ALSA: memalloc: Drop snd_dma_pci_data() macro
[sfrench/cifs-2.6.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
50  * device-specific coefficients.
51  *
52  * 2. Control Strategy
53  *
54  * The device virtual time (vtime) is used as the primary control metric.
55  * The control strategy is composed of the following three parts.
56  *
57  * 2-1. Vtime Distribution
58  *
59  * When a cgroup becomes active in terms of IOs, its hierarchical share is
60  * calculated.  Please consider the following hierarchy where the numbers
61  * inside parentheses denote the configured weights.
62  *
63  *           root
64  *         /       \
65  *      A (w:100)  B (w:300)
66  *      /       \
67  *  A0 (w:100)  A1 (w:100)
68  *
69  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
70  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
71  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
72  * 12.5% each.  The distribution mechanism only cares about these flattened
73  * shares.  They're called hweights (hierarchical weights) and always add
74  * upto 1 (HWEIGHT_WHOLE).
75  *
76  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
77  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
78  * against the device vtime - an IO which takes 10ms on the underlying
79  * device is considered to take 80ms on A0.
80  *
81  * This constitutes the basis of IO capacity distribution.  Each cgroup's
82  * vtime is running at a rate determined by its hweight.  A cgroup tracks
83  * the vtime consumed by past IOs and can issue a new IO iff doing so
84  * wouldn't outrun the current device vtime.  Otherwise, the IO is
85  * suspended until the vtime has progressed enough to cover it.
86  *
87  * 2-2. Vrate Adjustment
88  *
89  * It's unrealistic to expect the cost model to be perfect.  There are too
90  * many devices and even on the same device the overall performance
91  * fluctuates depending on numerous factors such as IO mixture and device
92  * internal garbage collection.  The controller needs to adapt dynamically.
93  *
94  * This is achieved by adjusting the overall IO rate according to how busy
95  * the device is.  If the device becomes overloaded, we're sending down too
96  * many IOs and should generally slow down.  If there are waiting issuers
97  * but the device isn't saturated, we're issuing too few and should
98  * generally speed up.
99  *
100  * To slow down, we lower the vrate - the rate at which the device vtime
101  * passes compared to the wall clock.  For example, if the vtime is running
102  * at the vrate of 75%, all cgroups added up would only be able to issue
103  * 750ms worth of IOs per second, and vice-versa for speeding up.
104  *
105  * Device business is determined using two criteria - rq wait and
106  * completion latencies.
107  *
108  * When a device gets saturated, the on-device and then the request queues
109  * fill up and a bio which is ready to be issued has to wait for a request
110  * to become available.  When this delay becomes noticeable, it's a clear
111  * indication that the device is saturated and we lower the vrate.  This
112  * saturation signal is fairly conservative as it only triggers when both
113  * hardware and software queues are filled up, and is used as the default
114  * busy signal.
115  *
116  * As devices can have deep queues and be unfair in how the queued commands
117  * are executed, soley depending on rq wait may not result in satisfactory
118  * control quality.  For a better control quality, completion latency QoS
119  * parameters can be configured so that the device is considered saturated
120  * if N'th percentile completion latency rises above the set point.
121  *
122  * The completion latency requirements are a function of both the
123  * underlying device characteristics and the desired IO latency quality of
124  * service.  There is an inherent trade-off - the tighter the latency QoS,
125  * the higher the bandwidth lossage.  Latency QoS is disabled by default
126  * and can be set through /sys/fs/cgroup/io.cost.qos.
127  *
128  * 2-3. Work Conservation
129  *
130  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
131  * periodically while B is sending out enough parallel IOs to saturate the
132  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
133  * cost per second, i.e., 10% of the device capacity.  The naive
134  * distribution of half and half would lead to 60% utilization of the
135  * device, a significant reduction in the total amount of work done
136  * compared to free-for-all competition.  This is too high a cost to pay
137  * for IO control.
138  *
139  * To conserve the total amount of work done, we keep track of how much
140  * each active cgroup is actually using and yield part of its weight if
141  * there are other cgroups which can make use of it.  In the above case,
142  * A's weight will be lowered so that it hovers above the actual usage and
143  * B would be able to use the rest.
144  *
145  * As we don't want to penalize a cgroup for donating its weight, the
146  * surplus weight adjustment factors in a margin and has an immediate
147  * snapback mechanism in case the cgroup needs more IO vtime for itself.
148  *
149  * Note that adjusting down surplus weights has the same effects as
150  * accelerating vtime for other cgroups and work conservation can also be
151  * implemented by adjusting vrate dynamically.  However, squaring who can
152  * donate and should take back how much requires hweight propagations
153  * anyway making it easier to implement and understand as a separate
154  * mechanism.
155  *
156  * 3. Monitoring
157  *
158  * Instead of debugfs or other clumsy monitoring mechanisms, this
159  * controller uses a drgn based monitoring script -
160  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
161  * https://github.com/osandov/drgn.  The ouput looks like the following.
162  *
163  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
164  *                 active      weight      hweight% inflt% dbt  delay usages%
165  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
166  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
167  *
168  * - per        : Timer period
169  * - cur_per    : Internal wall and device vtime clock
170  * - vrate      : Device virtual time rate against wall clock
171  * - weight     : Surplus-adjusted and configured weights
172  * - hweight    : Surplus-adjusted and configured hierarchical weights
173  * - inflt      : The percentage of in-flight IO cost at the end of last period
174  * - del_ms     : Deferred issuer delay induction level and duration
175  * - usages     : Usage history
176  */
177
178 #include <linux/kernel.h>
179 #include <linux/module.h>
180 #include <linux/timer.h>
181 #include <linux/time64.h>
182 #include <linux/parser.h>
183 #include <linux/sched/signal.h>
184 #include <linux/blk-cgroup.h>
185 #include "blk-rq-qos.h"
186 #include "blk-stat.h"
187 #include "blk-wbt.h"
188
189 #ifdef CONFIG_TRACEPOINTS
190
191 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
192 #define TRACE_IOCG_PATH_LEN 1024
193 static DEFINE_SPINLOCK(trace_iocg_path_lock);
194 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
195
196 #define TRACE_IOCG_PATH(type, iocg, ...)                                        \
197         do {                                                                    \
198                 unsigned long flags;                                            \
199                 if (trace_iocost_##type##_enabled()) {                          \
200                         spin_lock_irqsave(&trace_iocg_path_lock, flags);        \
201                         cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,      \
202                                     trace_iocg_path, TRACE_IOCG_PATH_LEN);      \
203                         trace_iocost_##type(iocg, trace_iocg_path,              \
204                                               ##__VA_ARGS__);                   \
205                         spin_unlock_irqrestore(&trace_iocg_path_lock, flags);   \
206                 }                                                               \
207         } while (0)
208
209 #else   /* CONFIG_TRACE_POINTS */
210 #define TRACE_IOCG_PATH(type, iocg, ...)        do { } while (0)
211 #endif  /* CONFIG_TRACE_POINTS */
212
213 enum {
214         MILLION                 = 1000000,
215
216         /* timer period is calculated from latency requirements, bound it */
217         MIN_PERIOD              = USEC_PER_MSEC,
218         MAX_PERIOD              = USEC_PER_SEC,
219
220         /*
221          * A cgroup's vtime can run 50% behind the device vtime, which
222          * serves as its IO credit buffer.  Surplus weight adjustment is
223          * immediately canceled if the vtime margin runs below 10%.
224          */
225         MARGIN_PCT              = 50,
226         INUSE_MARGIN_PCT        = 10,
227
228         /* Have some play in waitq timer operations */
229         WAITQ_TIMER_MARGIN_PCT  = 5,
230
231         /*
232          * vtime can wrap well within a reasonable uptime when vrate is
233          * consistently raised.  Don't trust recorded cgroup vtime if the
234          * period counter indicates that it's older than 5mins.
235          */
236         VTIME_VALID_DUR         = 300 * USEC_PER_SEC,
237
238         /*
239          * Remember the past three non-zero usages and use the max for
240          * surplus calculation.  Three slots guarantee that we remember one
241          * full period usage from the last active stretch even after
242          * partial deactivation and re-activation periods.  Don't start
243          * giving away weight before collecting two data points to prevent
244          * hweight adjustments based on one partial activation period.
245          */
246         NR_USAGE_SLOTS          = 3,
247         MIN_VALID_USAGES        = 2,
248
249         /* 1/64k is granular enough and can easily be handled w/ u32 */
250         HWEIGHT_WHOLE           = 1 << 16,
251
252         /*
253          * As vtime is used to calculate the cost of each IO, it needs to
254          * be fairly high precision.  For example, it should be able to
255          * represent the cost of a single page worth of discard with
256          * suffificient accuracy.  At the same time, it should be able to
257          * represent reasonably long enough durations to be useful and
258          * convenient during operation.
259          *
260          * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
261          * granularity and days of wrap-around time even at extreme vrates.
262          */
263         VTIME_PER_SEC_SHIFT     = 37,
264         VTIME_PER_SEC           = 1LLU << VTIME_PER_SEC_SHIFT,
265         VTIME_PER_USEC          = VTIME_PER_SEC / USEC_PER_SEC,
266
267         /* bound vrate adjustments within two orders of magnitude */
268         VRATE_MIN_PPM           = 10000,        /* 1% */
269         VRATE_MAX_PPM           = 100000000,    /* 10000% */
270
271         VRATE_MIN               = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
272         VRATE_CLAMP_ADJ_PCT     = 4,
273
274         /* if IOs end up waiting for requests, issue less */
275         RQ_WAIT_BUSY_PCT        = 5,
276
277         /* unbusy hysterisis */
278         UNBUSY_THR_PCT          = 75,
279
280         /* don't let cmds which take a very long time pin lagging for too long */
281         MAX_LAGGING_PERIODS     = 10,
282
283         /*
284          * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
285          * donate the surplus.
286          */
287         SURPLUS_SCALE_PCT       = 125,                  /* * 125% */
288         SURPLUS_SCALE_ABS       = HWEIGHT_WHOLE / 50,   /* + 2% */
289         SURPLUS_MIN_ADJ_DELTA   = HWEIGHT_WHOLE / 33,   /* 3% */
290
291         /* switch iff the conditions are met for longer than this */
292         AUTOP_CYCLE_NSEC        = 10LLU * NSEC_PER_SEC,
293
294         /*
295          * Count IO size in 4k pages.  The 12bit shift helps keeping
296          * size-proportional components of cost calculation in closer
297          * numbers of digits to per-IO cost components.
