Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99                 /*
100                  * index[0] counts the specific partition that was asked
101                  * for. index[1] counts the ones that are active on the
102                  * whole device, so increment that if mi->part is indeed
103                  * a partition, and not a whole device.
104                  */
105                 if (rq->part == mi->part)
106                         mi->inflight[0]++;
107                 if (mi->part->partno)
108                         mi->inflight[1]++;
109         }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113                       unsigned int inflight[2])
114 {
115         struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117         inflight[0] = inflight[1] = 0;
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123         int freeze_depth;
124
125         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126         if (freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 if (q->mq_ops)
129                         blk_mq_run_hw_queues(q, false);
130         }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141                                      unsigned long timeout)
142 {
143         return wait_event_timeout(q->mq_freeze_wq,
144                                         percpu_ref_is_zero(&q->q_usage_counter),
145                                         timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150  * Guarantee no request is in use, so we can change any data structure of
151  * the queue afterward.
152  */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155         /*
156          * In the !blk_mq case we are only calling this to kill the
157          * q_usage_counter, otherwise this increases the freeze depth
158          * and waits for it to return to zero.  For this reason there is
159          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160          * exported to drivers as the only user for unfreeze is blk_mq.
161          */
162         blk_freeze_queue_start(q);
163         if (!q->mq_ops)
164                 blk_drain_queue(q);
165         blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * ...just an alias to keep freeze and unfreeze actions balanced
172          * in the blk_mq_* namespace
173          */
174         blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180         int freeze_depth;
181
182         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183         WARN_ON_ONCE(freeze_depth < 0);
184         if (!freeze_depth) {
185                 percpu_ref_reinit(&q->q_usage_counter);
186                 wake_up_all(&q->mq_freeze_wq);
187         }
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190
191 /*
192  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193  * mpt3sas driver such that this function can be removed.
194  */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197         unsigned long flags;
198
199         spin_lock_irqsave(q->queue_lock, flags);
200         queue_flag_set(QUEUE_FLAG_QUIESCED, q);
201         spin_unlock_irqrestore(q->queue_lock, flags);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
204
205 /**
206  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207  * @q: request queue.
208  *
209  * Note: this function does not prevent that the struct request end_io()
210  * callback function is invoked. Once this function is returned, we make
211  * sure no dispatch can happen until the queue is unquiesced via
212  * blk_mq_unquiesce_queue().
213  */
214 void blk_mq_quiesce_queue(struct request_queue *q)
215 {
216         struct blk_mq_hw_ctx *hctx;
217         unsigned int i;
218         bool rcu = false;
219
220         blk_mq_quiesce_queue_nowait(q);
221
222         queue_for_each_hw_ctx(q, hctx, i) {
223                 if (hctx->flags & BLK_MQ_F_BLOCKING)
224                         synchronize_srcu(hctx->srcu);
225                 else
226                         rcu = true;
227         }
228         if (rcu)
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
232
233 /*
234  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
235  * @q: request queue.
236  *
237  * This function recovers queue into the state before quiescing
238  * which is done by blk_mq_quiesce_queue.
239  */
240 void blk_mq_unquiesce_queue(struct request_queue *q)
241 {
242         unsigned long flags;
243
244         spin_lock_irqsave(q->queue_lock, flags);
245         queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246         spin_unlock_irqrestore(q->queue_lock, flags);
247
248         /* dispatch requests which are inserted during quiescing */
249         blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255         struct blk_mq_hw_ctx *hctx;
256         unsigned int i;
257
258         queue_for_each_hw_ctx(q, hctx, i)
259                 if (blk_mq_hw_queue_mapped(hctx))
260                         blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264 {
265         return blk_mq_has_free_tags(hctx->tags);
266 }
267 EXPORT_SYMBOL(blk_mq_can_queue);
268
269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270                 unsigned int tag, unsigned int op)
271 {
272         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273         struct request *rq = tags->static_rqs[tag];
274         req_flags_t rq_flags = 0;
275
276         if (data->flags & BLK_MQ_REQ_INTERNAL) {
277                 rq->tag = -1;
278                 rq->internal_tag = tag;
279         } else {
280                 if (blk_mq_tag_busy(data->hctx)) {
281                         rq_flags = RQF_MQ_INFLIGHT;
282                         atomic_inc(&data->hctx->nr_active);
283                 }
284                 rq->tag = tag;
285                 rq->internal_tag = -1;
286                 data->hctx->tags->rqs[rq->tag] = rq;
287         }
288
289         /* csd/requeue_work/fifo_time is initialized before use */
290         rq->q = data->q;
291         rq->mq_ctx = data->ctx;
292         rq->rq_flags = rq_flags;
293         rq->cpu = -1;
294         rq->cmd_flags = op;
295         if (data->flags & BLK_MQ_REQ_PREEMPT)
296                 rq->rq_flags |= RQF_PREEMPT;
297         if (blk_queue_io_stat(data->q))
298                 rq->rq_flags |= RQF_IO_STAT;
299         INIT_LIST_HEAD(&rq->queuelist);
300         INIT_HLIST_NODE(&rq->hash);
301         RB_CLEAR_NODE(&rq->rb_node);
302         rq->rq_disk = NULL;
303         rq->part = NULL;
304         rq->start_time = jiffies;
305         rq->nr_phys_segments = 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307         rq->nr_integrity_segments = 0;
308 #endif
309         rq->special = NULL;
310         /* tag was already set */
311         rq->extra_len = 0;
312         rq->__deadline = 0;
313
314         INIT_LIST_HEAD(&rq->timeout_list);
315         rq->timeout = 0;
316
317         rq->end_io = NULL;
318         rq->end_io_data = NULL;
319         rq->next_rq = NULL;
320
321 #ifdef CONFIG_BLK_CGROUP
322         rq->rl = NULL;
323         set_start_time_ns(rq);
324         rq->io_start_time_ns = 0;
325 #endif
326
327         data->ctx->rq_dispatched[op_is_sync(op)]++;
328         return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332                 struct bio *bio, unsigned int op,
333                 struct blk_mq_alloc_data *data)
334 {
335         struct elevator_queue *e = q->elevator;
336         struct request *rq;
337         unsigned int tag;
338         bool put_ctx_on_error = false;
339
340         blk_queue_enter_live(q);
341         data->q = q;
342         if (likely(!data->ctx)) {
343                 data->ctx = blk_mq_get_ctx(q);
344                 put_ctx_on_error = true;
345         }
346         if (likely(!data->hctx))
347                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348         if (op & REQ_NOWAIT)
349                 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351         if (e) {
352                 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354                 /*
355                  * Flush requests are special and go directly to the
356                  * dispatch list.
357                  */
358                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359                         e->type->ops.mq.limit_depth(op, data);
360         }
361
362         tag = blk_mq_get_tag(data);
363         if (tag == BLK_MQ_TAG_FAIL) {
364                 if (put_ctx_on_error) {
365                         blk_mq_put_ctx(data->ctx);
366                         data->ctx = NULL;
367                 }
368                 blk_queue_exit(q);
369                 return NULL;
370         }
371
372         rq = blk_mq_rq_ctx_init(data, tag, op);
373         if (!op_is_flush(op)) {
374                 rq->elv.icq = NULL;
375                 if (e && e->type->ops.mq.prepare_request) {
376                         if (e->type->icq_cache && rq_ioc(bio))
377                                 blk_mq_sched_assign_ioc(rq, bio);
378
379                         e->type->ops.mq.prepare_request(rq, bio);
380                         rq->rq_flags |= RQF_ELVPRIV;
381                 }
382         }
383         data->hctx->queued++;
384         return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388                 blk_mq_req_flags_t flags)
389 {
390         struct blk_mq_alloc_data alloc_data = { .flags = flags };
391         struct request *rq;
392         int ret;
393
394         ret = blk_queue_enter(q, flags);
395         if (ret)
396                 return ERR_PTR(ret);
397
398         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399         blk_queue_exit(q);
400
401         if (!rq)
402                 return ERR_PTR(-EWOULDBLOCK);
403
404         blk_mq_put_ctx(alloc_data.ctx);
405
406         rq->__data_len = 0;
407         rq->__sector = (sector_t) -1;
408         rq->bio = rq->biotail = NULL;
409         return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416         struct blk_mq_alloc_data alloc_data = { .flags = flags };
417         struct request *rq;
418         unsigned int cpu;
419         int ret;
420
421         /*
422          * If the tag allocator sleeps we could get an allocation for a
423          * different hardware context.  No need to complicate the low level
424          * allocator for this for the rare use case of a command tied to
425          * a specific queue.
426          */
427         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428                 return ERR_PTR(-EINVAL);
429
430         if (hctx_idx >= q->nr_hw_queues)
431                 return ERR_PTR(-EIO);
432
433         ret = blk_queue_enter(q, flags);
434         if (ret)
435                 return ERR_PTR(ret);
436
437         /*
438          * Check if the hardware context is actually mapped to anything.
439          * If not tell the caller that it should skip this queue.
440          */
441         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443                 blk_queue_exit(q);
444                 return ERR_PTR(-EXDEV);
445         }
446         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450         blk_queue_exit(q);
451
452         if (!rq)
453                 return ERR_PTR(-EWOULDBLOCK);
454
455         return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461         struct request_queue *q = rq->q;
462         struct elevator_queue *e = q->elevator;
463         struct blk_mq_ctx *ctx = rq->mq_ctx;
464         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465         const int sched_tag = rq->internal_tag;
466
467         if (rq->rq_flags & RQF_ELVPRIV) {
468                 if (e && e->type->ops.mq.finish_request)
469                         e->type->ops.mq.finish_request(rq);
470                 if (rq->elv.icq) {
471                         put_io_context(rq->elv.icq->ioc);
472                         rq->elv.icq = NULL;
473                 }
474         }
475
476         ctx->rq_completed[rq_is_sync(rq)]++;
477         if (rq->rq_flags & RQF_MQ_INFLIGHT)
478                 atomic_dec(&hctx->nr_active);
479
480         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481                 laptop_io_completion(q->backing_dev_info);
482
483         wbt_done(q->rq_wb, &rq->issue_stat);
484
485         if (blk_rq_rl(rq))
486                 blk_put_rl(blk_rq_rl(rq));
487
488         blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489         if (rq->tag != -1)
490                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491         if (sched_tag != -1)
492                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493         blk_mq_sched_restart(hctx);
494         blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500         blk_account_io_done(rq);
501
502         if (rq->end_io) {
503                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504                 rq->end_io(rq, error);
505         } else {
506                 if (unlikely(blk_bidi_rq(rq)))
507                         blk_mq_free_request(rq->next_rq);
508                 blk_mq_free_request(rq);
509         }
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516                 BUG();
517         __blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523         struct request *rq = data;
524
525         rq->q->softirq_done_fn(rq);
526 }
527
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530         struct blk_mq_ctx *ctx = rq->mq_ctx;
531         bool shared = false;
532         int cpu;
533
534         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
535         blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536
537         if (rq->internal_tag != -1)
538                 blk_mq_sched_completed_request(rq);
539         if (rq->rq_flags & RQF_STATS) {
540                 blk_mq_poll_stats_start(rq->q);
541                 blk_stat_add(rq);
542         }
543
544         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545                 rq->q->softirq_done_fn(rq);
546                 return;
547         }
548
549         cpu = get_cpu();
550         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551                 shared = cpus_share_cache(cpu, ctx->cpu);
552
553         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554                 rq->csd.func = __blk_mq_complete_request_remote;
555                 rq->csd.info = rq;
556                 rq->csd.flags = 0;
557                 smp_call_function_single_async(ctx->cpu, &rq->csd);
558         } else {
559                 rq->q->softirq_done_fn(rq);
560         }
561         put_cpu();
562 }
563
564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565         __releases(hctx->srcu)
566 {
567         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
568                 rcu_read_unlock();
569         else
570                 srcu_read_unlock(hctx->srcu, srcu_idx);
571 }
572
573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574         __acquires(hctx->srcu)
575 {
576         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
577                 /* shut up gcc false positive */
578                 *srcu_idx = 0;
579                 rcu_read_lock();
580         } else
581                 *srcu_idx = srcu_read_lock(hctx->srcu);
582 }
583
584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
585 {
586         unsigned long flags;
587
588         /*
589          * blk_mq_rq_aborted_gstate() is used from the completion path and
590          * can thus be called from irq context.  u64_stats_fetch in the
591          * middle of update on the same CPU leads to lockup.  Disable irq
592          * while updating.
