err_percpu:
2654         free_percpu(q->queue_ctx);
2655 err_exit:
2656         q->mq_ops = NULL;
2657         return ERR_PTR(-ENOMEM);
2658 }
2659 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2660
2661 void blk_mq_free_queue(struct request_queue *q)
2662 {
2663         struct blk_mq_tag_set   *set = q->tag_set;
2664
2665         blk_mq_del_queue_tag_set(q);
2666         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2667 }
2668
2669 /* Basically redo blk_mq_init_queue with queue frozen */
2670 static void blk_mq_queue_reinit(struct request_queue *q)
2671 {
2672         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2673
2674         blk_mq_debugfs_unregister_hctxs(q);
2675         blk_mq_sysfs_unregister(q);
2676
2677         /*
2678          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2679          * we should change hctx numa_node according to the new topology (this
2680          * involves freeing and re-allocating memory, worth doing?)
2681          */
2682         blk_mq_map_swqueue(q);
2683
2684         blk_mq_sysfs_register(q);
2685         blk_mq_debugfs_register_hctxs(q);
2686 }
2687
2688 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2689 {
2690         int i;
2691
2692         for (i = 0; i < set->nr_hw_queues; i++)
2693                 if (!__blk_mq_alloc_rq_map(set, i))
2694                         goto out_unwind;
2695
2696         return 0;
2697
2698 out_unwind:
2699         while (--i >= 0)
2700                 blk_mq_free_rq_map(set->tags[i]);
2701
2702         return -ENOMEM;
2703 }
2704
2705 /*
2706  * Allocate the request maps associated with this tag_set. Note that this
2707  * may reduce the depth asked for, if memory is tight. set->queue_depth
2708  * will be updated to reflect the allocated depth.
2709  */
2710 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2711 {
2712         unsigned int depth;
2713         int err;
2714
2715         depth = set->queue_depth;
2716         do {
2717                 err = __blk_mq_alloc_rq_maps(set);
2718                 if (!err)
2719                         break;
2720
2721                 set->queue_depth >>= 1;
2722                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2723                         err = -ENOMEM;
2724                         break;
2725                 }
2726         } while (set->queue_depth);
2727
2728         if (!set->queue_depth || err) {
2729                 pr_err("blk-mq: failed to allocate request map\n");
2730                 return -ENOMEM;
2731         }
2732
2733         if (depth != set->queue_depth)
2734                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2735                                                 depth, set->queue_depth);
2736
2737         return 0;
2738 }
2739
2740 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2741 {
2742         if (set->ops->map_queues) {
2743                 /*
2744                  * transport .map_queues is usually done in the following
2745                  * way:
2746                  *
2747                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2748                  *      mask = get_cpu_mask(queue)
2749                  *      for_each_cpu(cpu, mask)
2750                  *              set->mq_map[cpu] = queue;
2751                  * }
2752                  *
2753                  * When we need to remap, the table has to be cleared for
2754                  * killing stale mapping since one CPU may not be mapped
2755                  * to any hw queue.
2756                  */
2757                 blk_mq_clear_mq_map(set);
2758
2759                 return set->ops->map_queues(set);
2760         } else
2761                 return blk_mq_map_queues(set);
2762 }
2763
2764 /*
2765  * Alloc a tag set to be associated with one or more request queues.
2766  * May fail with EINVAL for various error conditions. May adjust the
2767  * requested depth down, if it's too large. In that case, the set
2768  * value will be stored in set->queue_depth.
2769  */
2770 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2771 {
2772         int ret;
2773
2774         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2775
2776         if (!set->nr_hw_queues)
2777                 return -EINVAL;
2778         if (!set->queue_depth)
2779                 return -EINVAL;
2780         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2781                 return -EINVAL;
2782
2783         if (!set->ops->queue_rq)
2784                 return -EINVAL;
2785
2786         if (!set->ops->get_budget ^ !set->ops->put_budget)
2787                 return -EINVAL;
2788
2789         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2790                 pr_info("blk-mq: reduced tag depth to %u\n",
2791                         BLK_MQ_MAX_DEPTH);
2792                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2793         }
2794
2795         /*
2796          * If a crashdump is active, then we are potentially in a very
2797          * memory constrained environment. Limit us to 1 queue and
2798          * 64 tags to prevent using too much memory.
2799          */
2800         if (is_kdump_kernel()) {
2801                 set->nr_hw_queues = 1;
2802                 set->queue_depth = min(64U, set->queue_depth);
2803         }
2804         /*
2805          * There is no use for more h/w queues than cpus.