298          */
299         IOC_PAGE_SHIFT          = 12,
300         IOC_PAGE_SIZE           = 1 << IOC_PAGE_SHIFT,
301         IOC_SECT_TO_PAGE_SHIFT  = IOC_PAGE_SHIFT - SECTOR_SHIFT,
302
303         /* if apart further than 16M, consider randio for linear model */
304         LCOEF_RANDIO_PAGES      = 4096,
305 };
306
307 enum ioc_running {
308         IOC_IDLE,
309         IOC_RUNNING,
310         IOC_STOP,
311 };
312
313 /* io.cost.qos controls including per-dev enable of the whole controller */
314 enum {
315         QOS_ENABLE,
316         QOS_CTRL,
317         NR_QOS_CTRL_PARAMS,
318 };
319
320 /* io.cost.qos params */
321 enum {
322         QOS_RPPM,
323         QOS_RLAT,
324         QOS_WPPM,
325         QOS_WLAT,
326         QOS_MIN,
327         QOS_MAX,
328         NR_QOS_PARAMS,
329 };
330
331 /* io.cost.model controls */
332 enum {
333         COST_CTRL,
334         COST_MODEL,
335         NR_COST_CTRL_PARAMS,
336 };
337
338 /* builtin linear cost model coefficients */
339 enum {
340         I_LCOEF_RBPS,
341         I_LCOEF_RSEQIOPS,
342         I_LCOEF_RRANDIOPS,
343         I_LCOEF_WBPS,
344         I_LCOEF_WSEQIOPS,
345         I_LCOEF_WRANDIOPS,
346         NR_I_LCOEFS,
347 };
348
349 enum {
350         LCOEF_RPAGE,
351         LCOEF_RSEQIO,
352         LCOEF_RRANDIO,
353         LCOEF_WPAGE,
354         LCOEF_WSEQIO,
355         LCOEF_WRANDIO,
356         NR_LCOEFS,
357 };
358
359 enum {
360         AUTOP_INVALID,
361         AUTOP_HDD,
362         AUTOP_SSD_QD1,
363         AUTOP_SSD_DFL,
364         AUTOP_SSD_FAST,
365 };
366
367 struct ioc_gq;
368
369 struct ioc_params {
370         u32                             qos[NR_QOS_PARAMS];
371         u64                             i_lcoefs[NR_I_LCOEFS];
372         u64                             lcoefs[NR_LCOEFS];
373         u32                             too_fast_vrate_pct;
374         u32                             too_slow_vrate_pct;
375 };
376
377 struct ioc_missed {
378         u32                             nr_met;
379         u32                             nr_missed;
380         u32                             last_met;
381         u32                             last_missed;
382 };
383
384 struct ioc_pcpu_stat {
385         struct ioc_missed               missed[2];
386
387         u64                             rq_wait_ns;
388         u64                             last_rq_wait_ns;
389 };
390
391 /* per device */
392 struct ioc {
393         struct rq_qos                   rqos;
394
395         bool                            enabled;
396
397         struct ioc_params               params;
398         u32                             period_us;
399         u32                             margin_us;
400         u64                             vrate_min;
401         u64                             vrate_max;
402
403         spinlock_t                      lock;
404         struct timer_list               timer;
405         struct list_head                active_iocgs;   /* active cgroups */
406         struct ioc_pcpu_stat __percpu   *pcpu_stat;
407
408         enum ioc_running                running;
409         atomic64_t                      vtime_rate;
410
411         seqcount_t                      period_seqcount;
412         u32                             period_at;      /* wallclock starttime */
413         u64                             period_at_vtime; /* vtime starttime */
414
415         atomic64_t                      cur_period;     /* inc'd each period */
416         int                             busy_level;     /* saturation history */
417
418         u64                             inuse_margin_vtime;
419         bool                            weights_updated;
420         atomic_t                        hweight_gen;    /* for lazy hweights */
421
422         u64                             autop_too_fast_at;
423         u64                             autop_too_slow_at;
424         int                             autop_idx;
425         bool                            user_qos_params:1;
426         bool                            user_cost_model:1;
427 };
428
429 /* per device-cgroup pair */
430 struct ioc_gq {
431         struct blkg_policy_data         pd;
432         struct ioc                      *ioc;
433
434         /*
435          * A iocg can get its weight from two sources - an explicit
436          * per-device-cgroup configuration or the default weight of the
437          * cgroup.  `cfg_weight` is the explicit per-device-cgroup
438          * configuration.  `weight` is the effective considering both
439          * sources.
440          *
441          * When an idle cgroup becomes active its `active` goes from 0 to
442          * `weight`.  `inuse` is the surplus adjusted active weight.
443          * `active` and `inuse` are used to calculate `hweight_active` and
444          * `hweight_inuse`.
445          *
446          * `last_inuse` remembers `inuse` while an iocg is idle to persist
447          * surplus adjustments.
448          */
449         u32                             cfg_weight;
450         u32                             weight;
451         u32                             active;
452         u32                             inuse;
453         u32                             last_inuse;
454
455         sector_t                        cursor;         /* to detect randio */
456
457         /*
458          * `vtime` is this iocg's vtime cursor which progresses as IOs are
459          * issued.  If lagging behind device vtime, the delta represents
460          * the currently available IO budget.  If runnning ahead, the
461          * overage.
462          *
463          * `vtime_done` is the same but progressed on completion rather
464          * than issue.  The delta behind `vtime` represents the cost of
465          * currently in-flight IOs.
466          *
467          * `last_vtime` is used to remember `vtime` at the end of the last
468          * period to calculate utilization.
469          */
470         atomic64_t                      vtime;
471         atomic64_t                      done_vtime;
472         atomic64_t                      abs_vdebt;
473         u64                             last_vtime;
474
475         /*
476          * The period this iocg was last active in.  Used for deactivation
477          * and invalidating `vtime`.
478          */
479         atomic64_t                      active_period;
480         struct list_head                active_list;
481
482         /* see __propagate_active_weight() and current_hweight() for details */
483         u64                             child_active_sum;
484         u64                             child_inuse_sum;
485         int                             hweight_gen;
486         u32                             hweight_active;
487         u32                             hweight_inuse;
488         bool                            has_surplus;
489
490         struct wait_queue_head          waitq;
491         struct hrtimer                  waitq_timer;
492         struct hrtimer                  delay_timer;
493
494         /* usage is recorded as fractions of HWEIGHT_WHOLE */
495         int                             usage_idx;
496         u32                             usages[NR_USAGE_SLOTS];
497
498         /* this iocg's depth in the hierarchy and ancestors including self */
499         int                             level;
500         struct ioc_gq                   *ancestors[];
501 };
502
503 /* per cgroup */
504 struct ioc_cgrp {
505         struct blkcg_policy_data        cpd;
506         unsigned int                    dfl_weight;
507 };
508
509 struct ioc_now {
510         u64                             now_ns;
511         u32                             now;
512         u64                             vnow;
513         u64                             vrate;
514 };
515
516 struct iocg_wait {
517         struct wait_queue_entry         wait;
518         struct bio                      *bio;
519         u64                             abs_cost;
520         bool                            committed;
521 };
522
523 struct iocg_wake_ctx {
524         struct ioc_gq                   *iocg;
525         u32                             hw_inuse;
526         s64                             vbudget;
527 };
528
529 static const struct ioc_params autop[] = {
530         [AUTOP_HDD] = {
531                 .qos                            = {
532                         [QOS_RLAT]              =        250000, /* 250ms */
533                         [QOS_WLAT]              =        250000,
534                         [QOS_MIN]               = VRATE_MIN_PPM,
535                         [QOS_MAX]               = VRATE_MAX_PPM,
536                 },
537                 .i_lcoefs                       = {
538                         [I_LCOEF_RBPS]          =     174019176,
539                         [I_LCOEF_RSEQIOPS]      =         41708,
540                         [I_LCOEF_RRANDIOPS]     =           370,
541                         [I_LCOEF_WBPS]          =     178075866,
542                         [I_LCOEF_WSEQIOPS]      =         42705,
543                         [I_LCOEF_WRANDIOPS]     =           378,
544                 },
545         },
546         [AUTOP_SSD_QD1] = {
547                 .qos                            = {
548                         [QOS_RLAT]              =         25000, /* 25ms */
549                         [QOS_WLAT]              =         25000,
550                         [QOS_MIN]               = VRATE_MIN_PPM,
551                         [QOS_MAX]               = VRATE_MAX_PPM,
552                 },
553                 .i_lcoefs                       = {
554                         [I_LCOEF_RBPS]          =     245855193,
555                         [I_LCOEF_RSEQIOPS]      =         61575,
556                         [I_LCOEF_RRANDIOPS]     =          6946,
557                         [I_LCOEF_WBPS]          =     141365009,
558                         [I_LCOEF_WSEQIOPS]      =         33716,
559                         [I_LCOEF_WRANDIOPS]     =         26796,
560                 },
561         },
562         [AUTOP_SSD_DFL] = {
563                 .qos                            = {
564                         [QOS_RLAT]              =         25000, /* 25ms */
565                         [QOS_WLAT]              =         25000,
566                         [QOS_MIN]               = VRATE_MIN_PPM,
567                         [QOS_MAX]               = VRATE_MAX_PPM,
568                 },
569                 .i_lcoefs                       = {
570                         [I_LCOEF_RBPS]          =     488636629,
571                         [I_LCOEF_RSEQIOPS]      =          8932,
572                         [I_LCOEF_RRANDIOPS]     =          8518,
573                         [I_LCOEF_WBPS]          =     427891549,
574                         [I_LCOEF_WSEQIOPS]      =         28755,
575                         [I_LCOEF_WRANDIOPS]     =         21940,
576                 },
577                 .too_fast_vrate_pct             =           500,
578         },
579         [AUTOP_SSD_FAST] = {
580                 .qos                            = {
581                         [QOS_RLAT]              =          5000, /* 5ms */
582                         [QOS_WLAT]              =          5000,
583                         [QOS_MIN]               = VRATE_MIN_PPM,
584                         [QOS_MAX]               = VRATE_MAX_PPM,
585                 },
586                 .i_lcoefs                       = {
587                         [I_LCOEF_RBPS]          =    3102524156LLU,
588                         [I_LCOEF_RSEQIOPS]      =        724816,
589                         [I_LCOEF_RRANDIOPS]     =        778122,
590                         [I_LCOEF_WBPS]          =    1742780862LLU,
591                         [I_LCOEF_WSEQIOPS]      =        425702,
592                         [I_LCOEF_WRANDIOPS]     =        443193,
593                 },
594                 .too_slow_vrate_pct             =            10,
595         },
596 };
597
598 /*
599  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
600  * vtime credit shortage and down on device saturation.