593          */
594         local_irq_save(flags);
595         u64_stats_update_begin(&rq->aborted_gstate_sync);
596         rq->aborted_gstate = gstate;
597         u64_stats_update_end(&rq->aborted_gstate_sync);
598         local_irq_restore(flags);
599 }
600
601 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
602 {
603         unsigned int start;
604         u64 aborted_gstate;
605
606         do {
607                 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
608                 aborted_gstate = rq->aborted_gstate;
609         } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
610
611         return aborted_gstate;
612 }
613
614 /**
615  * blk_mq_complete_request - end I/O on a request
616  * @rq:         the request being processed
617  *
618  * Description:
619  *      Ends all I/O on a request. It does not handle partial completions.
620  *      The actual completion happens out-of-order, through a IPI handler.
621  **/
622 void blk_mq_complete_request(struct request *rq)
623 {
624         struct request_queue *q = rq->q;
625         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
626         int srcu_idx;
627
628         if (unlikely(blk_should_fake_timeout(q)))
629                 return;
630
631         /*
632          * If @rq->aborted_gstate equals the current instance, timeout is
633          * claiming @rq and we lost.  This is synchronized through
634          * hctx_lock().  See blk_mq_timeout_work() for details.
635          *
636          * Completion path never blocks and we can directly use RCU here
637          * instead of hctx_lock() which can be either RCU or SRCU.
638          * However, that would complicate paths which want to synchronize
639          * against us.  Let stay in sync with the issue path so that
640          * hctx_lock() covers both issue and completion paths.
641          */
642         hctx_lock(hctx, &srcu_idx);
643         if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644                 __blk_mq_complete_request(rq);
645         hctx_unlock(hctx, srcu_idx);
646 }
647 EXPORT_SYMBOL(blk_mq_complete_request);
648
649 int blk_mq_request_started(struct request *rq)
650 {
651         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 }
653 EXPORT_SYMBOL_GPL(blk_mq_request_started);
654
655 void blk_mq_start_request(struct request *rq)
656 {
657         struct request_queue *q = rq->q;
658
659         blk_mq_sched_started_request(rq);
660
661         trace_block_rq_issue(q, rq);
662
663         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665                 rq->rq_flags |= RQF_STATS;
666                 wbt_issue(q->rq_wb, &rq->issue_stat);
667         }
668
669         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670
671         /*
672          * Mark @rq in-flight which also advances the generation number,
673          * and register for timeout.  Protect with a seqcount to allow the
674          * timeout path to read both @rq->gstate and @rq->deadline
675          * coherently.
676          *
677          * This is the only place where a request is marked in-flight.  If
678          * the timeout path reads an in-flight @rq->gstate, the
679          * @rq->deadline it reads together under @rq->gstate_seq is
680          * guaranteed to be the matching one.
681          */
682         preempt_disable();
683         write_seqcount_begin(&rq->gstate_seq);
684
685         blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
686         blk_add_timer(rq);
687
688         write_seqcount_end(&rq->gstate_seq);
689         preempt_enable();
690
691         if (q->dma_drain_size && blk_rq_bytes(rq)) {
692                 /*
693                  * Make sure space for the drain appears.  We know we can do
694                  * this because max_hw_segments has been adjusted to be one
695                  * fewer than the device can handle.
696                  */
697                 rq->nr_phys_segments++;
698         }
699 }
700 EXPORT_SYMBOL(blk_mq_start_request);
701
702 /*
703  * When we reach here because queue is busy, it's safe to change the state
704  * to IDLE without checking @rq->aborted_gstate because we should still be
705  * holding the RCU read lock and thus protected against timeout.
706  */
707 static void __blk_mq_requeue_request(struct request *rq)
708 {
709         struct request_queue *q = rq->q;
710
711         blk_mq_put_driver_tag(rq);
712
713         trace_block_rq_requeue(q, rq);
714         wbt_requeue(q->rq_wb, &rq->issue_stat);
715         blk_mq_sched_requeue_request(rq);
716
717         if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
718                 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
719                 if (q->dma_drain_size && blk_rq_bytes(rq))
720                         rq->nr_phys_segments--;
721         }
722 }
723
724 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
725 {
726         __blk_mq_requeue_request(rq);
727
728         BUG_ON(blk_queued_rq(rq));
729         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
730 }
731 EXPORT_SYMBOL(blk_mq_requeue_request);
732
733 static void blk_mq_requeue_work(struct work_struct *work)
734 {
735         struct request_queue *q =
736                 container_of(work, struct request_queue, requeue_work.work);
737         LIST_HEAD(rq_list);
738         struct request *rq, *next;
739
740         spin_lock_irq(&q->requeue_lock);
741         list_splice_init(&q->requeue_list, &rq_list);
742         spin_unlock_irq(&q->requeue_lock);
743
744         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
745                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
746                         continue;
747
748                 rq->rq_flags &= ~RQF_SOFTBARRIER;
749                 list_del_init(&rq->queuelist);
750                 blk_mq_sched_insert_request(rq, true, false, false);
751         }
752
753         while (!list_empty(&rq_list)) {
754                 rq = list_entry(rq_list.next, struct request, queuelist);
755                 list_del_init(&rq->queuelist);
756                 blk_mq_sched_insert_request(rq, false, false, false);
757         }
758
759         blk_mq_run_hw_queues(q, false);
760 }
761
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763                                 bool kick_requeue_list)
764 {
765         struct request_queue *q = rq->q;
766         unsigned long flags;
767
768         /*
769          * We abuse this flag that is otherwise used by the I/O scheduler to
770          * request head insertion from the workqueue.
771          */
772         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773
774         spin_lock_irqsave(&q->requeue_lock, flags);
775         if (at_head) {
776                 rq->rq_flags |= RQF_SOFTBARRIER;
777                 list_add(&rq->queuelist, &q->requeue_list);
778         } else {
779                 list_add_tail(&rq->queuelist, &q->requeue_list);
780         }
781         spin_unlock_irqrestore(&q->requeue_lock, flags);
782
783         if (kick_requeue_list)
784                 blk_mq_kick_requeue_list(q);
785 }
786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
787
788 void blk_mq_kick_requeue_list(struct request_queue *q)
789 {
790         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
791 }
792 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
793
794 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
795                                     unsigned long msecs)
796 {
797         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
798                                     msecs_to_jiffies(msecs));
799 }
800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
801
802 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
803 {
804         if (tag < tags->nr_tags) {
805                 prefetch(tags->rqs[tag]);
806                 return tags->rqs[tag];
807         }
808
809         return NULL;
810 }
811 EXPORT_SYMBOL(blk_mq_tag_to_rq);
812
813 struct blk_mq_timeout_data {
814         unsigned long next;
815         unsigned int next_set;
816         unsigned int nr_expired;
817 };
818
819 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
820 {
821         const struct blk_mq_ops *ops = req->q->mq_ops;
822         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
823
824         req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
825
826         if (ops->timeout)
827                 ret = ops->timeout(req, reserved);
828
829         switch (ret) {
830         case BLK_EH_HANDLED:
831                 __blk_mq_complete_request(req);
832                 break;
833         case BLK_EH_RESET_TIMER:
834                 /*
835                  * As nothing prevents from completion happening while
836                  * ->aborted_gstate is set, this may lead to ignored
837                  * completions and further spurious timeouts.
838                  */
839                 blk_mq_rq_update_aborted_gstate(req, 0);
840                 blk_add_timer(req);
841                 break;
842         case BLK_EH_NOT_HANDLED:
843                 break;
844         default:
845                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
846                 break;
847         }
848 }
849
850 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
851                 struct request *rq, void *priv, bool reserved)
852 {
853         struct blk_mq_timeout_data *data = priv;
854         unsigned long gstate, deadline;
855         int start;
856
857         might_sleep();
858
859         if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
860                 return;
861
862         /* read coherent snapshots of @rq->state_gen and @rq->deadline */
863         while (true) {
864                 start = read_seqcount_begin(&rq->gstate_seq);
865                 gstate = READ_ONCE(rq->gstate);
866                 deadline = blk_rq_deadline(rq);
867                 if (!read_seqcount_retry(&rq->gstate_seq, start))
868                         break;
869                 cond_resched();
870         }
871
872         /* if in-flight && overdue, mark for abortion */
873         if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
874             time_after_eq(jiffies, deadline)) {
875                 blk_mq_rq_update_aborted_gstate(rq, gstate);
876                 data->nr_expired++;
877                 hctx->nr_expired++;
878         } else if (!data->next_set || time_after(data->next, deadline)) {
879                 data->next = deadline;
880                 data->next_set = 1;
881         }
882 }
883
884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
885                 struct request *rq, void *priv, bool reserved)
886 {
887         /*
888          * We marked @rq->aborted_gstate and waited for RCU.  If there were
889          * completions that we lost to, they would have finished and
890          * updated @rq->gstate by now; otherwise, the completion path is
891          * now guaranteed to see @rq->aborted_gstate and yield.  If
892          * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
893          */
894         if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
895             READ_ONCE(rq->gstate) == rq->aborted_gstate)
896                 blk_mq_rq_timed_out(rq, reserved);
897 }
898
899 static void blk_mq_timeout_work(struct work_struct *work)
900 {
901         struct request_queue *q =
902                 container_of(work, struct request_queue, timeout_work);
903         struct blk_mq_timeout_data data = {
904                 .next           = 0,
905                 .next_set       = 0,
906                 .nr_expired     = 0,
907         };
908         struct blk_mq_hw_ctx *hctx;
909         int i;
910
911         /* A deadlock might occur if a request is stuck requiring a
912          * timeout at the same time a queue freeze is waiting
913          * completion, since the timeout code would not be able to
914          * acquire the queue reference here.