2806          */
2807         if (set->nr_hw_queues > nr_cpu_ids)
2808                 set->nr_hw_queues = nr_cpu_ids;
2809
2810         set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2811                                  GFP_KERNEL, set->numa_node);
2812         if (!set->tags)
2813                 return -ENOMEM;
2814
2815         ret = -ENOMEM;
2816         set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2817                                    GFP_KERNEL, set->numa_node);
2818         if (!set->mq_map)
2819                 goto out_free_tags;
2820
2821         ret = blk_mq_update_queue_map(set);
2822         if (ret)
2823                 goto out_free_mq_map;
2824
2825         ret = blk_mq_alloc_rq_maps(set);
2826         if (ret)
2827                 goto out_free_mq_map;
2828
2829         mutex_init(&set->tag_list_lock);
2830         INIT_LIST_HEAD(&set->tag_list);
2831
2832         return 0;
2833
2834 out_free_mq_map:
2835         kfree(set->mq_map);
2836         set->mq_map = NULL;
2837 out_free_tags:
2838         kfree(set->tags);
2839         set->tags = NULL;
2840         return ret;
2841 }
2842 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2843
2844 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2845 {
2846         int i;
2847
2848         for (i = 0; i < nr_cpu_ids; i++)
2849                 blk_mq_free_map_and_requests(set, i);
2850
2851         kfree(set->mq_map);
2852         set->mq_map = NULL;
2853
2854         kfree(set->tags);
2855         set->tags = NULL;
2856 }
2857 EXPORT_SYMBOL(blk_mq_free_tag_set);
2858
2859 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2860 {
2861         struct blk_mq_tag_set *set = q->tag_set;
2862         struct blk_mq_hw_ctx *hctx;
2863         int i, ret;
2864
2865         if (!set)
2866                 return -EINVAL;
2867
2868         blk_mq_freeze_queue(q);
2869         blk_mq_quiesce_queue(q);
2870
2871         ret = 0;
2872         queue_for_each_hw_ctx(q, hctx, i) {
2873                 if (!hctx->tags)
2874                         continue;
2875                 /*
2876                  * If we're using an MQ scheduler, just update the scheduler
2877                  * queue depth. This is similar to what the old code would do.
2878                  */
2879                 if (!hctx->sched_tags) {
2880                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2881                                                         false);
2882                 } else {
2883                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2884                                                         nr, true);
2885                 }
2886                 if (ret)
2887                         break;
2888         }
2889
2890         if (!ret)
2891                 q->nr_requests = nr;
2892
2893         blk_mq_unquiesce_queue(q);
2894         blk_mq_unfreeze_queue(q);
2895
2896         return ret;
2897 }
2898
2899 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2900                                                         int nr_hw_queues)
2901 {
2902         struct request_queue *q;
2903
2904         lockdep_assert_held(&set->tag_list_lock);
2905
2906         if (nr_hw_queues > nr_cpu_ids)
2907                 nr_hw_queues = nr_cpu_ids;
2908         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2909                 return;
2910
2911         list_for_each_entry(q, &set->tag_list, tag_set_list)
2912                 blk_mq_freeze_queue(q);
2913
2914         set->nr_hw_queues = nr_hw_queues;
2915         blk_mq_update_queue_map(set);
2916         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2917                 blk_mq_realloc_hw_ctxs(set, q);
2918                 blk_mq_queue_reinit(q);
2919         }
2920
2921         list_for_each_entry(q, &set->tag_list, tag_set_list)
2922                 blk_mq_unfreeze_queue(q);
2923 }
2924
2925 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2926 {
2927         mutex_lock(&set->tag_list_lock);
2928         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2929         mutex_unlock(&set->tag_list_lock);
2930 }
2931 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2932
2933 /* Enable polling stats and return whether they were already enabled. */
2934 static bool blk_poll_stats_enable(struct request_queue *q)
2935 {
2936         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2937             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2938                 return true;
2939         blk_stat_add_callback(q, q->poll_cb);
2940         return false;
2941 }
2942
2943 static void blk_mq_poll_stats_start(struct request_queue *q)
2944 {
2945         /*
2946          * We don't arm the callback if polling stats are not enabled or the
2947          * callback is already active.
2948          */
2949         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2950             blk_stat_is_active(q->poll_cb))
2951                 return;
2952
2953         blk_stat_activate_msecs(q->poll_cb, 100);
2954 }
2955
2956 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2957 {
2958         struct request_queue *q = cb->data;
2959         int bucket;
2960
2961         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2962                 if (cb->stat[bucket].nr_samples)
2963                         q->poll_stat[bucket] = cb->stat[bucket];
2964         }
2965 }
2966
2967 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2968                                        struct blk_mq_hw_ctx *hctx,
2969                                        struct request *rq)
2970 {
2971         unsigned long ret = 0;
2972         int bucket;
2973
2974         /*
2975          * If stats collection isn't on, don't sleep but turn it on for
2976          * future users
2977          */
2978         if (!blk_poll_stats_enable(q))
2979                 return 0;
2980
2981         /*
2982          * As an optimistic guess, use half of the mean service time
2983          * for this type of request. We can (and should) make this smarter.