601  */
602 static u32 vrate_adj_pct[] =
603         { 0, 0, 0, 0,
604           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
605           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
606           4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
607
608 static struct blkcg_policy blkcg_policy_iocost;
609
610 /* accessors and helpers */
611 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
612 {
613         return container_of(rqos, struct ioc, rqos);
614 }
615
616 static struct ioc *q_to_ioc(struct request_queue *q)
617 {
618         return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
619 }
620
621 static const char *q_name(struct request_queue *q)
622 {
623         if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
624                 return kobject_name(q->kobj.parent);
625         else
626                 return "<unknown>";
627 }
628
629 static const char __maybe_unused *ioc_name(struct ioc *ioc)
630 {
631         return q_name(ioc->rqos.q);
632 }
633
634 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
635 {
636         return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
637 }
638
639 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
640 {
641         return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
642 }
643
644 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
645 {
646         return pd_to_blkg(&iocg->pd);
647 }
648
649 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
650 {
651         return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
652                             struct ioc_cgrp, cpd);
653 }
654
655 /*
656  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
657  * weight, the more expensive each IO.  Must round up.
658  */
659 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
660 {
661         return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse);
662 }
663
664 /*
665  * The inverse of abs_cost_to_cost().  Must round up.
666  */
667 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
668 {
669         return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE);
670 }
671
672 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost)
673 {
674         bio->bi_iocost_cost = cost;
675         atomic64_add(cost, &iocg->vtime);
676 }
677
678 #define CREATE_TRACE_POINTS
679 #include <trace/events/iocost.h>
680
681 /* latency Qos params changed, update period_us and all the dependent params */
682 static void ioc_refresh_period_us(struct ioc *ioc)
683 {
684         u32 ppm, lat, multi, period_us;
685
686         lockdep_assert_held(&ioc->lock);
687
688         /* pick the higher latency target */
689         if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
690                 ppm = ioc->params.qos[QOS_RPPM];
691                 lat = ioc->params.qos[QOS_RLAT];
692         } else {
693                 ppm = ioc->params.qos[QOS_WPPM];
694                 lat = ioc->params.qos[QOS_WLAT];
695         }
696
697         /*
698          * We want the period to be long enough to contain a healthy number
699          * of IOs while short enough for granular control.  Define it as a
700          * multiple of the latency target.  Ideally, the multiplier should
701          * be scaled according to the percentile so that it would nominally
702          * contain a certain number of requests.  Let's be simpler and
703          * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704          */
705         if (ppm)
706                 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
707         else
708                 multi = 2;
709         period_us = multi * lat;
710         period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
711
712         /* calculate dependent params */
713         ioc->period_us = period_us;
714         ioc->margin_us = period_us * MARGIN_PCT / 100;
715         ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
716                         period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100);
717 }
718
719 static int ioc_autop_idx(struct ioc *ioc)
720 {
721         int idx = ioc->autop_idx;
722         const struct ioc_params *p = &autop[idx];
723         u32 vrate_pct;
724         u64 now_ns;
725
726         /* rotational? */
727         if (!blk_queue_nonrot(ioc->rqos.q))
728                 return AUTOP_HDD;
729
730         /* handle SATA SSDs w/ broken NCQ */
731         if (blk_queue_depth(ioc->rqos.q) == 1)
732                 return AUTOP_SSD_QD1;
733
734         /* use one of the normal ssd sets */
735         if (idx < AUTOP_SSD_DFL)
736                 return AUTOP_SSD_DFL;
737
738         /* if user is overriding anything, maintain what was there */
739         if (ioc->user_qos_params || ioc->user_cost_model)
740                 return idx;
741
742         /* step up/down based on the vrate */
743         vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100,
744                               VTIME_PER_USEC);
745         now_ns = ktime_get_ns();
746
747         if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
748                 if (!ioc->autop_too_fast_at)
749                         ioc->autop_too_fast_at = now_ns;
750                 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
751                         return idx + 1;
752         } else {
753                 ioc->autop_too_fast_at = 0;
754         }
755
756         if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
757                 if (!ioc->autop_too_slow_at)
758                         ioc->autop_too_slow_at = now_ns;
759                 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
760                         return idx - 1;
761         } else {
762                 ioc->autop_too_slow_at = 0;
763         }
764
765         return idx;
766 }
767
768 /*
769  * Take the followings as input
770  *
771  *  @bps        maximum sequential throughput
772  *  @seqiops    maximum sequential 4k iops
773  *  @randiops   maximum random 4k iops
774  *
775  * and calculate the linear model cost coefficients.
776  *
777  *  *@page      per-page cost           1s / (@bps / 4096)
778  *  *@seqio     base cost of a seq IO   max((1s / @seqiops) - *@page, 0)
779  *  @randiops   base cost of a rand IO  max((1s / @randiops) - *@page, 0)
780  */
781 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
782                         u64 *page, u64 *seqio, u64 *randio)
783 {
784         u64 v;
785
786         *page = *seqio = *randio = 0;
787
788         if (bps)
789                 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
790                                            DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
791
792         if (seqiops) {
793                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
794                 if (v > *page)
795                         *seqio = v - *page;
796         }
797
798         if (randiops) {
799                 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
800                 if (v > *page)
801                         *randio = v - *page;
802         }
803 }
804
805 static void ioc_refresh_lcoefs(struct ioc *ioc)
806 {
807         u64 *u = ioc->params.i_lcoefs;
808         u64 *c = ioc->params.lcoefs;
809
810         calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
811                     &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
812         calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
813                     &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
814 }
815
816 static bool ioc_refresh_params(struct ioc *ioc, bool force)
817 {
818         const struct ioc_params *p;
819         int idx;
820
821         lockdep_assert_held(&ioc->lock);
822
823         idx = ioc_autop_idx(ioc);
824         p = &autop[idx];
825
826         if (idx == ioc->autop_idx && !force)
827                 return false;
828
829         if (idx != ioc->autop_idx)
830                 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
831
832         ioc->autop_idx = idx;
833         ioc->autop_too_fast_at = 0;
834         ioc->autop_too_slow_at = 0;
835
836         if (!ioc->user_qos_params)
837                 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
838         if (!ioc->user_cost_model)
839                 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
840
841         ioc_refresh_period_us(ioc);
842         ioc_refresh_lcoefs(ioc);
843
844         ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
845                                             VTIME_PER_USEC, MILLION);
846         ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
847                                    VTIME_PER_USEC, MILLION);
848
849         return true;
850 }
851
852 /* take a snapshot of the current [v]time and vrate */
853 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
854 {
855         unsigned seq;
856
857         now->now_ns = ktime_get();
858         now->now = ktime_to_us(now->now_ns);
859         now->vrate = atomic64_read(&ioc->vtime_rate);
860
861         /*
862          * The current vtime is
863          *
864          *   vtime at period start + (wallclock time since the start) * vrate
865          *
866          * As a consistent snapshot of `period_at_vtime` and `period_at` is
867          * needed, they're seqcount protected.
868          */
869         do {
870                 seq = read_seqcount_begin(&ioc->period_seqcount);
871                 now->vnow = ioc->period_at_vtime +
872                         (now->now - ioc->period_at) * now->vrate;
873         } while (read_seqcount_retry(&ioc->period_seqcount, seq));
874 }
875
876 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
877 {
878         lockdep_assert_held(&ioc->lock);
879         WARN_ON_ONCE(ioc->running != IOC_RUNNING);
880
881         write_seqcount_begin(&ioc->period_seqcount);
882         ioc->period_at = now->now;
883         ioc->period_at_vtime = now->vnow;
884         write_seqcount_end(&ioc->period_seqcount);
885
886         ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
887         add_timer(&ioc->timer);
888 }
889
890 /*
891  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
892  * weight sums and propagate upwards accordingly.
893  */
894 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
895 {
896         struct ioc *ioc = iocg->ioc;
897         int lvl;
898
899         lockdep_assert_held(&ioc->lock);
900
901         inuse = min(active, inuse);
902
903         for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
904                 struct ioc_gq *parent = iocg->ancestors[lvl];
905                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
906                 u32 parent_active = 0, parent_inuse = 0;
907
908                 /* update the level sums */
909                 parent->child_active_sum += (s32)(active - child->active);
910                 parent->child_inuse_sum += (s32)(inuse - child->inuse);
911                 /* apply the udpates */
912                 child->active = active;
913                 child->inuse = inuse;
914
915                 /*
916                  * The delta between inuse and active sums indicates that
917                  * that much of weight is being given away.  Parent's inuse
918                  * and active should reflect the ratio.
919                  */
920                 if (parent->child_active_sum) {
921                         parent_active = parent->weight;
922                         parent_inuse = DIV64_U64_ROUND_UP(
923                                 parent_active * parent->child_inuse_sum,
924                                 parent->child_active_sum);
925                 }
926
927                 /* do we need to keep walking up? */
928                 if (parent_active == parent->active &&
929                     parent_inuse == parent->inuse)
930                         break;
931
932                 active = parent_active;
933                 inuse = parent_inuse;
934         }
935
936         ioc->weights_updated = true;
937 }
938
939 static void commit_active_weights(struct ioc *ioc)
940 {
941         lockdep_assert_held(&ioc->lock);
942
943         if (ioc->weights_updated) {
944                 /* paired with rmb in current_hweight(), see there */
945                 smp_wmb();
946                 atomic_inc(&ioc->hweight_gen);
947                 ioc->weights_updated = false;
948         }
949 }
950
951 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse)
952 {
953         __propagate_active_weight(iocg, active, inuse);
954         commit_active_weights(iocg->ioc);
955 }
956
957 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
958 {
959         struct ioc *ioc = iocg->ioc;
960         int lvl;
961         u32 hwa, hwi;
962         int ioc_gen;
963
964         /* hot path - if uptodate, use cached */
965         ioc_gen = atomic_read(&ioc->hweight_gen);
966         if (ioc_gen == iocg->hweight_gen)
967                 goto out;
968
969         /*
970          * Paired with wmb in commit_active_weights().  If we saw the
971          * updated hweight_gen, all the weight updates from
972          * __propagate_active_weight() are visible too.