915          *
916          * That's why we don't use blk_queue_enter here; instead, we use
917          * percpu_ref_tryget directly, because we need to be able to
918          * obtain a reference even in the short window between the queue
919          * starting to freeze, by dropping the first reference in
920          * blk_freeze_queue_start, and the moment the last request is
921          * consumed, marked by the instant q_usage_counter reaches
922          * zero.
923          */
924         if (!percpu_ref_tryget(&q->q_usage_counter))
925                 return;
926
927         /* scan for the expired ones and set their ->aborted_gstate */
928         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
929
930         if (data.nr_expired) {
931                 bool has_rcu = false;
932
933                 /*
934                  * Wait till everyone sees ->aborted_gstate.  The
935                  * sequential waits for SRCUs aren't ideal.  If this ever
936                  * becomes a problem, we can add per-hw_ctx rcu_head and
937                  * wait in parallel.
938                  */
939                 queue_for_each_hw_ctx(q, hctx, i) {
940                         if (!hctx->nr_expired)
941                                 continue;
942
943                         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
944                                 has_rcu = true;
945                         else
946                                 synchronize_srcu(hctx->srcu);
947
948                         hctx->nr_expired = 0;
949                 }
950                 if (has_rcu)
951                         synchronize_rcu();
952
953                 /* terminate the ones we won */
954                 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
955         }
956
957         if (data.next_set) {
958                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
959                 mod_timer(&q->timeout, data.next);
960         } else {
961                 /*
962                  * Request timeouts are handled as a forward rolling timer. If
963                  * we end up here it means that no requests are pending and
964                  * also that no request has been pending for a while. Mark
965                  * each hctx as idle.
966                  */
967                 queue_for_each_hw_ctx(q, hctx, i) {
968                         /* the hctx may be unmapped, so check it here */
969                         if (blk_mq_hw_queue_mapped(hctx))
970                                 blk_mq_tag_idle(hctx);
971                 }
972         }
973         blk_queue_exit(q);
974 }
975
976 struct flush_busy_ctx_data {
977         struct blk_mq_hw_ctx *hctx;
978         struct list_head *list;
979 };
980
981 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
982 {
983         struct flush_busy_ctx_data *flush_data = data;
984         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
985         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
986
987         sbitmap_clear_bit(sb, bitnr);
988         spin_lock(&ctx->lock);
989         list_splice_tail_init(&ctx->rq_list, flush_data->list);
990         spin_unlock(&ctx->lock);
991         return true;
992 }
993
994 /*
995  * Process software queues that have been marked busy, splicing them
996  * to the for-dispatch
997  */
998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
999 {
1000         struct flush_busy_ctx_data data = {
1001                 .hctx = hctx,
1002                 .list = list,
1003         };
1004
1005         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1008
1009 struct dispatch_rq_data {
1010         struct blk_mq_hw_ctx *hctx;
1011         struct request *rq;
1012 };
1013
1014 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1015                 void *data)
1016 {
1017         struct dispatch_rq_data *dispatch_data = data;
1018         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1019         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1020
1021         spin_lock(&ctx->lock);
1022         if (unlikely(!list_empty(&ctx->rq_list))) {
1023                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1024                 list_del_init(&dispatch_data->rq->queuelist);
1025                 if (list_empty(&ctx->rq_list))
1026                         sbitmap_clear_bit(sb, bitnr);
1027         }
1028         spin_unlock(&ctx->lock);
1029
1030         return !dispatch_data->rq;
1031 }
1032
1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034                                         struct blk_mq_ctx *start)
1035 {
1036         unsigned off = start ? start->index_hw : 0;
1037         struct dispatch_rq_data data = {
1038                 .hctx = hctx,
1039                 .rq   = NULL,
1040         };
1041
1042         __sbitmap_for_each_set(&hctx->ctx_map, off,
1043                                dispatch_rq_from_ctx, &data);
1044
1045         return data.rq;
1046 }
1047
1048 static inline unsigned int queued_to_index(unsigned int queued)
1049 {
1050         if (!queued)
1051                 return 0;
1052
1053         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054 }
1055
1056 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1057                            bool wait)
1058 {
1059         struct blk_mq_alloc_data data = {
1060                 .q = rq->q,
1061                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1062                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1063         };
1064
1065         might_sleep_if(wait);
1066
1067         if (rq->tag != -1)
1068                 goto done;
1069
1070         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1071                 data.flags |= BLK_MQ_REQ_RESERVED;
1072
1073         rq->tag = blk_mq_get_tag(&data);
1074         if (rq->tag >= 0) {
1075                 if (blk_mq_tag_busy(data.hctx)) {
1076                         rq->rq_flags |= RQF_MQ_INFLIGHT;
1077                         atomic_inc(&data.hctx->nr_active);
1078                 }
1079                 data.hctx->tags->rqs[rq->tag] = rq;
1080         }
1081
1082 done:
1083         if (hctx)
1084                 *hctx = data.hctx;
1085         return rq->tag != -1;
1086 }
1087
1088 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1089                                 int flags, void *key)
1090 {
1091         struct blk_mq_hw_ctx *hctx;
1092
1093         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1094
1095         list_del_init(&wait->entry);
1096         blk_mq_run_hw_queue(hctx, true);
1097         return 1;
1098 }
1099
1100 /*
1101  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1102  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1103  * restart. For both cases, take care to check the condition again after
1104  * marking us as waiting.
1105  */
1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1107                                  struct request *rq)
1108 {
1109         struct blk_mq_hw_ctx *this_hctx = *hctx;
1110         struct sbq_wait_state *ws;
1111         wait_queue_entry_t *wait;
1112         bool ret;
1113
1114         if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1115                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1116                         set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1117
1118                 /*
1119                  * It's possible that a tag was freed in the window between the
1120                  * allocation failure and adding the hardware queue to the wait
1121                  * queue.
1122                  *
1123                  * Don't clear RESTART here, someone else could have set it.
1124                  * At most this will cost an extra queue run.
1125                  */
1126                 return blk_mq_get_driver_tag(rq, hctx, false);
1127         }
1128
1129         wait = &this_hctx->dispatch_wait;
1130         if (!list_empty_careful(&wait->entry))
1131                 return false;
1132
1133         spin_lock(&this_hctx->lock);
1134         if (!list_empty(&wait->entry)) {
1135                 spin_unlock(&this_hctx->lock);
1136                 return false;
1137         }
1138
1139         ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1140         add_wait_queue(&ws->wait, wait);
1141
1142         /*
1143          * It's possible that a tag was freed in the window between the
1144          * allocation failure and adding the hardware queue to the wait
1145          * queue.
1146          */
1147         ret = blk_mq_get_driver_tag(rq, hctx, false);
1148         if (!ret) {
1149                 spin_unlock(&this_hctx->lock);
1150                 return false;
1151         }
1152
1153         /*
1154          * We got a tag, remove ourselves from the wait queue to ensure
1155          * someone else gets the wakeup.
1156          */
1157         spin_lock_irq(&ws->wait.lock);
1158         list_del_init(&wait->entry);
1159         spin_unlock_irq(&ws->wait.lock);
1160         spin_unlock(&this_hctx->lock);
1161
1162         return true;
1163 }
1164
1165 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1166                              bool got_budget)
1167 {
1168         struct blk_mq_hw_ctx *hctx;
1169         struct request *rq, *nxt;
1170         bool no_tag = false;
1171         int errors, queued;
1172
1173         if (list_empty(list))
1174                 return false;
1175
1176         WARN_ON(!list_is_singular(list) && got_budget);
1177
1178         /*
1179          * Now process all the entries, sending them to the driver.
1180          */
1181         errors = queued = 0;
1182         do {
1183                 struct blk_mq_queue_data bd;
1184                 blk_status_t ret;
1185
1186                 rq = list_first_entry(list, struct request, queuelist);
1187                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1188                         /*
1189                          * The initial allocation attempt failed, so we need to
1190                          * rerun the hardware queue when a tag is freed. The
1191                          * waitqueue takes care of that. If the queue is run
1192                          * before we add this entry back on the dispatch list,
1193                          * we'll re-run it below.
1194                          */
1195                         if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1196                                 if (got_budget)
1197                                         blk_mq_put_dispatch_budget(hctx);
1198                                 /*
1199                                  * For non-shared tags, the RESTART check
1200                                  * will suffice.
1201                                  */
1202                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1203                                         no_tag = true;
1204                                 break;
1205                         }
1206                 }
1207
1208                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1209                         blk_mq_put_driver_tag(rq);
1210                         break;
1211                 }
1212
1213                 list_del_init(&rq->queuelist);
1214
1215                 bd.rq = rq;
1216
1217                 /*
1218                  * Flag last if we have no more requests, or if we have more
1219                  * but can't assign a driver tag to it.
1220                  */
1221                 if (list_empty(list))
1222                         bd.last = true;
1223                 else {
1224                         nxt = list_first_entry(list, struct request, queuelist);
1225                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1226                 }
1227
1228                 ret = q->mq_ops->queue_rq(hctx, &bd);
1229                 if (ret == BLK_STS_RESOURCE) {
1230                         /*
1231                          * If an I/O scheduler has been configured and we got a
1232                          * driver tag for the next request already, free it
1233                          * again.
1234                          */
1235                         if (!list_empty(list)) {
1236                                 nxt = list_first_entry(list, struct request, queuelist);
1237                                 blk_mq_put_driver_tag(nxt);
1238                         }
1239                         list_add(&rq->queuelist, list);
1240                         __blk_mq_requeue_request(rq);
1241                         break;
1242                 }
1243
1244                 if (unlikely(ret != BLK_STS_OK)) {
1245                         errors++;
1246                         blk_mq_end_request(rq, BLK_STS_IOERR);
1247                         continue;
1248                 }
1249
1250                 queued++;
1251         } while (!list_empty(list));
1252
1253         hctx->dispatched[queued_to_index(queued)]++;
1254
1255         /*
1256          * Any items that need requeuing? Stuff them into hctx->dispatch,
1257          * that is where we will continue on next queue run.
1258          */
1259         if (!list_empty(list)) {
1260                 spin_lock(&hctx->lock);
1261                 list_splice_init(list, &hctx->dispatch);
1262                 spin_unlock(&hctx->lock);
1263
1264                 /*
1265                  * If SCHED_RESTART was set by the caller of this function and
1266                  * it is no longer set that means that it was cleared by another
1267                  * thread and hence that a queue rerun is needed.
1268                  *
1269                  * If 'no_tag' is set, that means that we failed getting
1270                  * a driver tag with an I/O scheduler attached. If our dispatch
1271                  * waitqueue is no longer active, ensure that we run the queue
1272                  * AFTER adding our entries back to the list.
1273                  *
1274                  * If no I/O scheduler has been configured it is possible that
1275                  * the hardware queue got stopped and restarted before requests
1276                  * were pushed back onto the dispatch list. Rerun the queue to
1277                  * avoid starvation. Notes:
1278                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1279                  *   been stopped before rerunning a queue.
1280                  * - Some but not all block drivers stop a queue before
1281                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1282                  *   and dm-rq.