2984          * For instance, if the completion latencies are tight, we can
2985          * get closer than just half the mean. This is especially
2986          * important on devices where the completion latencies are longer
2987          * than ~10 usec. We do use the stats for the relevant IO size
2988          * if available which does lead to better estimates.
2989          */
2990         bucket = blk_mq_poll_stats_bkt(rq);
2991         if (bucket < 0)
2992                 return ret;
2993
2994         if (q->poll_stat[bucket].nr_samples)
2995                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2996
2997         return ret;
2998 }
2999
3000 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3001                                      struct blk_mq_hw_ctx *hctx,
3002                                      struct request *rq)
3003 {
3004         struct hrtimer_sleeper hs;
3005         enum hrtimer_mode mode;
3006         unsigned int nsecs;
3007         ktime_t kt;
3008
3009         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3010                 return false;
3011
3012         /*
3013          * poll_nsec can be:
3014          *
3015          * -1:  don't ever hybrid sleep
3016          *  0:  use half of prev avg
3017          * >0:  use this specific value
3018          */
3019         if (q->poll_nsec == -1)
3020                 return false;
3021         else if (q->poll_nsec > 0)
3022                 nsecs = q->poll_nsec;
3023         else
3024                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3025
3026         if (!nsecs)
3027                 return false;
3028
3029         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3030
3031         /*
3032          * This will be replaced with the stats tracking code, using
3033          * 'avg_completion_time / 2' as the pre-sleep target.
3034          */
3035         kt = nsecs;
3036
3037         mode = HRTIMER_MODE_REL;
3038         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3039         hrtimer_set_expires(&hs.timer, kt);
3040
3041         hrtimer_init_sleeper(&hs, current);
3042         do {
3043                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3044                         break;
3045                 set_current_state(TASK_UNINTERRUPTIBLE);
3046                 hrtimer_start_expires(&hs.timer, mode);
3047                 if (hs.task)
3048                         io_schedule();
3049                 hrtimer_cancel(&hs.timer);
3050                 mode = HRTIMER_MODE_ABS;
3051         } while (hs.task && !signal_pending(current));
3052
3053         __set_current_state(TASK_RUNNING);
3054         destroy_hrtimer_on_stack(&hs.timer);
3055         return true;
3056 }
3057
3058 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3059 {
3060         struct request_queue *q = hctx->queue;
3061         long state;
3062
3063         /*
3064          * If we sleep, have the caller restart the poll loop to reset
3065          * the state. Like for the other success return cases, the
3066          * caller is responsible for checking if the IO completed. If
3067          * the IO isn't complete, we'll get called again and will go
3068          * straight to the busy poll loop.
3069          */
3070         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3071                 return true;
3072
3073         hctx->poll_considered++;
3074
3075         state = current->state;
3076         while (!need_resched()) {
3077                 int ret;
3078
3079                 hctx->poll_invoked++;
3080
3081                 ret = q->mq_ops->poll(hctx, rq->tag);
3082                 if (ret > 0) {
3083                         hctx->poll_success++;
3084                         set_current_state(TASK_RUNNING);
3085                         return true;
3086                 }
3087
3088                 if (signal_pending_state(state, current))
3089                         set_current_state(TASK_RUNNING);
3090
3091                 if (current->state == TASK_RUNNING)
3092                         return true;
3093                 if (ret < 0)
3094                         break;
3095                 cpu_relax();
3096         }
3097
3098         __set_current_state(TASK_RUNNING);
3099         return false;
3100 }
3101
3102 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3103 {
3104         struct blk_mq_hw_ctx *hctx;
3105         struct request *rq;
3106
3107         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3108                 return false;
3109
3110         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3111         if (!blk_qc_t_is_internal(cookie))
3112                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3113         else {
3114                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3115                 /*
3116                  * With scheduling, if the request has completed, we'll
3117                  * get a NULL return here, as we clear the sched tag when
3118                  * that happens. The request still remains valid, like always,
3119                  * so we should be safe with just the NULL check.
3120                  */
3121                 if (!rq)
3122                         return false;
3123         }
3124
3125         return __blk_mq_poll(hctx, rq);
3126 }
3127
3128 static int __init blk_mq_init(void)
3129 {
3130         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3131                                 blk_mq_hctx_notify_dead);
3132         return 0;
3133 }
3134 subsys_initcall(blk_mq_init);