973          *
974          * We can race with weight updates during calculation and get it
975          * wrong.  However, hweight_gen would have changed and a future
976          * reader will recalculate and we're guaranteed to discard the
977          * wrong result soon.
978          */
979         smp_rmb();
980
981         hwa = hwi = HWEIGHT_WHOLE;
982         for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
983                 struct ioc_gq *parent = iocg->ancestors[lvl];
984                 struct ioc_gq *child = iocg->ancestors[lvl + 1];
985                 u32 active_sum = READ_ONCE(parent->child_active_sum);
986                 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum);
987                 u32 active = READ_ONCE(child->active);
988                 u32 inuse = READ_ONCE(child->inuse);
989
990                 /* we can race with deactivations and either may read as zero */
991                 if (!active_sum || !inuse_sum)
992                         continue;
993
994                 active_sum = max(active, active_sum);
995                 hwa = hwa * active / active_sum;        /* max 16bits * 10000 */
996
997                 inuse_sum = max(inuse, inuse_sum);
998                 hwi = hwi * inuse / inuse_sum;          /* max 16bits * 10000 */
999         }
1000
1001         iocg->hweight_active = max_t(u32, hwa, 1);
1002         iocg->hweight_inuse = max_t(u32, hwi, 1);
1003         iocg->hweight_gen = ioc_gen;
1004 out:
1005         if (hw_activep)
1006                 *hw_activep = iocg->hweight_active;
1007         if (hw_inusep)
1008                 *hw_inusep = iocg->hweight_inuse;
1009 }
1010
1011 static void weight_updated(struct ioc_gq *iocg)
1012 {
1013         struct ioc *ioc = iocg->ioc;
1014         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1015         struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1016         u32 weight;
1017
1018         lockdep_assert_held(&ioc->lock);
1019
1020         weight = iocg->cfg_weight ?: iocc->dfl_weight;
1021         if (weight != iocg->weight && iocg->active)
1022                 propagate_active_weight(iocg, weight,
1023                         DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight));
1024         iocg->weight = weight;
1025 }
1026
1027 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1028 {
1029         struct ioc *ioc = iocg->ioc;
1030         u64 last_period, cur_period, max_period_delta;
1031         u64 vtime, vmargin, vmin;
1032         int i;
1033
1034         /*
1035          * If seem to be already active, just update the stamp to tell the
1036          * timer that we're still active.  We don't mind occassional races.
1037          */
1038         if (!list_empty(&iocg->active_list)) {
1039                 ioc_now(ioc, now);
1040                 cur_period = atomic64_read(&ioc->cur_period);
1041                 if (atomic64_read(&iocg->active_period) != cur_period)
1042                         atomic64_set(&iocg->active_period, cur_period);
1043                 return true;
1044         }
1045
1046         /* racy check on internal node IOs, treat as root level IOs */
1047         if (iocg->child_active_sum)
1048                 return false;
1049
1050         spin_lock_irq(&ioc->lock);
1051
1052         ioc_now(ioc, now);
1053
1054         /* update period */
1055         cur_period = atomic64_read(&ioc->cur_period);
1056         last_period = atomic64_read(&iocg->active_period);
1057         atomic64_set(&iocg->active_period, cur_period);
1058
1059         /* already activated or breaking leaf-only constraint? */
1060         for (i = iocg->level; i > 0; i--)
1061                 if (!list_empty(&iocg->active_list))
1062                         goto fail_unlock;
1063         if (iocg->child_active_sum)
1064                 goto fail_unlock;
1065
1066         /*
1067          * vtime may wrap when vrate is raised substantially due to
1068          * underestimated IO costs.  Look at the period and ignore its
1069          * vtime if the iocg has been idle for too long.  Also, cap the
1070          * budget it can start with to the margin.
1071          */
1072         max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us);
1073         vtime = atomic64_read(&iocg->vtime);
1074         vmargin = ioc->margin_us * now->vrate;
1075         vmin = now->vnow - vmargin;
1076
1077         if (last_period + max_period_delta < cur_period ||
1078             time_before64(vtime, vmin)) {
1079                 atomic64_add(vmin - vtime, &iocg->vtime);
1080                 atomic64_add(vmin - vtime, &iocg->done_vtime);
1081                 vtime = vmin;
1082         }
1083
1084         /*
1085          * Activate, propagate weight and start period timer if not
1086          * running.  Reset hweight_gen to avoid accidental match from
1087          * wrapping.
1088          */
1089         iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1090         list_add(&iocg->active_list, &ioc->active_iocgs);
1091         propagate_active_weight(iocg, iocg->weight,
1092                                 iocg->last_inuse ?: iocg->weight);
1093
1094         TRACE_IOCG_PATH(iocg_activate, iocg, now,
1095                         last_period, cur_period, vtime);
1096
1097         iocg->last_vtime = vtime;
1098
1099         if (ioc->running == IOC_IDLE) {
1100                 ioc->running = IOC_RUNNING;
1101                 ioc_start_period(ioc, now);
1102         }
1103
1104         spin_unlock_irq(&ioc->lock);
1105         return true;
1106
1107 fail_unlock:
1108         spin_unlock_irq(&ioc->lock);
1109         return false;
1110 }
1111
1112 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1113                         int flags, void *key)
1114 {
1115         struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1116         struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1117         u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1118
1119         ctx->vbudget -= cost;
1120
1121         if (ctx->vbudget < 0)
1122                 return -1;
1123
1124         iocg_commit_bio(ctx->iocg, wait->bio, cost);
1125
1126         /*
1127          * autoremove_wake_function() removes the wait entry only when it
1128          * actually changed the task state.  We want the wait always
1129          * removed.  Remove explicitly and use default_wake_function().
1130          */
1131         list_del_init(&wq_entry->entry);
1132         wait->committed = true;
1133
1134         default_wake_function(wq_entry, mode, flags, key);
1135         return 0;
1136 }
1137
1138 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now)
1139 {
1140         struct ioc *ioc = iocg->ioc;
1141         struct iocg_wake_ctx ctx = { .iocg = iocg };
1142         u64 margin_ns = (u64)(ioc->period_us *
1143                               WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC;
1144         u64 abs_vdebt, vdebt, vshortage, expires, oexpires;
1145         s64 vbudget;
1146         u32 hw_inuse;
1147
1148         lockdep_assert_held(&iocg->waitq.lock);
1149
1150         current_hweight(iocg, NULL, &hw_inuse);
1151         vbudget = now->vnow - atomic64_read(&iocg->vtime);
1152
1153         /* pay off debt */
1154         abs_vdebt = atomic64_read(&iocg->abs_vdebt);
1155         vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse);
1156         if (vdebt && vbudget > 0) {
1157                 u64 delta = min_t(u64, vbudget, vdebt);
1158                 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse),
1159                                     abs_vdebt);
1160
1161                 atomic64_add(delta, &iocg->vtime);
1162                 atomic64_add(delta, &iocg->done_vtime);
1163                 atomic64_sub(abs_delta, &iocg->abs_vdebt);
1164                 if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0))
1165                         atomic64_set(&iocg->abs_vdebt, 0);
1166         }
1167
1168         /*
1169          * Wake up the ones which are due and see how much vtime we'll need
1170          * for the next one.