1283                  */
1284                 if (!blk_mq_sched_needs_restart(hctx) ||
1285                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1286                         blk_mq_run_hw_queue(hctx, true);
1287         }
1288
1289         return (queued + errors) != 0;
1290 }
1291
1292 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1293 {
1294         int srcu_idx;
1295
1296         /*
1297          * We should be running this queue from one of the CPUs that
1298          * are mapped to it.
1299          *
1300          * There are at least two related races now between setting
1301          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1302          * __blk_mq_run_hw_queue():
1303          *
1304          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1305          *   but later it becomes online, then this warning is harmless
1306          *   at all
1307          *
1308          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1309          *   but later it becomes offline, then the warning can't be
1310          *   triggered, and we depend on blk-mq timeout handler to
1311          *   handle dispatched requests to this hctx
1312          */
1313         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1314                 cpu_online(hctx->next_cpu)) {
1315                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1316                         raw_smp_processor_id(),
1317                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1318                 dump_stack();
1319         }
1320
1321         /*
1322          * We can't run the queue inline with ints disabled. Ensure that
1323          * we catch bad users of this early.
1324          */
1325         WARN_ON_ONCE(in_interrupt());
1326
1327         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1328
1329         hctx_lock(hctx, &srcu_idx);
1330         blk_mq_sched_dispatch_requests(hctx);
1331         hctx_unlock(hctx, srcu_idx);
1332 }
1333
1334 /*
1335  * It'd be great if the workqueue API had a way to pass
1336  * in a mask and had some smarts for more clever placement.
1337  * For now we just round-robin here, switching for every
1338  * BLK_MQ_CPU_WORK_BATCH queued items.
1339  */
1340 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1341 {
1342         bool tried = false;
1343
1344         if (hctx->queue->nr_hw_queues == 1)
1345                 return WORK_CPU_UNBOUND;
1346
1347         if (--hctx->next_cpu_batch <= 0) {
1348                 int next_cpu;
1349 select_cpu:
1350                 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1351                                 cpu_online_mask);
1352                 if (next_cpu >= nr_cpu_ids)
1353                         next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1354
1355                 /*
1356                  * No online CPU is found, so have to make sure hctx->next_cpu
1357                  * is set correctly for not breaking workqueue.
1358                  */
1359                 if (next_cpu >= nr_cpu_ids)
1360                         hctx->next_cpu = cpumask_first(hctx->cpumask);
1361                 else
1362                         hctx->next_cpu = next_cpu;
1363                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1364         }
1365
1366         /*
1367          * Do unbound schedule if we can't find a online CPU for this hctx,
1368          * and it should only happen in the path of handling CPU DEAD.
1369          */
1370         if (!cpu_online(hctx->next_cpu)) {
1371                 if (!tried) {
1372                         tried = true;
1373                         goto select_cpu;
1374                 }
1375
1376                 /*
1377                  * Make sure to re-select CPU next time once after CPUs
1378                  * in hctx->cpumask become online again.
1379                  */
1380                 hctx->next_cpu_batch = 1;
1381                 return WORK_CPU_UNBOUND;
1382         }
1383         return hctx->next_cpu;
1384 }
1385
1386 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1387                                         unsigned long msecs)
1388 {
1389         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1390                 return;
1391
1392         if (unlikely(blk_mq_hctx_stopped(hctx)))
1393                 return;
1394
1395         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1396                 int cpu = get_cpu();
1397                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1398                         __blk_mq_run_hw_queue(hctx);
1399                         put_cpu();
1400                         return;
1401                 }
1402
1403                 put_cpu();
1404         }
1405
1406         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1407                                     msecs_to_jiffies(msecs));
1408 }
1409
1410 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1411 {
1412         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1413 }
1414 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1415
1416 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1417 {
1418         int srcu_idx;
1419         bool need_run;
1420
1421         /*
1422          * When queue is quiesced, we may be switching io scheduler, or
1423          * updating nr_hw_queues, or other things, and we can't run queue
1424          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1425          *
1426          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1427          * quiesced.
1428          */
1429         hctx_lock(hctx, &srcu_idx);
1430         need_run = !blk_queue_quiesced(hctx->queue) &&
1431                 blk_mq_hctx_has_pending(hctx);
1432         hctx_unlock(hctx, srcu_idx);
1433
1434         if (need_run) {
1435                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1436                 return true;
1437         }
1438
1439         return false;
1440 }
1441 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1442
1443 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1444 {
1445         struct blk_mq_hw_ctx *hctx;
1446         int i;
1447
1448         queue_for_each_hw_ctx(q, hctx, i) {
1449                 if (blk_mq_hctx_stopped(hctx))
1450                         continue;
1451
1452                 blk_mq_run_hw_queue(hctx, async);
1453         }
1454 }
1455 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1456
1457 /**
1458  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1459  * @q: request queue.
1460  *
1461  * The caller is responsible for serializing this function against
1462  * blk_mq_{start,stop}_hw_queue().
1463  */
1464 bool blk_mq_queue_stopped(struct request_queue *q)
1465 {
1466         struct blk_mq_hw_ctx *hctx;
1467         int i;
1468
1469         queue_for_each_hw_ctx(q, hctx, i)
1470                 if (blk_mq_hctx_stopped(hctx))
1471                         return true;
1472
1473         return false;
1474 }
1475 EXPORT_SYMBOL(blk_mq_queue_stopped);
1476
1477 /*
1478  * This function is often used for pausing .queue_rq() by driver when
1479  * there isn't enough resource or some conditions aren't satisfied, and
1480  * BLK_STS_RESOURCE is usually returned.
1481  *
1482  * We do not guarantee that dispatch can be drained or blocked
1483  * after blk_mq_stop_hw_queue() returns. Please use
1484  * blk_mq_quiesce_queue() for that requirement.
1485  */
1486 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1487 {
1488         cancel_delayed_work(&hctx->run_work);
1489
1490         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1491 }
1492 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1493
1494 /*
1495  * This function is often used for pausing .queue_rq() by driver when
1496  * there isn't enough resource or some conditions aren't satisfied, and
1497  * BLK_STS_RESOURCE is usually returned.
1498  *
1499  * We do not guarantee that dispatch can be drained or blocked
1500  * after blk_mq_stop_hw_queues() returns. Please use
1501  * blk_mq_quiesce_queue() for that requirement.
1502  */
1503 void blk_mq_stop_hw_queues(struct request_queue *q)
1504 {
1505         struct blk_mq_hw_ctx *hctx;
1506         int i;
1507
1508         queue_for_each_hw_ctx(q, hctx, i)
1509                 blk_mq_stop_hw_queue(hctx);
1510 }
1511 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1512
1513 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1514 {
1515         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1516
1517         blk_mq_run_hw_queue(hctx, false);
1518 }
1519 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1520
1521 void blk_mq_start_hw_queues(struct request_queue *q)
1522 {
1523         struct blk_mq_hw_ctx *hctx;
1524         int i;
1525
1526         queue_for_each_hw_ctx(q, hctx, i)
1527                 blk_mq_start_hw_queue(hctx);
1528 }
1529 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1530
1531 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1532 {
1533         if (!blk_mq_hctx_stopped(hctx))
1534                 return;
1535
1536         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1537         blk_mq_run_hw_queue(hctx, async);
1538 }
1539 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1540
1541 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1542 {
1543         struct blk_mq_hw_ctx *hctx;
1544         int i;
1545
1546         queue_for_each_hw_ctx(q, hctx, i)
1547                 blk_mq_start_stopped_hw_queue(hctx, async);
1548 }
1549 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1550
1551 static void blk_mq_run_work_fn(struct work_struct *work)
1552 {
1553         struct blk_mq_hw_ctx *hctx;
1554
1555         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1556
1557         /*
1558          * If we are stopped, don't run the queue. The exception is if
1559          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1560          * the STOPPED bit and run it.
1561          */
1562         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1563                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1564                         return;
1565
1566                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1567                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1568         }
1569
1570         __blk_mq_run_hw_queue(hctx);
1571 }
1572
1573
1574 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1575 {
1576         if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1577                 return;
1578
1579         /*
1580          * Stop the hw queue, then modify currently delayed work.
1581          * This should prevent us from running the queue prematurely.
1582          * Mark the queue as auto-clearing STOPPED when it runs.
1583          */
1584         blk_mq_stop_hw_queue(hctx);
1585         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1586         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1587                                         &hctx->run_work,
1588                                         msecs_to_jiffies(msecs));
1589 }
1590 EXPORT_SYMBOL(blk_mq_delay_queue);
1591
1592 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1593                                             struct request *rq,
1594                                             bool at_head)
1595 {
1596         struct blk_mq_ctx *ctx = rq->mq_ctx;
1597
1598         lockdep_assert_held(&ctx->lock);
1599
1600         trace_block_rq_insert(hctx->queue, rq);
1601
1602         if (at_head)
1603                 list_add(&rq->queuelist, &ctx->rq_list);
1604         else
1605                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1606 }
1607
1608 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1609                              bool at_head)
1610 {
1611         struct blk_mq_ctx *ctx = rq->mq_ctx;
1612
1613         lockdep_assert_held(&ctx->lock);
1614
1615         __blk_mq_insert_req_list(hctx, rq, at_head);
1616         blk_mq_hctx_mark_pending(hctx, ctx);
1617 }
1618
1619 /*
1620  * Should only be used carefully, when the caller knows we want to
1621  * bypass a potential IO scheduler on the target device.
1622  */
1623 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1624 {
1625         struct blk_mq_ctx *ctx = rq->mq_ctx;
1626         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1627
1628         spin_lock(&hctx->lock);
1629         list_add_tail(&rq->queuelist, &hctx->dispatch);
1630         spin_unlock(&hctx->lock);
1631
1632         if (run_queue)
1633                 blk_mq_run_hw_queue(hctx, false);
1634 }
1635
1636 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1637                             struct list_head *list)
1638
1639 {
1640         /*
1641          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1642          * offline now
1643          */
1644         spin_lock(&ctx->lock);
1645         while (!list_empty(list)) {
1646                 struct request *rq;
1647
1648                 rq = list_first_entry(list, struct request, queuelist);
1649                 BUG_ON(rq->mq_ctx != ctx);
1650                 list_del_init(&rq->queuelist);
1651                 __blk_mq_insert_req_list(hctx, rq, false);
1652         }
1653         blk_mq_hctx_mark_pending(hctx, ctx);
1654         spin_unlock(&ctx->lock);
1655 }
1656
1657 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1658 {
1659         struct request *rqa = container_of(a, struct request, queuelist);
1660         struct request *rqb = container_of(b, struct request, queuelist);
1661
1662         return !(rqa->mq_ctx < rqb->mq_ctx ||
1663                  (rqa->mq_ctx == rqb->mq_ctx &&
1664                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1665 }
1666
1667 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1668 {
1669         struct blk_mq_ctx *this_ctx;
1670         struct request_queue *this_q;
1671         struct request *rq;
1672         LIST_HEAD(list);
1673         LIST_HEAD(ctx_list);
1674         unsigned int depth;
1675
1676         list_splice_init(&plug->mq_list, &list);
1677
1678         list_sort(NULL, &list, plug_ctx_cmp);
1679
1680         this_q = NULL;
1681         this_ctx = NULL;
1682         depth = 0;
1683
1684         while (!list_empty(&list)) {
1685                 rq = list_entry_rq(list.next);
1686                 list_del_init(&rq->queuelist);
1687                 BUG_ON(!rq->q);
1688                 if (rq->mq_ctx != this_ctx) {
1689                         if (this_ctx) {
1690                                 trace_block_unplug(this_q, depth, from_schedule);
1691                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1692                                                                 &ctx_list,
1693                                                                 from_schedule);
1694                         }
1695
1696                         this_ctx = rq->mq_ctx;
1697                         this_q = rq->q;
1698                         depth = 0;
1699                 }
1700
1701                 depth++;
1702                 list_add_tail(&rq->queuelist, &ctx_list);
1703         }
1704
1705         /*
1706          * If 'this_ctx' is set, we know we have entries to complete
1707          * on 'ctx_list'. Do those.