1171          */
1172         ctx.hw_inuse = hw_inuse;
1173         ctx.vbudget = vbudget - vdebt;
1174         __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1175         if (!waitqueue_active(&iocg->waitq))
1176                 return;
1177         if (WARN_ON_ONCE(ctx.vbudget >= 0))
1178                 return;
1179
1180         /* determine next wakeup, add a quarter margin to guarantee chunking */
1181         vshortage = -ctx.vbudget;
1182         expires = now->now_ns +
1183                 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC;
1184         expires += margin_ns / 4;
1185
1186         /* if already active and close enough, don't bother */
1187         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1188         if (hrtimer_is_queued(&iocg->waitq_timer) &&
1189             abs(oexpires - expires) <= margin_ns / 4)
1190                 return;
1191
1192         hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1193                                margin_ns / 4, HRTIMER_MODE_ABS);
1194 }
1195
1196 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1197 {
1198         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1199         struct ioc_now now;
1200         unsigned long flags;
1201
1202         ioc_now(iocg->ioc, &now);
1203
1204         spin_lock_irqsave(&iocg->waitq.lock, flags);
1205         iocg_kick_waitq(iocg, &now);
1206         spin_unlock_irqrestore(&iocg->waitq.lock, flags);
1207
1208         return HRTIMER_NORESTART;
1209 }
1210
1211 static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost)
1212 {
1213         struct ioc *ioc = iocg->ioc;
1214         struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1215         u64 vtime = atomic64_read(&iocg->vtime);
1216         u64 vmargin = ioc->margin_us * now->vrate;
1217         u64 margin_ns = ioc->margin_us * NSEC_PER_USEC;
1218         u64 expires, oexpires;
1219         u32 hw_inuse;
1220
1221         /* debt-adjust vtime */
1222         current_hweight(iocg, NULL, &hw_inuse);
1223         vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse);
1224
1225         /* clear or maintain depending on the overage */
1226         if (time_before_eq64(vtime, now->vnow)) {
1227                 blkcg_clear_delay(blkg);
1228                 return;
1229         }
1230         if (!atomic_read(&blkg->use_delay) &&
1231             time_before_eq64(vtime, now->vnow + vmargin))
1232                 return;
1233
1234         /* use delay */
1235         if (cost) {
1236                 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC,
1237                                                  now->vrate);
1238                 blkcg_add_delay(blkg, now->now_ns, cost_ns);
1239         }
1240         blkcg_use_delay(blkg);
1241
1242         expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow,
1243                                                    now->vrate) * NSEC_PER_USEC;
1244
1245         /* if already active and close enough, don't bother */
1246         oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer));
1247         if (hrtimer_is_queued(&iocg->delay_timer) &&
1248             abs(oexpires - expires) <= margin_ns / 4)
1249                 return;
1250
1251         hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires),
1252                                margin_ns / 4, HRTIMER_MODE_ABS);
1253 }
1254
1255 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer)
1256 {
1257         struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer);
1258         struct ioc_now now;
1259
1260         ioc_now(iocg->ioc, &now);
1261         iocg_kick_delay(iocg, &now, 0);
1262
1263         return HRTIMER_NORESTART;
1264 }
1265
1266 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1267 {
1268         u32 nr_met[2] = { };
1269         u32 nr_missed[2] = { };
1270         u64 rq_wait_ns = 0;
1271         int cpu, rw;
1272
1273         for_each_online_cpu(cpu) {
1274                 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1275                 u64 this_rq_wait_ns;
1276
1277                 for (rw = READ; rw <= WRITE; rw++) {
1278                         u32 this_met = READ_ONCE(stat->missed[rw].nr_met);
1279                         u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed);
1280
1281                         nr_met[rw] += this_met - stat->missed[rw].last_met;
1282                         nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1283                         stat->missed[rw].last_met = this_met;
1284                         stat->missed[rw].last_missed = this_missed;
1285                 }
1286
1287                 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns);
1288                 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1289                 stat->last_rq_wait_ns = this_rq_wait_ns;
1290         }
1291
1292         for (rw = READ; rw <= WRITE; rw++) {
1293                 if (nr_met[rw] + nr_missed[rw])
1294                         missed_ppm_ar[rw] =
1295                                 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1296                                                    nr_met[rw] + nr_missed[rw]);
1297                 else
1298                         missed_ppm_ar[rw] = 0;
1299         }
1300
1301         *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1302                                    ioc->period_us * NSEC_PER_USEC);
1303 }
1304
1305 /* was iocg idle this period? */
1306 static bool iocg_is_idle(struct ioc_gq *iocg)
1307 {
1308         struct ioc *ioc = iocg->ioc;
1309
1310         /* did something get issued this period? */
1311         if (atomic64_read(&iocg->active_period) ==
1312             atomic64_read(&ioc->cur_period))
1313                 return false;
1314
1315         /* is something in flight? */
1316         if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime))
1317                 return false;
1318
1319         return true;
1320 }
1321
1322 /* returns usage with margin added if surplus is large enough */
1323 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse)
1324 {
1325         /* add margin */
1326         usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100);
1327         usage += SURPLUS_SCALE_ABS;
1328
1329         /* don't bother if the surplus is too small */
1330         if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse)
1331                 return 0;
1332
1333         return usage;
1334 }
1335
1336 static void ioc_timer_fn(struct timer_list *timer)
1337 {
1338         struct ioc *ioc = container_of(timer, struct ioc, timer);
1339         struct ioc_gq *iocg, *tiocg;
1340         struct ioc_now now;
1341         int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0;
1342         u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1343         u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1344         u32 missed_ppm[2], rq_wait_pct;
1345         u64 period_vtime;
1346         int prev_busy_level, i;
1347
1348         /* how were the latencies during the period? */
1349         ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1350
1351         /* take care of active iocgs */
1352         spin_lock_irq(&ioc->lock);
1353
1354         ioc_now(ioc, &now);
1355
1356         period_vtime = now.vnow - ioc->period_at_vtime;
1357         if (WARN_ON_ONCE(!period_vtime)) {
1358                 spin_unlock_irq(&ioc->lock);
1359                 return;
1360         }
1361
1362         /*
1363          * Waiters determine the sleep durations based on the vrate they
1364          * saw at the time of sleep.  If vrate has increased, some waiters
1365          * could be sleeping for too long.  Wake up tardy waiters which
1366          * should have woken up in the last period and expire idle iocgs.
1367          */
1368         list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
1369                 if (!waitqueue_active(&iocg->waitq) &&
1370                     !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg))
1371                         continue;
1372
1373                 spin_lock(&iocg->waitq.lock);
1374
1375                 if (waitqueue_active(&iocg->waitq) ||
1376                     atomic64_read(&iocg->abs_vdebt)) {
1377                         /* might be oversleeping vtime / hweight changes, kick */
1378                         iocg_kick_waitq(iocg, &now);
1379                         iocg_kick_delay(iocg, &now, 0);
1380                 } else if (iocg_is_idle(iocg)) {
1381                         /* no waiter and idle, deactivate */
1382                         iocg->last_inuse = iocg->inuse;
1383                         __propagate_active_weight(iocg, 0, 0);
1384                         list_del_init(&iocg->active_list);
1385                 }
1386
1387                 spin_unlock(&iocg->waitq.lock);
1388         }
1389         commit_active_weights(ioc);
1390
1391         /* calc usages and see whether some weights need to be moved around */
1392         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1393                 u64 vdone, vtime, vusage, vmargin, vmin;
1394                 u32 hw_active, hw_inuse, usage;
1395
1396                 /*
1397                  * Collect unused and wind vtime closer to vnow to prevent
1398                  * iocgs from accumulating a large amount of budget.
1399                  */
1400                 vdone = atomic64_read(&iocg->done_vtime);
1401                 vtime = atomic64_read(&iocg->vtime);
1402                 current_hweight(iocg, &hw_active, &hw_inuse);
1403
1404                 /*
1405                  * Latency QoS detection doesn't account for IOs which are
1406                  * in-flight for longer than a period.  Detect them by
1407                  * comparing vdone against period start.  If lagging behind
1408                  * IOs from past periods, don't increase vrate.
1409                  */
1410                 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
1411                     !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
1412                     time_after64(vtime, vdone) &&
1413                     time_after64(vtime, now.vnow -
1414                                  MAX_LAGGING_PERIODS * period_vtime) &&
1415                     time_before64(vdone, now.vnow - period_vtime))
1416                         nr_lagging++;
1417
1418                 if (waitqueue_active(&iocg->waitq))
1419                         vusage = now.vnow - iocg->last_vtime;
1420                 else if (time_before64(iocg->last_vtime, vtime))
1421                         vusage = vtime - iocg->last_vtime;
1422                 else
1423                         vusage = 0;
1424
1425                 iocg->last_vtime += vusage;
1426                 /*
1427                  * Factor in in-flight vtime into vusage to avoid
1428                  * high-latency completions appearing as idle.  This should
1429                  * be done after the above ->last_time adjustment.
1430                  */
1431                 vusage = max(vusage, vtime - vdone);
1432
1433                 /* calculate hweight based usage ratio and record */
1434                 if (vusage) {
1435                         usage = DIV64_U64_ROUND_UP(vusage * hw_inuse,
1436                                                    period_vtime);
1437                         iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS;
1438                         iocg->usages[iocg->usage_idx] = usage;
1439                 } else {
1440                         usage = 0;
1441                 }
1442
1443                 /* see whether there's surplus vtime */
1444                 vmargin = ioc->margin_us * now.vrate;
1445                 vmin = now.vnow - vmargin;
1446
1447                 iocg->has_surplus = false;
1448
1449                 if (!waitqueue_active(&iocg->waitq) &&
1450                     time_before64(vtime, vmin)) {
1451                         u64 delta = vmin - vtime;
1452
1453                         /* throw away surplus vtime */
1454                         atomic64_add(delta, &iocg->vtime);
1455                         atomic64_add(delta, &iocg->done_vtime);
1456                         iocg->last_vtime += delta;
1457                         /* if usage is sufficiently low, maybe it can donate */
1458                         if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) {
1459                                 iocg->has_surplus = true;
1460                                 nr_surpluses++;
1461                         }
1462                 } else if (hw_inuse < hw_active) {
1463                         u32 new_hwi, new_inuse;
1464
1465                         /* was donating but might need to take back some */
1466                         if (waitqueue_active(&iocg->waitq)) {
1467                                 new_hwi = hw_active;
1468                         } else {
1469                                 new_hwi = max(hw_inuse,
1470                                               usage * SURPLUS_SCALE_PCT / 100 +
1471                                               SURPLUS_SCALE_ABS);
1472                         }
1473
1474                         new_inuse = div64_u64((u64)iocg->inuse * new_hwi,
1475                                               hw_inuse);
1476                         new_inuse = clamp_t(u32, new_inuse, 1, iocg->active);
1477
1478                         if (new_inuse > iocg->inuse) {
1479                                 TRACE_IOCG_PATH(inuse_takeback, iocg, &now,
1480                                                 iocg->inuse, new_inuse,
1481                                                 hw_inuse, new_hwi);
1482                                 __propagate_active_weight(iocg, iocg->weight,
1483                                                           new_inuse);
1484                         }
1485                 } else {
1486                         /* genuninely out of vtime */
1487                         nr_shortages++;
1488                 }
1489         }
1490
1491         if (!nr_shortages || !nr_surpluses)
1492                 goto skip_surplus_transfers;
1493
1494         /* there are both shortages and surpluses, transfer surpluses */
1495         list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
1496                 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse;
1497                 int nr_valid = 0;
1498
1499                 if (!iocg->has_surplus)
1500                         continue;
1501
1502                 /* base the decision on max historical usage */
1503                 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) {
1504                         if (iocg->usages[i]) {
1505                                 usage = max(usage, iocg->usages[i]);
1506                                 nr_valid++;
1507                         }
1508                 }
1509                 if (nr_valid < MIN_VALID_USAGES)
1510                         continue;
1511
1512                 current_hweight(iocg, &hw_active, &hw_inuse);
1513                 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse);
1514                 if (!new_hwi)
1515                         continue;
1516
1517                 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi,
1518                                                hw_inuse);
1519                 if (new_inuse < iocg->inuse) {
1520                         TRACE_IOCG_PATH(inuse_giveaway, iocg, &now,
1521                                         iocg->inuse, new_inuse,
1522                                         hw_inuse, new_hwi);
1523                         __propagate_active_weight(iocg, iocg->weight, new_inuse);
1524                 }
1525         }
1526 skip_surplus_transfers:
1527         commit_active_weights(ioc);
1528
1529         /*
1530          * If q is getting clogged or we're missing too much, we're issuing
1531          * too much IO and should lower vtime rate.  If we're not missing
1532          * and experiencing shortages but not surpluses, we're too stingy
1533          * and should increase vtime rate.
1534          */
1535         prev_busy_level = ioc->busy_level;
1536         if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
1537             missed_ppm[READ] > ppm_rthr ||
1538             missed_ppm[WRITE] > ppm_wthr) {
1539                 ioc->busy_level = max(ioc->busy_level, 0);
1540                 ioc->busy_level++;
1541         } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
1542                    missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
1543                    missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
1544                 /* take action iff there is contention */
1545                 if (nr_shortages && !nr_lagging) {
1546                         ioc->busy_level = min(ioc->busy_level, 0);
1547                         /* redistribute surpluses first */
1548                         if (!nr_surpluses)
1549                                 ioc->busy_level--;
1550                 }
1551         } else {
1552                 ioc->busy_level = 0;
1553         }
1554
1555         ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
1556
1557         if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
1558                 u64 vrate = atomic64_read(&ioc->vtime_rate);
1559                 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
1560
1561                 /* rq_wait signal is always reliable, ignore user vrate_min */
1562                 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
1563                         vrate_min = VRATE_MIN;
1564
1565                 /*
1566                  * If vrate is out of bounds, apply clamp gradually as the
1567                  * bounds can change abruptly.  Otherwise, apply busy_level
1568                  * based adjustment.
1569                  */
1570                 if (vrate < vrate_min) {
1571                         vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
1572                                           100);
1573                         vrate = min(vrate, vrate_min);
1574                 } else if (vrate > vrate_max) {
1575                         vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
1576                                           100);
1577                         vrate = max(vrate, vrate_max);
1578                 } else {
1579                         int idx = min_t(int, abs(ioc->busy_level),
1580                                         ARRAY_SIZE(vrate_adj_pct) - 1);
1581                         u32 adj_pct = vrate_adj_pct[idx];
1582
1583                         if (ioc->busy_level > 0)
1584                                 adj_pct = 100 - adj_pct;
1585                         else
1586                                 adj_pct = 100 + adj_pct;
1587
1588                         vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1589                                       vrate_min, vrate_max);
1590                 }
1591
1592                 trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct,
1593                                            nr_lagging, nr_shortages,
1594                                            nr_surpluses);
1595
1596                 atomic64_set(&ioc->vtime_rate, vrate);
1597                 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP(
1598                         ioc->period_us * vrate * INUSE_MARGIN_PCT, 100);
1599         } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
1600                 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
1601                                            &missed_ppm, rq_wait_pct, nr_lagging,
1602                                            nr_shortages, nr_surpluses);
1603         }
1604
1605         ioc_refresh_params(ioc, false);
1606
1607         /*
1608          * This period is done.  Move onto the next one.  If nothing's
1609          * going on with the device, stop the timer.
1610          */
1611         atomic64_inc(&ioc->cur_period);
1612
1613         if (ioc->running != IOC_STOP) {
1614                 if (!list_empty(&ioc->active_iocgs)) {
1615                         ioc_start_period(ioc, &now);
1616                 } else {
1617                         ioc->busy_level = 0;
1618                         ioc->running = IOC_IDLE;
1619                 }
1620         }
1621
1622         spin_unlock_irq(&ioc->lock);
1623 }
1624
1625 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
1626                                     bool is_merge, u64 *costp)
1627 {
1628         struct ioc *ioc = iocg->ioc;
1629         u64 coef_seqio, coef_randio, coef_page;
1630         u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
1631         u64 seek_pages = 0;
1632         u64 cost = 0;
1633
1634         switch (bio_op(bio)) {
1635         case REQ_OP_READ:
1636                 coef_seqio      = ioc->params.lcoefs[LCOEF_RSEQIO];
1637                 coef_randio     = ioc->params.lcoefs[LCOEF_RRANDIO];
1638                 coef_page       = ioc->params.lcoefs[LCOEF_RPAGE];
1639                 break;
1640         case REQ_OP_WRITE:
1641                 coef_seqio      = ioc->params.lcoefs[LCOEF_WSEQIO];
1642                 coef_randio     = ioc->params.lcoefs[LCOEF_WRANDIO];
1643                 coef_page       = ioc->params.lcoefs[LCOEF_WPAGE];
1644                 break;
1645         default:
1646                 goto out;
1647         }
1648
1649         if (iocg->cursor) {
1650                 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
1651                 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
1652         }
1653
1654         if (!is_merge) {
1655                 if (seek_pages > LCOEF_RANDIO_PAGES) {
1656                         cost += coef_randio;
1657                 } else {
1658                         cost += coef_seqio;
1659                 }
1660         }
1661         cost += pages * coef_page;
1662 out:
1663         *costp = cost;
1664 }
1665
1666 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
1667 {
1668         u64 cost;
1669
1670         calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
1671         return cost;
1672 }
1673
1674 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
1675 {
1676         struct blkcg_gq *blkg = bio->bi_blkg;
1677         struct ioc *ioc = rqos_to_ioc(rqos);
1678         struct ioc_gq *iocg = blkg_to_iocg(blkg);
1679         struct ioc_now now;
1680         struct iocg_wait wait;
1681         u32 hw_active, hw_inuse;
1682         u64 abs_cost, cost, vtime;
1683
1684         /* bypass IOs if disabled or for root cgroup */
1685         if (!ioc->enabled || !iocg->level)
1686                 return;
1687
1688         /* always activate so that even 0 cost IOs get protected to some level */
1689         if (!iocg_activate(iocg, &now))
1690                 return;
1691
1692         /* calculate the absolute vtime cost */
1693         abs_cost = calc_vtime_cost(bio, iocg, false);
1694         if (!abs_cost)
1695                 return;
1696
1697         iocg->cursor = bio_end_sector(bio);
1698
1699         vtime = atomic64_read(&iocg->vtime);
1700         current_hweight(iocg, &hw_active, &hw_inuse);
1701
1702         if (hw_inuse < hw_active &&
1703             time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) {
1704                 TRACE_IOCG_PATH(inuse_reset, iocg, &now,
1705                                 iocg->inuse, iocg->weight, hw_inuse, hw_active);
1706                 spin_lock_irq(&ioc->lock);
1707                 propagate_active_weight(iocg, iocg->weight, iocg->weight);
1708                 spin_unlock_irq(&ioc->lock);
1709                 current_hweight(iocg, &hw_active, &hw_inuse);
1710         }
1711
1712         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1713
1714         /*
1715          * If no one's waiting and within budget, issue right away.  The
1716          * tests are racy but the races aren't systemic - we only miss once
1717          * in a while which is fine.
1718          */
1719         if (!waitqueue_active(&iocg->waitq) &&
1720             !atomic64_read(&iocg->abs_vdebt) &&
1721             time_before_eq64(vtime + cost, now.vnow)) {
1722                 iocg_commit_bio(iocg, bio, cost);
1723                 return;
1724         }
1725
1726         /*
1727          * We're over budget.  If @bio has to be issued regardless,
1728          * remember the abs_cost instead of advancing vtime.
1729          * iocg_kick_waitq() will pay off the debt before waking more IOs.
1730          * This way, the debt is continuously paid off each period with the
1731          * actual budget available to the cgroup.  If we just wound vtime,
1732          * we would incorrectly use the current hw_inuse for the entire
1733          * amount which, for example, can lead to the cgroup staying
1734          * blocked for a long time even with substantially raised hw_inuse.
1735          */
1736         if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) {
1737                 atomic64_add(abs_cost, &iocg->abs_vdebt);
1738                 iocg_kick_delay(iocg, &now, cost);
1739                 return;
1740         }
1741
1742         /*
1743          * Append self to the waitq and schedule the wakeup timer if we're
1744          * the first waiter.  The timer duration is calculated based on the
1745          * current vrate.  vtime and hweight changes can make it too short
1746          * or too long.  Each wait entry records the absolute cost it's
1747          * waiting for to allow re-evaluation using a custom wait entry.
1748          *
1749          * If too short, the timer simply reschedules itself.  If too long,
1750          * the period timer will notice and trigger wakeups.
1751          *
1752          * All waiters are on iocg->waitq and the wait states are
1753          * synchronized using waitq.lock.
1754          */
1755         spin_lock_irq(&iocg->waitq.lock);
1756
1757         /*
1758          * We activated above but w/o any synchronization.  Deactivation is
1759          * synchronized with waitq.lock and we won't get deactivated as
1760          * long as we're waiting, so we're good if we're activated here.
1761          * In the unlikely case that we are deactivated, just issue the IO.
1762          */
1763         if (unlikely(list_empty(&iocg->active_list))) {
1764                 spin_unlock_irq(&iocg->waitq.lock);
1765                 iocg_commit_bio(iocg, bio, cost);
1766                 return;
1767         }
1768
1769         init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
1770         wait.wait.private = current;
1771         wait.bio = bio;
1772         wait.abs_cost = abs_cost;
1773         wait.committed = false; /* will be set true by waker */
1774
1775         __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
1776         iocg_kick_waitq(iocg, &now);
1777
1778         spin_unlock_irq(&iocg->waitq.lock);
1779
1780         while (true) {
1781                 set_current_state(TASK_UNINTERRUPTIBLE);
1782                 if (wait.committed)
1783                         break;
1784                 io_schedule();
1785         }
1786
1787         /* waker already committed us, proceed */
1788         finish_wait(&iocg->waitq, &wait.wait);
1789 }
1790
1791 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
1792                            struct bio *bio)
1793 {
1794         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1795         struct ioc *ioc = iocg->ioc;
1796         sector_t bio_end = bio_end_sector(bio);
1797         struct ioc_now now;
1798         u32 hw_inuse;
1799         u64 abs_cost, cost;
1800
1801         /* bypass if disabled or for root cgroup */
1802         if (!ioc->enabled || !iocg->level)
1803                 return;
1804
1805         abs_cost = calc_vtime_cost(bio, iocg, true);
1806         if (!abs_cost)
1807                 return;
1808
1809         ioc_now(ioc, &now);
1810         current_hweight(iocg, NULL, &hw_inuse);
1811         cost = abs_cost_to_cost(abs_cost, hw_inuse);
1812
1813         /* update cursor if backmerging into the request at the cursor */
1814         if (blk_rq_pos(rq) < bio_end &&
1815             blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
1816                 iocg->cursor = bio_end;
1817
1818         /*
1819          * Charge if there's enough vtime budget and the existing request
1820          * has cost assigned.  Otherwise, account it as debt.  See debt
1821          * handling in ioc_rqos_throttle() for details.