1708          */
1709         if (this_ctx) {
1710                 trace_block_unplug(this_q, depth, from_schedule);
1711                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1712                                                 from_schedule);
1713         }
1714 }
1715
1716 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1717 {
1718         blk_init_request_from_bio(rq, bio);
1719
1720         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1721
1722         blk_account_io_start(rq, true);
1723 }
1724
1725 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1726                                    struct blk_mq_ctx *ctx,
1727                                    struct request *rq)
1728 {
1729         spin_lock(&ctx->lock);
1730         __blk_mq_insert_request(hctx, rq, false);
1731         spin_unlock(&ctx->lock);
1732 }
1733
1734 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1735 {
1736         if (rq->tag != -1)
1737                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1738
1739         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1740 }
1741
1742 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1743                                             struct request *rq,
1744                                             blk_qc_t *cookie)
1745 {
1746         struct request_queue *q = rq->q;
1747         struct blk_mq_queue_data bd = {
1748                 .rq = rq,
1749                 .last = true,
1750         };
1751         blk_qc_t new_cookie;
1752         blk_status_t ret;
1753
1754         new_cookie = request_to_qc_t(hctx, rq);
1755
1756         /*
1757          * For OK queue, we are done. For error, caller may kill it.
1758          * Any other error (busy), just add it to our list as we
1759          * previously would have done.
1760          */
1761         ret = q->mq_ops->queue_rq(hctx, &bd);
1762         switch (ret) {
1763         case BLK_STS_OK:
1764                 *cookie = new_cookie;
1765                 break;
1766         case BLK_STS_RESOURCE:
1767                 __blk_mq_requeue_request(rq);
1768                 break;
1769         default:
1770                 *cookie = BLK_QC_T_NONE;
1771                 break;
1772         }
1773
1774         return ret;
1775 }
1776
1777 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1778                                                 struct request *rq,
1779                                                 blk_qc_t *cookie,
1780                                                 bool bypass_insert)
1781 {
1782         struct request_queue *q = rq->q;
1783         bool run_queue = true;
1784
1785         /*
1786          * RCU or SRCU read lock is needed before checking quiesced flag.
1787          *
1788          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1789          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1790          * and avoid driver to try to dispatch again.
1791          */
1792         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1793                 run_queue = false;
1794                 bypass_insert = false;
1795                 goto insert;
1796         }
1797
1798         if (q->elevator && !bypass_insert)
1799                 goto insert;
1800
1801         if (!blk_mq_get_driver_tag(rq, NULL, false))
1802                 goto insert;
1803
1804         if (!blk_mq_get_dispatch_budget(hctx)) {
1805                 blk_mq_put_driver_tag(rq);
1806                 goto insert;
1807         }
1808
1809         return __blk_mq_issue_directly(hctx, rq, cookie);
1810 insert:
1811         if (bypass_insert)
1812                 return BLK_STS_RESOURCE;
1813
1814         blk_mq_sched_insert_request(rq, false, run_queue, false);
1815         return BLK_STS_OK;
1816 }
1817
1818 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1819                 struct request *rq, blk_qc_t *cookie)
1820 {
1821         blk_status_t ret;
1822         int srcu_idx;
1823
1824         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1825
1826         hctx_lock(hctx, &srcu_idx);
1827
1828         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1829         if (ret == BLK_STS_RESOURCE)
1830                 blk_mq_sched_insert_request(rq, false, true, false);
1831         else if (ret != BLK_STS_OK)
1832                 blk_mq_end_request(rq, ret);
1833
1834         hctx_unlock(hctx, srcu_idx);
1835 }
1836
1837 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1838 {
1839         blk_status_t ret;
1840         int srcu_idx;
1841         blk_qc_t unused_cookie;
1842         struct blk_mq_ctx *ctx = rq->mq_ctx;
1843         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1844
1845         hctx_lock(hctx, &srcu_idx);
1846         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1847         hctx_unlock(hctx, srcu_idx);
1848
1849         return ret;
1850 }
1851
1852 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1853 {
1854         const int is_sync = op_is_sync(bio->bi_opf);
1855         const int is_flush_fua = op_is_flush(bio->bi_opf);
1856         struct blk_mq_alloc_data data = { .flags = 0 };
1857         struct request *rq;
1858         unsigned int request_count = 0;
1859         struct blk_plug *plug;
1860         struct request *same_queue_rq = NULL;
1861         blk_qc_t cookie;
1862         unsigned int wb_acct;
1863
1864         blk_queue_bounce(q, &bio);
1865
1866         blk_queue_split(q, &bio);
1867
1868         if (!bio_integrity_prep(bio))
1869                 return BLK_QC_T_NONE;
1870
1871         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1872             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1873                 return BLK_QC_T_NONE;
1874
1875         if (blk_mq_sched_bio_merge(q, bio))
1876                 return BLK_QC_T_NONE;
1877
1878         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1879
1880         trace_block_getrq(q, bio, bio->bi_opf);
1881
1882         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1883         if (unlikely(!rq)) {
1884                 __wbt_done(q->rq_wb, wb_acct);
1885                 if (bio->bi_opf & REQ_NOWAIT)
1886                         bio_wouldblock_error(bio);
1887                 return BLK_QC_T_NONE;
1888         }
1889
1890         wbt_track(&rq->issue_stat, wb_acct);
1891
1892         cookie = request_to_qc_t(data.hctx, rq);
1893
1894         plug = current->plug;
1895         if (unlikely(is_flush_fua)) {
1896                 blk_mq_put_ctx(data.ctx);
1897                 blk_mq_bio_to_request(rq, bio);
1898
1899                 /* bypass scheduler for flush rq */
1900                 blk_insert_flush(rq);
1901                 blk_mq_run_hw_queue(data.hctx, true);
1902         } else if (plug && q->nr_hw_queues == 1) {
1903                 struct request *last = NULL;
1904
1905                 blk_mq_put_ctx(data.ctx);
1906                 blk_mq_bio_to_request(rq, bio);
1907
1908                 /*
1909                  * @request_count may become stale because of schedule
1910                  * out, so check the list again.
1911                  */
1912                 if (list_empty(&plug->mq_list))
1913                         request_count = 0;
1914                 else if (blk_queue_nomerges(q))
1915                         request_count = blk_plug_queued_count(q);
1916
1917                 if (!request_count)
1918                         trace_block_plug(q);
1919                 else
1920                         last = list_entry_rq(plug->mq_list.prev);
1921
1922                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1923                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1924                         blk_flush_plug_list(plug, false);
1925                         trace_block_plug(q);
1926                 }
1927
1928                 list_add_tail(&rq->queuelist, &plug->mq_list);
1929         } else if (plug && !blk_queue_nomerges(q)) {
1930                 blk_mq_bio_to_request(rq, bio);
1931
1932                 /*
1933                  * We do limited plugging. If the bio can be merged, do that.
1934                  * Otherwise the existing request in the plug list will be
1935                  * issued. So the plug list will have one request at most
1936                  * The plug list might get flushed before this. If that happens,
1937                  * the plug list is empty, and same_queue_rq is invalid.
1938                  */
1939                 if (list_empty(&plug->mq_list))
1940                         same_queue_rq = NULL;
1941                 if (same_queue_rq)
1942                         list_del_init(&same_queue_rq->queuelist);
1943                 list_add_tail(&rq->queuelist, &plug->mq_list);
1944
1945                 blk_mq_put_ctx(data.ctx);
1946
1947                 if (same_queue_rq) {
1948                         data.hctx = blk_mq_map_queue(q,
1949                                         same_queue_rq->mq_ctx->cpu);
1950                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1951                                         &cookie);
1952                 }
1953         } else if (q->nr_hw_queues > 1 && is_sync) {
1954                 blk_mq_put_ctx(data.ctx);
1955                 blk_mq_bio_to_request(rq, bio);
1956                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1957         } else if (q->elevator) {
1958                 blk_mq_put_ctx(data.ctx);
1959                 blk_mq_bio_to_request(rq, bio);
1960                 blk_mq_sched_insert_request(rq, false, true, true);
1961         } else {
1962                 blk_mq_put_ctx(data.ctx);
1963                 blk_mq_bio_to_request(rq, bio);
1964                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1965                 blk_mq_run_hw_queue(data.hctx, true);
1966         }
1967
1968         return cookie;
1969 }
1970
1971 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1972                      unsigned int hctx_idx)
1973 {
1974         struct page *page;
1975
1976         if (tags->rqs && set->ops->exit_request) {
1977                 int i;
1978
1979                 for (i = 0; i < tags->nr_tags; i++) {
1980                         struct request *rq = tags->static_rqs[i];
1981
1982                         if (!rq)
1983                                 continue;
1984                         set->ops->exit_request(set, rq, hctx_idx);
1985                         tags->static_rqs[i] = NULL;
1986                 }
1987         }
1988
1989         while (!list_empty(&tags->page_list)) {
1990                 page = list_first_entry(&tags->page_list, struct page, lru);
1991                 list_del_init(&page->lru);
1992                 /*
1993                  * Remove kmemleak object previously allocated in
1994                  * blk_mq_init_rq_map().