1822          */
1823         if (rq->bio && rq->bio->bi_iocost_cost &&
1824             time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow))
1825                 iocg_commit_bio(iocg, bio, cost);
1826         else
1827                 atomic64_add(abs_cost, &iocg->abs_vdebt);
1828 }
1829
1830 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
1831 {
1832         struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
1833
1834         if (iocg && bio->bi_iocost_cost)
1835                 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
1836 }
1837
1838 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
1839 {
1840         struct ioc *ioc = rqos_to_ioc(rqos);
1841         u64 on_q_ns, rq_wait_ns;
1842         int pidx, rw;
1843
1844         if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
1845                 return;
1846
1847         switch (req_op(rq) & REQ_OP_MASK) {
1848         case REQ_OP_READ:
1849                 pidx = QOS_RLAT;
1850                 rw = READ;
1851                 break;
1852         case REQ_OP_WRITE:
1853                 pidx = QOS_WLAT;
1854                 rw = WRITE;
1855                 break;
1856         default:
1857                 return;
1858         }
1859
1860         on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
1861         rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
1862
1863         if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC)
1864                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met);
1865         else
1866                 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed);
1867
1868         this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns);
1869 }
1870
1871 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
1872 {
1873         struct ioc *ioc = rqos_to_ioc(rqos);
1874
1875         spin_lock_irq(&ioc->lock);
1876         ioc_refresh_params(ioc, false);
1877         spin_unlock_irq(&ioc->lock);
1878 }
1879
1880 static void ioc_rqos_exit(struct rq_qos *rqos)
1881 {
1882         struct ioc *ioc = rqos_to_ioc(rqos);
1883
1884         blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
1885
1886         spin_lock_irq(&ioc->lock);
1887         ioc->running = IOC_STOP;
1888         spin_unlock_irq(&ioc->lock);
1889
1890         del_timer_sync(&ioc->timer);
1891         free_percpu(ioc->pcpu_stat);
1892         kfree(ioc);
1893 }
1894
1895 static struct rq_qos_ops ioc_rqos_ops = {
1896         .throttle = ioc_rqos_throttle,
1897         .merge = ioc_rqos_merge,
1898         .done_bio = ioc_rqos_done_bio,
1899         .done = ioc_rqos_done,
1900         .queue_depth_changed = ioc_rqos_queue_depth_changed,
1901         .exit = ioc_rqos_exit,
1902 };
1903
1904 static int blk_iocost_init(struct request_queue *q)
1905 {
1906         struct ioc *ioc;
1907         struct rq_qos *rqos;
1908         int ret;
1909
1910         ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1911         if (!ioc)
1912                 return -ENOMEM;
1913
1914         ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
1915         if (!ioc->pcpu_stat) {
1916                 kfree(ioc);
1917                 return -ENOMEM;
1918         }
1919
1920         rqos = &ioc->rqos;
1921         rqos->id = RQ_QOS_COST;
1922         rqos->ops = &ioc_rqos_ops;
1923         rqos->q = q;
1924
1925         spin_lock_init(&ioc->lock);
1926         timer_setup(&ioc->timer, ioc_timer_fn, 0);
1927         INIT_LIST_HEAD(&ioc->active_iocgs);
1928
1929         ioc->running = IOC_IDLE;
1930         atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
1931         seqcount_init(&ioc->period_seqcount);
1932         ioc->period_at = ktime_to_us(ktime_get());
1933         atomic64_set(&ioc->cur_period, 0);
1934         atomic_set(&ioc->hweight_gen, 0);
1935
1936         spin_lock_irq(&ioc->lock);
1937         ioc->autop_idx = AUTOP_INVALID;
1938         ioc_refresh_params(ioc, true);
1939         spin_unlock_irq(&ioc->lock);
1940
1941         rq_qos_add(q, rqos);
1942         ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
1943         if (ret) {
1944                 rq_qos_del(q, rqos);
1945                 free_percpu(ioc->pcpu_stat);
1946                 kfree(ioc);
1947                 return ret;
1948         }
1949         return 0;
1950 }
1951
1952 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
1953 {
1954         struct ioc_cgrp *iocc;
1955
1956         iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
1957         if (!iocc)
1958                 return NULL;
1959
1960         iocc->dfl_weight = CGROUP_WEIGHT_DFL;
1961         return &iocc->cpd;
1962 }
1963
1964 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
1965 {
1966         kfree(container_of(cpd, struct ioc_cgrp, cpd));
1967 }
1968
1969 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
1970                                              struct blkcg *blkcg)
1971 {
1972         int levels = blkcg->css.cgroup->level + 1;
1973         struct ioc_gq *iocg;
1974
1975         iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]),
1976                             gfp, q->node);
1977         if (!iocg)
1978                 return NULL;
1979
1980         return &iocg->pd;
1981 }
1982
1983 static void ioc_pd_init(struct blkg_policy_data *pd)
1984 {
1985         struct ioc_gq *iocg = pd_to_iocg(pd);
1986         struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
1987         struct ioc *ioc = q_to_ioc(blkg->q);
1988         struct ioc_now now;
1989         struct blkcg_gq *tblkg;
1990         unsigned long flags;
1991
1992         ioc_now(ioc, &now);
1993
1994         iocg->ioc = ioc;
1995         atomic64_set(&iocg->vtime, now.vnow);
1996         atomic64_set(&iocg->done_vtime, now.vnow);
1997         atomic64_set(&iocg->abs_vdebt, 0);
1998         atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
1999         INIT_LIST_HEAD(&iocg->active_list);
2000         iocg->hweight_active = HWEIGHT_WHOLE;
2001         iocg->hweight_inuse = HWEIGHT_WHOLE;
2002
2003         init_waitqueue_head(&iocg->waitq);
2004         hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2005         iocg->waitq_timer.function = iocg_waitq_timer_fn;
2006         hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2007         iocg->delay_timer.function = iocg_delay_timer_fn;
2008
2009         iocg->level = blkg->blkcg->css.cgroup->level;
2010
2011         for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2012                 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2013                 iocg->ancestors[tiocg->level] = tiocg;
2014         }
2015
2016         spin_lock_irqsave(&ioc->lock, flags);
2017         weight_updated(iocg);
2018         spin_unlock_irqrestore(&ioc->lock, flags);
2019 }
2020
2021 static void ioc_pd_free(struct blkg_policy_data *pd)
2022 {
2023         struct ioc_gq *iocg = pd_to_iocg(pd);
2024         struct ioc *ioc = iocg->ioc;
2025
2026         if (ioc) {
2027                 spin_lock(&ioc->lock);
2028                 if (!list_empty(&iocg->active_list)) {
2029                         propagate_active_weight(iocg, 0, 0);
2030                         list_del_init(&iocg->active_list);
2031                 }
2032                 spin_unlock(&ioc->lock);
2033
2034                 hrtimer_cancel(&iocg->waitq_timer);
2035                 hrtimer_cancel(&iocg->delay_timer);
2036         }
2037         kfree(iocg);
2038 }
2039
2040 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2041                              int off)
2042 {
2043         const char *dname = blkg_dev_name(pd->blkg);
2044         struct ioc_gq *iocg = pd_to_iocg(pd);
2045
2046         if (dname && iocg->cfg_weight)
2047                 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight);
2048         return 0;
2049 }
2050
2051
2052 static int ioc_weight_show(struct seq_file *sf, void *v)
2053 {
2054         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2055         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2056
2057         seq_printf(sf, "default %u\n", iocc->dfl_weight);
2058         blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2059                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2060         return 0;
2061 }
2062
2063 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2064                                 size_t nbytes, loff_t off)
2065 {
2066         struct blkcg *blkcg = css_to_blkcg(of_css(of));
2067         struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2068         struct blkg_conf_ctx ctx;
2069         struct ioc_gq *iocg;
2070         u32 v;
2071         int ret;
2072
2073         if (!strchr(buf, ':')) {
2074                 struct blkcg_gq *blkg;
2075
2076                 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2077                         return -EINVAL;
2078
2079                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2080                         return -EINVAL;
2081
2082                 spin_lock(&blkcg->lock);
2083                 iocc->dfl_weight = v;
2084                 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2085                         struct ioc_gq *iocg = blkg_to_iocg(blkg);
2086
2087                         if (iocg) {
2088                                 spin_lock_irq(&iocg->ioc->lock);
2089                                 weight_updated(iocg);
2090                                 spin_unlock_irq(&iocg->ioc->lock);
2091                         }
2092                 }
2093                 spin_unlock(&blkcg->lock);
2094
2095                 return nbytes;
2096         }
2097
2098         ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2099         if (ret)
2100                 return ret;
2101
2102         iocg = blkg_to_iocg(ctx.blkg);
2103
2104         if (!strncmp(ctx.body, "default", 7)) {
2105                 v = 0;
2106         } else {
2107                 if (!sscanf(ctx.body, "%u", &v))
2108                         goto einval;
2109                 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2110                         goto einval;
2111         }
2112
2113         spin_lock_irq(&iocg->ioc->lock);
2114         iocg->cfg_weight = v;
2115         weight_updated(iocg);
2116         spin_unlock_irq(&iocg->ioc->lock);
2117
2118         blkg_conf_finish(&ctx);
2119         return nbytes;
2120
2121 einval:
2122         blkg_conf_finish(&ctx);
2123         return -EINVAL;
2124 }
2125
2126 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2127                           int off)
2128 {
2129         const char *dname = blkg_dev_name(pd->blkg);
2130         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2131
2132         if (!dname)
2133                 return 0;
2134
2135         seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2136                    dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
2137                    ioc->params.qos[QOS_RPPM] / 10000,
2138                    ioc->params.qos[QOS_RPPM] % 10000 / 100,
2139                    ioc->params.qos[QOS_RLAT],
2140                    ioc->params.qos[QOS_WPPM] / 10000,
2141                    ioc->params.qos[QOS_WPPM] % 10000 / 100,
2142                    ioc->params.qos[QOS_WLAT],
2143                    ioc->params.qos[QOS_MIN] / 10000,
2144                    ioc->params.qos[QOS_MIN] % 10000 / 100,
2145                    ioc->params.qos[QOS_MAX] / 10000,
2146                    ioc->params.qos[QOS_MAX] % 10000 / 100);
2147         return 0;
2148 }
2149
2150 static int ioc_qos_show(struct seq_file *sf, void *v)
2151 {
2152         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2153
2154         blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
2155                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2156         return 0;
2157 }
2158
2159 static const match_table_t qos_ctrl_tokens = {
2160         { QOS_ENABLE,           "enable=%u"     },
2161         { QOS_CTRL,             "ctrl=%s"       },
2162         { NR_QOS_CTRL_PARAMS,   NULL            },
2163 };
2164
2165 static const match_table_t qos_tokens = {
2166         { QOS_RPPM,             "rpct=%s"       },
2167         { QOS_RLAT,             "rlat=%u"       },
2168         { QOS_WPPM,             "wpct=%s"       },
2169         { QOS_WLAT,             "wlat=%u"       },
2170         { QOS_MIN,              "min=%s"        },
2171         { QOS_MAX,              "max=%s"        },
2172         { NR_QOS_PARAMS,        NULL            },
2173 };
2174
2175 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
2176                              size_t nbytes, loff_t off)
2177 {
2178         struct gendisk *disk;
2179         struct ioc *ioc;
2180         u32 qos[NR_QOS_PARAMS];
2181         bool enable, user;
2182         char *p;
2183         int ret;
2184
2185         disk = blkcg_conf_get_disk(&input);
2186         if (IS_ERR(disk))
2187                 return PTR_ERR(disk);
2188
2189         ioc = q_to_ioc(disk->queue);
2190         if (!ioc) {
2191                 ret = blk_iocost_init(disk->queue);
2192                 if (ret)
2193                         goto err;
2194                 ioc = q_to_ioc(disk->queue);
2195         }
2196
2197         spin_lock_irq(&ioc->lock);
2198         memcpy(qos, ioc->params.qos, sizeof(qos));
2199         enable = ioc->enabled;
2200         user = ioc->user_qos_params;
2201         spin_unlock_irq(&ioc->lock);
2202
2203         while ((p = strsep(&input, " \t\n"))) {
2204                 substring_t args[MAX_OPT_ARGS];
2205                 char buf[32];
2206                 int tok;
2207                 s64 v;
2208
2209                 if (!*p)
2210                         continue;
2211
2212                 switch (match_token(p, qos_ctrl_tokens, args)) {
2213                 case QOS_ENABLE:
2214                         match_u64(&args[0], &v);
2215                         enable = v;
2216                         continue;
2217                 case QOS_CTRL:
2218                         match_strlcpy(buf, &args[0], sizeof(buf));
2219                         if (!strcmp(buf, "auto"))
2220                                 user = false;
2221                         else if (!strcmp(buf, "user"))
2222                                 user = true;
2223                         else
2224                                 goto einval;
2225                         continue;
2226                 }
2227
2228                 tok = match_token(p, qos_tokens, args);
2229                 switch (tok) {
2230                 case QOS_RPPM:
2231                 case QOS_WPPM:
2232                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2233                             sizeof(buf))
2234                                 goto einval;
2235                         if (cgroup_parse_float(buf, 2, &v))
2236                                 goto einval;
2237                         if (v < 0 || v > 10000)
2238                                 goto einval;
2239                         qos[tok] = v * 100;
2240                         break;
2241                 case QOS_RLAT:
2242                 case QOS_WLAT:
2243                         if (match_u64(&args[0], &v))
2244                                 goto einval;
2245                         qos[tok] = v;
2246                         break;
2247                 case QOS_MIN:
2248                 case QOS_MAX:
2249                         if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
2250                             sizeof(buf))
2251                                 goto einval;
2252                         if (cgroup_parse_float(buf, 2, &v))
2253                                 goto einval;
2254                         if (v < 0)
2255                                 goto einval;
2256                         qos[tok] = clamp_t(s64, v * 100,
2257                                            VRATE_MIN_PPM, VRATE_MAX_PPM);
2258                         break;
2259                 default:
2260                         goto einval;
2261                 }
2262                 user = true;
2263         }
2264
2265         if (qos[QOS_MIN] > qos[QOS_MAX])
2266                 goto einval;
2267
2268         spin_lock_irq(&ioc->lock);
2269
2270         if (enable) {
2271                 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2272                 ioc->enabled = true;
2273         } else {
2274                 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
2275                 ioc->enabled = false;
2276         }
2277
2278         if (user) {
2279                 memcpy(ioc->params.qos, qos, sizeof(qos));
2280                 ioc->user_qos_params = true;
2281         } else {
2282                 ioc->user_qos_params = false;
2283         }
2284
2285         ioc_refresh_params(ioc, true);
2286         spin_unlock_irq(&ioc->lock);
2287
2288         put_disk_and_module(disk);
2289         return nbytes;
2290 einval:
2291         ret = -EINVAL;
2292 err:
2293         put_disk_and_module(disk);
2294         return ret;
2295 }
2296
2297 static u64 ioc_cost_model_prfill(struct seq_file *sf,
2298                                  struct blkg_policy_data *pd, int off)
2299 {
2300         const char *dname = blkg_dev_name(pd->blkg);
2301         struct ioc *ioc = pd_to_iocg(pd)->ioc;
2302         u64 *u = ioc->params.i_lcoefs;
2303
2304         if (!dname)
2305                 return 0;
2306
2307         seq_printf(sf, "%s ctrl=%s model=linear "
2308                    "rbps=%llu rseqiops=%llu rrandiops=%llu "
2309                    "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2310                    dname, ioc->user_cost_model ? "user" : "auto",
2311                    u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
2312                    u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
2313         return 0;
2314 }
2315
2316 static int ioc_cost_model_show(struct seq_file *sf, void *v)
2317 {
2318         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2319
2320         blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
2321                           &blkcg_policy_iocost, seq_cft(sf)->private, false);
2322         return 0;
2323 }
2324
2325 static const match_table_t cost_ctrl_tokens = {
2326         { COST_CTRL,            "ctrl=%s"       },
2327         { COST_MODEL,           "model=%s"      },
2328         { NR_COST_CTRL_PARAMS,  NULL            },
2329 };
2330
2331 static const match_table_t i_lcoef_tokens = {
2332         { I_LCOEF_RBPS,         "rbps=%u"       },
2333         { I_LCOEF_RSEQIOPS,     "rseqiops=%u"   },
2334         { I_LCOEF_RRANDIOPS,    "rrandiops=%u"  },
2335         { I_LCOEF_WBPS,         "wbps=%u"       },
2336         { I_LCOEF_WSEQIOPS,     "wseqiops=%u"   },
2337         { I_LCOEF_WRANDIOPS,    "wrandiops=%u"  },
2338         { NR_I_LCOEFS,          NULL            },
2339 };
2340
2341 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
2342                                     size_t nbytes, loff_t off)
2343 {
2344         struct gendisk *disk;
2345         struct ioc *ioc;
2346         u64 u[NR_I_LCOEFS];
2347         bool user;
2348         char *p;
2349         int ret;
2350
2351         disk = blkcg_conf_get_disk(&input);
2352         if (IS_ERR(disk))
2353                 return PTR_ERR(disk);
2354
2355         ioc = q_to_ioc(disk->queue);
2356         if (!ioc) {
2357                 ret = blk_iocost_init(disk->queue);
2358                 if (ret)
2359                         goto err;
2360                 ioc = q_to_ioc(disk->queue);
2361         }
2362
2363         spin_lock_irq(&ioc->lock);
2364         memcpy(u, ioc->params.i_lcoefs, sizeof(u));
2365         user = ioc->user_cost_model;
2366         spin_unlock_irq(&ioc->lock);
2367
2368         while ((p = strsep(&input, " \t\n"))) {
2369                 substring_t args[MAX_OPT_ARGS];
2370                 char buf[32];
2371                 int tok;
2372                 u64 v;
2373
2374                 if (!*p)
2375                         continue;
2376
2377                 switch (match_token(p, cost_ctrl_tokens, args)) {
2378                 case COST_CTRL:
2379                         match_strlcpy(buf, &args[0], sizeof(buf));
2380                         if (!strcmp(buf, "auto"))
2381                                 user = false;
2382                         else if (!strcmp(buf, "user"))
2383                                 user = true;
2384                         else
2385                                 goto einval;
2386                         continue;
2387                 case COST_MODEL:
2388                         match_strlcpy(buf, &args[0], sizeof(buf));
2389                         if (strcmp(buf, "linear"))
2390                                 goto einval;
2391                         continue;
2392                 }
2393
2394                 tok = match_token(p, i_lcoef_tokens, args);
2395                 if (tok == NR_I_LCOEFS)
2396                         goto einval;
2397                 if (match_u64(&args[0], &v))
2398                         goto einval;
2399                 u[tok] = v;
2400                 user = true;
2401         }
2402
2403         spin_lock_irq(&ioc->lock);
2404         if (user) {
2405                 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
2406                 ioc->user_cost_model = true;
2407         } else {
2408                 ioc->user_cost_model = false;
2409         }
2410         ioc_refresh_params(ioc, true);
2411         spin_unlock_irq(&ioc->lock);
2412
2413         put_disk_and_module(disk);
2414         return nbytes;
2415
2416 einval:
2417         ret = -EINVAL;
2418 err:
2419         put_disk_and_module(disk);
2420         return ret;
2421 }
2422
2423 static struct cftype ioc_files[] = {
2424         {
2425                 .name = "weight",
2426                 .flags = CFTYPE_NOT_ON_ROOT,
2427                 .seq_show = ioc_weight_show,
2428                 .write = ioc_weight_write,
2429         },
2430         {
2431                 .name = "cost.qos",
2432                 .flags = CFTYPE_ONLY_ON_ROOT,
2433                 .seq_show = ioc_qos_show,
2434                 .write = ioc_qos_write,
2435         },
2436         {
2437                 .name = "cost.model",
2438                 .flags = CFTYPE_ONLY_ON_ROOT,
2439                 .seq_show = ioc_cost_model_show,
2440                 .write = ioc_cost_model_write,
2441         },
2442         {}
2443 };
2444
2445 static struct blkcg_policy blkcg_policy_iocost = {
2446         .dfl_cftypes    = ioc_files,
2447         .cpd_alloc_fn   = ioc_cpd_alloc,
2448         .cpd_free_fn    = ioc_cpd_free,
2449         .pd_alloc_fn    = ioc_pd_alloc,
2450         .pd_init_fn     = ioc_pd_init,
2451         .pd_free_fn     = ioc_pd_free,
2452 };
2453
2454 static int __init ioc_init(void)
2455 {
2456         return blkcg_policy_register(&blkcg_policy_iocost);
2457 }
2458
2459 static void __exit ioc_exit(void)
2460 {
2461         return blkcg_policy_unregister(&blkcg_policy_iocost);
2462 }
2463
2464 module_init(ioc_init);
2465 module_exit(ioc_exit);