1995                  */
1996                 kmemleak_free(page_address(page));
1997                 __free_pages(page, page->private);
1998         }
1999 }
2000
2001 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2002 {
2003         kfree(tags->rqs);
2004         tags->rqs = NULL;
2005         kfree(tags->static_rqs);
2006         tags->static_rqs = NULL;
2007
2008         blk_mq_free_tags(tags);
2009 }
2010
2011 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2012                                         unsigned int hctx_idx,
2013                                         unsigned int nr_tags,
2014                                         unsigned int reserved_tags)
2015 {
2016         struct blk_mq_tags *tags;
2017         int node;
2018
2019         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2020         if (node == NUMA_NO_NODE)
2021                 node = set->numa_node;
2022
2023         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2024                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2025         if (!tags)
2026                 return NULL;
2027
2028         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2029                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2030                                  node);
2031         if (!tags->rqs) {
2032                 blk_mq_free_tags(tags);
2033                 return NULL;
2034         }
2035
2036         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2037                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2038                                  node);
2039         if (!tags->static_rqs) {
2040                 kfree(tags->rqs);
2041                 blk_mq_free_tags(tags);
2042                 return NULL;
2043         }
2044
2045         return tags;
2046 }
2047
2048 static size_t order_to_size(unsigned int order)
2049 {
2050         return (size_t)PAGE_SIZE << order;
2051 }
2052
2053 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2054                                unsigned int hctx_idx, int node)
2055 {
2056         int ret;
2057
2058         if (set->ops->init_request) {
2059                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2060                 if (ret)
2061                         return ret;
2062         }
2063
2064         seqcount_init(&rq->gstate_seq);
2065         u64_stats_init(&rq->aborted_gstate_sync);
2066         return 0;
2067 }
2068
2069 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2070                      unsigned int hctx_idx, unsigned int depth)
2071 {
2072         unsigned int i, j, entries_per_page, max_order = 4;
2073         size_t rq_size, left;
2074         int node;
2075
2076         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2077         if (node == NUMA_NO_NODE)
2078                 node = set->numa_node;
2079
2080         INIT_LIST_HEAD(&tags->page_list);
2081
2082         /*
2083          * rq_size is the size of the request plus driver payload, rounded
2084          * to the cacheline size
2085          */
2086         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2087                                 cache_line_size());
2088         left = rq_size * depth;
2089
2090         for (i = 0; i < depth; ) {
2091                 int this_order = max_order;
2092                 struct page *page;
2093                 int to_do;
2094                 void *p;
2095
2096                 while (this_order && left < order_to_size(this_order - 1))
2097                         this_order--;
2098
2099                 do {
2100                         page = alloc_pages_node(node,
2101                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2102                                 this_order);
2103                         if (page)
2104                                 break;
2105                         if (!this_order--)
2106                                 break;
2107                         if (order_to_size(this_order) < rq_size)
2108                                 break;
2109                 } while (1);
2110
2111                 if (!page)
2112                         goto fail;
2113
2114                 page->private = this_order;
2115                 list_add_tail(&page->lru, &tags->page_list);
2116
2117                 p = page_address(page);
2118                 /*
2119                  * Allow kmemleak to scan these pages as they contain pointers
2120                  * to additional allocations like via ops->init_request().
2121                  */
2122                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2123                 entries_per_page = order_to_size(this_order) / rq_size;
2124                 to_do = min(entries_per_page, depth - i);
2125                 left -= to_do * rq_size;
2126                 for (j = 0; j < to_do; j++) {
2127                         struct request *rq = p;
2128
2129                         tags->static_rqs[i] = rq;
2130                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2131                                 tags->static_rqs[i] = NULL;
2132                                 goto fail;
2133                         }
2134
2135                         p += rq_size;
2136                         i++;
2137                 }
2138         }
2139         return 0;
2140
2141 fail:
2142         blk_mq_free_rqs(set, tags, hctx_idx);
2143         return -ENOMEM;
2144 }
2145
2146 /*
2147  * 'cpu' is going away. splice any existing rq_list entries from this
2148  * software queue to the hw queue dispatch list, and ensure that it
2149  * gets run.
2150  */
2151 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2152 {
2153         struct blk_mq_hw_ctx *hctx;
2154         struct blk_mq_ctx *ctx;
2155         LIST_HEAD(tmp);
2156
2157         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2158         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2159
2160         spin_lock(&ctx->lock);
2161         if (!list_empty(&ctx->rq_list)) {
2162                 list_splice_init(&ctx->rq_list, &tmp);
2163                 blk_mq_hctx_clear_pending(hctx, ctx);
2164         }
2165         spin_unlock(&ctx->lock);
2166
2167         if (list_empty(&tmp))
2168                 return 0;
2169
2170         spin_lock(&hctx->lock);
2171         list_splice_tail_init(&tmp, &hctx->dispatch);
2172         spin_unlock(&hctx->lock);
2173
2174         blk_mq_run_hw_queue(hctx, true);
2175         return 0;
2176 }
2177
2178 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2179 {
2180         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2181                                             &hctx->cpuhp_dead);
2182 }
2183
2184 /* hctx->ctxs will be freed in queue's release handler */
2185 static void blk_mq_exit_hctx(struct request_queue *q,
2186                 struct blk_mq_tag_set *set,
2187                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2188 {
2189         blk_mq_debugfs_unregister_hctx(hctx);
2190
2191         if (blk_mq_hw_queue_mapped(hctx))
2192                 blk_mq_tag_idle(hctx);
2193
2194         if (set->ops->exit_request)
2195                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2196
2197         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2198
2199         if (set->ops->exit_hctx)
2200                 set->ops->exit_hctx(hctx, hctx_idx);
2201
2202         if (hctx->flags & BLK_MQ_F_BLOCKING)
2203                 cleanup_srcu_struct(hctx->srcu);
2204
2205         blk_mq_remove_cpuhp(hctx);
2206         blk_free_flush_queue(hctx->fq);
2207         sbitmap_free(&hctx->ctx_map);
2208 }
2209
2210 static void blk_mq_exit_hw_queues(struct request_queue *q,
2211                 struct blk_mq_tag_set *set, int nr_queue)
2212 {
2213         struct blk_mq_hw_ctx *hctx;
2214         unsigned int i;
2215
2216         queue_for_each_hw_ctx(q, hctx, i) {
2217                 if (i == nr_queue)
2218                         break;
2219                 blk_mq_exit_hctx(q, set, hctx, i);
2220         }
2221 }
2222
2223 static int blk_mq_init_hctx(struct request_queue *q,
2224                 struct blk_mq_tag_set *set,
2225                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2226 {
2227         int node;
2228
2229         node = hctx->numa_node;
2230         if (node == NUMA_NO_NODE)
2231                 node = hctx->numa_node = set->numa_node;
2232
2233         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2234         spin_lock_init(&hctx->lock);
2235         INIT_LIST_HEAD(&hctx->dispatch);
2236         hctx->queue = q;
2237         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2238
2239         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2240
2241         hctx->tags = set->tags[hctx_idx];
2242
2243         /*
2244          * Allocate space for all possible cpus to avoid allocation at
2245          * runtime
2246          */
2247         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2248                                         GFP_KERNEL, node);
2249         if (!hctx->ctxs)
2250                 goto unregister_cpu_notifier;
2251
2252         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2253                               node))
2254                 goto free_ctxs;
2255
2256         hctx->nr_ctx = 0;
2257
2258         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2259         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2260
2261         if (set->ops->init_hctx &&
2262             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2263                 goto free_bitmap;
2264
2265         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2266                 goto exit_hctx;
2267
2268         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2269         if (!hctx->fq)
2270                 goto sched_exit_hctx;
2271
2272         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2273                 goto free_fq;
2274
2275         if (hctx->flags & BLK_MQ_F_BLOCKING)
2276                 init_srcu_struct(hctx->srcu);
2277
2278         blk_mq_debugfs_register_hctx(q, hctx);
2279
2280         return 0;
2281
2282  free_fq:
2283         kfree(hctx->fq);
2284  sched_exit_hctx:
2285         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2286  exit_hctx:
2287         if (set->ops->exit_hctx)
2288                 set->ops->exit_hctx(hctx, hctx_idx);
2289  free_bitmap:
2290         sbitmap_free(&hctx->ctx_map);
2291  free_ctxs:
2292         kfree(hctx->ctxs);
2293  unregister_cpu_notifier:
2294         blk_mq_remove_cpuhp(hctx);
2295         return -1;
2296 }
2297
2298 static void blk_mq_init_cpu_queues(struct request_queue *q,
2299                                    unsigned int nr_hw_queues)
2300 {
2301         unsigned int i;
2302
2303         for_each_possible_cpu(i) {
2304                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2305                 struct blk_mq_hw_ctx *hctx;
2306
2307                 __ctx->cpu = i;
2308                 spin_lock_init(&__ctx->lock);
2309                 INIT_LIST_HEAD(&__ctx->rq_list);
2310                 __ctx->queue = q;
2311
2312                 /*
2313                  * Set local node, IFF we have more than one hw queue. If
2314                  * not, we remain on the home node of the device
2315                  */
2316                 hctx = blk_mq_map_queue(q, i);
2317                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2318                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2319         }
2320 }
2321
2322 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2323 {
2324         int ret = 0;
2325
2326         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2327                                         set->queue_depth, set->reserved_tags);
2328         if (!set->tags[hctx_idx])
2329                 return false;
2330
2331         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2332                                 set->queue_depth);
2333         if (!ret)
2334                 return true;
2335
2336         blk_mq_free_rq_map(set->tags[hctx_idx]);
2337         set->tags[hctx_idx] = NULL;
2338         return false;
2339 }
2340
2341 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2342                                          unsigned int hctx_idx)
2343 {
2344         if (set->tags[hctx_idx]) {
2345                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2346                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2347                 set->tags[hctx_idx] = NULL;
2348         }
2349 }
2350
2351 static void blk_mq_map_swqueue(struct request_queue *q)
2352 {
2353         unsigned int i, hctx_idx;
2354         struct blk_mq_hw_ctx *hctx;
2355         struct blk_mq_ctx *ctx;
2356         struct blk_mq_tag_set *set = q->tag_set;
2357
2358         /*
2359          * Avoid others reading imcomplete hctx->cpumask through sysfs
2360          */
2361         mutex_lock(&q->sysfs_lock);
2362
2363         queue_for_each_hw_ctx(q, hctx, i) {
2364                 cpumask_clear(hctx->cpumask);
2365                 hctx->nr_ctx = 0;
2366         }
2367
2368         /*
2369          * Map software to hardware queues.
2370          *
2371          * If the cpu isn't present, the cpu is mapped to first hctx.
2372          */
2373         for_each_possible_cpu(i) {
2374                 hctx_idx = q->mq_map[i];
2375                 /* unmapped hw queue can be remapped after CPU topo changed */
2376                 if (!set->tags[hctx_idx] &&
2377                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2378                         /*
2379                          * If tags initialization fail for some hctx,
2380                          * that hctx won't be brought online.  In this
2381                          * case, remap the current ctx to hctx[0] which
2382                          * is guaranteed to always have tags allocated
2383                          */
2384                         q->mq_map[i] = 0;
2385                 }
2386
2387                 ctx = per_cpu_ptr(q->queue_ctx, i);
2388                 hctx = blk_mq_map_queue(q, i);
2389
2390                 cpumask_set_cpu(i, hctx->cpumask);
2391                 ctx->index_hw = hctx->nr_ctx;
2392                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2393         }
2394
2395         mutex_unlock(&q->sysfs_lock);
2396
2397         queue_for_each_hw_ctx(q, hctx, i) {
2398                 /*
2399                  * If no software queues are mapped to this hardware queue,
2400                  * disable it and free the request entries.
2401                  */
2402                 if (!hctx->nr_ctx) {
2403                         /* Never unmap queue 0.  We need it as a
2404                          * fallback in case of a new remap fails
2405                          * allocation
2406                          */
2407                         if (i && set->tags[i])
2408                                 blk_mq_free_map_and_requests(set, i);
2409
2410                         hctx->tags = NULL;
2411                         continue;
2412                 }
2413
2414                 hctx->tags = set->tags[i];
2415                 WARN_ON(!hctx->tags);
2416
2417                 /*
2418                  * Set the map size to the number of mapped software queues.
2419                  * This is more accurate and more efficient than looping
2420                  * over all possibly mapped software queues.
2421                  */
2422                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2423
2424                 /*
2425                  * Initialize batch roundrobin counts
2426                  */
2427                 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2428                                 cpu_online_mask);
2429                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2430         }
2431 }
2432
2433 /*
2434  * Caller needs to ensure that we're either frozen/quiesced, or that
2435  * the queue isn't live yet.
2436  */
2437 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2438 {
2439         struct blk_mq_hw_ctx *hctx;
2440         int i;
2441
2442         queue_for_each_hw_ctx(q, hctx, i) {
2443                 if (shared) {
2444                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2445                                 atomic_inc(&q->shared_hctx_restart);
2446                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2447                 } else {
2448                         if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2449                                 atomic_dec(&q->shared_hctx_restart);
2450                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2451                 }
2452         }
2453 }
2454
2455 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2456                                         bool shared)
2457 {
2458         struct request_queue *q;
2459
2460         lockdep_assert_held(&set->tag_list_lock);
2461
2462         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2463                 blk_mq_freeze_queue(q);
2464                 queue_set_hctx_shared(q, shared);
2465                 blk_mq_unfreeze_queue(q);
2466         }
2467 }
2468
2469 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2470 {
2471         struct blk_mq_tag_set *set = q->tag_set;
2472
2473         mutex_lock(&set->tag_list_lock);
2474         list_del_rcu(&q->tag_set_list);
2475         INIT_LIST_HEAD(&q->tag_set_list);
2476         if (list_is_singular(&set->tag_list)) {
2477                 /* just transitioned to unshared */
2478                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2479                 /* update existing queue */
2480                 blk_mq_update_tag_set_depth(set, false);
2481         }
2482         mutex_unlock(&set->tag_list_lock);
2483
2484         synchronize_rcu();
2485 }
2486
2487 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2488                                      struct request_queue *q)
2489 {
2490         q->tag_set = set;
2491
2492         mutex_lock(&set->tag_list_lock);
2493
2494         /*
2495          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2496          */
2497         if (!list_empty(&set->tag_list) &&
2498             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2499                 set->flags |= BLK_MQ_F_TAG_SHARED;
2500                 /* update existing queue */
2501                 blk_mq_update_tag_set_depth(set, true);
2502         }
2503         if (set->flags & BLK_MQ_F_TAG_SHARED)
2504                 queue_set_hctx_shared(q, true);
2505         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2506
2507         mutex_unlock(&set->tag_list_lock);
2508 }
2509
2510 /*
2511  * It is the actual release handler for mq, but we do it from
2512  * request queue's release handler for avoiding use-after-free
2513  * and headache because q->mq_kobj shouldn't have been introduced,
2514  * but we can't group ctx/kctx kobj without it.
2515  */
2516 void blk_mq_release(struct request_queue *q)
2517 {
2518         struct blk_mq_hw_ctx *hctx;
2519         unsigned int i;
2520
2521         /* hctx kobj stays in hctx */
2522         queue_for_each_hw_ctx(q, hctx, i) {
2523                 if (!hctx)
2524                         continue;
2525                 kobject_put(&hctx->kobj);
2526         }
2527
2528         q->mq_map = NULL;
2529
2530         kfree(q->queue_hw_ctx);
2531
2532         /*
2533          * release .mq_kobj and sw queue's kobject now because
2534          * both share lifetime with request queue.
2535          */
2536         blk_mq_sysfs_deinit(q);
2537
2538         free_percpu(q->queue_ctx);
2539 }
2540
2541 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2542 {
2543         struct request_queue *uninit_q, *q;
2544
2545         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2546         if (!uninit_q)
2547                 return ERR_PTR(-ENOMEM);
2548
2549         q = blk_mq_init_allocated_queue(set, uninit_q);
2550         if (IS_ERR(q))
2551                 blk_cleanup_queue(uninit_q);
2552
2553         return q;
2554 }
2555 EXPORT_SYMBOL(blk_mq_init_queue);
2556
2557 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2558 {
2559         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2560
2561         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2562                            __alignof__(struct blk_mq_hw_ctx)) !=
2563                      sizeof(struct blk_mq_hw_ctx));
2564
2565         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2566                 hw_ctx_size += sizeof(struct srcu_struct);
2567
2568         return hw_ctx_size;
2569 }
2570
2571 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2572                                                 struct request_queue *q)
2573 {
2574         int i, j;
2575         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2576
2577         blk_mq_sysfs_unregister(q);
2578
2579         /* protect against switching io scheduler  */
2580         mutex_lock(&q->sysfs_lock);
2581         for (i = 0; i < set->nr_hw_queues; i++) {
2582                 int node;
2583
2584                 if (hctxs[i])
2585                         continue;
2586
2587                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2588                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2589                                         GFP_KERNEL, node);
2590                 if (!hctxs[i])
2591                         break;
2592
2593                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2594                                                 node)) {
2595                         kfree(hctxs[i]);
2596                         hctxs[i] = NULL;
2597                         break;
2598                 }
2599
2600                 atomic_set(&hctxs[i]->nr_active, 0);
2601                 hctxs[i]->numa_node = node;
2602                 hctxs[i]->queue_num = i;
2603
2604                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2605                         free_cpumask_var(hctxs[i]->cpumask);
2606                         kfree(hctxs[i]);
2607                         hctxs[i] = NULL;
2608                         break;
2609                 }
2610                 blk_mq_hctx_kobj_init(hctxs[i]);
2611         }
2612         for (j = i; j < q->nr_hw_queues; j++) {
2613                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2614
2615                 if (hctx) {
2616                         if (hctx->tags)
2617                                 blk_mq_free_map_and_requests(set, j);
2618                         blk_mq_exit_hctx(q, set, hctx, j);
2619                         kobject_put(&hctx->kobj);
2620                         hctxs[j] = NULL;
2621
2622                 }
2623         }
2624         q->nr_hw_queues = i;
2625         mutex_unlock(&q->sysfs_lock);
2626         blk_mq_sysfs_register(q);
2627 }
2628
2629 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2630                                                   struct request_queue *q)
2631 {
2632         /* mark the queue as mq asap */
2633         q->mq_ops = set->ops;
2634
2635         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2636                                              blk_mq_poll_stats_bkt,
2637                                              BLK_MQ_POLL_STATS_BKTS, q);
2638         if (!q->poll_cb)
2639                 goto err_exit;
2640
2641         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2642         if (!q->queue_ctx)
2643                 goto err_exit;
2644
2645         /* init q->mq_kobj and sw queues' kobjects */
2646         blk_mq_sysfs_init(q);
2647
2648         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2649                                                 GFP_KERNEL, set->numa_node);
2650         if (!q->queue_hw_ctx)
2651                 goto err_percpu;
2652
2653         q->mq_map = set->mq_map;
2654
2655         blk_mq_realloc_hw_ctxs(set, q);
2656         if (!q->nr_hw_queues)
2657                 goto err_hctxs;
2658
2659         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2660         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2661
2662         q->nr_queues = nr_cpu_ids;
2663
2664         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2665
2666         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2667                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2668
2669         q->sg_reserved_size = INT_MAX;
2670
2671         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2672         INIT_LIST_HEAD(&q->requeue_list);
2673         spin_lock_init(&q->requeue_lock);
2674
2675         blk_queue_make_request(q, blk_mq_make_request);
2676         if (q->mq_ops->poll)
2677                 q->poll_fn = blk_mq_poll;
2678
2679         /*
2680          * Do this after blk_queue_make_request() overrides it...
2681          */
2682         q->nr_requests = set->queue_depth;
2683
2684         /*
2685          * Default to classic polling
2686          */
2687         q->poll_nsec = -1;
2688
2689         if (set->ops->complete)
2690                 blk_queue_softirq_done(q, set->ops->complete);
2691
2692         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2693         blk_mq_add_queue_tag_set(set, q);
2694         blk_mq_map_swqueue(q);
2695
2696         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2697                 int ret;
2698
2699                 ret = blk_mq_sched_init(q);
2700                 if (ret)
2701                         return ERR_PTR(ret);
2702         }
2703
2704         return q;
2705
2706 err_hctxs:
2707         kfree(q->queue_hw_ctx);
2708 err_percpu:
2709         free_percpu(q->queue_ctx);
2710 err_exit:
2711         q->mq_ops = NULL;
2712         return ERR_PTR(-ENOMEM);
2713 }
2714 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2715
2716 void blk_mq_free_queue(struct request_queue *q)
2717 {
2718         struct blk_mq_tag_set   *set = q->tag_set;
2719
2720         blk_mq_del_queue_tag_set(q);
2721         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2722 }
2723
2724 /* Basically redo blk_mq_init_queue with queue frozen */
2725 static void blk_mq_queue_reinit(struct request_queue *q)
2726 {
2727         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2728
2729         blk_mq_debugfs_unregister_hctxs(q);
2730         blk_mq_sysfs_unregister(q);
2731
2732         /*
2733          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2734          * we should change hctx numa_node according to the new topology (this
2735          * involves freeing and re-allocating memory, worth doing?)
2736          */
2737         blk_mq_map_swqueue(q);
2738
2739         blk_mq_sysfs_register(q);
2740         blk_mq_debugfs_register_hctxs(q);
2741 }
2742
2743 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2744 {
2745         int i;
2746
2747         for (i = 0; i < set->nr_hw_queues; i++)
2748                 if (!__blk_mq_alloc_rq_map(set, i))
2749                         goto out_unwind;
2750
2751         return 0;
2752
2753 out_unwind:
2754         while (--i >= 0)
2755                 blk_mq_free_rq_map(set->tags[i]);
2756
2757         return -ENOMEM;
2758 }
2759
2760 /*
2761  * Allocate the request maps associated with this tag_set. Note that this
2762  * may reduce the depth asked for, if memory is tight. set->queue_depth
2763  * will be updated to reflect the allocated depth.
2764  */
2765 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2766 {
2767         unsigned int depth;
2768         int err;
2769
2770         depth = set->queue_depth;
2771         do {
2772                 err = __blk_mq_alloc_rq_maps(set);
2773                 if (!err)
2774                         break;
2775
2776                 set->queue_depth >>= 1;
2777                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2778                         err = -ENOMEM;
2779                         break;
2780                 }
2781         } while (set->queue_depth);
2782
2783         if (!set->queue_depth || err) {
2784                 pr_err("blk-mq: failed to allocate request map\n");
2785                 return -ENOMEM;
2786         }
2787
2788         if (depth != set->queue_depth)
2789                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2790                                                 depth, set->queue_depth);
2791
2792         return 0;
2793 }
2794
2795 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2796 {
2797         if (set->ops->map_queues) {
2798                 int cpu;
2799                 /*
2800                  * transport .map_queues is usually done in the following
2801                  * way:
2802                  *
2803                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2804                  *      mask = get_cpu_mask(queue)
2805                  *      for_each_cpu(cpu, mask)
2806                  *              set->mq_map[cpu] = queue;
2807                  * }
2808                  *
2809                  * When we need to remap, the table has to be cleared for
2810                  * killing stale mapping since one CPU may not be mapped
2811                  * to any hw queue.
2812                  */
2813                 for_each_possible_cpu(cpu)
2814                         set->mq_map[cpu] = 0;
2815
2816                 return set->ops->map_queues(set);
2817         } else
2818                 return blk_mq_map_queues(set);
2819 }
2820
2821 /*
2822  * Alloc a tag set to be associated with one or more request queues.
2823  * May fail with EINVAL for various error conditions. May adjust the
2824  * requested depth down, if if it too large. In that case, the set
2825  * value will be stored in set->queue_depth.
2826  */
2827 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2828 {
2829         int ret;
2830
2831         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2832
2833         if (!set->nr_hw_queues)
2834                 return -EINVAL;
2835         if (!set->queue_depth)
2836                 return -EINVAL;
2837         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2838                 return -EINVAL;
2839
2840         if (!set->ops->queue_rq)
2841                 return -EINVAL;
2842
2843         if (!set->ops->get_budget ^ !set->ops->put_budget)
2844                 return -EINVAL;
2845
2846         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2847                 pr_info("blk-mq: reduced tag depth to %u\n",
2848                         BLK_MQ_MAX_DEPTH);
2849                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2850         }
2851
2852         /*
2853          * If a crashdump is active, then we are potentially in a very
2854          * memory constrained environment. Limit us to 1 queue and
2855          * 64 tags to prevent using too much memory.
2856          */
2857         if (is_kdump_kernel()) {
2858                 set->nr_hw_queues = 1;
2859                 set->queue_depth = min(64U, set->queue_depth);
2860         }
2861         /*
2862          * There is no use for more h/w queues than cpus.
2863          */
2864         if (set->nr_hw_queues > nr_cpu_ids)
2865                 set->nr_hw_queues = nr_cpu_ids;
2866
2867         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2868                                  GFP_KERNEL, set->numa_node);
2869         if (!set->tags)
2870                 return -ENOMEM;
2871
2872         ret = -ENOMEM;
2873         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2874                         GFP_KERNEL, set->numa_node);
2875         if (!set->mq_map)
2876                 goto out_free_tags;
2877
2878         ret = blk_mq_update_queue_map(set);
2879         if (ret)
2880                 goto out_free_mq_map;
2881
2882         ret = blk_mq_alloc_rq_maps(set);
2883         if (ret)
2884                 goto out_free_mq_map;
2885
2886         mutex_init(&set->tag_list_lock);
2887         INIT_LIST_HEAD(&set->tag_list);
2888
2889         return 0;
2890
2891 out_free_mq_map:
2892         kfree(set->mq_map);
2893         set->mq_map = NULL;
2894 out_free_tags:
2895         kfree(set->tags);
2896         set->tags = NULL;
2897         return ret;
2898 }
2899 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2900
2901 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2902 {
2903         int i;
2904
2905         for (i = 0; i < nr_cpu_ids; i++)
2906                 blk_mq_free_map_and_requests(set, i);
2907
2908         kfree(set->mq_map);
2909         set->mq_map = NULL;
2910
2911         kfree(set->tags);
2912         set->tags = NULL;
2913 }
2914 EXPORT_SYMBOL(blk_mq_free_tag_set);
2915
2916 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2917 {
2918         struct blk_mq_tag_set *set = q->tag_set;
2919         struct blk_mq_hw_ctx *hctx;
2920         int i, ret;
2921
2922         if (!set)
2923                 return -EINVAL;
2924
2925         blk_mq_freeze_queue(q);
2926         blk_mq_quiesce_queue(q);
2927
2928         ret = 0;
2929         queue_for_each_hw_ctx(q, hctx, i) {
2930                 if (!hctx->tags)
2931                         continue;
2932                 /*
2933                  * If we're using an MQ scheduler, just update the scheduler
2934                  * queue depth. This is similar to what the old code would do.
2935                  */
2936                 if (!hctx->sched_tags) {
2937                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2938                                                         false);
2939                 } else {
2940                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2941                                                         nr, true);
2942                 }
2943                 if (ret)
2944                         break;
2945         }
2946
2947         if (!ret)
2948                 q->nr_requests = nr;
2949
2950         blk_mq_unquiesce_queue(q);
2951         blk_mq_unfreeze_queue(q);
2952
2953         return ret;
2954 }
2955
2956 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2957                                                         int nr_hw_queues)
2958 {
2959         struct request_queue *q;
2960
2961         lockdep_assert_held(&set->tag_list_lock);
2962
2963         if (nr_hw_queues > nr_cpu_ids)
2964                 nr_hw_queues = nr_cpu_ids;
2965         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2966                 return;
2967
2968         list_for_each_entry(q, &set->tag_list, tag_set_list)
2969                 blk_mq_freeze_queue(q);
2970
2971         set->nr_hw_queues = nr_hw_queues;
2972         blk_mq_update_queue_map(set);
2973         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2974                 blk_mq_realloc_hw_ctxs(set, q);
2975                 blk_mq_queue_reinit(q);
2976         }
2977
2978         list_for_each_entry(q, &set->tag_list, tag_set_list)
2979                 blk_mq_unfreeze_queue(q);
2980 }
2981
2982 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2983 {
2984         mutex_lock(&set->tag_list_lock);
2985         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2986         mutex_unlock(&set->tag_list_lock);
2987 }
2988 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2989
2990 /* Enable polling stats and return whether they were already enabled. */
2991 static bool blk_poll_stats_enable(struct request_queue *q)
2992 {
2993         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2994             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2995                 return true;
2996         blk_stat_add_callback(q, q->poll_cb);
2997         return false;
2998 }
2999
3000 static void blk_mq_poll_stats_start(struct request_queue *q)
3001 {
3002         /*
3003          * We don't arm the callback if polling stats are not enabled or the
3004          * callback is already active.
3005          */
3006         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3007             blk_stat_is_active(q->poll_cb))
3008                 return;
3009
3010         blk_stat_activate_msecs(q->poll_cb, 100);
3011 }
3012
3013 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3014 {
3015         struct request_queue *q = cb->data;
3016         int bucket;
3017
3018         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3019                 if (cb->stat[bucket].nr_samples)
3020                         q->poll_stat[bucket] = cb->stat[bucket];
3021         }
3022 }
3023
3024 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3025                                        struct blk_mq_hw_ctx *hctx,
3026                                        struct request *rq)
3027 {
3028         unsigned long ret = 0;
3029         int bucket;
3030
3031         /*
3032          * If stats collection isn't on, don't sleep but turn it on for
3033          * future users
3034          */
3035         if (!blk_poll_stats_enable(q))
3036                 return 0;
3037
3038         /*
3039          * As an optimistic guess, use half of the mean service time
3040          * for this type of request. We can (and should) make this smarter.
3041          * For instance, if the completion latencies are tight, we can
3042          * get closer than just half the mean. This is especially
3043          * important on devices where the completion latencies are longer
3044          * than ~10 usec. We do use the stats for the relevant IO size
3045          * if available which does lead to better estimates.
3046          */
3047         bucket = blk_mq_poll_stats_bkt(rq);
3048         if (bucket < 0)
3049                 return ret;
3050
3051         if (q->poll_stat[bucket].nr_samples)
3052                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3053
3054         return ret;
3055 }
3056
3057 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3058                                      struct blk_mq_hw_ctx *hctx,
3059                                      struct request *rq)
3060 {
3061         struct hrtimer_sleeper hs;
3062         enum hrtimer_mode mode;
3063         unsigned int nsecs;
3064         ktime_t kt;
3065
3066         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3067                 return false;
3068
3069         /*
3070          * poll_nsec can be:
3071          *
3072          * -1:  don't ever hybrid sleep
3073          *  0:  use half of prev avg
3074          * >0:  use this specific value
3075          */
3076         if (q->poll_nsec == -1)
3077                 return false;
3078         else if (q->poll_nsec > 0)
3079                 nsecs = q->poll_nsec;
3080         else
3081                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3082
3083         if (!nsecs)
3084                 return false;
3085
3086         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3087
3088         /*
3089          * This will be replaced with the stats tracking code, using
3090          * 'avg_completion_time / 2' as the pre-sleep target.
3091          */
3092         kt = nsecs;
3093
3094         mode = HRTIMER_MODE_REL;
3095         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3096         hrtimer_set_expires(&hs.timer, kt);
3097
3098         hrtimer_init_sleeper(&hs, current);
3099         do {
3100                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3101                         break;
3102                 set_current_state(TASK_UNINTERRUPTIBLE);
3103                 hrtimer_start_expires(&hs.timer, mode);
3104                 if (hs.task)
3105                         io_schedule();
3106                 hrtimer_cancel(&hs.timer);
3107                 mode = HRTIMER_MODE_ABS;
3108         } while (hs.task && !signal_pending(current));
3109
3110         __set_current_state(TASK_RUNNING);
3111         destroy_hrtimer_on_stack(&hs.timer);
3112         return true;
3113 }
3114
3115 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3116 {
3117         struct request_queue *q = hctx->queue;
3118         long state;
3119
3120         /*
3121          * If we sleep, have the caller restart the poll loop to reset
3122          * the state. Like for the other success return cases, the
3123          * caller is responsible for checking if the IO completed. If
3124          * the IO isn't complete, we'll get called again and will go
3125          * straight to the busy poll loop.
3126          */
3127         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3128                 return true;
3129
3130         hctx->poll_considered++;
3131
3132         state = current->state;
3133         while (!need_resched()) {
3134                 int ret;
3135
3136                 hctx->poll_invoked++;
3137
3138                 ret = q->mq_ops->poll(hctx, rq->tag);
3139                 if (ret > 0) {
3140                         hctx->poll_success++;
3141                         set_current_state(TASK_RUNNING);
3142                         return true;
3143                 }
3144
3145                 if (signal_pending_state(state, current))
3146                         set_current_state(TASK_RUNNING);
3147
3148                 if (current->state == TASK_RUNNING)
3149                         return true;
3150                 if (ret < 0)
3151                         break;
3152                 cpu_relax();
3153         }
3154
3155         return false;
3156 }
3157
3158 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3159 {
3160         struct blk_mq_hw_ctx *hctx;
3161         struct request *rq;
3162
3163         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3164                 return false;
3165
3166         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3167         if (!blk_qc_t_is_internal(cookie))
3168                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3169         else {
3170                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3171                 /*
3172                  * With scheduling, if the request has completed, we'll
3173                  * get a NULL return here, as we clear the sched tag when
3174                  * that happens. The request still remains valid, like always,
3175                  * so we should be safe with just the NULL check.
3176                  */
3177                 if (!rq)
3178                         return false;
3179         }
3180
3181         return __blk_mq_poll(hctx, rq);
3182 }
3183
3184 static int __init blk_mq_init(void)
3185 {
3186         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3187                                 blk_mq_hctx_notify_dead);
3188         return 0;
3189 }
3190 subsys_initcall(blk_mq_init);